
Assignment 8; Due Friday, March 10

The previous two exercise sets covered lots of material. We’ll end the course with two
short assignments. This one asks you to visualize an important family of three dimensional
manifolds called lens spaces, and compute their fundamental groups.

Several exercises in our book describe lens spaces as quotient manifolds obtained by a group
action on S3. We’ll come to that description in the last exercise set. In these exercises a
more concrete description of lens spaces will be used, taken from Thurston’s book Three
Dimensional Geometry and Topology published in 1997. This book describes Thurston’s
research from the 1980’s, which had led to a deeper understanding of compact three-
manifolds, particularly if Perelman’s proof of the Thurston Geometrization Conjecture
pans out.

I cannot resist showing a irrelevant picture from the book. The picture below shows the
universal cover of a two-holed doughnut. The central shaded region is an octagon, just
as our polygonal model of the two-holed doughnut last term was an octagon with sides
identified. Thurston then tiles the non-Euclidean plane with copies of this octagon. Eight
copies of the next smallest octagon are shown in the picture. There are infinitely many
copies altogether, but the rest of them are so close to the boundary that they are invisible
in the picture. The entire set of octagons covers the interior of the unit disk, which is the
universal cover of the two-holed doughnut.
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Compare this to our picture of the universal cover of a torus, which tiles the Euclidean
plane with squares.

Enough for irrelevancies. I’m going to let you directly read what Thurston writes. This sec-
tion is from chapter one, where Thurston is describing several interesting three-manifolds.
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Incidentally, look at exercise c) above. Thurston warns that it isn’t easy. Lens spaces have
been around since about 1900, but this result was proved by Brody in 1960:

E. J. Brody. The topological classification of lens spaces.
Annals of Math. (2), 71:163-184, 1960.

This year, one of our PhD candidates is reproving this theorem using a new machine.

Exercise 1: Consider a closed unit ball B3 in R3. Identify boundary points on this ball
as follows: If p is on the upper hemisphere, rotate p by θ about the z-axis, and then push
p straight down until you reach the corresponding point q on the lower hemisphere. Glue
p to q.

Let L be the quotient space of B3 with this equivalence relation. For a moment, ignore
the equator. Explain why all other points of the quotient space have open neighborhoods
homeomorphic to an open set in R3. I expect a rough picture or paragraph explaining the
essential idea, not a precise argument with formulas. You’ll have no trouble with interior
points, but points on the boundary require a little thought.

Exercise 2: Now worry about the equator. The equivalence relation on this equator is
more complicated: If p is in the equator and we rotate by θ, the new point q is also in the
equator and can be rotated by θ to yet another point r. Etc. So we must glue p, q, r, . . .
together to form a single point in the quotient space.

If θ is not a rational multiple of 2π, explain why the resulting quotient space couldn’t
possibly be Hausdorff.
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Exercise 3: From now on suppose θ is a rational multiple of 2π, say θ =
(

q
p

)
2π where p

and q are positive integers. We may as well assume that this fraction is in lowest terms, so
p and q are relatively prime. Moreover, we may as well assume that 0 < θ < 2π, so q < p.
In this case, the quotient space is called a lens space and denoted L(p, q).

Explain why the resulting lens space is compact. This is easy.

Explain why it is a three-manifold. This is the hard step, which simply consists of showing
that each point on the equator has a neighborhood homeomorphic to an open subset of
R3.

Hint: The explanation is in Thurston. We are free to deform the original ball B3 before we
glue. Thurston flattens the ball into a lens-shaped structure, hence the name of the space.
He cuts this lens into tetrahedra (not necessarily regular) and pulls the tetrahedra apart
slightly.

Thurston shows two pictures of this lens, but you can concentrate on the center picture.
We are supposed to glue points on the top of the lens to equivalent points on the bottom.
Notice that the top of one tetrahedron will be glued to the bottom of a different tetrahedron,
determined by the rotation θ.

At the center of the picture you can see that edges of the tetrahedra have been glued to a
central axis. This central axis has a Euclidean neighborhood made up of pieces from the
various tetrahedra.

Now look at the all important equator. Explain why the image of the equator in L(p, q) is
a circle and each point on this circle has p representatives on the equator. To show how
the pieces on the equator glue, we must pull the tetrahedra apart and turn each by ninety
degrees. Then we must rearrange them in conformance with the gluing of the top and
bottom of the original lens, and reglue.

Important Remark: I am anxious that you understand what happened. But after you un-
derstand, you may have difficulty writing things down. Don’t worry about that; write some-
thing and get on with your life. For comparison, you can see what Thurston wrote.

Exercise 4: Show that the fundamental group of L(p, q) is Zp.

Hint: Use the Seifert-Van Kampen theorem twice. In the first stage, let U be the open ball
without boundary points, and let V be all points in the lens space except the center of the
ball. Explain first why U ∩ V has a strong deformation retract to S2. Proceed. Show that
the fundamental group of L(p, q) is equal to the fundamental group of the two-dimensional
object X formed by starting just with boundary points of the ball and gluing.

Now use the Seifert-Van Kampen theorem again. Every point in X is equivalent to a point
which comes from the upper hemisphere. Let U be points in X which come from points
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strictly above the equator, and let V be points in X which come from anything except the
north pole. Explain first why U ∩V has a strong deformation retract to S1. Proceed.

A Final Remark

It follows from the exercise that many lens spaces are not homeomorphic to each other.
For example, L(3, 1) and L(5, 2) aren’t homeomorphic.

On the other hand, many lens spaces aren’t obviously homeomorphic and yet have the
same fundamental group. For example, L(7, 1) and L(7, 2) both have fundamental group
Z7. By Thurston’s exercise c), which is a hard theorem, these lens spaces are not homeo-
morphic.

We will shortly prove that two compact two-dimensional surfaces are homeomorphic if and
only if they have the same fundamental group. It came as a great surprise to Poincare that
this result is false for three-manifolds. Hence additional topological invariants are required
if we want to be able to distinguish such spaces.

However, Thurston later shows that the fundamental group often suffices. For example, if
his geometrization conjecture is true, then all compact three-manifolds with finite funda-
mental group are known. These spaces are completely determined up to homeomorphism
by their fundamental groups except in the lens space case.
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