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Name

1. (a) Give the definition of a connected topological space.

Answer: A topological space X is connected if it is impossible to write X = U ∪ V
where U and V are nonempty, disjoint, open subsets of X.

(b) If X is connected and f : X → Y is continuous, prove that f(X) is connected.

Answer: Suppose f(X) = U ∪V as above. Then f−1(U) and f−1(V) are open in X and
X = f−1(U) ∪ f−1(V). Moreover, these open sets are disjoint, for x ∈ f−1(U) ∩ f−1(V)
implies f(x) ∈ U ∩V which is impossible because this set is empty. Since X is connected,
one of f−1(U) and f−1(V) is empty, so one of U and V is empty, a contradiction.

2. (a) Give an example of a Hausdorff space X and onto map π : X → Y such that the quotient
topology on Y is not Hausdorff.

Answer: Let X = R2 and let ∼ be the equivalence relation x ∼ y if ∃r 6= 0 such that
x = ry. Then Y = S1 ∪ {0} because each nonzero element x is equivalent to x

||x|| ∈ S1.
If U is an open neighborhood of 0, then π−1(U) is open in R2 and thus contains a point
equivalent to every element of R2, so U = Y. Thus 0 cannot be separated from any other
element of Y .

(b) In class we proved that in the previous situation if X is compact and π is a closed map,
then Y is Hausdorff. Using this result, prove that RPn is Hausdorff. Recall that RPn

is the quotient space obtained by identifying antipodal points of Sn.

Answer: It is enough to prove that π is a closed map. Let φ : Sn → Sn be the antipodal
map. Suppose A ⊆ X is closed. We want to prove that π(A) ⊆ RPn is closed, which
will be true if π−1(π(A)) ⊆ Sn is closed. But this set is A ∪ φ(A), which is a union of
two closed sets and thus closed.

3. (a) Give the definition of a compact topological space.

Answer: A topological space X is compact if whenever {Uα} is an open cover of X,
i.e., ∪ Uα = X, then there is a finite subcover Uα1 , . . . ,Uαk

, so Uα1 ∪ . . . ∪ Uαk
= X.

(b) If f : X → Y is continuous and X is compact, prove that f(X) is compact.

Answer: Let f(X) ⊆ ∪ Uα. Then X ⊆ ∪f−1(Uα). Since X is compact, there is
a finite collection of indices α1, . . . , αk such that X ⊆ f−1(Uα1) ∪ . . . ∪ f−1(Uαk

). So
f(X) ⊆ Uα1 ∪ . . . ∪ Uαk

.

1



(c) In class we proved that a subset A ⊆ Rn is compact if and only if it is closed and bounded.
Show that this result is false if we replace the space Rn with an infinite discrete metric
space M .

Proof: Let A be an infinite subset of M . Then A is closed because every subset of a
discrete space is closed. Also A is bounded because the distance between any two points
of M is either 0 or 1. However, A is not compact because A is covered by the open
subsets {a} for a ∈ A, and no finite number of these covers A.

4. Are the surfaces with surface symbols aba−1b and abab homeomorphic? Why or why not?

Answer: Using the rule xPxQ ∼ x1x1P
−1Q, we have aba−1b = ab1b1a = aab1b1, so this

space is homeomorphic to RP 2#RP 2. Using the same rule, abab ∼ a1a1b
−1b. But b−1b can

be glued together and eliminated, so the second symbol is equivalent to a1a1 and the second
space is homeomorphic to RP 2. These two spaces are not homeomorphic.

5. Prove that [0, 1] is connected OR prove that [0, 1] is compact.

Answer: The first holds, for suppose that [0, 1] ⊆ U ∪ V with the usual properties. Without
loss of generality, say 0 ∈ U . Let s = sup{t | [0, t] ⊆ U}. If s ∈ U , then there is an ε > 0 such
that the set of all x ∈ [0, 1] with |x− s| < ε is contained in U . This contradicts the definition
of s if s < 1 because then we can find s1 greater than s with [0, s1] ⊆ U . However if s = 1,
then [0, 1] ⊆ U , making V = ∅ contrary to our choice of U and V.

So s ∈ V. But then a similar ε can be chosen so x ∈ [0, 1] and |x − s| < ε implies x ∈ V.
By definition of s, we can find s1 with [0, s1] ⊆ U and |s1 − s| < ε, a contradiction. This
contradiction shows that U and V cannot exist.

The proof that [0, 1] is compact is similar. Suppose {Uα}is an open cover of [0, 1]. Let

s = sup{t | [0, t]can be covered by a finite subcover}

Find β so s ∈ Uβ and find ε > 0 such that whenever x ∈ [0, 1] and |x−s| < ε then x ∈ Uβ . By
definition of sup, we can find s1 so [0, s1] can be covered by a finite subcover and |s1− s| < ε.
But then whenever s < s2 such that s2 ∈ [0, 1] and |s2 − s| < ε we have [0, s2] covered by
the finite subcover for [0, s1] together with Uβ . By definition of s we conclude that s = 1 and
[0, 1] can be finitely covered.

6. As a set, the long ray is J × [0, 1) where J is a specific index set. List the key properties of
this index set. Carefully define the topology on this set and explain why the resulting space
is not second countable.

Answer: The index set should be totally ordered and well-ordered. This last condition
means that every nonempty subset of J should have a smallest element. Moreover, J should
be uncountable. But whenever j ∈ J , the set of all elements less than j should be countable.

Order J × [0, 1) by letting (j1, t1) < (j2, t2) if j1 < j2 or if j1 = j2 and t1 < t2. Let an open
interval be a set of the form (α, β) = {p ∈ J × [0, 1) | α < p < β} or else [0̃, β) = {p ∈
J × [0, 1) | p < β}. Call a subset of J × [0, 1) open if it is a union of open intervals.

Fix an index j ∈ J. The set Uj of all (j, t) with t ∈ (0, 1) is open in the long ray. As j varies,
these open sets run through an uncountable collection of disjoint open sets. The long ray
cannot then have a countable collection of open sets such that every open set is a union of
these, because then each of the Uj would be a union of certain of these sets, and the sets
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whose union gives Uj would be disjoint from the sets which give another Uk, so there would
have to be uncountably many of these sets.

7. Show that R3 −R is homeomorphic to S1 ×R2.

Answer: We can suppose R is the z-axis in R3. A point in R3−R is thus a nonzero point in
the plane, together with a height h in the z direction. Write this point in the plane in polar
coordinates (r, θ). The result is cylindrical coordinates (r, θ, h) for points in R3 − R. Map
R3−R to S1×R2 by (r, θ, h) → (θ, ln r, h) where θ ∈ S1 and (ln r, h) ∈ R2. The inverse map
is (θ, x, y) → (ex, θ, y) and both of these maps are clearly continuous.

8. (a) Show that the surface symbol aPQa−1R can be replaced with an equivalent surface
symbol a1QPa−1

1 R.

Answer:

(b) Using this result, show that the surface symbol aPbQa−1Rb−1S can be replaced with an
equivalent surface symbol with a1b1a

−1
1 b−1

1 T where T is an appropriate concatenation of
P,Q,R, S in some order.

Answer:
a(P )(bQ)a−1Rb−1S → a1(bQ)(P )a−1

1 Rb−1S =

b(QP )(a−1
1 R)b−1Sa1 → b1(a−1

1 R)(QP )b−1
1 Sa1 =

a−1
1 (RQP )(b−1

1 S)a1b1 → a−1
2 (b−1

1 S)(RQP )a2b1 =

a2b1a
−1
2 b−1

1 SRQP

9. Suppose X and Y are connected topological spaces and A ⊂ X and B ⊂ Y are subspaces
such that A 6= X and B 6= Y . Prove that X × Y −A×B is connected.

Answer: Let x0 6∈ A and let y0 6∈ Y. The union of all connected subsets of X × Y − A × B
containing x0 × y0 is connected; call this connected set Z.

Notice that X ×{y0} and {x0}× Y are connected subsets which intersect at x0× y0, so their
union W is connected and W ⊆ Z.

Let (x, y) ∈ X × Y − A × B. Then x 6∈ X or y 6∈ B. Without loss of generality, say x 6∈ A.
Then x× Y is a connected set which intersects W , so their union is connected and contains
x0 × y0 and thus is a subset of Z. In particular, x × y ∈ Z. This argument works whenever
x× y ∈ X × Y −A×B, so Z is everything in X × Y −A×B.
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10. (a) Prove that [−1, 1]/[−1, 0] is homeomorphic to [−1, 1].

Answer: Map [−1, 1] to [−1, 1] by mapping [−1, 0] to −1 and mapping [0, 1] → [−1, 1]
via f(t) = 2t − 1. This map is continuous and it induces a mapping [−1, 1]/[−1, 0] →
[−1, 1]. Clearly this map is one-to-one.

Since [−1, 1] is compact and [0, 1] is Hausdorff, this map is a homeomorphism.

(b) Prove that [−1, 1]/[−1, 0) is not homeomorphic to any closed interval in R.

Answer: This will follow if we can show that [−1, 1]/[−1, 0) is not Hausdorff. Notice
that [−1, 0) maps to a single point p in the quotient space, and notice that 0 ∈ [−1, 1]
maps to a different point q in the quotient space. If U is an open neighborhood of q
in the quotient space, then π−1(U) must be an open neighborhood of 0 and thus must
include points equivalent to p. So q cannot be separated from p in the quotient space.
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