Assignment 3; Due Friday, January 27 (Revised List)

Read sections 15 and 16 on the fundamental group, and on $\pi_1(S^1)$. Do the following exercises.

- 15.11ab (the first should be very easy, and the second a little harder)
- read 15.11d, e, and g, noticing that these are essentially results from class; you need not do these exercises
- (graduate students only) 15.11f
- 15.18bc (this is an important result, namely $\pi_1(X \times Y, x_0 \times y_0) = \pi_1(X, x_0) \times \pi_1(Y, y_0)$. For example, it follows that the fundamental group of a torus is $Z \times Z$. This exercise will require you to keep track of the meaning of the notation, a useful skill.)
- 15.18d Prove only the first part of this exercise, up to the moment when you show that π_1 of a topological group is abelian. This exercise may be slightly tricky, but it has a beautiful solution. Notice that S^1 is the set of all complex numbers of absolute value one; this is a group under multiplication. It follows that $S_1 \times S_1$ is also a topological group. The fundamental groups of these objects are Z and $Z \times Z$, both abelian. The exercise shows that this is no accident.

We will later show that the only compact connected surfaces with abelian fundamental group are S^2 , P^2 , and T^2 . This exercise then shows that it is impossible to define a topological group structure on any of the remaining compact connected surfaces.

Actually S^2 and P^2 cannot be given a topological group structure either, but this is for a different reason. The only sphers which can be made into topological groups are S^1 and S^3 . **Extra Problem:** The previous exercises did not use our calculation of $\pi_1(S^1) = Z$. But in this exercise, you definitely need this result.

I'd now like to convince you that purely topological results can be proved using our algebraic machinery. Consider the Klein bottle \mathcal{K} . The pictures below show two circles A and Bembedded in this bottle. Notice that these circles intersect at a point p. Take this point to be the base point for homotopy. Then the circles induce elements a and b of $\pi_1(\mathcal{K})$. Of course a and b might be zero in the group, or they might be equal in the group, or they might be related in another unusual way.

- Prove that $aba^{-1} = b^{-1}$ in $\pi_1(\mathcal{K})$.
- Show that A is a retract of \mathcal{K} . I'm not asking you to show that it is a strong deformation retract, but only a retract. Find an explicit retraction.
- Conclude that a is a nonzero element of $\pi_1(\mathcal{K})$ with infinite order.
- Finally, show that B is not a retract of \mathcal{K} . This is the moment when the algebra is used to prove a topological result. As a hint, assume that there is a retract $r : \mathcal{K} \to B$. Then there is an induced map $r_* : \pi_1(\mathcal{K}) \to \pi_1(B)$. Explain why the various properties of this supposed map are inconsistent.

