
Assignment 2; Due Friday, October 7

1.5a For each fixed x, must prove that whenever ε > 0, there is δ > 0 such that if
d(p, x) < δ, then |f(p)− f(x)| < ε. Since f(x) = d(x, y), this last inequality can be written
|d(p, y)− d(x, y)| < ε.

The idea of the rest of the proof is easy. If p and x are really close, then they should both
be about the same distance from y, so |d(p, y) − d(x, y)| should be really small. We just
have to quantify this.

Indeed d(p, y) ≤ d(p, x) + d(x, y) and so d(p, y) − d(x, y) ≤ d(p, x). Since p and x are
arbitrary points, they can be interchanged to show that d(x, y)− d(p, y) ≤ d(p, x). Putting
these two results together, we get∣∣∣d(p, y)− d(x, y)

∣∣∣ ≤ d(p, x)

Choose δ = ε. If d(p, x) < δ, then |d(p, y)− d(x, y)| ≤ d(p, x) < δ = ε.

1.5b Suppose f : M0 → M where M0 is discrete. For fixed x, we must show that whenever
ε > 0 then there is a δ > 0 such that if d0(x, y) < δ then d(f(x), f(y)) < ε. Choose δ = 1.
If d0(x, y) < 1, then since d0 is the discrete metric we have d0(x, y) = 0 and so x = y. So
d(f(x), f(y)) = d(f(x), f(x)) = 0 and so this distance is certainly less than ε.

For the second part, let f : M → M0 be continuous. This time I will play the devil, and
I choose ε = 1. Since f is continuous, you can find δ > 0 such that whenever d(x, y) < δ
then d0(f(x), f(y)) < ε = 1. Since d0 is the discrete metric, d0(f(x), f(y)) = 0 and so
f(x) = f(y). So f is constant on the interval about x of radius δ and thus is certainly not
injective.

1.6b We’ll change notation slightly and write d̃ for the metric on B. We’ll denote the
two metrics on A by d1 and d2. If d is one of these two metrics, then by definition f is
continuous if whenever x ∈ A and ε > 0, there is a δ > 0 such that if d(x, y) < δ then
d̃(f(x), f(y)) < ε.

Suppose some other sucker knows how to prove this for d1 and we want to prove it for d2.
So the devil picks ε and then that other sucker picks δ1 that works for this ε and d1. We
then want to pick δ2 that works the same way for d2.

Our metrics are related by the function g(t) = t
1+t plotted below.

In this picture, we plot d1 along the horizontal axis and d2 along the vertical axis. Since
this function is increasing, t < T if and only if g(t) < g(T ). So we can pick δ2 = g(δ1). If
d2(x, y) < δ2, then d1(x, y) < δ1, so if x and y satisfy our condition for d2 and δ2, then
they satisfy the sucker’s condition for d1 and δ1 and so d̃(f(x), f(y)) < ε.
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The proof the other direction works the same way. If the sucker picks δ2, then we pick δ1

so g(δ1) = δ2. But now there is a complication. If the sucker’s δ2 is greater than or equal
to 1, there is no corresponding δ1. However, in this special case the condition d2(x, y) < δ2

is automatically true, so the sucker is claiming that any δ works for that particular ε. So
in that case we can pick any δ1 we like.

1.8a Let y ∈ Bε(x). Then the distance from y to x is smaller than ε and so the distance
from y on out to the boundary is ε− d(y, x), which is positive.

To show that Bε(x) is open, we must find an open ball about any y in this set which is
entirely inside Bε(x). Let this ball be Bδ(y) where δ = ε− d(y, x) > 0. If z is in this ball,
then d(z, y) < δ = (ε−d(y, x)) and so d(z, x) ≤ d(z, y)+d(y, x) < (ε−d(y, x))+d(y, x) = ε.
So z ∈ Bε(x).

1.8b I’m lazy and will give the answer without extensive reasons. Reading row by row,
the first set is not open because the point (1, 0) is on the right side boundary of the disk
rather than inside it, so all neighborhoods of this point contain points outside the disk.
The second example is a closed disk, and its boundary points do not have neighborhoods.
The third example is an open strip and in particular open. The fourth example, is an
open half plane, so open. The next example is a closed half plane, so not open. The final
example is a straight line, which is not open in R2. This would all be easier to see with
pictures.

1.8d Let Un =
(
− 1

n , 1 + 1
n

)
. As n increases, the lower end of the interval approaches 0 and

the upper end of the interval approaches 1. On the other hand, 0 and 1 belong to all of
these intervals. So the interection is [0, 1] . This set is closed, but not open.

2.2a Give M the discrete metric. We will show that this gives the right topology, and thus
that in this metric space every subset of M is open.

So let A ⊆ M be an arbitrary subset. To prove A open, we must show that for each
a ∈ A there is a positive ε such that Bε(a) ⊆ A. To prove this, choose ε = 1. Then if
b ∈ Bε(a), d(b, a) < 1, so by definition of the discrete metric d(b, a) = 0 and b = a. So
Bε = {a} ⊆ A.

2.2b Let a 6= b. Then ε = d(b, a) > 0. But then Bε/2(a) and Bε/2(b) are open balls about
a and b. These balls do not intersect, for if c were in both, then d(c, a) < ε

2 and d(c, b) < ε
2
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and so d(a, b) ≤ d(a, c) + d(c, b) < ε
2 + ε

2 = ε, contradicting the definition of ε.

2.2c If X had the concrete topology, then the nonempty open sets Bε/2(a) and Bε/2(b)
above would have to be X and thus would intersect.

Comment: We have seen that every metric space is a topological space. This example
shows that the converse is false; there are topological spaces which do not come from metric
spaces.

2.3a By direct definition, the empty set and the entire set are open. The intersection of
open sets is open because (−∞, x)∩ (−∞, y) = (−∞,min[x, y]). The union of open sets is
open because

∪(−∞, xα) = (−∞, sup(xα))

2.3b The empty set and N are open by definition. The intersection of (m,m + 1, . . .) and
(n, n + 1, . . .) is (max(m,n),max(m, n) + 1, . . .). The union of open sets is open, for if the
open set Uα starts at the integer nα, then there is a smallest nα since each of these integers
is positive, and the union of the open sets starts at this smallest number.

2.3c The entire space is open by definition. A set is open if whenever it contains a it
contains [a, b) for some b. This condition is certainly true of the empty set, since there is
nothing to test. If U and V are open and a is in their intersection, then [a, b) ⊆ U and
[a, c) ⊆ V for some b and c. Then [a,min(b, c)) is in the intersection.

The union of open sets is open, for if a is in the union and thus in some Uα, then b exists
so [a, b) ⊆ Uα and then [a, b) is in the entire union.

2.3e The first is not a topology, because the union of the open sets
(
−∞,− 1

n

]
is (−∞, 0),

which is not open using the definition of this problem.

The second is not a topology, for (0, 1) ∪ (2, 3) is not an interval and so not open by this
definition.

2.6b In the discrete topology, any set is open. A set is closed if its complement is open,
but every such complement is open, so every set is closed. In particular, every set is
simultaneously open and closed.

2.6c Finite unions of closed sets are closed. Since points are closed and since every subset
is finite, every subset is closed. So the complement of any set is closed, and thus any set is
open.

2.6d By definition, [s, t) is open. To prove that this set is also closed, we show that its
complement is open. The complement is (−∞, s)∪ [t,∞). The first is open for is a is in this
set, then so is [a, s). The second is open because is a is in the set, then so is [t, a+1).
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