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1 Introduction

The final will cover 432/532. But for fun, let’s look back over the entire course. This first
section is not designed to help you study for the final, but instead to help you place our
course in the general context of modern mathematics.

• Spaces can be constructed by gluing simple things together. We constructed projec-
tive spaces, Klein bottles, and lens spaces that way. The simple pieces live in Rn, but
the new objects usually don’t. (To be more precise, it is irrelevant and distracting to
find an embedding of the new objects into Rn.) We introduced topological spaces and
particularly the quotient topology so we could talk about the glued objects without
worrying about embedding them in Rn.

• Spaces can be shown homeomorphic by cutting them into pieces and gluing them
together in a different way. Using this technique, we proved that T 2#RP 2 is homeo-
morphic to K#RP 2, we classified compact surfaces, and we proved that L(7, 2) and
L(7, 4) are homeomorphic.

• If two spaces are homeomorphic (in this way or another way) they must have the
same fundamental group. We computed the abelianized fundamental groups H1(S)
for surfaces. The abelianized fundamental group of T 2#T 2# . . .#T 2 is

Z × . . .× Z

The abelianized fundamental group of RP 2#RP 2# . . .#RP 2 is

Z × . . .× Z × Z2

In particular, no two surfaces in our canonical list of compact surfaces can be home-
omorphic. Thus the fundamental group puts limits on what can be accomplished by
cutting an object into pieces and reassembling it.
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• We computed the fundamental groups of lens spaces, and thereby proved that L(p, q)
cannot be homeomorphic to L(p̃, q̃) unless p = p̃. We computed the fundamental
groups of the complements of knots, and proved that the trefoil knot is not trivial.

• We have two methods of calculating fundamental groups. The first uses the theorem
of Seifert-Van Kampen and computes from a knowledge of the fundamental groups
of U ,V, and U ∩V. To compute these easier groups, we often use strong deformation
retracts to reduce to the fundamental groups of simplier objects. In the end, these
methods require a knowledge of π(S1).

• The second method relies on covering spaces. We can find the fundamental group of X
if we can construct the universal cover X̃ and then compute the deck transformation
group Γ; indeed the fundamental group equals this deck transformation group. For
example, the universal cover of S1 is R and the deck transformation group is generated
by x → x + 1 and thus Γ and π(S1) are isomorphic to Z. This technique allows us
to compute the fundamental groups of circles, tori, cylinders, Klein bottles, Mobius
bands, and projective spaces. It does not work well for other surfaces because their
universal covering spaces are homeomorphic to the non-Euclidean plane and their
deck transformation groups are groups of non-Euclidean motions.

• We can classify covering spaces of a given X by finding subgroups of the fundamental
group.

• Indeed we can get our hands on X if we only know X̃ and a group of transformations
which act on X̃ without fixed points; this group of transformations plays the role of
the deck transformation group Γ and so X = X̃/Γ.

• For example, we provided an alternative description of lens spaces this way starting
with an action of Zp on S3 in which nonzero elements of the group act without fixed
points.

• We classified surfaces by cutting objects into pieces and gluing in a different way. This
technique also works for lens spaces, but nobody has succeeded in making it work in
general for compact 3-manifolds. However, the alternate covering space techniques
from this term do lead to general classification results in 3 dimensions, modulo a
couple of unproved conjectures.

• For instance, it is conjectured that all compact three manifolds X with finite funda-
mental group arise from groups acting on S3 exactly as we obtained the lens spaces.
A complete list of such manifolds is known. The list arises because it is easy to find
finite subgroups of SO(4) which act without fixed points, Indeed SO(4) is essen-
tially SO(3)×SO(3), as we proved in this course, and finite subgroups of SO(3) are
known to be cyclic, dihedral, or the symmetry groups of the tetrahedron, cube, or
icosahedron.
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But to finish the argument, it is necessary to show that the universal cover of X is
S3. This was conjectured by Poincare long ago in the form every compact simply
connected 3-manifold is homeomorphic to S3. This conjecture may have been proved
by Perelman; the proof is being reviewed as we speak. It is also necessary to show that
the homeomorphism from X̃ to S3 can be chosen so that each deck transformation
becomes a linear transformation on S3 ⊆ R4. Perelman claims to have proved this as
well.

2 Review of the First Half of the Course

I recommend reading the first review sheet for details, but here are the important matters
from the first term of our course. Several of these results were actually discussed after the
first midterm.

• We introduced the notion of homotopy between two maps f, g : X → Y. Using this
notion, we defined the fundamental group π(X, x0).

• We computed π(S1) using covering spaces techniques. This argument is summarized
in the first question from the sixth assignment. Roughly speaking, a closed path in
S1 starting and ending at 1 can be lifted to a path in R starting at the origin. This
lifted path ends at some integer, which completely determines the homotopy class of
the original path in S1. So π(S1) = Z.

• Generalizing this argument, we defined covering spaces π : X̃ → X. Each point
p ∈ X must have an evenly covered open neighborhood U , so π−1(U) = ∪ Uα where
the Uα are disjoint open sets homeomorphic via π to U .

• Next we studied lifting properties. The fundamental diagram is listed below. Our
First Main Covering Space Theorem says that f̃ is unique if it exists at all,
provided Y is connected. (I might ask for a proof.)
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• Our Second Main Covering Space Theorem (introduced gradually over several
weeks) guarantees the existence of f̃ under increasingly general conditions:

– Y = [0, 1]

– Y = [0, 1]× [0, 1]

– Y is simply connected and locally pathwise connected

– f?(π(Y )) ⊆ π?(π(X̃)) and Y is locally pathwise connected

I might ask for a sketch of the proof of any of the first three results, but won’t ask
about the last one.

• A corollary of 3) is that a universal covering space of X is unique if it exists at all. (To
prove this, we must assume that X is locally pathwise connected, which we assume
from now on.)

• A corollary of 1) and 2) is that if X̃ is a universal covering space, then π(X, x0) is in
one-to-one correspondence with π−1(x0).

• A corollary of 3) is that if X̃ is a universal covering space, then the deck transforma-
tion group Γ acts transitively on π−1(x0).

• Putting the two previous items together, we fix x̃0 ∈ π−1(x0) and then there is a
one-to-one correspondence between Γ and π(X, x0). This correspondence is actually
a group isomorphism.

• The Third Main Covering Space Theorem asserts that X has a universal cover
X̃, provided X is locally pathwise connected and semi-locally simply connected. You
should know this result, but I won’t ask for a proof.

• Finally, we used part three of the second main theorem, and the third main theorem,
to completely classify covering spaces of a locally pathwise connected, semi-locally
simply connected X. I will not ask about these results. The final outcome is that
there is a one-to-one correspondence between isomorphism classes of covering spaces
of X and conjugacy classes of subgroups of π(X).
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3 Seifert and Van Kampen

Theorem 1 Suppose U ,V, and U ∩ V are pathwise connected open subsets of X and X =
U ∪ V. Then π(X) is determined by the following diagram.

In more detail, π(X) is generated by π(U) and π(V ), and all relations in π(X) between
elements of these groups is a consequence of starting with an element of π(U ∩ V) and
identifying the images of this element in π(U) and π(V).

Remark: You should be able to sketch the proof of this result. The proof falls into two
pieces. First we prove that every element of π(X) is a product of elements in π(U) and
π(V). The picture below illustrates the proof.
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The second part of the proof is harder. Consider an example first. Suppose π(U) = F (a)
and π(V) = F (b) and π(U ∩V) induces a relation a3 = b2. A consequence is that the words
a5 ? b−1 ? a and a2 ? b ? a are equal. This might be proved as follows: (a5) ? b−1 ? a =
(a2 ·a3)? b−1 ?a = a2 ? (b2 · b−1)?a = a2 ? b ?a. In this argument, the key step is the second
equality, which replaces a3 ∈ π(U) by b2 ∈ π(V).

In the general proof, we suppose that we have a path γ expressed as a product of ele-
ments in π(U) and other elements in π(V), and a second such path τ , and a homotopy
h between these paths. By standard arguments, we can subdivide I × I such that each
subsquare is mapped to U or V. We connect the vertices of this subdivision to x0 by paths.
Consequently, each horizontal or vertical segment in the grid is itself in π(U) or π(V).

We then move γ on the left to τ on the right by a series of moves, paying close attention
to how these moves affect the words which spell γ on the left and τ on the right. We move
over one column at a time. In the picture below, step #1 just replaces elements in π(U)
by products of other elements in π(U) (and ditto for π(V)). In steps #2 and #3, we ignore
the horizontal segments at the top and bottom because the homotopy is constantly x0 at
these points. We also cancel horizontal segments and their inverses within U .

In the crucial step #4, we replace a horizontal element moving left in U with a correspond-
ing horizontal element moving left in V, using the relations from Seifert-Van Kampen. This
allows both the left moving horizontal element and its right moving inverse to belong to
the same π(V) where they cancel. In step #5 this cancellation is performed and we have
moved over one column. Continue.
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4 Consequences

Many fundamental groups can be computed using this theorem. Here is a list of examples.
You should know how these calculations are performed.

• π(Sn) for n ≥ 2

• π(RPn) for n ≥ 2

• π(B) where B is a bouquet of circles

• π(S) for any surface. For example, the two-holed torus with fundamental polygon
a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 has fundamental group with generators a1, b1, a2, b2 and one
relation obtained by setting the above symbol equal to e.

• π(L(p, q))

• π(RPn#RPn) where # represents a connected sum. There is a difference between
the cases n = 2 and n ≥ 3.

• π(R3 −K) where K is a tame knot. In this case, you should know how to calculate
this group by producing generators and relations, but you need not know how to use
Seifert-Van Kampen to justify the calculation.

5 H1(X)

By definition, H1(X) = π(X)/[π(X), π(X)]. That is, it is the fundamental group, but made
abelian by introducing additional relations which guarantee that all elements commute. We
proved the following results, which you should be able to reconstruct:

• H1(X) = Z × . . .× Z if X is a torus with g holes, where there are 2g copies of Z

• H1(X) = Z × . . .×Z ×Z2 if X = RP 2# . . .#RP 2, where there are g copies of RP 2

and g − 1 copies of Z

• H1(X) = Z if X is the complement of a knot

• H1(X) = π(X) if X is a topological group

In particular, H1(X) is a complete invariant which distinguishes two compact surfaces
whenever they are not homeomorphic. On the other hand, H1(X), for X the complement
of a knot, is always the same, so H1(X) is useless if we want to distinguish knots.
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6 Lens Spaces

We studied lens spaces in the last two weeks of the term. These spaces are extremely
useful examples of three dimensional manifolds. You should understand our two definitions:
gluing the boundary of a ball and forming a quotient space of S3 under the action of Zp,
and why these two definitions give the same space. You should be able to explain why the
lens space is a compact 3-dimensional manifold. Finally, you should be able to compute
its fundamental group in two different ways.

In particular, RP 3 is the lens space L(2, 1). Why? The fundamental group of this space is
Z2. Draw a generator of this group, and explain why the square of the generator is trivial,
but the generator is not trivial.

The fundamental group of L(p, q) is Zp. Draw a generator of this fundamental group.
Explain why the sum of p copies of this generator is trivial.

7 Sample Exercises

The following exercises are interesting and could be profitably studied for the final.

• Sixth assignment: Review the covering space arguments which allow us to compute
π(S1). Then classify covering spaces of the Mobius band. Explain why the torus has
two 2-fold coverings which are homeomorphic as topological spaces but not isomorphic
as covering spaces. Find several covering spaces of a bouquet of two circles, and find
the corresponding subgroups of F (a, b).

• Seventh assignment: Exercises 22.3a, 22.3c, 23.1b and extra problems 1 and 2.

• Eighth assignment: Exercise 3 showing that L(p, q) is a manifold, and Exercise 4
computing its fundamental group.

• Nineth assignment: 24.4b, 24.4c, 25.1b, 25.1f-h on computing fundamental groups
using Seifert-Van Kampen. The very last exercise showing that the covering space
definition of a lens space is the same as the cut and paste definition of a lens space.
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