
Assignment 6; Due Friday, November 4

8.2a If X is finite, then every set is open and X has the discrete topology. Thus if x 6= y,
the open sets U = {x} and V = {y} separate x and y.

Conversely, suppose X is Hausdorff and let x 6= y. Choose disjoint U and V with x ∈ U
and y ∈ V. Notice that U = X − A and V = X − B where A and B are finite. Then
U ∩ V = X − (A ∪B) = ∅ and so X = A ∪B is also finite.

8.14a Since f : X → Y is continuous, U ⊆ Y open implies f−1(U) open. Conversely,
suppose f−1(U) open. Then X − f−1(U) is closed in the compact set X, so compact. By
one of our theorems, f(X − f−1(U)) ⊆ Y is compact in the Hausdorff space Y , so closed.
But f(X − f−1(U)) = Y − U since f is onto. So Y − U is closed and U is open.

8.14b Suppose Y is Hausdorff. Whenever x× y 6∈ D we have x 6= y and we can find open
x ∈ U and y ∈ V with U∩V = ∅. It follows that x×y ∈ U×V ⊆ Y ×Y and (U×V)∩D = ∅.
The union of all such U ×V is an open set which is exactly Y ×Y −D, so D is closed.

Conversely, suppose D is closed. Then W = Y ×Y −D is open. If x 6= y, then x× y ∈ W,
so by definition of open sets in the product topology there is a rectangle U × V with
x× y ∈ U × V ⊆ Y × Y −D. Since U × V does not intersect D, U ∩ V = ∅.

8.14c Consider the map f × f : X × X → Y × Y . Since Y is Hausdorff, the diagonal
D ⊆ Y ×Y is closed, so (f×f)−1(D) is closed. But this is exactly the set of all x×y ∈ X×X
such that f(x)× f(y) ∈ D, that is f(x) = f(y).

8.14e Suppose X is compact, Y is Hausdorff, and f : X → Y is continuous and onto. If
A ⊆ X is closed, then A is compact, so f(A) ⊆ Y is compact in a Hausdorff space and so
closed.

Conversely, suppose f takes closed sets to closed sets. Apply theorem 8.11: If Y is the
quotient space of the compact Hausdorff space X determined by an onto map f : X → Y ,
and if f is a closed mapping, then Y is Hausdorff.

Continuation of 8.14e Now we must prove that under the same hypotheses, Y is
Hausdorff if and only if E = { x1 × x2 | f(x1) = f(x2)} is closed. Half of this was proved
in 8.14c. We must still prove that if this set is closed, then Y is Hausdorff. This will follow
from the first part of the problem if we can prove that E closed implies that f is a closed
mapping.

So suppose A ⊆ X is closed. We must prove that f(A) is closed; since Y has the quotient
topology, we must prove that f−1(f(A)) is closed, and thus that

{x ∈ X | ∃a ∈ A with f(x) = f(a)}
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is closed. But A closed in X implies that X ×A is closed in X ×X. We are assuming E is
closed, so (X×A)∩E is closed. This set is {x×a | f(x) = f(a)}. Since the natural projection
π : X×X → X is continuous and since X is compact Hausdorff, π maps closed sets to closed
sets, so π(A∩E) is closed. But this set is exactly {x ∈ X | ∃a ∈ A with f(x) = f(a)}.

8.14i Notice that x ∼ x since x − x = 0 ∈ Q. If x ∼ y, then x − y ∈ Q and so
−(x− y) = y− x ∈ Q, so y ∼ x. Finally if x ∼ y and y ∼ z, then x− y ∈ Q and y− z ∈ Q,
so (x− y) + (y − z) = x− z ∈ Q, so x ∼ z.

Let π : R → R/∼ and give R/∼ the quotient topology. Call the resulting space Y . Notice
that Y is uncountable, since each equivalence class contains only countably many elements.
In particular, Y has two distinct points. I will prove that Y has the concrete topology:
the only open sets are ∅ and Y . If so, it will follow that Y is not Hausdorff because there
exist distinct elements y1 6= y2 and yet the only possible open neighborhoods of y1 and y2

are Y and Y and these are not disjoint.

Let U ⊆ Y be nonempty and open. We will prove U = Y. Notice first that π−1(U) is
nonempty and open; call this set V. The set V contains a nontrivial interval (a, b). I claim
that every real number is equivalent to an element in (a, b). Indeed, if r ∈ R then the
interval (a − r, b − r) contains a rational q, so a − r < q < b − r and then a < r + q < b
and r + q ∼ r. Any y ∈ Y is represented by some real number, which we can assume is in
(a, b) and thus y ∈ π(π−1(U)) = U . So U = Y.

8.14j To understand this problem, consider first the case when X is a large closed rectangle
about the origin and U is a smaller open disk inside this rectangle.
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The space X/(X−U) is formed by gluing all points in X−U together. This means that all
of the points which are darker gray become a single point. In particular, all the points on
the boundary of U become a single point, so the light gray disk becomes a sphere. Notice
that U∞ is also a sphere, since U is homeomorphic to Rn and thus U∞ is homeomorphic
to (Rn)∞, which is a sphere.

Now we give the general argument. As a set, U∞ = U ∪{∞}. Next we analyze X/(X −U)
as a set. Notice that X = U ∪ (X − U). Each point in U represents a unique point in
X/(X −U) and all of the points in X −U represent the same point, p. Therefore, as a set
X/(X−U) is U ∪{p} where p is the point represented by all elements of X−U . Map U∞ to
X/(X −U) by sending points in U to themselves and sending ∞ to p. This map is clearly
one-to-one and onto. We must show that this map induces a one-to-one correspondence
between open sets V ⊆ U∞ and open sets W ⊆ X/(X − U).

Incidentally, the previous argument assumes that X − U is nonempty. Otherwise there
would be no p and we would be in trouble.

There are two types of open sets in U∞. First there are open sets V ⊆ U . Second there are
open sets of the form V = (U −A) ∪ {∞} where A ⊆ U is compact and closed.

There are also two types of open sets in X/(X−U), namely open sets which do not contain
the special point p and open sets which contain this point. Each point of a subset W which
does not contain p is represented by a unique point in U , so we can identify such subsets
of X/(X −U) with subsets W ⊆ U , and such a set is open in X/(X −U) exactly when its
inverse image in X is open, i.e., exactly when W ⊆ U is open.

The open sets of X/(X − U) which contain p have the form W = V ∪ {p} where V ⊆
U . This set is open exactly when its inverse image in X is open. The inverse image is
V ∪ (X − U) = X − (U ∩ Vc) and is open just in case U ∩ Vc is closed in X. Since X is
compact Hausdorff, this happens just in case U ∩Vc is compact. Call this set A and notice
that V = U −A.

To summarize, the open sets in X/(X − U) have the form W ⊂ U where W is open, or
W = (U −A) ∪ {p} where A ⊆ U is closed and compact.

It is immediately clear that our map sets up a one-to-one correspondence between open
sets in U∞ and open sets in X/(X − U).

Continuation of 8.14j Consider the special case U = X −{p}. Then U∞ = (X −{p})∞
is homeomorphic to X/(X − (X − {p})) = X/{p}. This last space is X with the point p
glued to itself, i.e., just X.
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