Assignment 6; Due Friday, November 4

8.2a If X is finite, then every set is open and X has the discrete topology. Thus if x # v,
the open sets U = {z} and V = {y} separate z and y.

Conversely, suppose X is Hausdorff and let x # y. Choose disjoint & and V with z € U
and y € V. Notice that Y = X — A and V = X — B where A and B are finite. Then
UNV =X —(AUB)=0and so X = AU B is also finite.

8.14a Since f : X — Y is continuous, & C Y open implies f~1(U) open. Conversely,
suppose f~1(U) open. Then X — f~1(U) is closed in the compact set X, so compact. By
one of our theorems, f(X — f~'(U)) C Y is compact in the Hausdorff space Y, so closed.
But f(X — f~1(U)) =Y — U since f is onto. So Y — U is closed and U is open.

8.14b Suppose Y is Hausdorff. Whenever x x y € D we have x # y and we can find open
xeUUandy €V withtdNV = (. It follows that e xy e U xV CY XY and (UxV)ND = .
The union of all such ¢ x V is an open set which is exactly Y xY — D, so D is closed.

Conversely, suppose D is closed. Then W =Y xY — D isopen. If x # y, then z x y € W,
so by definition of open sets in the product topology there is a rectangle U x V with
rXyeUxVCY xY —D. Since U x V does not intersect D, U NV = ).

8.14c Consider the map f x f : X x X — Y x Y. Since Y is Hausdorff, the diagonal
D C Y xYisclosed, so (fx f)~!(D) is closed. But this is exactly the set of all zxy € X x X
such that f(z) x f(y) € D, that is f(x) = f(y).

8.14e Suppose X is compact, Y is Hausdorff, and f : X — Y is continuous and onto. If
A C X is closed, then A is compact, so f(A) C Y is compact in a Hausdorff space and so
closed.

Conversely, suppose f takes closed sets to closed sets. Apply theorem 8.11: If Y is the
quotient space of the compact Hausdorff space X determined by an onto map f: X — Y,
and if f is a closed mapping, then Y is Hausdorff.

Continuation of 8.14e Now we must prove that under the same hypotheses, Y is
Hausdorft if and only if £ = { 1 X x2 | f(x1) = f(z2)} is closed. Half of this was proved
in 8.14c. We must still prove that if this set is closed, then Y is Hausdorff. This will follow
from the first part of the problem if we can prove that E closed implies that f is a closed
mapping.

So suppose A C X is closed. We must prove that f(A) is closed; since Y has the quotient
topology, we must prove that f~1(f(A)) is closed, and thus that

{r € X | Ja € A with f(z) = f(a)}



is closed. But A closed in X implies that X x A is closed in X x X. We are assuming F is
closed, so (X xA)NE'is closed. Thisset is {zxa | f(z) = f(a)}. Since the natural projection
7 : X xX — X is continuous and since X is compact Hausdorff, 7 maps closed sets to closed
sets, so T(ANE) is closed. But this set is exactly {z € X | Ja € A with f(z) = f(a)}.

8.14i Notice that x ~ z since z —x = 0 € Q. If x ~ y, then z —y € @ and so
—(r—y)=y—x€Q,soy~x. Finallyifr ~yandy ~ 2z, thenz—y € Q and y —z € Q,
so(z—y)+@y—2)=x—2€Q,s0x~ 2.

Let m: R — R/~ and give R/~ the quotient topology. Call the resulting space Y. Notice
that Y is uncountable, since each equivalence class contains only countably many elements.
In particular, Y has two distinct points. I will prove that Y has the concrete topology:
the only open sets are () and Y. If so, it will follow that Y is not Hausdorff because there
exist distinct elements y; # yo and yet the only possible open neighborhoods of y; and o
are Y and Y and these are not disjoint.

Let U C Y be nonempty and open. We will prove i = Y. Notice first that 7=1(U) is
nonempty and open; call this set V. The set V contains a nontrivial interval (a,b). I claim
that every real number is equivalent to an element in (a,b). Indeed, if » € R then the
interval (a — r,b — r) contains a rational ¢, so a —r < ¢ < b—r and thena <r+q¢ <b

and r + ¢~ r. Any y € Y is represented by some real number, which we can assume is in
(a,b) and thus y € 7(71U)) =U. SoU =Y.

8.14j To understand this problem, consider first the case when X is a large closed rectangle
about the origin and U/ is a smaller open disk inside this rectangle.




The space X/(X —U) is formed by gluing all points in X —U together. This means that all
of the points which are darker gray become a single point. In particular, all the points on
the boundary of U become a single point, so the light gray disk becomes a sphere. Notice
that U° is also a sphere, since U is homeomorphic to R™ and thus U°° is homeomorphic
to (R™)*°, which is a sphere.

Now we give the general argument. As a set, U = U U{oo}. Next we analyze X/(X —U)
as a set. Notice that X = U U (X — U). Each point in U represents a unique point in
X/(X —U) and all of the points in X — U represent the same point, p. Therefore, as a set
X/(X -U) isU U{p} where p is the point represented by all elements of X —U. Map U to
X/(X —U) by sending points in U to themselves and sending oo to p. This map is clearly
one-to-one and onto. We must show that this map induces a one-to-one correspondence
between open sets V C U* and open sets W C X/(X —U).

Incidentally, the previous argument assumes that X — U/ is nonempty. Otherwise there
would be no p and we would be in trouble.

There are two types of open sets in U°. First there are open sets V C U. Second there are
open sets of the form V = (U — A) U {co} where A C U is compact and closed.

There are also two types of open sets in X /(X —U), namely open sets which do not contain
the special point p and open sets which contain this point. Each point of a subset WW which
does not contain p is represented by a unique point in U/, so we can identify such subsets
of X/(X —U) with subsets W C U, and such a set is open in X/(X —U) exactly when its
inverse image in X is open, i.e., exactly when W C U/ is open.

The open sets of X/(X — U) which contain p have the form W = V U {p} where V C
U. This set is open exactly when its inverse image in X is open. The inverse image is
VU (X —U) =X — (UNV° and is open just in case U N V¢ is closed in X. Since X is
compact Hausdorff, this happens just in case U N V¢ is compact. Call this set A and notice
that V =U — A.

To summarize, the open sets in X/(X — U) have the form W C U where W is open, or
W= (U - A)U{p} where A CU is closed and compact.

It is immediately clear that our map sets up a one-to-one correspondence between open
sets in U and open sets in X/(X —U).

Continuation of 8.14j Consider the special case Y = X — {p}. Then U = (X — {p})>
is homeomorphic to X/(X — (X — {p})) = X/{p}. This last space is X with the point p
glued to itself, i.e., just X.



