Assignment 1; Due Friday, September 30

1.2: The triangle inequality must hold for every choice of a, b, and c. For instance, it must
hold if a = b, so

d(a,b) +d(a,c) > d(b,c)
becomes

d(b,b) +d(b,c) > d(b,c)
Now d(b,b) = 0 by axiom one, so this gives d(b,c) > d(b, c), which is obvious. You cannot
win every time.

The remaining special cases give something interesting. Suppose we set b equal to ¢. Then
the triangle inequality becomes

d(a,c) +d(a,c) > d(c,c)

Since d(c,c) = 0, this gives 2d(a,c) > 0 and so d(a,c) > 0. Since a and c¢ are arbitrary, we
have proved that the distance between any two points is > 0, as required.

Finally set a = c¢. The triangle inequality becomes
d(e,b) + d(c, ) > d(b,c)

Since d(c,c) = 0, we have d(c,b) > d(b,c). This holds for any b and ¢, so interchanging b
and c gives t d(b,c) > d(c,b) and thus d(b, c) = d(c,b) as required.

1.3a: Let d(z,y) = ||z —y||. Then d(z,z) = (3} (z; — :1:1-)2)1/2 = 0, as required. Conversely,
if d(z,y) = 0, then (3 (z; — yi)z)l/2 = 0. Squaring, > (x; — 3;)2 = 0. Each term in this
expression is non-negative, so the expression can only be zero if each x; — y; = 0 and thus
only if x = y.

We must prove the triangle inequality. Since d(a,b) = d(b,a) by the first exercise, we can
write the triangle inequality in its more standard form d(z, z) < d(x,y) + d(y, z). Thus we
must prove that

|l = 2|[ < |z =yl + |ly — =]

But it is known that ||a +b|| < ||a|| +||b]|- Apply this when ¢ = x —y and b = y — 2z to get
|z = 2| < [lz = yll + [ly — =[]

Finally, the graduate students need to prove that ||a + b|| < ||a|| + ||b||. First we prove the
Schwarz inequality | < z,y > | < ||z]||||y]]-



Indeed

YL — —7r 15 Y
lyll> ™ [lyl[?
because the length of any vector is non-negative. Expanding

<ax,y>2
<x,x> - Lyz >0
[yl
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Since < x,x >= ||z||?, the Schwarz inequality follows by taking square roots.

< _ <zy> <m,y>> 0

and so

But then
lla+b||>=<a+bat+b>=<a,a>+2<a,b>+ <bb>

and by the Schwarz inequality this is less than or equal to
2
< a,a > +2|[al| |[bl[+ < b,b >= [|al|* + 2[|al| [|b]| + |[b]|* = (HaH + Hb||>

The required inequality follows by taking square roots.

1.3a continued: Similar arguments hold for d(z,y) = > |z; — yi|. This expression is
clearly zero if x = y. Conversely if it is zero, then each term of the sum must be zero, so
x; =y; for all 7, so z = y.

According to the triangle inequality for ordinary real numbers, |a + b| < |a| 4 |b]. Set
a=x; —y; and b = y; — z to obtain |x; — z| < |x; — yi| + |yi — 2i|. Summing

Yolwi—zl <> |wi—yil+ D lyi — il
so d(x,z) < d(x,y) + d(y, ).

1.3b: If d(z,y) = (z — y)?, the triangle inequality fails. For example, let = 0,y = 1,
z = 2. Then d(z,y) + d(y,z) = 12+ 12 = 2, but d(z, z) = 22 = 4, so it is not true that
d(z,2) < d(z,y) + d(y, 2).

1.3e: In the exercise set for next week, we will show that the open sets using d and the open
sets using d’ are the same. So the metric spaces using d and using d’ are homeomorphic.
Notice that every subset in the metric space using d’ is bounded because d’ < 1. So the
condition that a metric space is bounded is not topologically interesting; we can replace any
metric space by a homeomorphic one in which every subset is bounded.

Clearly d'(z,y) = 0 if and only if d(z,y) = 0, and so if and only if x = y.



Thus we need only prove the triangle inequality. We know that
d(z,y) + d(y, 2) = d(z, z)

and we would like to prove that

d(z,y) d(y, z) d(, 2)
1+d(z,y) * 1+d(y,2) z 1+d(z,2)

To simplify the argument, let d(x,y) = a,d(y,z) = b,d(x, z) = c. Thus we know
a+b>c

and we want to prove
a b c

>
1—|—a+1+b_1—|—c

But
a b a b a—+b

+ > + =
14a 1406~ 14a+db 14+a+b 14+a+b
because dividing by a larger number gives a small number. So it suffices to prove that
a + b > c implies

a+b S c
l+a+b " 1+c¢
_ _z

and this follows because the function f(z) = 1
tive is positive.

is an increasing function, since its deriva-
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