
Assignment 6; Due Friday, February 24

The Fundamental Group of the Circle

Theorem 1 Let γ : I → S1 be a path starting at 1. This path can be lifted to a path
γ̃ : I → R starting at 0.

Proof: Find a covering {Wα} of S1 by evenly covered open sets. Actually there is such a
cover with two open sets, but we don’t need to know that.

Then {γ−1(Wα)} is an open cover of I. By the theorem of Lebesgue, there is a δ > 0
such that every subset of I of diameter less than δ is inside one of these sets. Choose a
subdivision 0 = t0 < t1 < . . . < tn = 1 so |ti − ti−1| < δ for each i. Then for each i,
γ([ti−1, ti]) is in some evenly covered Wα.

We now inductively define γ̃. Suppose γ̃ has already been defined on [0, ti−1]. We extend it
to [ti−1, ti]. Notice that this inductive step even covers the start of the induction, because
γ̃(0) has been defined to be 0 and needs to be extended to [0, t1].

There is an evenly covered Wα ⊆ S1 such that γ([ti−1, ti]) ⊆ Wα. Let us call this open set
U to avoid a collision of indices. Then π−1(U) = ∪ Uα. The path γ̃ is already defined at
ti−1; this point belongs to one of the Uα, say Uβ . But π : Uβ → U is a homeomorphism.
Define γ̃ on [ti−1, ti] to be π−1 ◦ γ : [ti−1, ti] → U → Uβ.

Remark: We proved that this lift is unique, not just for I but for any connected Y . Thus
if we are given a loop γ : I → S1 beginning and ending at 1, there is a unique lift to a path
γ̃ : I → R which begins at 0 and ends at some point projecting to 1. Since π(x) = e2πix

equals one exactly when x is an integer, γ̃(1) ∈ Z.

Theorem 2 Let h : I × I → S1 be a continuous map such that h(0 × 0) = 1. This map
can be lifted to a map h̃ : I × I → R such that h̃(0× 0) = 0.
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Proof: The proof proceeds exactly as the proof of theorem one. This time we apply
Lebesgue’s result to find a subdivision of the square I × I into subsquares so h maps each
subsquare to some evenly covered open U ⊆ S1. Then we inductively define h̃ subsquare
by subsquare. Suppose h̃ has already been defined on the shaded region at the top of the
next page, and we want to define h̃ on the outlined square which comes next.

This outlined square is mapped by h to an evenly covered U in S1. Then π−1(U) = ∪ Uα.
The extension h̃ is already defined at the point p; actually it has already been defined at
other points but we ignore these for a moment. Thus h̃(p) belongs to some Uα, say Uβ .
Define h̃ on the outlined square to be π−1 ◦ h : outlined square → U → Uβ.

To complete the proof, we must show that the new extension h̃ to the outlined square and
the previous extension h̃ on the shaded region agree on the bottom and left side of the
shaded square. Both both extensions are lifts of h to these lines and the lifts agree at p.
By uniqueness of lifts, the lifts agree on the entire bottom or left.
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Remark: Suppose γ and τ : I → S1 are loops which induce the same element of π(S1, 1).
Then these loops are homotopic by a homotopy h : I × I → S1. Lift this homotopy to
h̃ : I× I → R using the previous theorem. In the picture on the left below, we show values
of the original h on the boundaries of the square. On the right we show values of h̃ on
this square; these values are determined by uniqueness of lifts. In particular, h̃ is constant
on the top of the square, so γ̃(1) = τ̃(1). It follows that the map γ → γ̃(1) induces a
well-defined map π(S1, 1) → Z.

Theorem 3 The map π(S1, 1) → Z is one-to-one.

Proof: Suppose γ̃(1) = τ̃(1). Then γ̃ and τ̃ : I → R are paths which start at the
same point and end at the same point. Since R is simply connected, these paths are
homotopic with fixed endpoints; call the homotopy h̃. This homotopy can be made explicit:
h̃(u, t) = (1− t)γ̃(u) + tτ̃(u). But then π ◦ h̃ is a homotopy from γ to τ , so γ and τ induce
the same element of π(S1, 1).

Theorem 4 The map π(S1, 1) → Z is onto.

Proof: If n ∈ Z, let γ̃(u) = nu : I → R. Define γ(u) = π ◦ γ̃ : I → S1. Then γ defines an
element of π(S1, 1) which clearly maps to n.

Classifying Covering Spaces; Projective Space

Since RPn is Sn with opposite points identified, the natural map π : Sn → RPn is a
two-fold covering space. But Sn is simply connected. We proved that if π : X̃ → X is the
universal covering space, then π(X, x0) is set theoretically equal to π−1(x0). In our case
this set has two points, so π(RPn, x0) is a group with two elements. There is only one such
group up to isomorphism, so π(RPn) = Z2.

Classifying Covering Spaces; the Mobius Band

We begin our discussion of the Mobius band by constructing its universal cover, C. Let C
be the infinite strip

C = {(x, y) | − 1 < y < 1}

and define a group Γ = Z acting on this strip by (x, y) → (x + n, (−1)ny). The generator
of this group translates right by one unit while flipping the y-axis. If we form equivalence
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classes C/Γ, then every point is equivalent to a point (x, y) with 0 ≤ x ≤ 1. The left
and right boundary lines of this set are equivalent by (0, y) ∼ (1,−y). Clearly the set of
equivalence classes with the quotient topology is a Mobius band, as pictured below.

Incidentally, this universal cover C is homeomorphic to an open disk.

Let p ∈ M be the element in the Mobius band corresponding to (0, 0). The inverse image
of this point in the strip is clearly {(n, 0) | n ∈ Z}. The map dn : (x, y) → (x+n, (−1)ny) is
clearly a deck transformation because it induces the identity map on M ; indeed (x, y) and
(x + n, (−1)ny) are equivalent. This particular deck transformation maps (0, 0) to (n, 0).
Since a deck transformation is completely determined by its operation on one point, and
the dn map (0, 0) to all possible points, they form the complete list of deck transformations.
Clearly this deck transformation group is isomorphism to Z, which is comforting because
the fundamental group of the Mobius band is Z.

The subgroups of Z are ΓG = ZN for N = 0, 1, 2, . . .. Each corresponds to a covering
space of the Mobius band, constructed by forming the set of equivalence classes C/ΓG.
When N = 0 the only element of ΓG is the identity map, so two points of C are equivalent
only if they are equal and C/ΓG = C. Otherwise every point of C is equivalent to a point
(x, y) with 0 ≤ x ≤ N and we obtain an N -fold covering space as pictured below. Notice
that the left and right ends are glued together via (0, y) → (N, (−1)Ny), so the covering
space is a cylinder if N is even and a Mobius band is N is odd.
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Two Covering Spaces of the Torus

The pictures below show that the more complicated of the two spaces is a covering space,
and evenly covered disks on the torus are covered twice on the moving space. The pictures
illustrate particularly difficult cases when boundary points of the fundamental region still
lie in evenly covered open sets.

We must prove that these covering spaces are different. Consider the path below on the
torus, and its lift to the two covering spaces. In both cases there are two possible lifts
depending on the starting point. Both lifts are shown in the example on the left, but only
one lift is shown in the example on the right.

Notice that the lift on the left is a closed curve, but the lift on the right is not a closed
curve. So the two covering spaces are not isomorphic.

Fundamental Groups of These Covering Spaces We know that π(S1×S1) = Z ×Z.
If C = R2 is the universal cover and π : C → S1 × S1, then this fundamental group can be
identified with π−1(1× 1), which is the integer lattice in our pictures.

If X̃ → S1 × S1 is a covering space, then C is also the universal cover of X̃ and the
fundamental group of X̃ can be identified with the inverse image of the base point x̃0 ∈ X̃
In our particular example, X̃ is described by a shaded fundamental region and we will take
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x̃0 = 0×0. Then the fundamental group of X̃ consists of all lattice points equivalent to 0×0
under the equivalence relation whose equivalence classes are described by the fundamental
region.

In the example on the left, the equivalence relation is (x, y) ∼ (x + 2m, y + n) and the
points which map to the base point are all lattice points (2m,n). This yields the subgroup
2Z × Z of Z × Z.

In the example on the right, the equivalence relation is generated by (x, y) ∼ (x+2, y) and
(x, y) ∼ (x + 1, y + 1) and the fundamental group consists of all lattice points equivalence
to 0 × 0 under this equivalence relation. These points consist of all (2m,n) with n even,
and all (2m + 1, n) with n odd. The set of such points forms our subgroup of Z × Z. This
group is generated by (2, 0) and (1, 1).

Subgroups of Z × Z

It is useful to resist the temptation of treating both copies of Z symmetrically. Instead we
analyze using the sequence

0 → Z
i→ Z × Z

r→ Z → 0

where i(m) = (m, 0) and r(m,n) = n.

If G ⊆ Z × Z is a subgroup, restrict r to this subgroup. The image is a subgroup of Z
and so has the form NZ for a unique N = 0, 1, 2, . . . The kernel of this r is the set of all
(m, 0) ∈ G; this kernel is a subgroup of Z and thus MZ for a unique M = 0, 1, 2, . . . Thus
we have an exact sequence

0 → MZ → G → NZ → 0

Look at the generator N of the group on the right. This generator comes from an element
of G, but the first component of this element need not be zero. Suppose it comes from
(A,N) ∈ G ⊆ Z × Z. We can modify this element by adding any element of the kernel of
r, so we can assume that 0 ≤ A < M. Thus the subgroup G uniquely determines three
numbers M,N, and A.

Now I claim that conversely these three numbers determine G. This is a special case of the
general theory of semidirect products described in the handout sheet Semidirect Products
and the Fundamental Group of the Klein Bottle. In the language of that handout sheet,
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a choice of A determines a splitting s : NZ → G of the sequence, and this splitting then
determines G. In the handout, it was proved that for a split sequence

0 → H → G → K → 0

every element of G can be uniquely written g = hk where h ∈ H and k ∈ K. In our case,
every element can be written as a sum of a multiple of (M, 0) and a multiple of (A,N).
Thus

G = {(kM + lA, lN) | k, l ∈ Z}

Notice that something special happens when M and/or N is zero. If both are zero, the
group is {0} and the corresponding covering space is the universal cover R2. If N = 0, the
group is G = Z(M, 0) and the covering space is a cylinder corresponding to the shaded
region consisting of all (x, y) with 0 ≤ x ≤ M. If M = 0, the group is G = Z(A,N) and
the covering space is a cylinder as illustrated below.

In all other cases the covering space is a torus. This torus covers MN times, and there are
exactly as many different n-fold covers as there are factorizations n = MN and choices of
A with 0 ≤ A ≤ M. All examples with n = 6 are shown below. Note that 6 = 6 × 1 =
3 × 2 = 2 × 3 = 1 × 6; there are 6 possible A in the first case, 3 in the second, 2 in the
third, and 1 in the fourth.

Incidentally, the lack of symmetry in the final answer may be puzzling. If we perform the
same analysis switching the roles of the first and second components, we get a different list
of twelve shaded regions. You might want to try this. The point is that the shaded region
is not unique, but the subgroup G of Z × Z is.
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Covering Spaces of a Bouquet of Circles

The groups of these four covering spaces are subgroups of the free group on a and b. Each
element of this group is a word, something like a3b−1a5b2a. The four groups are

• all words with the sum of the exponents of b equal to zero

• all words with the sum of the exponents of b congruent to to zero modulo 3

• all words with the sum of the exponents of a equal to zero and the sum of the
exponents of b equal to zero

• all words with the sum of the exponents of a equal to zero modulo 5 and the sum of
the exponents of b equal to zero modulo 4

The Commutator Subgroup of F (a, b) I gave this exercise because I was curious if
there was a direct inductive proof that all words with the sum of the exponents of a equal
to zero and the sum of the exponents of b equal to zero can be written as a product of
commutators. But I’m going to try to prove the result indirectly rather than directly.

Notice that the deck transformation group of this particular covering space is clearly all
maps (x, y) → (x + m, y + n) and in particular is transitive on π−1(p) where p is the base
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point where our two circles meet. By an exercise which admittedly occurs next week, it
follows that the subgroup G of F (a, b) corresponding to this covering space is normal and
the quotient group F (a, b)/G is isomorphic to this deck transformation group Z × Z and
in particular is abelian. Consequently, all commutators cdc−1d−1 must belong to G, since
otherwise the elements of F (a, b)/G induced by c and d would not commute.

Let A be the element of F (a, b)/G induced by a and let B be the element induced by b.
Since aba−1b−1 is in G, A and B commute in this quotient group. Since every element of
F (a, b) is a word in a and b, every element of the quotient group can be written AkBl for
integers k and l. The isomorphism F (a, b)/G → Z×Z certainly sends AkBl to (k, l).

It is possible that G contains other elements which are not products of commutators. Let H
be the subgroup of products of commutators. If H is strictly smaller than G, then F (a, b)/H
will be larger than F (a, b)/G = Z × Z and the natural map F (a, b)/G → F (a, b)/H will
not be onto. But this map is certainly onto since both groups are generated by the images
of a and b in the respective group.

The Universal Covering Group

Suppose X̃ → X is an arbitrary covering space. Here X̃ need not be the universal cover.
One of our most important theorems says that a continuous f : (Y, y0) → (X, x0) can
be lifted to f̃ : (Y, y0) → (X̃, x̃0) if Y is simply connected and locally pathwise con-
nected.

Apply this theorem to G̃ → G when Y = G̃× G̃ and the diagram is:

The hypotheses hold, because if G̃ is simply connected then so is G̃× G̃, and if G is locally
arcwise connected then so is G̃ and thus so is G̃× G̃.

The lifted map defines a product on G̃. Since the diagram is commutative π(g̃1 ◦ g̃2) =
π(g̃1) ◦ π(g̃2).
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We claim that ẽ is a unit in G̃. Indeed consider the diagram below. The composition of
the maps on the top row is a lift of the composition of maps on the bottom row. But the
composition on the bottom row is the identity map g → g, and lifts are unique, and one
possible lift on the top row is the identity map g̃ → g̃, so the composition on the top is the
identity and therefore g̃ ◦ ẽ = g̃. Similarly ẽ ◦ g̃ = g̃, so ẽ is an identity element.

The diagram below has a unique lift, which we will denote g̃ → g̃−1. Here we are omitting
base points out of laziness; the base points are e and ẽ.

The diagram below shows that g̃ → g̃ ◦ g̃−1 is a lift of the map g → g ◦g−1. But the bottom
map is also g → e and thus a possible lift is g̃ → ẽ. Since lifts are unique, g̃ ◦ g̃−1 = ẽ and
so g̃−1 is indeed an inverse in G̃.
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Finally the product on G̃ is associative, for the diagram below shows that
(
g̃1 ◦ g̃2

)
◦ g̃3

is a lift of
(
g1 ◦ g2

)
◦ g3, but since

(
g1 ◦ g2

)
◦ g3 = g1 ◦

(
g2 ◦ g3

)
, another possible lift is

g̃1 ◦
(
g̃2 ◦ g̃3

)
; uniqueness of lifts then implies that multiplication is associate on G̃.

Exercise on Quaternions

This is just a calculation. We have

(a0 + a1i + a2j + a3k)(a0 − a1i− a2j − a3k)

= (a2
0 − a2

1i
2 − a2

2j
2 − a2

3k
2) + i(a0a1 + a1a0 − a2a3 + a3a2) + . . .

and the first term is a2
0 + a2

1 + a2
2 + a2

3 and all other terms are zero.

To prove the second result, notice that q1q2 = q2q1. Then

||q1q2||2 = (q1q2)(q1q2) = q1q2q2q1q1||q2||2q1 = ||q2||2q1q1 = ||q1||2 ||q2||2

Exercise on S3 as a Group

The group axioms follow from associativity in the quaternions, etc. The unit quaternions
consist of all (a0, a1, a2, a3) for which a2

0 + a2
1 + a2

2 + a2
3 = 1, and this is the equation of the

three dimensional sphere S3.

Exercise on S3 Acting on R3

If q = a0 + a1i + a2j + a3k, then q = a0− a1i− a2j − a3k. So q = −q exactly when a0 = 0.
Such a quaternion has the form (a1, a2, a3) and thus can be considered to live in R3.

If q is a unit quaternion, then qq = 1, so q−1 = q. Thus the map is v → qvq. The conjugate
of this element is the product of conjugates in the reverse order, so

qvq = q v q = q(−v)q = −qvq

and therefore qvq belongs to V .
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S3 → SO(3) is two-to-one

Suppose qvq−1 = v for all vinV. Then qv = vq for all v ∈ V. In particular, qi = iq, so
(a0+a1i+a2j+a3k)i = i(a0+a1i+a2j+a3k) and so a0i−a1−a2k+a3j = a0i−a1+a2k−a3j.
So a2 = a3 = 0. Similarly a1 = 0, so q = a0. But ||q|| = 1, so q = ±1.

S3 → SO(3) is onto

We have

(cos θ + i sin θ) i (cos θ + i sin θ) = (cos θ + i sin θ) i (cos θ − i sin θ) = i

and
(cos θ + i sin θ) j (cos θ − i sin θ) = (cos θ + i sin θ)(j cos θ + k sin θ) =

(cos2 θ − sin2 θ)j + (2 cos θ sin θ)k = (cos 2θ)j + (sin 2θ)k.

Similarly (cos θ + i sin θ) k (cos θ− i sin θ) = −(sin θ cos θ)j +(cos2 θ− sin2 θ)k which equals
−(sin 2θ)j + (cos 2θ)k.

These formulas show that cos θ+i sin θ maps to rotate about the i-axis by 2θ. The remaining
assertions are proved similarly.

But we can obtain any rotation as a product of rotations about the three axes. Suppose
our rotation takes a point p to the north pole. This determines the rotation up to rotation
about the z-axis. But we can get that rotation as a product of axis rotations as follows.
First rotate p about the z-axis until the image of p is in the xz plane. Then rotate about
the y-axis until the image is the north pole. Then follow by an arbitrary rotation about
the z-axis.
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