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1 Group Products

Recall that if H and K are groups, the new group H × K is the set of all ordered pairs
(h, k) with h ∈ H and k ∈ K. The group operation is

(h1, k1)(h2, k2) = (h1h2, k1k2).

2 π(X × Y )

On Friday we proved that π(X × Y ) is isomorphic to π(X)× π(Y ). Our conversation was
interesting but it made the proof much harder than it needs to be.

Let the curve γ(u) represent an element of the fundamental group π(X × Y, x0 × y0).
Then

γ(u) = (x(u), y(u))

where x(u) and y(u) are the components of γ(u) in X and Y . Since γ(u) starts and ends
at (x0, y0), x(u) starts and ends at x0 and y(u) starts and ends at y0. So x(u) represents
an element of π(X, x0) and y(u) represents an element of π(Y, y0).

Two paths γ1(u) and γ2(u) represent the same element just in case they are homotopic.
Such a homotopy is a map H : I × I → X ×Y with the correct boundary conditions. This
map can be written H(u, t) = (h(u, t), k(u, t)) where h and k are the components of H in
X and Y ; notice that h : I × I → X and k : I × I → Y. Consequently a homotopy between
two curves in X × Y is just a pair of homotopies between their X and Y components. It
follows immediately that an element of π(X × Y ) is just a pair of elements, one in π(X)
and the other in π(Y ).

The resulting one-to-one correspondence between π(X×Y ) and π(X)×π(Y ) preserves the
group operation, because when we multiply γ1(u) = (x1(u), y1(u)) and γ2(u) = (x2(u), y2(u))
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we first do γ1 and then do γ2; looking at the X component, we first do x1 and then do x2,
and similarly with the second component.

This completes the argument!

For example, π(S1 × S1) = π(S1)× π(S1) = Z × Z. Consider the element (2, 3) ∈ Z × Z.
Usually we take as representatives the map which wraps the circle around itself twice at
uniform speed, and the map which wraps the circle around itself three times at uniform
speed. The resulting representative in the torus is a helix which simultaneously wraps in
both directions.

Sometimes, however, it is nice to think of (2, 3) in the torus another way, as a map which
wraps around the first circle twice without wrapping around the second circle at all, followed
by a map which wraps around the second circle three times without wrapping around the
first circle at all. It is easy to see that this is another representative of (2, 3). Indeed
the discussion on page one shows that we are free to change the representatives in π(X)
and π(Y ) independently. Let us replace x(u) with x(u) ? x0; these are homotopic by the
argument that π(X) has a group identity. Let us replace y(u) with y0 ? y(u)). Then

(x(u), y(u)) ∼ (x(u) ? x0, y0 ? y(u)) ∼ (x(u), y0) ? (x0, y(u))

This last map clearly wraps around the first circle, and then wraps around the second
circle.
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3 Basic Philosophy of Group Theory

One of the central ideas in group theory is that complicated groups G are often built of
easier groups H and K. For instance, we can construct G = H×K from H and K; as we’ll
see, other groups can also be built from H and K. Group theory then consists of listing
the “irreducible” groups that cannot be broken into smaller pieces, and then studying ways
to put groups together.

For example, consider the dihedral group Dn of all rotations and reflections of a regular
n-sided polygon. This group consists of rotations of the polygon (which form a subgroup
isomorphic to Zn) and of n reflections. Each reflection generates a subgroup isomorphic
to Z2 since reflecting twice about the same axis gives the identity. So in some sense Dn is
constructed from Zn and Z2.

After much trial and error, the group theorists found a very elegant way to discuss con-
structing G from easier H and K. In this approach H and K are not treated symmetrically;
instead the crucial first step is to find an onto group homomorphism r : G → K. Then we
define H to be the set of all g ∈ G such that r(g) = e. This is easily seen to be a subgroup
of G which group theorists call it the kernel of r. We get a diagram

0 → H
i→ G

r→ K → 0

In general a sequence of group homomorphisms H
i→ G

r→ K is said to be exact at G if
g ∈ G comes from H exactly when it maps to e ∈ K. The short exact sequence displayed
above is exact at H because i is one-to-one, exact at G by definition of H, and exact at K
because r is onto.

In the dihedral case, define r : Dn → Z2 to be the map which sends rotations to 0 ∈ Z2 and
reflections to 1 ∈ Z2. This is a group homomorphism because the product of a rotation and
a reflection is another reflection and the product of two reflections is a rotation. If elements
of Dn are represented by 2× 2 matrices, then this homomorphism is A → det(A) because
the determinant of a distance preserving map is ±1; in this case Z2 is the multiplicative
group {1,−1}.
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(Group theorists are smart. In the dihedral case, there is a canonical r : Dn → Z2, although
there are many subgroups K isomorphic to Z2. So the essential point is r : G → K rather
than copies of K in G.)

Given G, it may happen that the only onto homomorphisms starting at G are the zero
map which sends everything to e and the identity map which sends G to itself. In that
case one of H and K is {e} and the other is G and it is impossible to break G into smaller
pieces. Such a G is called a simple group. The finite abelian simple groups are exactly Zp

for p prime. There are infinitely many finite nonabelian simple groups. The smallest is
the group of all rotations of a dodecahedron (this group has 60 elements); thus it is fitting
that the symbol of the Mathematical Association of America is a dodecahedron. One of
the greatest accomplishments of the twentieth century is a complete classification of all
finite simple groups. Most of these groups lie in several infinite families: for example, the
alternating groups An of all even permutations on n letters are simple when n ≥ 5, and
the matrix groups SL(n, F ) modulo diagonal matrices are simple for most finite fields F .
There are also 26 simple groups which do not fit into such families; they are called the
sporadic simple groups.

This complete classification was announced in 1983 by Danny Gorenstein, who had outlined
a program for approaching the classification several years earlier. It is estimated that the
complete proof takes about 30,000 pages. However, in 1983 when the announcement was
made, there was a missing step in the proof. This missing step was only filled in 2004
by Michael Aschbacher and Stephen Smith, in two volumes totaling 1221 pages. So the
classification of finite simple groups is a recent accomplishment!

Luckily, we don’t need to understand simple groups in our course. But we do need to know
something about breaking groups into smaller pieces.

4 Split Sequences

Suppose G is built from H and K in the sense that we have an onto homomorphism
r : G → K and thus a short exact sequence

0 → H
i→ G

r→ K → 0

By definition, the group H is a subgroup of G. But the group K need not be a subgroup
of G; said more precisely, there need not be a subgroup K̃ of G mapped isomorphically to
K by r.

For example, consider the group of unit quaternions {±1,±i,±j,±k} where i2 = j2 =
k2 = −1 and ij = −ji = k, jk = −kj = i, and ki = −ik = j. Map this group to Z2 × Z2

by sending ±1 to (0, 0), ±i to (1, 0), ±j to (0, 1), and ±k to (1, 1). It is easy to see that
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this is a group homomorphism. The kernel of this homomorphism is Z2, so according to
our philosophy, the full group is built from Z2 and Z2 × Z2.

However, no subgroup of the full group is isomorphic to Z2 × Z2 since the only elements
in the full group satisfying g2 = e are ±1, while all four elements of Z2 × Z2 satisfy this
condition.

We say the sequence
0 → H

i→ G
r→ K → 0

splits if there is a group homomorphism s : K → G such that r ◦ s : K → K is the
identity. This is a fancy way of saying that we can think of K as the image s(K) ⊂ G and
thus regard K as a subgroup of G. The quaterionic example just given shows that some
sequences do not split.

The dihedral case does split: 0 → Zn
i→ Dn

r→ Z2 → 0. Indeed, we can map Z2 to Dn by
sending 1 ∈ Z2 to any of the reflections in the group.

In topology split sequences arise naturally from retractions. If r : X → A is a retraction,
we have a sequence

0 → Ker(r?) → π(X) r?→ π(A) → 0

and there is a natural one-to-one map π(A) → π(X) because A → X → A is the identity
map.

In our course it suffices to understand the easier case when the sequence splits. We will
do that case in the next couple of pages. We are going to discover that when the sequence
splits, G is completely determined by H and K and one other piece of information. When
we apply this to the fundamental group, we’ll discover that this other piece of information
arises in a beautiful topological manner.

5 Group Theory of Split Sequences

Theorem 1 Suppose the sequence

0 → H
i→ G

r→ K → 0

splits. Identify K with a subgroup of G via the splitting map s : K → G. Then every
element of g ∈ G can be written uniquely in the form

g = hk

with h ∈ H and k ∈ K.
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Proof: This representation is unique, for if h1k1 = h2k2, then r(g) = r(h1k1) = r(h1)r(k1) =
k1 and similarly r(g) = k2, so k1 = k2, and then h1 = h2.

The representation exists, for if g ∈ G let k = r(g) and write g = (gk−1)k. Notice that
gk−1 ∈ H because r(gk−1) = r(g)r(k)−1 = kk−1 = e.

Theorem 2 If the sequence 0 → H
i→ G

r→ K → 0 splits and thus every element is a
product hk, then the group law on these products is

(h1k1) (h2k2) = (h1 ◦ k1h2k
−1
1 ) (k1k2)

Proof: Clearly (h1k1)(h2k2) = (h1k1h2k
−1
1 )(k1k2). In this expression, notice that k1h2k

−1
1

belongs to H since it is in the kernel of r. Indeed r(k1h2k
−1
1 ) = r(k1)r(h2)r(k−1

1 ) =
r(k1) ◦ e ◦ r(k1)−1 = e. Consequently the expression inside the first parentheses is the
component of the product in H and the expression inside the second parenthesis is the
component of the product in K.

6 Fundamental Data

We want to restate the results in the previous section using only H and K, and explain
how to construct G from this data without knowing G in advance. It turns out that we
need to know one more thing:

Definition 1 An automorphism of a group H is a group homomorphism ϕ : H → H
which is one-to-one and onto. The set of all automorphisms of H forms a group under
composition; this group is called Aut(H).

Example 1 Let ϕ : Z → Z be an automorphism. The group Z has two generators: ±1.
Since automorphisms preserve everything, they must map generators to generators. So
either ϕ(1) = 1 or else ϕ(1) = −1. In the first case ϕ(n) = n for all n and ϕ is the identity
map. In the second case, ϕ(n) = −n for all n. It follows that Aut(Z) = Z2.

Theorem 3 Suppose that 0 → H
i→ G

r→ K → 0 is split. The map φ : K → Aut(H)
defined by φk(h) = khk−1 is a group homomorphism from K to the group of automorphisms
of H.

Proof: This is easily checked.
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Definition 2 Suppose H and K are groups and φ : K → Aut(H) is a group homomor-
phism. Define a new group H oφ K, called the semidirect product of H and K, by letting

H oφ K = H ×K

as a set, and defining
(h1, k1) ◦ (h2, k2) = (h1φk1(h2), k1k2)

Remark: It is easy to show that this semidirect product is indeed a group.

Theorem 4 Let
0 → H

i→ G
r→ K → 0

be a split short exact sequence. Define φ : K → Aut(H) as in theorem 3. Then G is
isomorphic to

H oφ K

Proof: Easy.

Remark: Thus one way to construct a group G from smaller pieces H and K is to find a
homomorphism φ : K → Aut(H) and let G = H oφ K. The arguments just given show
that every split exact sequence arises in this way. Certainly there is one obvious map
K → Aut(H), namely the map that sends every element to the identity element. The
resulting semidirect product is the product H × K. It may happen that this is the only
homomorphism K → Aut(H). But there may be more, and then we can construct other
G from H and K.

Remark: Define ϕ : Zn → Zn by ϕ(k) = −k. This is clearly an automorphism. Moreover,
φ2 is the identity. So there is a homomorphism φ : Z2 → Aut(Zn) by letting the nonzero
element of Z2 map to ϕ. It is easy to see that

Dn = Zn oφ Z2.

7 Semidirect Products of Z and Z

As a special case, consider split exact sequences of the form

0 → Z → G → Z → 0

Such a sequence induces a group homomorphism Z → Aut(Z). This homomorphism is
completely determine by the image of the generator 1 ∈ Z. Since Aut(Z) = Z2, the
generator can either go to the identity map or to the map ϕ(n) = −n. In the first case,
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the semidirect product is the ordinary product Z × Z. In the second case, φk(n) = n for
k even and φk(n) = −n for k odd. We easily write down the general group law:

(m1, n1) ◦ (m2, n2) = (m1 + (−1)n1m2, n1 + n1)

Notice that Z × Z is abelian and Z oφ Z is not abelian. Thus if H = K = Z, there are
exactly two G which can be constructed giving rise to a split sequence.

It is easy to show that when K = Z the sequence automatically splits. So we can construct
exactly two groups starting with two copies of Z.

8 Application to Topology

Consider the torus S1 × S1 and the Klein bottle K. In both cases there are two obvious
closed paths, indicated by a and b in the pictures below. In both cases, there is a retraction
r from the full X to the image A ⊆ X of the path a. The fundamental group of A is Z, so
we get an exact sequence

0 → H → π(X) → Z → 0

where H = Ker(π(X) r?→ π(A)). Since r(b) is a single point, the image of b is certainly in
this kernel. One can prove that the kernel is exactly Z with generator b, although we do
not yet have the power to do so in the case of the Klein bottle.
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It follows that π(X) is one of two groups, Z × Z or Z oφ Z. To determine which of
these groups occurs, we must find the homomorphism K → Aut(H). The group K = Z is
generated by a, and the group H = Z is generated by b, so we must compute φa(b) = aba−1.
The pictures below show that this element is b for the torus and b−1 for the Klein bottle.
It immediately follows that π(S1 × S1) = Z × Z, as we proved directly in the first section
of these notes, and π(K) = Z oφ Z.
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