
Assignment 7; Due Friday, March 3

22.3a Let p ∈ X. As open neighborhood of p choose U = X. If γ is a loop in at p which
is in U , then γ is homotopic to the constant map because every loop in X is homotopic to
the constant map.

22.3b M is semi-locally simply connected because every point p has a neighborhood home-
omorphic to a unit ball. But every loop in the unit ball is homotopic to a constant in the
ball and thus trivially homotopic to a constant if we even permit the homotopy to leave
the ball.

Every manifold is also locally path connected since open balls are path connected. Hence
M satisfies all requirements for the existence of a universal cover. The universal cover is a
manifold, for is x̃ ∈ M̃ then find an evenly covered open neighborhood of π(x̃) ∈ M which
is homeomorphic to an open set in Rn. Then π−1(U) = ∪ Uα. Suppose x̃ ∈ Uβ. Then Uβ

is homeomorphic to an open set in Rn.

22.3c The author suggests that we use the mapping f : Dn → Sn pictured below. Each
line in the disk is mapped to a great circle on the sphere; the mapping sends the entire
boundary of the disk to the south pole. It is possible to find equations for this map and
thereby show that it makes sense in all dimensions n ≥ 1.

Let S̃n be the universal cover of Sn. We know that S̃1 = R, while Sn is simply connected
for n ≥ 2 and in these cases S̃n = Sn. But suppose for a moment that we didn’t know
these things.

Since Dn is simply connected, our general lifting theorem guarantees a lift f̃ : Dn → S̃n.
In particular, we can restrict f and f̃ to the boundary of the disk, and get maps

f : ∂Dn → {south pole of Sn}

and
f̃ : ∂Dn → S̃n
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At this point, there is a difference between the cases n = 1 and n ≥ 2. If n = 1, the space
∂D1 = S0 is not connected. But if n ≥ 2, the space ∂Dn is connected, and we can apply
our earlier result that lifts are unique. Since f maps the boundary of Dn to a single point,
f̃ must be constant on the boundary of Dn because one possible lift on the boundary is
constant. Since f̃ is constant on the boundary, it induces a map on the quotient space
Dn/ ∼ obtained by gluing all boundary points together. Our picture shows that this space
is homeomorphic to Sn. So we obtain a map f̃ : Sn → S̃n covering f : Sn → Sn. Notice
that the map f : Sn → Sn is the identity map since Dn/ ∼ is homeomorphic to Sn.

We conclude that the identity map can be written as the composition π◦f̃ : Sn → S̃n → Sn.
So id? : π(Sn) → π(Sn) is a composition of the maps π(Sn) → π(S̃n) → π(Sn). Since the
group in the middle is the zero group, both of these maps are identically zero and so
π(Sn) = 0.

23.1b We will do this by playing around rather than by taking a systematic approach. The
relation A4 says that A4 = E and so the powers of A are E,A, A2, A3. The relation A2B−2

says that A2 = B2. But then the powers of B are E,B,A2, A2B,A4, . . .. The negative
powers of B also have this form, because A2 = B2 implies A−2 = B−2, but A−2 = A2 and
so A2 = B−2. Then A2B = B−2B = B−1, etc.

The relation A3BA−1B−1 says that A3BA−1B−1 = E; multiplying both sides by B and
then by A gives A3B = BA. Using this rule over and over, we can write any product of
A’s and B’s as an expression in which all the A’s come first, follow by any B’s.

Putting this altogether shows that every element of the group can be written as E,A, A2, A3,
B,AB,A2B,A3B. I’m ready to guess the group. I believe it is the set of unit quaternions
{±1,±i,±j,±k}. Indeed let A = i and notice that E,A, A2, A3 are 1, i,−1,−i. Let B = j
and notice that B2 = −1 = A2. Finally notice that A3BA−1B−1 = (−i)j(−i)(−j) =
(−k)k = 1.

We have been playing around, but we can now make this rigorous. Map F (A,B) to the
group H of unit quaternions by mapping A to i and B to j. Since each relation is true in
the group of unit quaternions, this induces a map of the quotient group of F (A,B) by the
normal subgroup generated by the relations to the quaternions. By definition this quotient
group is G(S, R) where S = {A,B} and R = A4, A2B−1, A3BA−1B−1. So we obtain a
homomorphism G(S, R) → H. This map is onto since clearly i and j generate H. It is
one-to-one, since we have already concluded that every element can be written as one of
E,A, A2, A3, B, AB, A2B,A3B and each of these is distinct in H.

23.1c The relation ABA−1B−1 says that A and B commute, so every element can be
written AkBl for integers k and l. Since A4 = E = B2, we can assume that 0 ≤ k ≤ 3 and
0 ≤ l ≤ 1 and it immediately follows that the group is Z4 × Z2.

23.1d The relations xyx−1y−1 on pairs of generators quarantees that all generators com-
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mute. Since any word is a product of generators, any two words commute. We certainly
have a map G → AG by just mapping generators to generators; this map is well defined
since if a relation holds on the left, it also holds on the right.

The kernel of this map consists is the subgroup of G consisting of all products of commu-
tators g1g2g

−1
1 g−1

2 where g1, g2 ∈ G. Indeed, all such elements map to the identity since
AG is abelian.

23.1f This theorem is more of an observation than a theorem requiring a formal proof.
The first point, for instance, says that we are adding a relation r, but it really isn’t needed
because r = e is already true before adding it. The second result says that if r isn’t really
needed because r = 1 is already true when we omit it, when it is save to omit the relation
r.

The third result says that we can add a new symbol x that is not one of the generators if
we add the relation wx−1, that is, if we add the relation x = w. This relation says that
whenever we have a word which involves x, we can write down an equivalent word with x
replaced by w, and thus get an equivalent word which only involves the previous generating
symbols.

The last result is equally easy.

You must be annoyed that I assigned this problem. It’s significance is that Tietze proved
the converse. If two finite presentations define isomorphic groups, then one presentation
can be converted into the other by a finite sequence of Tietze transformations. This is
not obvious. Unfortunately, there is no systematic way to obtain an efficient sequence of
transformations, so in practice it is difficult to prove isomorphism this way.

Extra Problem 1: As in the hint, obtain d by lifting using the above diagram. This
lift exists because X is connected and locally pathwise connected, so X̃ also has these
properties.

Define d1 : (X̃, x̃1) → (X̃, x̃0) by reversing the above diagram and lifting. Composing the
two lifts, we find that d1 ◦ d : (X̃, x̃0) → (X̃, x̃0) is a lift of the identity map. Since lifts are
unique and the identity map is one possible lift, this composition must be the identity map.
Similarly d ◦ d1 is the identity. So d is a homeomorphism (with inverse d1) and therefore
a deck transformation.
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Extra Problem 2: There are several ways to do this. Here is one method.

Let γ represent an element in π(X, x0). Since X̃ → X is a covering space, we can lift γ
to γ̃ : I → X̃. This path ends at a point x̃1 ∈ π−1(x0). By lifting homotopies, we discover
that homotopic paths, lift to paths which end in the same point x̃1.

By the previous exercise, there is a deck transformation of X̃ → X which maps x̃0 to x̃1.
By uniqueness of lifts, this deck transformation is unique.

Denote the deck transformation obtained in this way from γ by dγ . We obtain a map

π(X, x0) → Γ(X̃ → X)

I claim this map is a group homomorphism. Indeed, suppose γ and τ represent elements
of π(X, x0). Lift γ to γ̃ : I → X̃, a path which begins at x̃0 and ends at x̃1 = dγ(x̃0). Lift
τ to τ̃ : I → X̃, a path which also begins at x̃0. Then γ ? τ is lifted by following γ̃ to
x̃1 = dγ(x̃0), and then following dγ(τ̃) from dγ(x̃0) to dγ(dτ (x̃0)) and therefore γ ? τ maps
to dγ ◦ dτ .

It is clear that this group homomorphism is onto. To complete the proof it suffices to
show that its kernel is π(X̃, x̃0), for then the quotient group π(X, x0)/π(X̃, x̃0) will map
isomorphically to Γ(X̃ → X).

An element of π(X, x0) maps to the identity in Γ(X̃ → X) just in case its lift ends at x̃0

and thus represents a loop in X̃. But in this case the lifted loop would induce an element
in π(X̃, x̃0) which would map to γ ∈ π(X, x0) and so γ would belong to the subgroup
π(X̃, x̃0).

Conversely, if γ belongs to this subgroup, then a loop homotopic to γ has a lift which ends
at x̃0 and so γ maps to the identity in Γ(X̃ → X).

Extra Problem 3: We define a group law on G̃ by the following lift:

The only difficulty is the proof that this lift exists. We must prove that the composition
G̃ × G̃ → G × G → G maps π(G̃ × G̃) into the image of π(G̃, ẽ) → π(G, e). But a
representative of an element of π(G̃× G̃) has the form (γ(t), τ(t)) where γ and τ are closed
curves in G̃. This element is sent to the path π(γ) ◦ π(τ) by the first map.
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The solution to exercise 15.16c in assignment 4 shows that in a topological group, the
sum γ ? τ of two paths in the fundamental group can also be represented by their group
theoretical product γ ◦τ. So π(γ)◦π(τ) is a representative of π(γ)?π(τ) in the fundamental
group of G. This representative is certainly in the image of the map π(G̃, ẽ) → π(G, e)
because it is the sum of two elements in the image. QED.

Extra Problem 4: Since S3 → SO(3) is a two-folder cover and S3 is simply connected and
so the universal cover, the fundamental group of SO(3) is Z2. Therefore the fundamental
group of SO(3)× SO(3) is Z2 × Z2.

The subgroups of this group are {0}, Z2 × 0, 0 × Z2, {(0, 0), (1, 1)}, and Z2 × Z2. Clearly
these correspond to the covering spaces Sp(1) × Sp(1), SO(3) × Sp(1), Sp(1) × SO(3), ?,
and SO(3)× SO(3).

Extra Problem 5: Note that ||q1hq−1
2 || = ||q1|| ||h|| ||q−1

2 || = ||h|| since q1 and q2 have
norm one. So our map preserves distances. Also note that the map is linear in h for
fixed q1 and q2. By linear algebra, such maps belong to O(4), the full group of orthogonal
transformations. The determinant of such a map is ±1.

But determinant is continuous and the space S3 of unit quaternions is connected, so the
determinant of our maps must always be one. Thus our maps belong to SO(4).

Suppose that h → q1hq−1
2 is the identity map. Setting h = 1 gives q1q

−1
2 = 1, so q1 = q2. But

in an earlier exercise we proved that v → qvq−1 is the identity on the set V of all quaternions
of the form a1i + a2j + a3k only if q = ±1. So q1 = ±1 and (q1, q2) = ±(1, 1).

Finally we show that all rotations can be obtained from Sp(1)×Sp(1). Suppose A ∈ SO(4)
is a rotation. Then A(1) is a unit vector q ∈ H and thus a unit quaternion. Let R ∈ SO(4)
be the rotation given by (q1, q2) = (q, 1). Notice that A(1) = R(1) and thus R−1A leaves
1 fixed. If we can prove that this element is given by some pair (q′1, q

′
2), then we are done

because A will be given by R(q′1, q
′
2) = (q, 1) ◦ (q′1, q

′
2).

But since R−1A leaves 1 fixed, it must be rotation in the three-dimensional plane V per-
pendicular to 1. Last week we proved that every element in this SO(3) is given by a map
v → q′vq′−1. Notice that this corresponds to the pair (q′, q′−1), so we are done.

5


