
Assignment 4; Due Friday, February 3

15.6a: The isomorphism uf : π1(X,x) → π1(X, y) is defined by γ → f−1?γ?f . Remember
that we read such expressions from left to right. So follow f backward from y to x, and
then follow the loop γ back to x, and then follow f from x to y.

If this is homotopic to g−1 ? γ ? g for all γ, then multiplying both expressions by g on the
left and g−1 on the right gives g ? f−1 ? γ ? f ? g−1 ∼ γ. Notice that g ? f−1 is a loop at
x and thus induces an element of π1(X,x). In this group (g ? f−1) ? γ = γ ? (f ? f−1), so
g ? f−1 is in the center of the group.

15.6b: If π1(X,x) is abelian, then the center of the group is everything and so g ? f−1

is certainly in the center, so uf = ug. Conversely suppose uf = ug for all f and g. Then
g ? f−1 is in the center of π(X,x0) for all f and g. But we can arrange that g ? f−1 is any
element of π1(X,x) by replacing g by any loop at x followed by g. So every loop at x is in
the center and the group is abelian.

15.16c: We must prove that π1(X,x) = 0 for some x. Choose x ∈ U ∩ V. Let γ represent
an element of π1(X,x). By exercise 14.6i, we can write γ = γ1 ? γ2 ? . . . ? γn where each
γi is a path entirely in U or entirely in V. We can ”hook up”γi−1 and γi if both are in U
or both are in V. So we can suppose that at each junction of two subcurves, the image of
the junction point is in U ∩ ∩V . Since U ∩ V is arcwise connected, we can replace γi−1 ? γi

by γi−1 followed by a path from the end of γi−1 to x, followed by the reverse of this path
from x back to γi followed by γi. In the end, γ is a sum of paths which start and end at
x and live entirely in U or entirely in V. Each of these paths is homotopic to a constant
because U and V are simply connected. So γ is homotopic to a constant.

15.18f: The proof is exactly as in the above picture, replacing the map h with the map
µ.

15.18g: In the previous problem we assumed that µ(x, x0) = x for all x. In this problem

1



we only assume that µ(x0, x0) = x0 and µ(x, x0) : X → X is homotopic to the identity
by a homotopy preserving x0. The proof is still the proof of the previous picture, where
now the path along the bottom of the square and then vertically up the right side is
µ(f(t), x0)?µ(x0, g(t)) and the pictured homotopy in problem 15.18d makes this homotopic
to µ(f(t), g(t)). But the map x → µ(x, x0) is homotopic to the identity, so the map t →
µ(f(t), x0) is homotopic to the map t → f(t). Similarly µ(x0, g(t)) is homotopic to g(t)
and so µ(f(t), x0) ? µ(x0, g(t)) is homotopic to f ? g.

In exactly the same way, µ(f(t), g(t)) is homotopic to the map vertically up the left, and
then over the top, which is homotopic to g ? f . So f ? g and g ? f are homotopic.

15.19a: The proof is essentially a repeat of the proof that π1(X) is a group, with the pa-
rameters t2, t3, . . . , tn just going along for the ride. To illustrate this, we prove associativity,
leaving the identity element and inverses to the reader.

If f, g, h : In → X. then

(f ? g) ? h(t1, t2, . . . , tn) =


f(4t1, t2, . . . , tn) 0 ≤ t1 ≤ 1

4

g(4t1 − 1, t2, . . . , tn) 1
4 ≤ t1 ≤ 1

2

h(2t1 − 1, t2, . . . , tn) 1
2 ≤ t1 ≤ 1

and

f ? (g ? h)(t1, t2, . . . , tn) =


f(2t1, t2, . . . , tn) 0 ≤ t1 ≤ 1

2

g(4t1 − 2, t2, . . . , tn) 1
2 ≤ t1 ≤ 3

4

h(4t1 − 3, t2, . . . , tn) 3
4 ≤ t1 ≤ 1

We must prove that these maps are homotopic, for then (f ?g)?h = f ?(g?h) in πn(X). The
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required homotopy is illustrated in the picture below, and given in equation form as

h(t1, t2, . . . , tn, t) =



f
(

t1
1
4
+ t

4

, t2, . . . , tn

)
if 0 ≤ t1 ≤ 1

4 + t
4

g
(

t1− 1
4
− t

4
1
4

, t2, . . . , tn

)
if 1

4 + t
4 ≤ t1 ≤ 1

2 + t
4

h( t1− 1
2
− t

4
1
2
− t

4

, t2, . . . , tn) if 1
2 + t

4 ≤ t1 ≤ 1

This is indeed exactly what we wrote in class, with t2, . . . , tn added but with no role to
play.

15.19e: The book has essentially given the proof. Notice that only t1 and t2 take part
on the homotopy between f ? g and g ? f ; the remaining variables just go along for the
ride.

Let’s try to convert the pictorial proof in the book into English without writing very many
equations. For this we need some notation. Notice that in πn when we add two elements
using the star operation, this star only involves the first t1; all of the other t2, . . . , tn just
go along for the ride. To make this clear, let us write f ?1 g to indicate that we are adding
along the t1 axis.

When we proved that π1(X,x0) is a group, we proved that f is homotopic to f ? εx0 . In
our proof, f and εx0 were functions of only one variable, but if we like we can add other
variables and let them go along for the ride. Let us apply this, thinking of t2 as the active
variable. To indicate this, we use ?2, so f is homotopy to f ?2 εx0 . Similarly g is homotopic
to εx0 ?2 g.

The book asserts that adding maps f : In → X and g : In → X induces a sum in
homotopy classes of such maps — that is, the homotopy class of the sum depends only on
the homotopy class of f and the homotopy class of g. Consequently, the element in πn(X)
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represented by f ?1 g is homotopic to the element represented by (f ?2 εx0) ?1 (εx0 ?2 g).
This homotopy is illustrated by the first three pictures in the sequence on page 133.

Next look closely at the third picture in the sequence. There are two ways to think of this
picture, and it is easy to see that they give the same thing. We got this above as

(f ?2 εx0) ?1 (εx0 ?2 g)

but it could also be described as

(f ?1 εx0) ?2 (εx0 ?1 g).

Notice that in π1(X) we have γ ? εx0 ∼ γ ∼ εx0 ? γ. Hence in the previously displayed
formula we can replace f ?1 εx0 by the homotopically equivalent εx0 ?1 f and we can replace
εx0 ?1 g by the homotopically equivalent g ?1 εx0 to obtain

(εx0 ?1 f) ?2 (g ?1 εx0).

This gets us to the sixth picture in the sequence. Notice that this picture is algebraically
the same as

(εx0 ?2 g) ?1 (f ?2 εx0).

Now we repeat the previous argument backward. The term εx0 ?2 g is homotopic to g and
the term f ?2 εx0 is homotopic to f and consequently the previously displayed expression
is homotopic to g ?1 f.

16.11b: We claim f? : π(S1) → π(S1), i.e., f? : Z → Z, is multiplication by k, so
f?(n) = kn. There are several ways to see that; here is one. It suffices to prove that f?

maps the generator 1 ∈ Z to k ∈ Z. As generator we can choose the map γ : I → S1 given
by γ(t) = e2πit = cos(2πt) + i sin(2πt) since the lift of this map is γ̃ : I → R by γ̃(t) = t;
notice that γ̃(0) = 0 and γ̃(1) = 1. Then f?(1) is represented by τ : I → S1 given by
τ(γ(t)) = (e2πit)k = e2πikt and the lift of this path is τ̃(t) = kt. Notice that τ̃(1) = k, as
desired.

16.11f: Suppose we remove a boundary point from D. Without loss of generality we can
suppose that this point is p0 = (1, 0). Then there is a deformation retract from D − {p0}
to the point p1 = (−1, 0); indeed we can define a homotopy from the identity map to this
retract via h(p, t) = (1− t)p+ tp1. Notice that p 6= (1, 0) and thus this line segment stays
in D − {p0}. It follows that π(D − {p0}) is isomorphic to π({p1}) = 0 and so D − {p0} is
simply connected.

Next remove a point p0 not in the boundary from D. Then there is a retract r from
D − {p0} to the boundary S1 defined as follows; to compute r(p), draw a line from p0

to p and extend this line to the boundary; let r(p) be the spot where the line segment
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meets the boundary. Notice that boundary points are fixed under this map. It follows that
r? : π(D− {p0}) → π(S1) is onto, so π(D− {p0}) is not the zero group and thus D− {p0}
is not simply connected.

Let f : D → D be a homeomorphism. Then if p ∈ D, f : D − {p} → D − {f(p)} is also a
homeomorphism. In particular, both are simply connected or neither are simply connected.
So p is in the boundary if and only if f(p) is in the boundary.

16.11g (ii, iii, iv): ii) Using the picture below and the hint,

we find that the quotient space is homeomorphic to a torus, so the fundamental group is
Z × Z. One way to see this homeomorphism is to cut the shaded circular region along the
line from (1, 0) to (2, 0). The resulting region is homeomorphism to a rectangle, where this
cut becomes the sides of the rectangle, and the inner concentric circle of radius 1 becomes
the bottom and the outer concentric circle of radius 2 becomes the top. We need to glue
these sides together, giving us a torus.

iii) Every point is still equivalent to a point in the shaded region, but now we are to glue
the point with angle θ on the innter concentric circle to the point with angle 2π− θ on the
outer concentric circle. When we cut and deform to a rectangle, we are to glue the sides
of the rectangle as usual, but glue the top and bottom with arrows pointing in opposite
directions. This gives a Klein bottle, so the fundamental group is Z oϕ Z.

iv) If p = (x, y) = x+iy, then ψ(p) = −(x−iy) = −x+iy = (−x, y). So we are supposed to
fold the left half of the plane to the right half. This space is then {(x, y) | x ≥ 0}−{(0, 0)},
which is clearly simply connected. So the fundamental group is the trivial group.
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