
Assignment 5; Due Friday, October 28

6.6a Imagine that X × Y has some unspecified topology.

Suppose X × Y → X is continuous and let U ⊆ X be open. The inverse image of this set
is U × Y ; by continuity this set is open.

Similarly if X × Y → Y is continuous and V ⊆ Y is open, then X × V is open. If both
maps are continuous, then

(
U × Y

)
∩

(
X × V

)
= U × V is open.

Consequently, if Uα and Vα are open in X and Y for each α, then Uα × Vα is open for
each α and so ∪

(
Uα × Vα

)
is open. It follows that each open set in the product topology

for X × Y is also open in the unspecified topology, which is what we were supposed to
prove.

6.6d Let I = [0, 1]. Think of the torus as I2 modulo the equivalence relation (0, v) ∼ (1, v)
and (u, 0) ∼ (u, 1) as in the picture in the book.

Consider the map f : I → R2 by u → e2πiu = (cos 2πu, sin 2πu). This is a standard
calculus map which is certainly continuous. The image is in S1, so by theorem 4.5d (or
just elementary reasoning), I → S1 is continuous.

Next consider g = f × f : I × I → S1 × S1. This map is continuous by a result in class.
Since g(0, v) = g(1, v) and g(u, 0) = g(u, 1), g descends to a continuous map I2/ ∼→
S1×S1, that is, a continuous map T 2 → S1×S1. This map is one-to-one and onto by easy
reasoning.

It now suffices to prove that the inverse of this map is continuous. This follows because
T 2 is compact and S1 × S1 is Hausdorff. Indeed I2 is compact and π : I2 → T 2 is onto, so
T 2 is compact by a theorem in class. Also S1 ⊆ R2 is Hausdorff since any metric space is
Hausdorff; the product of two Hausdorff spaces is Hausdorff.

6.6l Let X = Z with the discrete topology. Then X × X = Z × Z with the discrete
topology, for if m,n ∈ Z then {m} and {n} are open, so {m × n} is open in Z × Z, and
every subset of Z × Z is a union of such points and thus open.

Since Z and Z×Z are both countable, there is a one-to-one and onto map f : Z → Z×Z.
This map and its inverse are continuous automatically since both spaces are discrete.

As a more interesting example, let X be the set of all infinite sequences x = (x1, x2, x3, . . .)
of real numbers such that all but finitely many xi are zero. Define the distance between
two such sequences x and y to be the maximum of |xi − yi|. This is easily shown to be a
metric.
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The space X×X consists of pairs (x1, x2, . . .)×(y1, y2, . . .). Map f : X×X → X by mapping
this pair to the single sequence (x1, y1, x2, y2, . . .), noticing that only finitely many terms
of the resulting sequence are nonzero. This map is clearly one-to-one and onto.

Define a distance in X×X by letting d
(
(x, y), (x̃, ỹ)

)
= max

(
d(x, x̃), d(y, ỹ)

)
. By exercise

6.2b, this metric induces the usual product topology on X × X. Notice that the map f

preserves distance: d(x× y, x̃× ỹ) = d
(
f(x× y), f(x̃× ỹ)

)
. Consequently f and its inverse

are continuous.

7.13a Dn is closed and bounded, so compact. The second set is not closed, so not com-
pact.The third set, which is a 1× 4 closed rectangle, is compact.

The final set is compact because it is closed and bounded. Indeed, the set of all (s, t, u)
with s2 + t2 ≤ 1 is closed, since if (sn, tn, un) is in the set and (sn, tn, un) → (s, t, u), then
s2
n + t2n ≤ 1 and so by taking limits, s2 + t2 ≤ 1. The set of all (s, t, u) with t2 + u2 ≤ 1 is

also closed. Therefore the intersection of these sets is closed. This intersection is bounded,
since if (s, t, u) is in the set then |s| ≤ 1, |t| ≤ 1, and |u| ≤ 1.

7.13b Let X be a compact subset of Rn. Define Un = { x ∈ X | ||x|| < n }. These Un

form an open cover of X. By compactness, a finite number of these sets already cover X,
so X is bounded.

7.13c Suppose f : I → R is continuous. Define id : I → R by id(x) = x; clearly this map
is continuous. Consequently by theorem 6.5, the map id × f : I → R × R is continuous;
notice that this map sends I to the graph of f , which is a subset of R×R. The continuous
image of a compact space is compact, so this graph is compact.

Conversely, suppose the graph of f is compact. We will prove that f−1(A) is closed
whenever A is closed; this is enough to prove that f is continuous. The natural maps
π1 : I×R → I and π2 : I×R → R by projection on the first and second factors respectively
are continuous. So π−1

2 (A) is closed. The graph G of f is a compact subset of I × R, so
π−1(A) ∩G is compact. A continuous image of a compact set is compact, so π1(π−1

2 (A) is
compact in the Hausdorff space I, so closed. However, this set is just f−1(A), so f−1(A) is
compact. I’ll let the reader verify that f−1(A) = π1(π−1

2 (A) ∩G); the argument definitely
requires that G be the graph of f .

Let f(0) = 0 and f(x) = 1
x for x ∈ (0, 1]. The graph of f is

(0, 0) ∪ {(x, 1/x) | x ∈ (0, 1]}

This set is closed, for suppose (xn, yn) is in the graph and converges to (x, y). If infinitely
many xn = 0, then (xn, yn) = (0, 0) for infinitely many n, so (x, y) = (0, 0), which is in
the graph. Otherwise xn 6= 0 for infinitely many n and for these n we have xn → x and
1

xn
→ y. Then xn · 1

xn
→ x · y and so x · y = 1. In particular x 6= 0 and y = 1

x and therefore
(x, y) is in the graph.
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7.13g Suppose our compact X has an open cover {Uα}. If the result is false, then for each
positive integer n we can find points xn and yn with d(xn, yn) < 1

n such that no Uα contains
both points. We are going to use the following

Lemma If X is a compact metric space, then every sequence xn has a convergent subse-
quence xnα .

Accepting this lemma, choose a convergent subsequence xnα of xn. Throw away all terms
not in this subsequence and reindex; we can thus assume that xn → x0. But then yn → x0,
for the yn get arbitrarily close to the xn, which get arbitrarily close to x0 (details easily
supplied). Find α such that x0 ∈ Uα. fSince xn → x0 and yn → x0, we have xn ∈ Uα and
yn ∈ Uα for all large n, a contradiction.

It remains to prove the lemma. Fix p ∈ X. If every neighborhood of p contains xn for
infinitely many n, then we can easily find a subsequence converging to p. So if the lemma
is false, then for each p we can find an open Up which contains only finitely many xn. These
Up form an open cover of X, so there is a finite subcover Uα1 , . . . ,Uαn , but then the union
of these sets is everything and yet only contains a finite number of the xn.

Remark: In class, a second proof was sketched. Since {Uα} is an open cover of our
compact X, there is a finite subcover Uα1 ∪ . . . ∪ Uαk

. Let Ci be the complement of Uαi .
The Ci are closed sets and ∩Ci = ∅. Let fi : X → R be the function which assigns
to x the minimum distance from x to a point of Ci. This function is continuous, so
g = max(f1, . . . , fk) is continuous. This function is strictly positive, for if x ∈ X then x is
not in some Ci, so fi(x) > 0. Let δ be the minimum value of g on X.

Suppose A is a subset of X of diameter smaller than δ. Fix a ∈ A. Since g(a) ≥ δ,
there is a Ci so d(a, c) ≥ δ whenever c ∈ Ci. If b ∈ A, then d(a, b) + d(b, c) ≥ d(a, c), so
d(b, c) ≥ d(a, c) − d(a, b) > δ − δ = 0 for all c ∈ Ci, so b 6∈ Ci. Hence A does not intersect
Ci and thus A ⊆ Uαi .

7.13h The open sets in X ∪ {∞} are U open in X together with (X −A) ∪ {∞} where A
is closed and compact in X. The entire set is open since it has this second form for A = ∅.
The empty set is open since it is open in X.

Suppose W1 and W2 are open and consider W1 ∩W2. If both W1 and W2 contain infinity,
then their intersections with X have the form X − A1 and X − A2 where A1 and A2 are
closed and compact. So W1 ∩W2 = (X − (A1 ∪A2))∪ {∞}. Notice that A1 ∪A2 is closed
and compact.

If one of the Wi, say W1, contains infinity and the other does not, then their intersection
is W1 ∩ (X − A2), which is open in X and so open in X∞. If both Wi omit infinity, then
their intersection is W1 ∩W2, which is open in X.

We also need to show that a union of open sets {Wα} is open in X∞. This is obvious if all
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of the Wα are contained in X. If at least one of the Wα contains infinity, then the union
contains infinity and we must show that the intersection of the union with X has the form
X − A for A closed and compact. But the intersection of each Wα with X has the form
X − Aα where Aα is closed, and in at least one case Aα is compact. The union of these
sets is X −∩Aα. Notice that ∩Aα is closed, and it is compact since it is a closed subset of
the compact Aα.

The set X ⊂ X∞ has the induced topology, for if U is open in X, then U is also open in
X∞ and its intersection with X is U . Conversely if W is open in X∞, then either W is
open in X and so its intersection with X is open, or else W = (X − A) ∪ {∞} and its
intersection with X is X −A, which is open since A is closed.

The space X∞ is compact, for if Wα is an open cover of X, then one of these open sets
contains ∞ and thus has the form (X−A)∪{∞}. This set already covers everything except
A. But A is compact and the Wα ∩ X form an open cover of A, so we can find a finite
subcover.

Extra Problem 1 Notice that R = ∪(−n, n), but no finite subset of this collection of
open sets covers R. Similarly [0, 1) = ∪[0, 1− 1/n), and these sets are open in the relative
topology, but no finite subset of this collection of open sets covers [0, 1).

Extra Problem 2 Q = ∪
(
(−n, n) ∩ Q

)
, but this cover does not have a finite subcover.

The sphere is an infinite union of points in the sphere with z coordinate less than 1− 1/n,
and each of these sets is open, but there is no finite subcover.

The Klein bottle is compact. Indeed the square [0, 1]2 is compact by the Heine-Borel
theorem, and the Klein bottle is a continuous image of this compact set, and so compact
by theorem 7.8

Extra Problem 3 By theorem 7.10, a closed subset of a compact space is compact, so A
and B are compact.

Fix b ∈ B. For each a ∈ A, find open neighborhoods Ua of a and Va of b which do not
intersect. The Ua cover A; find a finite subcover Ua1 , . . . ,Uam . Let U = Ua1 ∪ . . .∪Uam and
let V = Va1 ∩ . . . ∩ Vam . Notice that A ⊆ U and b ∈ V and U ∩ V = ∅.

Now repeat this argument varying b. For each b ∈ B, find open sets Ub and Vb such that
A ⊆ Ub and b ∈ Vb and Ub∩Vb = ∅. The Vb form an open cover of B. Find a finite subcover
Vb1 , . . .Vbn . Let U = Ub1 ∩ . . .∩Ubn and V = Vb1 ∪ . . .∪Vbn . Notice that A ⊆ U and B ⊆ V
and U ∩ V = ∅.

Extra Problem 4 Compactness is a topological property, so if two spaces are homeo-
morphic, they must both be compact or both be noncompact. But the open ball is not
compact and the closed ball is compact.
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