
Assignment 9; Due Friday, March 17

24.4b: A picture of this set is shown below. Note that the set only contains points on the
lines; internal points are missing.

Below are choices for U and V. Notice that U ,V, and U ∩ V are arcwise connected.

Both U and V can be strongly deformed to a bouquet of two circles, so their fundamental
groups are the free groups F (a, b) and F (c, d). Since U ∩ V can be contracted to a point,
its fundamental group is trivial. So there are no relations and the fundamental group of
our set is the free group F (a, b, c, d).

This is not surprising since our space is almost a bouquet of four circles.

24.4d: The space consists of two tori joined at a point, as below.
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Choose U to be the entire first torus together with a collar about the common point in the
second torus. Choose V similarly. See the pictures below.

Notice that U can be strongly deformed to a torus, so its fundamental group is Z × Z.
Think of this group as the free abelian group on two generators, which we write FA(a, b).
Each element of this group can be written uniquely as a power of a followed by a power
of b: ambn. A similar statement holds for V; its fundamental group is FA(c, d). The set
U ∩ V can be deformed to a point, so its fundamental group is trivial and there are no
relations. Thus the fundamental group of the join of the two circles is the free product
FA(a, b) ? FA(c, d). A typical element of this group has the form

(a3b2)(c5d−2)(a5b)(c2d2)(ab2)(cd) . . .

24.4e: Below is a picture when n = 2. The space S1×R is a cylinder and we are to remove
k disks.

We get a different answer when n = 2 and when n ≥ 3. We’ll first do the calculation when
n = 2. Recall that a cylinder S1 × R is homeomorphic to a punctured plane R2 − {0} by
using polar coordinates in the second space. Indeed a point in the punctured plane can be
described by an angle θ ∈ S1 and a real 0 < r < ∞. We can map the punctured plane to
the cylinder by sending (θ, r) → θ × ln(r).
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Hence removing k disks from S1 × R is the same as removing k + 1 disks from the plane.
This space can be strongly deformed to a bouquet of k + 1 circles, so the fundamental
group is the free group on k + 1 generators.

When n ≥ 3, we can still find a homeomorphism from Sn−1×R to Rn−{0}, so the space of
interest is still Rn minus k+1 disks. We will prove by induction on k that the fundamental
group of this object is trivial.

Let U be Rn minus all k +1 disks, and let V one of these disks slightly enlarged to a bigger
open disk. Notice that V is contractible and its fundamental group is zero.

The space U ∩ V is an annulus which can be strongly deformed to a sphere Sn−1. Since
n ≥ 3, the fundamental group of this sphere is trivial, so π(U ∩ V) = 0. Thus there are no
relations and the Seifert-Van Kampen theorem states that π(U ∪ V) = π(U). But U ∪ V is
Rn minus k holes and U is Rn minus k + 1 holes.
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24.4k: The picture below shows that RP 2 − {y} can be strongly deformed to a circle, so
its fundamental group equals the fundamental group of a circle, which is Z.

25.1b: Techniques from the end of last term show that all vertices of the polygon are glued
to the same point.

Let U be the interior of the pentagon, and let V be the entire pentagon with boundary
glued together, minus the center. Note that U ∩ V is the interior of the pentagon minus
the center, which can be deformed to a circle. Note that U is contractible, and V can be
retracted to the boundary, which is a bouquet of two circles. Hence the fundamental group
of U is trivial and the fundamental group of V is F (a1, a2).

The fundamental group of U ∩ V is Z, and the map π(U ∩ V) → π(V) sends the generator
of Z to a2

1a
−1
2 a1a2 So the fundamental group of this space is F (a1, a2)/a1a2a

2
1 = a2.
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25.1f-a: Once again, techniques from last term show that all vertices are glued to the
same point.

Exactly the method of the previous problem works here. The boundary of this polygon
is again a bouquet of two circles a1 and a2, and the generator of π(U ∩ V) = Z maps
to a2

1a
−1
2 a−2

1 a2. Hence the required fundamental group is F (a1, a2) with relation a2
1a
−1
2 =

a−1
2 a2

1. We can replace the generator a2 by a−1
2 and get the relation a2

1a2 = a2a
2
1.

25.1f-h: I interprete this space as the region between the inner circle and the outer cir-
cle.

This time we must be careful because it is no longer true that all vertices glue together.
Indeed in both the inner and outer circle, there are two vertices and each edge goes from
one to the other. Hence the inner and outer boundaries are circles. Note that a1 does
not generate an element of any fundamental group because it doesn’t start and end at the
same point. But a1 ? a2 does define an element of a fundamental group.

Let U be the entire set minus the exterior boundary, and let V be the entire set minus the
interior boundary. Note that U can be deformed to the interior boundary and V can be
deformed to the exterior boundary. So π(U) is Z with generator a1 ?a2 and π(V) is Z with
generator b1 ? b2.

The set U ∩ V is the space minus both boundaries. This can be deformed to a circle. The
generator of this circle maps to (b1 ? b2)2 in π(V) and maps to (a1 ? a2)3 in π(U). So
the fundamental group is F (a1 ? a2, b1 ? b2) with relation (a1 ? a2)3 = (b1 ? b2)2. If we let
C = a1 ? a2 and D = b1 ? b2, then this group is F (C,D)/C3 = D2. Notice that this is
exactly the group of the trefoil knot.

Extra Exercise: Clearly hp is the identity since
(
e

2πi
p

)p
= 1 and

(
e

2πiq
p

)p
= 1.

Suppose hk(z1, z2) = (z1, z2) where 1 ≤ k < p. If z1 6= 0, we conclude that e
2πik

p = 1. This
can only happen if p divides k, which is doesn’t.

If z1 = 0, then z2 6= 0 and we conclude that e
2πikq

p = 1. This can only happen if p divides kq.
Since p and q are relatively prime, we again conclude that p divides k, which is false.
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Extra Exercises Continued: We show that S3 → S3/Zp is a covering space as follows.
Pick a point p ∈ S3. We will show that there is an open neighborhood U of p in S3 such
that U , h(U), h2(U), . . . , hp−1(U) are disjoint. This is the key observation.

Suppose we succeed. I claim that π : U → π(U) ⊆ S3/Zp is a homeomorphism, and
the inverse image of this set is exactly the collection of sets U , h(U), . . . , hp−1(U), each
homeomorphic to π(U). Indeed, the map π : U → π(U) is certainly onto; it is one-to-one
because if two points p and q map to the same point, then there is a k such that q = hk(p),
but U ∩ hk(U) = ∅. The remaining assertions are easily checked.

Next we prove that there is a U with U , h(U), h2(U), . . . , hp−1(U) disjoint. If this assertion
is not correct, then for any neighborhood U of p we can find unequal integers m and n
between 0 and p−1 such that hm(U)∩hn(U) 6= ∅. Thus we can find points q and r in U with
hm(q) = hn(r). Without loss of generality suppose n > m, and notice that q = hn−m(r).
Since p does not divide n−m, hn−m has no fixed points, so q and r are distinct.

If no neighborhood U of p works, we can find a sequence of unequal pairs qn and rn such
that qn → p and rn → p, and qn = hkn(rn) for kn between 1 and p− 1. Since only finitely
many kn are available, we can find a subsequence of pn and qn such that all kn are equal
to some fixed k. Then qn → p and rn → p and qn = hk(rn). By continuity, p = hk(p),
contradicting the assertion that hk has no fixed points.

Extra Exercises Continued:

Since S3 is simply connected, π(S3/Zp) is isomorphic to the deck transformation group,
and this group is obviously the set {id, h, h2, . . . , hp−1} ∼ Zp since each of this is a deck
transformation, and there are no other deck transformations because this set already acts
transitively on π−1(p) for p ∈ U .

When p = 2 our map is h(z1, z2) = (−z1,−z2), so S3/Z2 is obtained by gluing opposite
points together, and thus equals RP 3.

Extra Exercise Concluded: This is the fun part, and I intend to describe some initial
tries and false steps before explaining the method ultimately used.

The first goal is to ignore the group Zp and try to get the full S3 to look like a ball B3

with the upper hemisphere glued to the lower hemisphere.
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Consider S3 = {(z1, z2) | |z1|2 + |z2|2 = 1}. Notice that a typical z ∈ C is given in polar
coordinates by giving its radius |z| and its angle θ. We can assume that −π <= θ <= π,
but we must then glue −π to π. In our case it is not necessary to give both |z1| and |z2|
because these quantities are related by |z1|2 + |z2|2 = 1. So a point in S3 is completely
described by giving z1 with 0 ≤ |z1| ≤ 1 and then giving a second angle θ2. We can draw
this by attaching a line segment −π ≤ θ2 ≤ π to each point of the z1 disk. See the picture
below.

However, when |z1| = 1, then |z2| = 0 and there is only one point rather than an interval
of points. We can picture this by drawing the intervals −π ≤ θ2 ≤ π shorter and shorter
near the boundary as in the picture below.

We still must remember that θ2 = −π is the same point as θ2 = π. So to get S3 from a
ball, we must glue each point on the upper hemisphere to the point immediately below it
on the lower hemisphere. This is analogous to constructing S2 from a two-dimensional disk
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by gluing the semicircle at the top to the semicircle at the bottom as shown below.

Conclusion II:

Already this construction looks like our previous construction of a lens space. To push
things further, let us bring the group Zp into the picture. We wish to draw a shaded
subregion of S3 such that every point in S3 is equivalent under Zp to a unique point in the
shaded region, except for identifications along the boundary.

Let us concentrate on the action of Zp on the z1 disk. Here the group acts by rotation by
2π
p . Every point in the disk is equivalent to a point in a shaded region below. Once we

know where the z1 component goes under the map h ∈ Zp, the action on z2 is completely
determined. So every point in S3 is equivalent to a unique point in the wedge below, except
for boundary points. Thus we can take this wedge as our “shaded region.”

I like to think of this piece as a wedge of an orange. We must examine gluing along the
boundary. We already know that the points on the upper hemisphere must be glued to
corresponding points on the lower hemisphere. If we do that, our wedge folds around and
becomes a sort of lens with a sharp corner along the entire outside. This sharp corner
corresponds to the equator of the lens, and the sides of the orange have become the top
and bottom of the lens. We still must examine the manner that Zp forces us to glue this
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top and bottom together (or equivalently, the sides of the orange together).

Let us concentrate on the action of the group Zp on the equator, and thus the action on
the original line over z1 = 0. Notice that this center is a singular place where the z1 action
of Zp is trivial and the z2 action becomes significant. This Zp action is multiplication by

multiples of e
2πiq

p . To understand this multiplication, we must break the equator into p
equal pieces; the multiplication rotates each piece by q units. This begins to look like a
lens space.

By continuing to the end, this method can probably be made to work. However, at this
point I’ll change to a different strategy.

Conclusion III: Instead of obtaining a shaded region by cutting the z1 disk into wedges,
let us obtain it by cutting the angle θ2 into pieces. This is a little easier to do if we think
of θ2 as moving from 0 to 2π. Thus we break this into subintervals

[0, 2π] =
[
0,

2π

p

]
∪

[
2π

p
,
2π · 2

p

]
∪ . . . ∪

[
2π · (p− 1)

p
,
2π · p

p

]
For most points, the action of Zp is completely determined by its action on the second
component, so we can get a shaded region by allowing any z1, but suitably restricting
θ2.

Thus our shaded region can be the set of all (z1, θ) with z1 in the unit disk and θ in the
interval

[
0, 2π

p

]
. There is still a restriction that θ collapses at the boundary where |z1| = 1

and so |z2| = 0. Notice that this fundamental region looks like a ball B3, so we are definitely
making progress.

We need only glue boundaries of this set, which involves gluing the top to the bottom.
Usually if we apply hk ∈ Zp to a point in the shaded region, we get a point in a completely
different region, so we can ignore hk. But sometimes if we take a boundary point of the
shaded region and apply hk, we get another boundary point of the shaded region. In that
special case, we must glue the two boundary points together.
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Indeed, notice that hk maps θ2 = 0 to θ2 = 2πqk
p . If this second angle is 2π

p modulo multi-
ples of 2π, then hk glues the bottom of the ball to the top of the ball, while simultaneously
rotating z1 by k clicks. So this looks very promising.

But the q is annoying. A slight modification will simplify matters.

Conclusion IV; the Real Conclusion Instead of letting z1 belong to a disk and de-
scribing z2 by giving θ2, let us allow z2 to belong to a disk and describe z1 by giving θ1.
To get a shaded region, let us divide the θ1 interval into p pieces just as we earlier divided
the θ2 interval. Our picture is exactly the same as before.

We now ask how hk could map a boundary point of the shaded region to another boundary
point. Since h acts on θ1 by θ1 → θ1 + 2π

p , the only maps hk which send points in the
shaded region to other such points are h and h−1 = hp−1. Restrict attention to the first
map h. It maps the lower boundary θ1 = 0 to the upper boundary θ1 = 2π

p . We can ignore
hp−1 because it just does this same gluing in reverse.

But notice that when the lower boundary is glued to the upper one, h is simultaneously
rotating z2 by 2πq

p . So the rule is that we glue the lower hemisphere to the upper one while
simultaneously rotating about the z-axis counterclockwise by q clicks. Equivalently, we
glue the upper hemisphere to the lower one while simultaneously rotating about the z axis
clockwise by q clicks. This is exactly the description of the lens space L(p, q). Whew.
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