
Assignment 8; Due Friday, March 10

Exercise 1: If p is in the interior of the ball, p is equivalent only to itself, so the interior of
the ball automatically has a neighborhood homeomorphic to an open subset of R3.

There are many ways to deal with points on the boundary of the ball. Here is one of them.
Remove the equator from the ball but keep all other points. Map the remaining set as
follows:

(x, y, z) →
(
x, y,

z√
1− x2 − y2

)
Notice that when (x, y, z) is on the boundary, z satisfies z = ±

√
1− x2 − y2 and thus the

image has the form (x, y,±1). Consequently, our map is a homeomorphism from the closed
ball minus the equator to {(x, y, z) | x2 + y2 < 1 and − 1 ≤ z ≤ 1}.

This new set looks like a muffin. Cut it into two pieces along the xy-plane. Rotate the
top piece about z by θ. Then glue the top face of the top muffin to the bottom face of
the bottom muffin as indicated below. In the end, points on the top and bottom of the
original muffin are now in the middle of a new muffin, which forms an open Euclidean
neighborhood of these points.

Exercise 2: We will use the following theorem of Kronecker:

Theorem 1 Identify angles with points in S1. Suppose θ is an irrational multiple of 2π.
Then the set {0,±θ,±2θ,±3θ, . . .} is dense in S1.
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Proof: Let A be this set together with all limit points of the set. Then A is closed in S1. If
the complement is not empty, it is open and thus a disjoint union of intervals τ0 < τ < τ1

where τ0 and τ1 are in A.

Notice that A is invariant under the map τ → τ + mθ for an integer m. Hence the
complement is also invariant under this map, so if (τ0, τ1) is one of the intervals, then so
is (τ0 + mθ, τ1 + mθ). Each of these intervals is a maximal connected open set in the
complement of A because its endpoints belong to A. If m and n are distinct integers, then
the intervals (τ0 + mθ, τ1 + mθ) and (τ0 + nθ, τ1 + nθ) are either disjoint or identical, for
otherwise their union would be a larger connected open interval. But if the two sets are
identical, then they have the same endpoints, so τ0 +mθ and τ0 +nθ agree up to a multiple
of 2π. But then τ0 + mθ = τ0 + nθ + k(2π) and θ = k

m−n(2π) contradicting the assumption
that θ is an irrational multiple of 2π.

It follows that the sets (τ0 + mθ, τ1 + mθ) form an infinite family of disjoint intervals in
S1, all of the same length. This is certainly impossible, so A must be everything in S1.
QED.

We use this result to solve the exercise. Consider the points on the equator equivalent
to 1 ∈ S1. By Kronecker’s theorem, these points are dense. They all represent the same
point, say p, in the quotient space. On the other hand, there are only countably many
such points, and thus the quotient space has a point q 6= p with representatives in the
equator.

If the quotient space were Hausdorff, then we could find disjoint open neighborhoods of q
and p. Call the inverse images of these open sets U and V. Then all points representing p
belong to U , and points representing q are in V. Since the points representing p are dense
in the equator, one of these points must belong to V, contradicting the assumption that U
and V are disjoint.

Exercise 3: It remains to show that points coming from the equator in the quotient space
have neighborhoods homeomorphic to open sets in R3. Fix one such point, p.
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Flatten the sphere to a lens shape, as shown in the following picture from Thurston’s book.
This lens can be rotated arbitrarily; rotate so the point p is in the interior of an edge around
the equator, rather than at an endpoint of such an edge.

Thurston shows this lens broken into (nonregular) tetrahedra. For L(p, q) there should be
p such tetrahedra.

The gluing operation which forms L(p, q) is then easily visualized. The top of each tetrahe-
dron should be glued to the bottom of the tetrahedron that is q steps away, as determined
by a clockwise action from above. In particular, the equatorial edge of each tetrahedron
is glued to the equatorial edge of the tetrahedron q steps away. Ultimately, the equatorial
edges of all tetrahedra are glued together.

Notice that a similar situation occurs at the vertical edges of these tetrahedra at the
center of the lens. All of the p tetrahedra are glued to this edge; they form a Euclidean
neighborhood of the edge.

Now unglue the left and right edges of the tetrahedra. Then turn each tetrahedron ninety
degrees. The equatorial edges are now vertical, and the old central vertical edges are now
horizontal. The left and right edges that were glued together to form the lens are now at
the top and bottom, and the top and bottom original edges are now at the left and right
of the rotated tetrahedra.
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Glue the new rotated tetrahedra together along their left and right edges (that is, their old
top and bottom edges) as described three paragraphs back. The tetrhahedra need to be
rearranged to make that happen. In the end, a new lens is formed, and the old equatorial
edges, which are now vertical, glue together in the center of this lens to form a Euclidean
neighborhood of this edge. See the picture below.

Thurston shows this another way. He doesn’t turn the tetrahedra; instead he keeps the
white tetrahedron fixed and glues the others around it using top and bottom sides:
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Exercise 4: As in the hint, let U be the open ball without boundary points, and let V be
all points in the lens space except the center of the ball. Then U ∩V contains all points in
the open ball except the origin. This space can be strongly deformation retracted to the
sphere of radius 1

2 . Since the ball minus the origin can be pushed out to its boundary, V
can be strongly deformation retracted to the boundary modulo the equivalence relation on
this boundary.

The standard diagram

then becomes

and an immediate consequence is that π(L(p, q)) = π(∂B3/ ∼). So from now on we ignore
the interior of the ball and concentrate on the boundary. The gluing operation glues por-
tions of this boundary to other portions, forming a complicated surface (with singularities).
We must find the fundamental group of this surface.
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Notice that every point in B3/ ∼ has a representative in the upper hemisphere. Let U be
all points in ∂B3/ ∼ represented by points above the equator, and let V be all points in
∂B3/ ∼ represented by points in the upper hemisphere not equal to the north pole. Notice
that U is contractible to a point, and V can be strongly deformed to the equator modulo
the equivalence relation. Notice that U ∩V consists of points above the equator and below
the north pole; this can be strongly deformed to a circle.

The equator modulo the equivalence relation is just a circle; each point on this circle has
p representatives in V. The map

U ∩ V → V → (this circle)

maps the circle around itself p times. So the standard diagram

reduces to

and this diagram immediately implies that the fundamental group of ∂B3/ ∼ is Zp.
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