
Assignment 6; Due Friday, February 24

You have a week and a half to work on this assignment. I may assign a few more problems
on Friday, but I won’t assign more than three or four problems then.

It is important that you completely understand our calculation of π(S1). So I’m going to
ask you to write down a clean proof as follows:

• Let γ : I → S1 be a path starting at 1. Prove carefully that this path can be lifted
to a path γ̃ : I → R starting at 0.

• Let h : I × I → S1 be a map such that h(0, 0) = 1. Prove that this map can be lifted
to a map h̃ : I × I → R such that h̃(0, 0) = 0.

• Let γ : I → S1 be a path starting and ending at 1. Explain carefully why γ̃(1) is an
integer.

• Let γ and τ be paths in S1 starting and ending at 1, and suppose these paths induce
the same element of π(S1, 1). Explain carefully why γ̃(1) = τ̃(1). Give all necessary
details.

• By the previous result, there is a well-defined map π(S1, 1) → Z. Prove that this
map is one-to-one.

• Prove that the previous map is onto.

Remark: Suppose X is a connected, locally pathwise connected, semilocally simply con-
nected space . In class we completely classified all covering spaces of X. We proved that
classifying spaces of X are in one-to-one correspondence with subgroups of π(X) up to
conjugacy. If X̃ is a covering space, then π(X̃, x̃0) → π(X, x0) is one-to-one, so π(X̃) is
a subgroup of π(X). Changing the base point x̃0 changes this subgroup to a conjugate
subgroup. If two covering spaces induce the same subgroup up to conjugacy, they are
isomorphic as covering spaces. Finally, every subgroup comes from a covering space.

• Explain why RPn has exactly two covering spaces. What are they?

• Find all covering spaces of a Mobius band by explicitly describing each covering space.
Show that the covering spaces of a Mobius band are homeomorphic to a Mobius band,
a cylinder, or an open disk.

• Below are two pictures of different covering spaces of a torus. We are thinking of
the torus as a unit square with opposite sides identified in the standard way. We are
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thinking of these covering spaces as parallelograms in the plane with opposite sides
identified, so the covering spaces are also tori. Finally, the covering projection is the
map induced by the equivalence relation (x, y) ∼ (x + m, y + n).

Explain briefly why each space is a covering space. Explain why each point in X
comes from two points in X̃ in each of the two examples. Finally prove that these
covering spaces are not isomorphic as covering spaces, even though both coverings
are two to one and both covering spaces are homeomorphic. (Hint: Find a closed
path in X which lifts to a closed path in one of the covering spaces, but not in the
other.)

• Since π(S1 × S1) = Z × Z is abelian, covering spaces of S1 × S1 are in one-to-one
correspondence with subgroups of Z × Z. Find the subgroups corresponding to the
two covering spaces of the previous exercise.

• (Graduate Students) Find all subgroups of Z × Z. Indeed, show that these groups
are 0× 0 or else all multiples of (a, b) for a nonzero element of Z × Z or else the set
of all k(M, 0) + l(A,N) for integers k and l, where M and N are positive integers
and 0 ≤ A < M.

• Let X be a bouquet of two circles.

We will later prove that the fundamental group of this space is F (a, b), the free
product on two generators a and b. This means that each element of the group can
be written as a finite product of powers of a and b. For instance, a3b2a−3ba−2 and
b2abab2 are two elements of the group. Here a is a loop around one of the circles and
b is a loop around the other circle.

Explain how each picture below is a natural covering space of X, and find the sub-
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group of F (a, b) corresponding to each picture. (Undergraduates need only study the
first two pictures.)

• (Graduate Students) Suppose G is an arbitrary group. If g, h ∈ G, their commutator
is the element ghg−1h−1 ∈ G. Notice that this commutator is zero if G is abelian. By
definition, the commutator subgroup of G is the normal subgroup generated by all
commutators; this means that it is the subgroup consisting of products of the form(

g1c1g
−1
1

) (
g2c1g

−1
2

)
. . .

(
gncng−1

n

)
where the gi are arbitrary elements of G and the ci are arbitrary commutators.
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Notice that G modulo this commutator subgroup is abelian. It is called the abelian-
ization of G. Prove that the fundamental group of the covering space below is the
commutator subgroup of the free group on two generators.
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The final exercise is for graduate students.

There are many applications of covering spaces to other areas of mathematics. I want to
tell you about some of them, but am a little frustrated because these applications require
results which aren’t prerequisites for this course. However, one very important application
can be introduced fairly easily.

Let G be a topological group. Thus G is simultaneously a group and a topological space,

and the group operations are continuous, so the maps G × G
g1◦g2→ G and G

g−1

→ G are
continuous.

Assume also that G is a nice topological space: it is connected, locally pathwise connected,
and semilocally simply connected. These hypotheses guarantee that G has a universal
covering space G̃.

First Exercise: Fix ẽ ∈ G̃ projecting to the identity e ∈ G. Prove that there is a unique
topological group structure on G̃ making π : G̃ → G a group homomorphism and ẽ the
identity element.

Hint: Consider the map G̃× G̃ → G×G → G where the first map is π× π and the second
map is the group product in G. Explain why this map lifts to a map from G̃× G̃ → G̃. The
group axioms for G̃ can then be proved by using uniqueness of lifts. Details please!

Remark: Many interesting groups are constructed this way. Let me give some exam-
ples.

The only one-dimensional connected topological groups are R and S1 and we know all about
them. Notice that our covering map R → S1 is indeed a group homomorphism.

The only two-dimensional connected topological topological groups are R × R, R × S1,
S1 × S1, and the ax + b group. This last group is the set of all maps x → ax + b where
a, b ∈ R and a > 0. Notice that it is simply connected.

But in three dimensions, there are many connected topological groups (a complete classi-
fication is known). By far the most interesting are SO(3), the group of rotations of three
space, and SL(2, R), the set of 2× 2 matrices of determinant one. It is just a coincidence
that the set of rotations of R3 has dimension three.

Exercise 2: Recall the quaternions H = {a0 + a1i + a2j + a3k | ai ∈ R}. Define a
multiplication by i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, and ki = −ik = j. If
q = a0 + ia1 + ja2 + ka3, define q = a0 − a1i− a2j − a3k and define qq = ||q||2. Prove that
qq = a2

0 + a2
1 + a2

2 + a2
3 and prove that ||q1q2|| = ||q1|| ||q2||.

Exercise 2 Continued: Prove that the set Sp(1) of unit quaternions is a topological
group homeomorphic to S3.
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Exercise 2 Continued: Let V be the set of quaterions such that q = −q. Show that V
is isomorphic to R3. If q is a unit quaternion, show that the map V → V by v → qvq−1

is well-defined. Show that this map preserves the norm of elements in V and so is a
rotation.

Exercise 2 Continued: Show that q1 and q2 induce the same rotation if ans only if
q1 = ±q2.

Exercise 2 Continued: Consider the specific rotation generated by q = cos θ + i sin θ.
Show that it becomes rotation about the x axis by 2θ. Conclude that the image of the map
Sp(1) → SO(3) contains all rotations about the x-axis. Explain why it must then contain
all rotations about the x, y, or z axis. Explain finally why the image must thus contain all
rotations.

Exercise 2 Concluded Conclude that Sp(1) → SO(3) is a 2-fold covering space. It is
not surprising that the universal covering group of SO(3) has this form since SO(3) is
homeomorphic to RP 2 and the fundamental group of this space is Z2.

Remark: I wish I could ask questions about SL(2, R), but maybe not. The group SL(2, R)
is not compact. Notice that S1 = SO(2, R) ⊆ SL(2, R). It turns out that SO(2, R) is a
strong deformation retract of SL(2, R). Consequently the fundamental group of SL(2, R)
is Z, and thus the universal covering group of SL(2, R) is an infinite-sheeted cover. This
covering group is interesting because it is not a matrix group (this requires proof, of course).
So it is not often written down explicitly.

Remark: It can be shown that the fundamental group of SO(n) is Z2 for all n ≥ 3. Thus
each of these groups has a 2-fold universal cover, called Spin(n). These groups are compact
and simply connected, but they are not homeomorphic to spheres. It can be proved that
S1 and S3 are the only spheres which can be made into topological groups.

According to the Poincare conjecture, S3 is the only compact simply-connected 3 mani-
folds, just as S2 is the only compact simply-connected 2 manifold. The groups Spin(n)
show that in higher dimensions, the spheres are not the only compact simply-connected
manifolds.

Remark: Finally, a vague remark about where all of this leads. Finite dimensional topo-
logical groups are called Lie groups. These groups can all be given differentiable structures
and studied using calculus. Near e ∈ G, these groups look like Euclidean space, and so
tangent vectors starting at e look like a vector space L of dimension equal the dimension
of the group. This vector space is known as the Lie algebra of G.

This Lie algebra has an additional structure called the Lie bracket; if X and Y are tangent
vectors, the Lie bracket [X, Y ] is another vector in L which measures the non-commutativity
of group elements in the direction X and group elements in the direction Y . Since G and
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G̃ are locally homeomorphic, they have the same tangent space at e and the same Lie
algebra.

It can be proved that two simply connected Lie groups are isomorphic if and only if their
Lie algebras are isomorphic. Consequently, Lie theory breaks into two disjoint pieces.
The first is a purely algebraic study of Lie algebras; it is equivalent to studying simply
connected Lie groups. The second piece is essentially our covering space theory and leads
to a classification of all Lie groups with a given Lie algebra.
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