
Assignment 7; Due Friday, November 11

9.8 a The set Q is not connected because we can write it as a union of two nonempty
disjoint open sets, for instance U = (−∞,

√
2) and V = (

√
2,∞). The connected subsets

are just points, for if a connected subset C contained a and b with a < b, then choose an
irrational number ξ between a and b and notice that C = ((−∞, ξ)∩A) ∪ ((ξ,∞)∩A).

9.8 b The exercise uses a fancy definition of an interval because it doesn’t want to
list them: (−∞,∞), (−∞, b), (−∞, b], (a,∞), [a,∞), (a, b), (a, b], [a, b), and [a, b]. These
sets are connected by 9.6. Conversely, suppose C ⊆ R is connected and let c ∈ C. Let
s = sup{b ≥ c | [c, b] ⊆ C}. Note that s could equal infinity. If s is finite and s 6∈ C, then C
contains [c, s) but nothing larger, for otherwise C = ((−∞, s) ∩ C) ∪ ((s,∞) ∩ C) would
decompose C into two nonempty disjoint open sets. If s ∈ C, then C contains [c, s] but
nothing larger, for if d > s is in C, then since [c, d] is not in C there must be a ξ with
s < ξ < d and ξ 6∈ C, and then ((−∞, ξ) ∩ C) ∪ ((ξ,∞) ∩ C) decomposes C.

A similar argument at the lower end of C completes the proof.

9.8 d The sets { x; ||x|| < 1 } and { x; ||x|| > 1} are connected, but { x; ||x|| 6= 1 } is not
because it is a union of the two disjoint open sets listed first. Also { x;x2

1 + x2
2 − x2

3 = 1 }
is connected because it looks like this:
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and { x;x2
1 + x2

2 + x2
3 = −1 } is the empty set and thus connected, and { x;x1 6= 1 } is not

connected because it is the union of two open sets, one on one side of the plane x1 = 1 and
one on the other side.

9.8 e We will prove that X is not connected if and only if there is a continuous nonconstant
f : X → Y whenever Y is discrete with at least two points.

Suppose f : X → Y is not constant,. Let y ∈ Y be one of the values of Y and notice that
{y} and Y −{y} are open sets. Since f is continuous, f−1(y) and f−1(Y −{y}) are disjoint
nonempty open sets whose union is X, so X is not connected.
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Suppose X is not connected and write X = U ∪ V for disjoint nonempty open U and V. If
Y has at least two points, and thus has p 6= q, define f : X → Y by sending U to p and V
to q. This f is not constant, and it is continuous because the inverse image of any set is
either ∅,U ,V or X.

9.8 f If Y is not connected, we can find write Y = U1 ∪ U2 where the Ui are disjoint,
nonempty open subsets of Y . According to the induced topology, there are open sets V1

and V2 in X such that Y ⊆ V1∪V2 and Y ∩V1 and Y ∩V2 are disjoint and nonempty. Notice
that A ⊆ V1∪V2 and A∩V1 and A∩V2 are disjoint. Since A is connected, one of A∩V1 and
A ∩ V2 must be empty. Say for instance that A ∩ V1 is empty. Since Y ∩ V1 is not empty,
let y ∈ Y ∩V1. But then V1 is an open neighborhood of y which does not intersect A, so by
a theorem much earlier in the course, y 6∈ A, contradicting the assumtpion Y ⊆ A.

9.8 h Fix i. First we prove that {x ∈ Rn+1 − {0} | xi > 0} is connected. Indeed fix a
point p in this set. Whenever q is in the set, the straight line joining p and q is in the set.
Parameterizing this line, we can find a continuous map

f : [0, 1] → {x ∈ Rn+1 − {0} | xi > 0}

such that f(0) = p and f(1) = q. Call the image of this line Yq and notice that Yq is
connected by 9.4. The intersection of all Yq contains p and thus is nonempty, so the union
of these Yq is connected. Clearly this union is all of {x ∈ Rn+1 − {0} | xi > 0}.

Notice that (1, 1, . . . , 1) is in the set defined by xi > 0 for each i. Since these sets are all
connected and have nonempty intersection, their union is connected. So the following set
is connected:

{x ∈ Rn+1 − {0} | xi > 0 for some i}

Similarly the following set is connected:

{x ∈ Rn+1 − {0} | xi < 0 for some i}

The intersection of the two displayed sets is nonempty, so their union is connected. But
this union is all of Rn+1 − {0}.

Let f : Rn+1−{0} → Sn be the map f(x) = x
||x|| . This map is continuous. Since the image

of a connected set under a continuous map is connected, Sn is connected.

Recall that RPn is Sn with opposite points identified, and the quotient topology from
π : Sn → RPn. Since π is continuous and Sn is connected, RPn is connected.
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9.8 i Below is a picture of this set. The set is a famous example in topology: it is a
connected set which is not arcwise connected. That is, it is impossible to draw a continuous
path connecting a point in the right side to a point on the vertical line, because such a
path would have to go up and down infinitely often as it approached the left, which is
impossible in a continuous manner.

Let A be the vertical line on the left and let B be the cosine curve on the right. Both A
and B are connected because they are continuous images of connected sets under obvious
continuous maps. Suppose that A∪B is not connected, and write it as a disjoint union of
nonempty open sets U and V. The A = (A ∩ U) ∪ (A ∩ V), so one of these sets must be
empty. The same thing is true for B. We conclude that U and V must be A and B.

However, A is not open in A ∪ B because any open ball about a point on the vertical A
intersects B.

10.7 a If both have the same center, any cut through the center will do. Otherwise cut
on the straight line joining their centers.

Extra Problem 1 This exercise follows immediately from theorem 9.6 in the text.

Extra Problem 2 Let Cp and Cq be the connected components of p and q. If these sets
are not disjoint, then theorem 9.6 states that Cp ∪ Cq is connected. Since this connected
set contains p, it must equal Cp. Similarly it equals Cq.

Extra Problem 3 There are two connected components of the set of points in the plane
with y 6= 0: the open upper half plane and the open lower half plane.

The connected components of Q are the {q} for q ∈ Q.

Extra Problem 4 Let Cq be the connected component of q. By exercise 9.8f, Cq is
connected; since Cq is the largest connected set containing q, Cq = Cq. So connected
components are closed.

Note that the connected components of Q are not closed in Q.

Extra Problem 5 By bilinearity we have ||v + w||2 =< v + w, v + w > =< v, v > + <
v,w > + < w, v > + < w, w > = ||v||2+2 < v, w > +||w||2, and the formula in the problem
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immediately follows. So ||Av|| = ||v|| for all v implies < Av, Aw >=< v, w > for all v and
w. Conversely, if this result holds, then < Av, Av >=< v, v >, i.e., ||Av||2 = ||v||2.

Write v = (v1, . . . , vn) and w = (w1, . . . , wn). Then

< Av, Aw >=
∑

i

∑
j

Aijvj

(∑
k

Aikwk

)
=
∑
jk

(AT A)kjwkvj

and this expression equals
∑

k wkvk for all v and w. Setting wk = δks and vk = δkt we
conclude that (AT A)st = δst and consequently AT A = I. Conversely, if AT A = I, this
equation is clearly true for all v and w.

We will prove that O(n) is compact by showing that it is closed and bounded. Clearly it is
closed, for if An → A and AT

nAn = I for all n, then AT
nAn → AT A and so AT A = I.

Notice that
1 = (AT A)ii =

∑
k

AT
ikAki =

∑
k

A2
ki

and so |Aki| ≤ 1. Thus O(n) is bounded.

Finally we compute the connected components of A. Notice that 1 = det(I) = det(AT A) =
det(AT ) det(A) = det(A)2, so det(A) = ±1. I claim there are two components, the set U of
elements with determinant 1 and the set V of elements with determinant −1. These sets
are certainly disjoint, and they are open because det : O(n) → R is continuous.

The matrix

B =


−1 0 0 . . . 0

0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1


is in O(n) and has determinant minus one. We have a map U → V by sending A to AB.
This map is clearly a homeomorphism. So to finish the argument we need only show that
U is connected.

We prove this by showing that every element A ∈ U can be connected to the identity
matrix by a continuous path in U ; this is enough by theorems 9.4 and 9.6 in the book.
Write A = BCB−1 as in the problem set where C has 1 × 1 and 2 × 2 blocks down the
diagonal. The number of 1× 1 blocks with a −1 must be even because A has determinant
one and so C has determinant 1. Replace each pair of −1 blocks by the following 2 × 2
matrix with θ = π: (

cos θ − sin θ
sin θ cos θ

)
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In the end, our A = BCB−1 where C has 2× 2 blocks down the diagonal corresponding to
rotations by θ1, . . . , θk, and then 1× 1 blocks down the diagonal, each containing 1.

Now a continuous path to the identity is easily constructed. Replace θi by tθi where
t ∈ [0, 1]. When t = 1, we have BCB−1 = A and when t = 0 we have BIB−1 = I.
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