
Assignment 1; Due Friday, September 30

1.2: The triangle inequality must hold for every choice of a, b, and c. For instance, it must
hold if a = b, so

d(a, b) + d(a, c) ≥ d(b, c)

becomes
d(b, b) + d(b, c) ≥ d(b, c)

Now d(b, b) = 0 by axiom one, so this gives d(b, c) ≥ d(b, c), which is obvious. You cannot
win every time.

The remaining special cases give something interesting. Suppose we set b equal to c. Then
the triangle inequality becomes

d(a, c) + d(a, c) ≥ d(c, c)

Since d(c, c) = 0, this gives 2d(a, c) ≥ 0 and so d(a, c) ≥ 0. Since a and c are arbitrary, we
have proved that the distance between any two points is ≥ 0, as required.

Finally set a = c. The triangle inequality becomes

d(c, b) + d(c, c) ≥ d(b, c)

Since d(c, c) = 0, we have d(c, b) ≥ d(b, c). This holds for any b and c, so interchanging b
and c gives t d(b, c) ≥ d(c, b) and thus d(b, c) = d(c, b) as required.

1.3a: Let d(x, y) = ||x−y||. Then d(x, x) =
(∑

(xi − xi)2
)1/2 = 0, as required. Conversely,

if d(x, y) = 0, then
(∑

(xi − yi)2
)1/2 = 0. Squaring,

∑
(xi − yi)2 = 0. Each term in this

expression is non-negative, so the expression can only be zero if each xi − yi = 0 and thus
only if x = y.

We must prove the triangle inequality. Since d(a, b) = d(b, a) by the first exercise, we can
write the triangle inequality in its more standard form d(x, z) ≤ d(x, y) + d(y, z). Thus we
must prove that

||x− z|| ≤ ||x− y||+ ||y − z||

But it is known that ||a + b|| ≤ ||a||+ ||b||. Apply this when a = x− y and b = y− z to get
||x− z|| ≤ ||x− y||+ ||y − z||.

Finally, the graduate students need to prove that ||a + b|| ≤ ||a||+ ||b||. First we prove the
Schwarz inequality | < x, y > | ≤ ||x||||y||.
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Indeed 〈
x− < x, y >

||y||2
y, x− < x, y >

||y||2
y
〉
≥ 0

because the length of any vector is non-negative. Expanding〈
x, x

〉
− < x, y >2

||y||2
≥ 0

and so 〈
x, x

〉〈
y, y

〉
≥

〈
x, y

〉2

Since < x, x >= ||x||2, the Schwarz inequality follows by taking square roots.

But then
||a + b||2 =< a + b, a + b >=< a, a > +2 < a, b > + < b, b >

and by the Schwarz inequality this is less than or equal to

< a, a > +2||a|| ||b||+ < b, b >= ||a||2 + 2||a|| ||b||+ ||b||2 =
(
||a||+ ||b||

)2

The required inequality follows by taking square roots.

1.3a continued: Similar arguments hold for d(x, y) =
∑
|xi − yi|. This expression is

clearly zero if x = y. Conversely if it is zero, then each term of the sum must be zero, so
xi = yi for all i, so x = y.

According to the triangle inequality for ordinary real numbers, |a + b| ≤ |a| + |b|. Set
a = xi − yi and b = yi − zi to obtain |xi − zi| ≤ |xi − yi|+ |yi − zi|. Summing∑

|xi − zi| ≤
∑

|xi − yi|+
∑

|yi − zi|

so d(x, z) ≤ d(x, y) + d(y, z).

1.3b: If d(x, y) = (x − y)2, the triangle inequality fails. For example, let x = 0, y = 1,
z = 2. Then d(x, y) + d(y, z) = 12 + 12 = 2, but d(x, z) = 22 = 4, so it is not true that
d(x, z) ≤ d(x, y) + d(y, z).

1.3e: In the exercise set for next week, we will show that the open sets using d and the open
sets using d′ are the same. So the metric spaces using d and using d′ are homeomorphic.
Notice that every subset in the metric space using d′ is bounded because d′ < 1. So the
condition that a metric space is bounded is not topologically interesting; we can replace any
metric space by a homeomorphic one in which every subset is bounded.

Clearly d′(x, y) = 0 if and only if d(x, y) = 0, and so if and only if x = y.
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Thus we need only prove the triangle inequality. We know that

d(x, y) + d(y, z) ≥ d(x, z)

and we would like to prove that

d(x, y)
1 + d(x, y)

+
d(y, z)

1 + d(y, z)
≥ d(x, z)

1 + d(x, z)

To simplify the argument, let d(x, y) = a, d(y, z) = b, d(x, z) = c. Thus we know

a + b ≥ c

and we want to prove
a

1 + a
+

b

1 + b
≥ c

1 + c

But
a

1 + a
+

b

1 + b
≥ a

1 + a + b
+

b

1 + a + b
=

a + b

1 + a + b

because dividing by a larger number gives a small number. So it suffices to prove that
a + b ≥ c implies

a + b

1 + a + b
≥ c

1 + c

and this follows because the function f(x) = x
1+x is an increasing function, since its deriva-

tive is positive.
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