
Assignment 5; Due Friday, February 10

17.9b The set X is just two circles joined at a point, and the set X̃ is a grid in the plane,
without the interiors of the small squares. The picture below shows that the interiors of the
circles are evenly covered, and that the junction where the circles meet is evenly covered.
This ends the argument.

Let me put this exercise in context by telling you a few things we’ll prove later.

Let X̃ be a covering space of X. Then the map π : X̃ → X induces a map

π? : π(X̃) → π(X)

It is not difficult to show that this map is one-to-one, so we can think of π(X̃) as a subgroup
of π(X). We are going to prove that this sets up a one-to-one correspondence between
subgroups of π(X) and covering spaces of X. The full group corresponds to the trivial
cover π = id : X → X and the trivial group corresponds to the unique simply-connected
covering space.

We will prove that the deck transformation group Γ of a covering π : ((̃X), x̃0) → (X,x0) is
transitive on π−1(x0) if and only if π(X̃) is a normal subgroup of π(X). In this case, we will
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prove that Γ is isomorphic to the quotient group. For example, id : X → X corresponds to
the full group π(X) and the quotient group is {1}; indeed the only deck transformation of
X is the identity map. Similarly, the universal cover corresponds to the identity subgroup,
and the quotient is the full group π(X), which is isomorphic to the deck transformation
group.

The fundamental group of a join of two circles is the free group on two generators F (a, b).
I claim that the fundamental group of the above grid is the group generated by all com-
mutators g1g2g−1

1 g−1
2 , and the quotient group is thus the free abelian group generated by

a and b. This abelianized group is just Z × Z. Sure enough, the group of deck transfor-
mations is clearly Z × Z because a deck transformation of the grid is just a translation
(x, y) → (x+m, y + n).

17.9c These problems probably aren’t fair because they assume some knowledge of complex
analysis. But heck, all of mathematics is interconnected.

The map zn is much easier to understand in polar coordinates. It is

(r cos θ, r sin θ) = r(cos θ + i sin θ) = reiθ →
(
reiθ

)n
= rneinθ = (rn cosnθ, rn sinnθ)

This map does some stretching and shrinking in the radial direction, which isn’t very
important because rn : R+ → R+ is a homeomorphism. In the angular direction it winds
around n times. Thus the map defines an n-fold covering space. In the picture below, the
inverse image of U = C? − {negative x-axis} is covered by n open wedges.

The map sin(z) : C → C is not a covering map. The easiest way to see this is to notice
that the derivative of the map is cos(z), and this derivative has a zero at, for instance π

2 .
So sin(z) could not be a local homeomorphism near π

2 . Once we notice this, we can give an
easy argument independent of complex analysis. Notice that sin(π

2 ) = 1 and sin(π
2 − t) =

sin(π
2 + t). So there could not be an open neighborhood of π

2 carried homeomorphically to
an open neighborhood of C by sin(z).

The derivative of (1− z)mzn is −m(1− z)m−1zn + n(1− z)mzn−1, which equals(
−mz + n(1− z)

)
(1− z)m−1zn−1 =

(
n− (m+ n)z

)
(1− z)m−1zn−1
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This expression is zero if z = 0 or z = 1 or z = n
m+n . The points z = 0 and z = 1 have been

omitted to form U , but n
m+n belongs to U unless n

m+n = 0 or n
m+n = ∞ or n

m+n = 1, that
is, n = 0 or m = −n or m = 0. By complex analysis, a map is not a local homeomorphism
near a spot where its derivative is zero. So our map cannot be a covering map unless it is
(1 − z)n or zn or

(
z

1−z

)n
. But zn doesn’t map U to C? − {1} unless n = ±1 because it

maps all nth roots of unity to 1. Similar arguments show that our map is a covering map
if and only if it is one of z, 1

z , 1− z, 1
1−z ,

z
1−z , or 1−z

z .

17.9ef Notice that the map a sends (x, y) to (x, y + 1). The map b sends (x, y) to

(x+
1
2
,−y + 1).

To show that ba = a−1b it suffices to show that aba = b. But ba(x, y) = b(x, y + 1) =
(x+ 1

2 ,−(y+1)+1) = (x+ 1
2 ,−y) and therefore aba(x, y) = a(x+ 1

2 ,−y) = (x+ 1
2 ,−y+1) =

b(x, y). It follows that whenever we find b followed by a, we can replace this with a−1

followed by b. So we can get an equivalence expression with all a’s on the left and all b’s on
the right: akbl. Moreover, l is either even or odd, as the book says in a peculiar way.

In trying to come to grips with this problem, let us figure out where (x, y)) is mapped by
the various group elements. The map ak maps (x, y) to (x+ k, y). The map b maps (x, y)
to (x+ 1

2 ,−y + 1) and b2 maps it to (x+ 1,−(−y + 1) + 1) = (x+ 1, y). So if we restrict
ourselves to products of a and b2, we exactly get transformations of the integer lattice,
and consequently every point is equivalent to a point in the unit rectangle with corners
(0, 0), (0, 1), (1, 1), (1, 0).

We still must come to grips with the action of b. It maps points on the left half of some
rectangle to points on the right half of some other rectangle. Consequently (x, y) is mapped
to (x + 1

2 ,−y + 1). Let us restrict to the previous ”unit” rectangle. Here are pictures of
some equivalences induced by the map b:
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It now follows that every point in the plane is equivalent to a point in the shaded rect-
angle below, and points on the boundary are equivalent as indicated. Clearly the set of
equivalence classes is the Klein bottle.

17.9h We will find a one-to-one correspondence between p−1(x) and p−1(y) where x and
y are any two points in X.

Let γ be a path from x to y in X. If q ∈ π−1(x), there is a unique lift of γ to a path γ̃ in
X̃ starting at q. This path ends at an element of p−1(y); call this element ψ(q). We claim
ψ : p−1(x) → p−1(y) is one-to-one and onto.

It is one-to-one, for if ψ(q1) = ψ(q2), then there would be lifts γ̃1 and γ̃2 of γ starting at
q1 and q2 respectively and ending at the same point. But then γ ? γ−1 could be lifted in
two different ways, as γ̃1 ? γ̃1

−1 and as γ̃1 ? γ̃2
−1, contradicting uniqueness of lifts.

It is onto, for if q1 ∈ p−1(y), lift γ−1 to a path in X̃ starting at q1. This lift ends at
a point q ∈ p−1(x); clearly ψ(q) = q1 because we can lift γ by tracing our lift of γ−1

backward.
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17.9i This was done in class. See the picture below.

17.9j Recall that RP 2 can be obtained from S2 by glueing opposite points together. In
this solution, when p ∈ S2 then −p is this opposite point.

Let γ : (I, 0) → (RP 2, x0) be a parameterization of the simple closed curve in RP 2. Let
x1 and x2 = −x1 be the two points in S2 which project to x0. Let γ1 be the lift of γ to a
path in S2 starting at x1. Notice that γ2 = −γ1 is then the lift of γ to a path starting at
x2. The inverse image of γ is clearly the union of the images of γ1 and γ2.

It may happen that γ1(1) = γ1(0). In that case γ1 and γ2 are both closed curves, and they
are easily proved disjoint simple closed curves.

The other possibility is that γ1(1) = −γ1(0) = γ2(0). In that case γ1 ? γ2 is a simply closed
curve and so the inverse image is one curve rather than two.

17.9l This was essentially done in class. The space RPn is obtained from Sn by glueing
opposite points together, so π : Sn → RPn is a two-fold cover. Since Sn is simply con-
nected, the map π(RPn, x0) → π−1(x0) is one-to-one and onto. This image set has two
elements, so π(RPn, x0) = Z2.

17.9q By definition, X is locally path-connected if whenever x is a point and U is an open
neighborhood of x, there is an open V such that x ∈ V ⊆ U and V is path connected.

Suppose X̃ → X is a covering space and let x ∈ X̃. Choose an evenly covered open
neighborhood V ⊆ X of π(x). Then π−1(V) = ∪Vα. Also x is in one of these open sets; say
x ∈ Vβ.

Now suppose U is an open neighborhood of x in X̃. Replace Vβ by Vβ ∩U and replace V by
π(Vβ∩U). This new V is evenly covered, and this time π−1(V) = ∪Vα and x ∈ Vβ ⊆ U .

But X is locally arcwise connected, so we can find an arcwise connected open set W
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such that π(x) ∈ W ⊆ V and then, since π : Vβ → V is a homeomorphism, there is a
corresponding arcwise connected open set x ∈ W̃ ⊆ Vβ ⊆ U .

17.9r This is almost trivial. If d1 and d2 are covering transformations (called deck transfor-
mations in class), then d1, d2 : X̃ → X̃ are homeomorphisms making a diagram commute.
So d1 ◦ d2 is also a homeomorphism. Clearly the diagram still commutes for this composi-
tion. Similarly d−1

1 is a homeomorphism, and the diagram commutes for this homeomor-
phism.

20.7a If such a map existed, then it would induce a continuous map ϕ̃ : Sn/±1 → S1/±1,
where ±1 symbolizes the equivalence relation which glues opposite points together. Notice
that Sn/± 1 = RPn and S1/± 1 = S1. Thus we obtain a map ϕ̃ : RPn → S1.

There would be an induced map ϕ̃? : Z2 = π(RPn) → π(S1) = Z. All such group homo-
morphisms are trivial, so the nonzero element of π(RPn) would have to map to the trivial
element of π(S1).

But S1 → S1 by z → z2 is a covering map. which wraps the circle twice around itself.
Consider the diagram below.

In this diagram, let the map I → RPn represent the nonzero element of π(RPn). The
corresponding lift I → Sn must then be a path which starts at x̃0 and ends at −x̃0. So the
composition of this map with ϕ must be a path in S1 which starts at ỹ0 and ends at −ỹ0.
When this element is projected down by z → z2, it becomes a closed path in S1 and this
closed path is homotopic to the identity because π(RPn) → π(S1) is the zero map. Our
lifting theory then implies that the unique lift of this map back up to where it came from
as a map I → S1 must be a closed loop. This contradiction proves the exercise.

20.7b First a word about the meaning of the exercise. The sphere S3 can be thought of
as the set of all points in C2 = R4 with absolute value one, and thus as the set of all
(z1, z2) with |z1|2 + |z2|2 = 1. The group Zp then acts on this space by acting on each
component separately, where Zp acts on C as the group of rotations of a regular p-sided
polygon. Similarly Zp acts on S1 ⊆ R2, again as the group of rotations of a regular p-sided
polygon.
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We now want a continuous map S3 → S1. But we don’t want just any map; we want our
map to commute with the action of Zp. That means that if (z1, z2) maps to a point p ∈ S1,
and if we then rotate z1 and z2 by k polygonal clicks, then the image p should also rotate
by k polygonal clicks.

A special case is when p = 2, so rotation by one click takes (z1, z2) to (−z1,−z2) and takes
p to −p. In this case there is no such map by the previous exercise. Now we are going to
prove that in general there is no such map.

If there were such a map, then it would induce a map S3/ ∼→ S1/ ∼ where ∼ denotes the
equivalence relation induced by Zp in which (z1, z2) is glued to the point (w1, w2) obtained
by rotating z1 and z2 simultaneously by k clicks. We would get a diagram

exactly as before, and the argument is going to proceed exactly as it did earlier.

Here is the key step. Consider a map γ : I → S3 defining a path which starts at x̃0 and
ends at x̃1 where both complex coordinates of x̃1 are obtained from the corresponding
complex coordinates of x̃0 by rotating by 2π

n . This path induces a loop in S3/ ∼ and the
corresponding element of π(S3/ ∼) is not the identity element because its lift does not
begin and end at the same point. This element has order n in π(S3/ ∼) because when we
lift the element repeated n times, we get a loop in S3 and all loops in S3 are homotopic
to constant maps. The element in π(S3/ ∼) must map to zero in π(S1) because the latter
group is isomorphic to Z and has no nonzero elements of finite order. On the other hand,
the map I → S3 → S1 obtained by following the top of the diagram is not a loop, because
by equivariance its end point is obtained from its beginning by a rotation of 2π

n . This
contradiction proves the exercise.
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