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1 Introduction

Before this class began, I asked several topologists what I should cover in the first term.
Everyone told me the same thing: go as far as the classification of compact surfaces. Having
done my duty, I feel free to talk about more general results and give details about one of
my favorite examples.

We classified all compact connected 2-dimensional manifolds. You may wonder about the
corresponding classification in other dimensions. It is fairly easy to prove that the only
compact connected 1-dimensional manifold is the circle S1; the book sketches a proof of
this and I have nothing to add.

In dimension greater than or equal to four, it has been proved that a complete classification
is impossible (although there are many interesting theorems about such manifolds). The
idea of the proof is interesting: for each finite presentation of a group by generators and re-
lations, one can construct a compact connected 4-manifold with that group as fundamental
group. Logicians have proved that the word problem for finitely presented groups cannot
be solved. That is, if I describe a group G by giving a finite number of generators and a
finite number of relations, and I describe a second group H similarly, it is not possible to
find an algorithm which will determine in all cases whether G and H are isomorphic. A
complete classification of 4-manifolds, however, would give such an algorithm.

As for the theory of compact connected three dimensional manifolds, this is a very ex-
citing time to be alive if you are interested in that theory. Three dimensional compact
manifolds have been studied intensively since the work of Poincare around 1900. In the
1970’s, Bill Thurston expanded this theory dramatically; roughly speaking, he showed
that every such manifold can be canonically cut into pieces of a special nature, and
then conjectured that each of these pieces can be given a particular kind of geometry.
The geometry dramatically decreases the possible topologies of that piece. See for ex-
ample, http://mathworld.wolfram.com/ThurstonsGeometrizationConjecture.html for more
details.
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Around 1980, a possible approach to proving the Thurston conjecture was developed by
R. S. Hamilton. Two faculty members at Oregon, Peng Lu and Jim Isenberg, are experts
in this theory. In 2002, G. Perelman announced a proof of the full Thurston conjectures
using Hamilton’s technique. Experts are verifying his proof now; the experts believe that
there is a good chance it is correct. Perelman’s proof will not complete the classification,
but it will push us astonishingly closer to that goal.

One special case of Perelman’s result would give all possible compact 3-manifolds with
finite fundamental group. In particular, it would show that S3 is the only compact 3-
manifold with trivial fundamental group, so that every closed loop can be deformed to
a point. Proving this special case is one of seven unsolved problems for which the Clay
Institute offers a prize of $1,000,000 for a solution.

One of the 3-manifolds with finite fundamental group is particularly interesting, and di-
rectly related to our polygonal construction of 2-manifolds. Start with a dodecahedron.
Glue opposite faces together. Notice that opposite faces do not quite match; consistently
rotate each face clockwise by the same amount so it matches its opposite before gluing.
Then points inside the dodecahedron and points in the interior of a face clearly have open
neighborhoods homeomorphic to open neighborhoods of R3. It is not immediately clear
that the same result holds for points on edges of the boundary or points on vertices of the
boundary. By analyzing carefully how edges and vertices are glued together, you can show
that the identification space is also locally Euclidean at these points. The resulting object
is called Poincare’s dodecahedral space.

In 2003, three physicists in France proposed that this space might model the actual universe.
Their paper is titled Dodecahedral space topology as an explanation for weak wide-angle
temperature correlations in the cosmic microwave background. Recent evidence makes the
proposal unlikely.
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2 Classification of Connected Manifolds in Dimension One

In dimension one, we can do even better and drop the compactness assumption. We obtain
the following theorem, which I will not prove here:

Theorem 1 Every connected second countable 1-manifold is homeomorphic to S1 or R

However, you will notice that there is an extra hypothesis. This extra hypothesis is often
used in advanced graduate courses, so let me discuss it briefly.

Definition 1 A topological space X is second countable if it is possible to find a countable
number of open sets {Ui} such that every open subset of X is a union of some of these sets.

Theorem 2

• The space Rn is second countable

• If A ⊂ Rn has the induced topology then A is second countable

• Every manifold with a countable coordinate cover is second countable

• Every compact manifold is second countable

Proof: The last three points follow immediately from the first one; I’ll let you fill in the
details.

For Rn, let the countable collection {Ui} of open sets be all open balls with rational radius
and rational center (that is, all coordinates of the center are rational). This collection is
easily seen to be countable. To prove that every open set is a union of such balls, it suffices
to prove that whenever q ∈ Bε(p) is an arbitrary open ball, we can find one of our Ui such
that q ∈ Ui ⊆ Bε(p). To do this, let d = ε−d(p, q). Find a point x with rational coordinates
such that d(x, q) < d

3 and find a rational r such that d
3 < r < d

2 . Let Ui be the disk of radius
r centered at x. The disk Ui contains q because d(q, x) < d

3 < r. The disk Ui is in Bε(p)
because whenever s ∈ Ui we have d(s, p) ≤ d(s, x) + d(x, q) + d(q, p) < r + d

3 + d(q, p) <
d
2 + d

3 + (ε− d) < ε.

3 The Long Line

In the rest of these notes I will be rigorous and prove everything. The second count-
ability hypothesis is necessary when classifying connected 1-manifolds because there is an
astonishing connected 1-dimensional manifold which looks locally like a line but is not
homeomorphic to R. Instead it is much, much longer. This manifold is called the long line
and we will construct it in these notes. The long line L has the following properties:
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• L is not second countable

• L is totally ordered; if r and s are points in L then the interval defined by (r, s) =
{ t ∈ L | r < t < s } is open and homeomorphic to (0, 1) in the ordinary line

• every open set in the long line is a union of such open intervals; however many open
sets are too large to be written as a countable union of open intervals

• the closed interval [r, s] = { t ∈ L | r ≤ t ≤ s } in the long line is homeomorphic to
[0, 1] in the ordinary line

The ordinary line R is homeomorphic to an open interval (−1, 1). But the long line is
not homeomorphic to any subset of Rn because it is not second countable. If you try to
examine the long line by selecting a piece of it, say [a, b], then this piece looks like an
ordinary interval but almost all of the line is outside this piece. Said poetically, it isn’t
possible to understand what is unusual in L by chopping off a piece because the piece you
chop off is always conventional and the unusually large stuff is outside that piece.

There is one other amazing feature of L. I claim that no mathematician has ever been
able to visualize it. The long line is too complicated for that. On the other hand, we
definitely know that it exists and by the end of these notes you will also be certain of its
existence.

4 Motivation for the Construction of L

In these notes I’ll actually construct the long ray; it is an analogue of the ordinary ray
[0,∞). This long ray will be ordered and have a first element which we can call zero. To
get the long line, glue two long rays together at their initial points.

To motivate the construction, let me construct an ordinary ray [0,∞) in an unusual way.
Start with the index set I = {1, 2, . . .} ordered in the conventional way. Attach a copy of
the interval [0, 1) to each of these elements as indicated in the picture below. Notice that
the union of these intervals looks the ray [0,∞) as also shown below.

We can make the topology on the union of these intervals more explicit. Call the union
of the intervals L. An element in L can be described by a pair (m, s) where m ∈ I and
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s ∈ [0, 1). Put a total ordering on this set by writing (m, s) < (n, t) if m < n or else if
m = n and s < t. Notice that L has an initial point (1, 0). We will call this point 0 for
simplicity.

Call a subset A of L an open interval in L if A has the form [0, b) or (a, b) in L. That is,
A is either all points greater than or equal to zero and less than b in the ordering of L, or
else all the points greater than a and less than b in this ordering. Define an open set to
be an arbitrary union of such open intervals in L. It is easy to see that this is a topology,
and easy to prove that L with this topology is homeomorphic to [0,∞) ⊂ R.

5 More Motivation

The previous construction still works if we replace I by a more complicated ordered set.
For example, let I consist of two copies of the positive integers and one additional integer,
ordered as indicated below:

I = {11, 21, 31, 41, . . . , 12, 22, 32, 42, . . . , 13}

If we attach a copy of [0, 1) to each element of this ordered set, we easily assign an order to
the union of the intervals and a topology to this union exactly as above. The new object
is still homeomorphic to [0,∞) as indicated by the picture below.

The key property of our index set I is given by

Definition 2 Let I be a set which is totally ordered. We say I is well-ordered if every
nonempty subset of I has a smallest element.

Remark: For example, the set I = {1, 2, 3, . . .} is well ordered. The set

I = {11, 21, 31, 41, . . . , 12, 22, 32, 42, . . . , 13}

is also well ordered. But the real numbers are not well ordered because, for instance, (1, 2)
has no smallest element.
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Remark: If a set is well-ordered, we can get a very concrete feeling about what the ordering
looks like, at least at the start. Suppose I is well ordered. Then I must have a smallest
element. Call this element 1. The set I − {1} has a smallest element. Call this element 2.
The set I−{1, 2} has a smallest element. Call this element 3. Continue. If our set is finite,
this process will eventually stop and our ordered set is order isomorphic to {1, 2, . . . , n}.
But if our set is infinite, the process will continue and we will wind up with a copy of the
positive integers.

However, these integers may not exhaust the set. In that case, the set I − {1, 2, 3, . . .} has
a smallest element. Call this element 12. Continue. At any moment we may exhaust the
set, but if not we will continue until we have

{1, 2, 3, . . . , 12, 22, 32, . . .}

This still may not exhaust the set. If not, we can obtain yet another sequence. If none of
these sequences exhaust the set, we will wind up with

{1, 2, 3, . . . , 12, 22, 33, . . . , 13, 23, 33, . . . , . . . }

where the set contains all symbols of the form mn.

However, this still may not exhaust the set. So after all of these elements, there is a
next one. Let us revise our naming scheme slightly. Call the first elements in the set
11, 21, 31, . . . . Then perhaps the next element after all of the above elements could be
called 111 to indicate that it comes after all single digit indices. Continue.

It is possible to push this naming scheme considerably further. But eventually the head
starts to swim and we lose track of elements. Unfortunately, this always happens before
we have listed uncountably many elements. Said another way, it is possible to write down
many different well-orderings on a countable set, but nobody has written down an explicit
well-ordering on an uncountable set.

Given this state of affairs, it is amazing that Cantor conjectured in his work on set the-
ory that every set can be given a well-ordering. However, Cantor could not prove this
result.

Let us suppose this result is true. Then we could produce a well-ordering on the set of
real numbers and so we could find an uncountable well-ordered index set I. But in that
case, we can obtain something even more remarkable. Let A be the set of all a ∈ I such
that the set of all elements smaller than a is uncountable. This set would have a smallest
element. If we throw away this smallest element and everything larger in I, we have a new
index set J which is still uncountable. But this index set has the remarkable property that
whenever we choose a particular element j ∈ J , then the set of all elements of J less than
or equal to j is countable. It is possible to prove that such an index set is unique up to
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order isomorphism, but we don’t need to know that. This J is called the first uncountable
ordinal number.

One summer I worked as a programmer in Norway. The head of the project had earned
his PhD at MIT working on Lisp, but he was a mathematics fan. He said to me “I believe
I can almost see the first uncountable ordinal number.” If so, he is better than most of the
rest of us.

The long ray is constructed exactly as above by starting with the index set J correspond-
ing to the first uncountable ordinal, attaching a copy of [0, 1) to each element of J , and
topologizing the union of these intervals as indicated earlier.

6 The Hilbert Problems

In 1900 Hilbert gave a famous lecture listing twenty-seven unsolved problems which he
predicted would be important for the future. Much of the history of mathematics in the
twentieth century consists of theories invented to solve these problems.

The very first problem was about set theory. Here is Hilbert’s complete description:

1. Cantor’s problem of the cardinal number of the continuum
Two systems, i. e, two assemblages of ordinary real numbers or points, are

said to be (according to Cantor) equivalent or of equal cardinal number, if they
can be brought into a relation to one another such that to every number of the
one assemblage corresponds one and only one definite number of the other. The
investigations of Cantor on such assemblages of points suggest a very plausible
theorem, which nevertheless, in spite of the most strenuous efforts, no one has
succeeded in proving. This is the theorem:

Every system of infinitely many real numbers, i. e., every assemblage of
numbers (or points), is either equivalent to the assemblage of natural integers, 1,
2, 3,... or to the assemblage of all real numbers and therefore to the continuum,
that is, to the points of a line; as regards equivalence there are, therefore, only
two assemblages of numbers, the countable assemblage and the continuum.

From this theorem it would follow at once that the continuum has the next
cardinal number beyond that of the countable assemblage; the proof of this
theorem would, therefore, form a new bridge between the countable assemblage
and the continuum.

Let me mention another very remarkable statement of Cantor’s which stands
in the closest connection with the theorem mentioned and which, perhaps, offers
the key to its proof. Any system of real numbers is said to be ordered, if for
every two numbers of the system it is determined which one is the earlier and
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which the later, and if at the same time this determination is of such a kind
that, if a is before b and b is before c, then a always comes before c. The natural
arrangement of numbers of a system is defined to be that in which the smaller
precedes the larger. But there are, as is easily seen infinitely many other ways
in which the numbers of a system may be arranged.

If we think of a definite arrangement of numbers and select from them a par-
ticular system of these numbers, a so-called partial system or assemblage, this
partial system will also prove to be ordered. Now Cantor considers a particular
kind of ordered assemblage which he designates as a well ordered assemblage
and which is characterized in this way, that not only in the assemblage itself
but also in every partial assemblage there exists a first number. The system
of integers 1, 2, 3, ... in their natural order is evidently a well ordered assem-
blage. On the other hand the system of all real numbers, i. e., the continuum
in its natural order, is evidently not well ordered. For, if we think of the points
of a segment of a straight line, with its initial point excluded, as our partial
assemblage, it will have no first element.

The question now arises whether the totality of all numbers may not be
arranged in another manner so that every partial assemblage may have a first
element, i. e., whether the continuum cannot be considered as a well ordered
assemblage – a question which Cantor thinks must be answered in the affirma-
tive. It appears to me most desirable to obtain a direct proof of this remarkable
statement of Cantor’s, perhaps by actually giving an arrangement of numbers
such that in every partial system a first number can be pointed out.

The resolution of the full problem is due to Godel (working around 1940) and Cohen
(working around 1970). It turns out that the cardinal number of the continuum may or
may not be the next infinite cardinal depending on the particular axioms of set theory
used. But the second part of Hilbert’s problem was resolved by Zermelo in 1904, in a
remarkable paper proving

Theorem 3 (Zermelo) Every set can be well-ordered.

This proof brought Zermelo immediate fame; when it was published he was a lecturer at
Gottingen but in December of 2005 he was promoted to a professorship there.

The proof also brought criticism. Zermelo’s proof used Cantor’s set theory, which many
mathematicians found hard to stomach. In 1908 Zermelo published a second proof. This
second proof used only elementary principles of set theory and soon afterward most math-
ematicians accepted the result. To be honest, the axiom of choice is used at the start of the
proof, and some mathematicians down to the current time prefer to avoid this axiom.
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7 Zermelo’s Second Proof

Proof 1: Let X be a set. Begin by simultaneously choosing for each nonempty subset
A ⊆ X an element ϕ(A) ∈ A. This can by done by the axiom of choice.

Motivation 1: We now motivate the proof. If X had been well-ordered to begin with, we
could have defined ϕ(A) to be the smallest element of A. We are going to turn this around
and define an ordering so ϕ(A) is given by this rule.

Let 11 be ϕ(X). This will be the first element of our ordering. Let 21 = ϕ(X − {x1}). In
general, suppose we have defined an ordering on a subset A ⊂ X. Let a = ϕ(X − A) and
define an ordering on A∪{a} by declaring that a is greater than every element of A.

Unfortunately, when we try to carry out this program we find that the ordering grows more
and more complicated and it is not at all obvious that we eventually reach every element
of X. For example, suppose X is not countable. Following the program above, we obtain
11, 21, 31, . . . . Imagine that this has been done for countably many terms. But these terms
will not exhaust X, so after they have all been chosen, we get a next element 12. After
that we get 22, etc. So we will have

11, 21, 31, . . . , 12, 22, 32, . . . , 13, 23, 33, . . . , 14, . . .

But this sequence is still countable, so after all of these elements, there is another. It is
virtually impossible to see into this construction far enough to view an ordered uncountable
subset. So this method of ordering X doesn’t really work.

Motivation 2: To get at an ordering of X, Zermelo noticed that if X were well-ordered
and ϕ were defined as above, we could talk about “final sequences” in the ordering; by
definition, these would be subsets of the form

F (a) = { x ∈ X | a ≤ x }

By convention ∅ also counts as a final sequence.

Suppose we knew the final sequences. Then we could easily reconstruct the ordering.
Indeed given a ∈ X construct F (a). Then a < b if and only if b ∈ F (a).

But how do we get our hands on the set of all final sequences? Let C be the set of all these
final sequences. Zermelo noticed that this set has the following properties:

1. ∅ ∈ C and X ∈ C

2. If Aα ∈ C for each α, then ∩Aα ∈ C

3. If A ∈ C and A′ = A− ϕ(A), then A′ ∈ C.
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The first property is obvious. Property 2) is obvious if ∩Aα is empty. Otherwise let a be
the smallest element of ∩Aα. Then a ∈ Aα for all indices. Since Aα is a final sequence,
F (a) ⊆ Aα. So F (a) ⊆ ∩Aα. This intersection cannot have an element smaller than a since
a was defined to be its smallest element, so F (a) = ∩Aα. Property 3 is also clear, for if
A = F (a) then a is the smallest element of A and the set A− {a} has a smallest element
b, so A− {a} = F (b).

Motivation 3: Zermelo’s ingenious idea is to work backward by defining the set C directly,
and then using it to recover the ordering on X. He defines C as follows:

Proof 2: Define C to be the smallest collection of subsets of X with properties 1), 2), and
3) listed above. This definition makes sense because there certainly is one such collection,
namely the set of all subsets of X, and the intersection of all collections satisfying these
properties is also a collection satisfying the properties. For example, ∅ and X would
belong to all such collections and thus to their intersection. If Aα are sets which belong
to all such collections and thus to their intersection, then ∩Aα is a set which belongs
to all such collections and thus to their intersection. Finally if A belongs to all such
collections and so to their intersection, then A′ belongs to all such collections and so to
their intersection.

Motivation 4: Let me stop and convince you that this technique has a chance of working.
Assume again that X already has a well ordering as discussed earlier. This well ordering
then starts

{11, 21, 31, . . . , 12, 22, 32, . . .}

Notice that the set F (11) is all of X; this set belongs to C by construction. The set F (21)
is obtained from X by removing its first element, which is ϕ(X) = 11. So F (21) = X ′.
This set is again in C by construction because whenever A ∈ C then A′ ∈ C. Continue. We
conclude that all of the sets F (n1) belong to C.

The intersection of these sets then belongs to C by construction; this set is clearly F (12).
In this way we gradually build up all of the F (a), although we will need to prove that they
all belong in a more convincing way.

However, how do we know that C only contains these F (a) and doesn’t contain other junk
subsets? Well, this is proved in the hardest step below, but the idea is rather simple.
Consider the set F (a). If we omit the first element, then there is a new first element and
we’ll symbolically call it F (a + 1). Now let us define a new candidate D for C as

D = {B ∈ C | B ⊆ F (a + 1)} ∪ {B ∈ C | F (a) ⊆ B}

We will prove that D satisfies all three properties required of C. Since C is the smallest
set which satisfies all three properties, D = C. If a 6∈ B, this tells us that B only contains
elements larger than a, although it doesn’t tell us that B cannot have gaps. But if a ∈ B, it
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says that the entire ray of larger elements is also in B. So B cannot have gaps further out.
We rather easily conclude that elements of C must be full rays rather than more general
sets with gaps.

OK, enough motivation; on to the proof!

Proof 3:

Lemma 1 If A ∈ C and B ∈ C, then either A ⊆ B or B ⊆ A.

Proof: This is the main step in the proof. To prove it, , define

D = { A ∈ C | whenever B ∈ C we have B ⊆ A or A ⊆ B }

The set D is not empty because X ∈ D. We are going to show that D has properties 1),
2), and 3). Since C is the smallest collection of subsets with these properties, it will follow
that C ⊆ D and thus every element A ∈ C has the required property.

Certainly the empty set and the entire set X are in D. Suppose {Aα} are sets in D. If B is
in C, then either Aα ⊆ B for some α and so ∩Aα ⊆ B, or else B ⊆ Aα for all α and then
B ⊆ ∩Aα. Finally, we must prove that A ∈ D implies A′ ∈ D.

To see this, fix A ∈ D. Then whenever B ∈ C we have B ⊆ A or A ⊆ B. Let

C̃ = { B ∈ C | B ⊆ A′ } ∪ { B ∈ C | A ⊆ B }

We will show that C̃ satisfies properties 1), 2), 3). If so, we have C ⊆ C̃ because C is the
smallest collection with these properties. But then whenever B ∈ C we have B ⊆ A′ or
A ⊆ B. Consequently B ⊆ A′ or A′ ⊆ B as required.

Certainly ∅ and X belong to C̃. Suppose Bα are elements in C̃. If some element of Bα ⊆ A′,
then ∩Bα ⊆ A′. Otherwise A ⊆ Bα for all α, so A ⊆ ∩Bα.

We must finally show that B ∈ C̃ implies B′ ∈ C̃. This is clear if B ⊆ A′ for then B′ ⊂ B ⊆
A′. It is also obvious if A = B for then B′ = A′ and so B′ ⊆ A′. Finally, suppose A ⊂ B.
We know that either B′ ⊆ A or A ⊆ B′. If A ⊆ B′ we are done. So the only remaining
case is B′ ⊆ A. Thus we simultaneously have B′ ⊆ A ⊂ B. But B′ = B − ϕ(B), so this
can only be true if A = B′.

Lemma 2 If A and B are sets in C, then either A ⊆ B′ or A = B or B ⊆ A′.

Proof: We know that A ⊆ B or B ⊆ A. Without loss of generality suppose A ⊆ B. We
know that either A ⊆ B′ or B′ ⊆ A, and if A ⊆ B′ we are done. So assume B′ ⊆ A and
thus B′ ⊆ A ⊆ B. This can only be true if A = B or A = B′.

Lemma 3 Let A be an arbitrary subset of X. Then there is a unique C ∈ C such that
A ⊆ C and ϕ(C) ∈ A.
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Remark: In the motivating example for the proof, A has a smallest element a and we can
take C = F (a).

Proof: Let C be the intersection of all subsets of C containing A and thus the smallest
element of C containing A. This element is in C by property 2). We must have ϕ(C) ∈ A
for otherwise C − ϕ(C) would be a smaller element of C containing A.

We still must prove that this element is unique. Suppose C1 and C2 both work. Then
C1 ⊆ C ′

2 or C2 ⊆ C ′
1 or C1 = C2. But the first two possibilities immediately lead to

contradictions. For example, if C1 ⊆ C ′
2 then A ⊆ C1 ⊆ C ′

2 contradicting the requirement
that ϕ(C2) ∈ A.

Lemma 4 For each a ∈ A, there is a unique subset C ∈ C such that ϕ(C) = a. Call this
set F (a). This assignment sets up a one-to-one correspondence between the set X and the
elements of C.

Proof: Apply the previous lemma to the set A = {a}. According to the lemma, C contains
a unique set C such that a ∈ C and a = ϕ(C). These conditions are redundant; we may as
well just say that C contains a unique set C such that a = ϕ(C).

Every nonempty set in C must have this form, for if C is such a set and a = ϕ(C) then
C = F (a).

Remark: Notice that we are beginning to recover rigorously the intuitive picture which
began the proof.

Lemma 5 Let a, b ∈ X, a 6= b. Then either a ∈ F (b) or b ∈ F (a) but not both. If b ∈ F (a)
we write a < b.

Proof: According to a previous lemma, there is a unique C ∈ C such that {a, b} ⊂ C and
ϕ(C) ∈ {a, b}. If ϕ(C) = a then C = F (a) and thus b ∈ F (a). Otherwise C = F (b) and so
a ∈ F (b). We cannot have both statements true, for then ϕ(C) would equal both a and b
and yet a 6= b.

Lemma 6 The relation a < b is a total ordering on X.

Proof: We know that exactly one of a < b, a = b, b < a is true. We must prove that if
a < b and b < c, then a < c. We know that there is a unique element C ∈ C such that
{a, b, c} ⊆ C and ϕ(C) ∈ {a, b, c}. If ϕ(C) = a, then C = R(a) and so c ∈ R(a) implies
a < c and we are done. If ϕ(C) = b, then C = R(b) and so a ∈ R(b) implies b < a
contradicting our assumption that a < b. If ϕ(C) = c then C = R(c) and so b ∈ R(c)
implies c < b contradicting our assumption that b < c.

Lemma 7 The total ordering on X is a well ordering.

Proof: Let A be a subset of X. By a previous lemma, there is a unique C ∈ C such that
A ⊆ C and ϕ(C) ∈ A. Let c = ϕ(C) so C = F (c). I claim that c is the smallest element of
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A. Indeed c ∈ A; if a ∈ A and a 6= c, then a ∈ F (c) and so c < a.

8 The First Uncountable Ordinal

Theorem 4 There is a totally ordered and well-ordered set I which is not countable, but
has the property that whenever a ∈ I then {i ∈ I | i ≤ a} is countable.

Proof: Give R a well-ordering. This set is uncountable. If it has the above property, we
are done. Otherwise let A be the set of all elements a of R such that the set of elements
less than a is not countable. This set has a smallest element, b. Remove b and all larger
elements from R. The remaining set I is not countable. But if i ∈ I, then i is smaller than
b and so the set of elements smaller than i is countable.

9 The Long Ray

Just to repeat our earlier construction, let I be a well-ordered index set which is not
countable but such that whenever a ∈ I then {i ∈ I | i ≤ a} is countable. Attach a copy of
[0, 1) to each index and call the union of these intervals L. Thus an element of L has the
form (i, s) where i ∈ I and s ∈ [0, 1). Define a total ordering on L by writing (i, s) < (j, t)
if i < j or i = j and s < t. Call a subset U ⊆ L open if every point p ∈ U is in an
open interval which is contained in U . By definition an open interval is a set of the form
[0, b) = {l ∈ L | 0 ≤ l < b} or a set of the form (a, b) = {l ∈ L | a < l < b}. Here 0 ∈ L is
the element (i, s) where i is the first element of I and s = 0 ∈ [0, 1).

It is easy to check that this is a topology. The resulting space is not second countable
because we easily find an uncountable disjoint family of open sets in L: namely, for each
index i consider the interval between (i, 0) and (i, 1). We must still prove that this space
is connected and that each point in the space (except the first point 0) has an open
neighborhood homeomorphic to an open neighborhood of R. We will actually prove more.
We will prove that if a and b are in L, the interval [a, b] in L is homeomorphic to [0, 1]. It
immediately follows that L is pathwise connected and locally Euclidean away from the first
element. Gluing two copies of this long ray together at the origin gives the long line.

10 The Long Line is Locally Euclidean

Theorem 5 Let a and b be points in the long ray. Then the set [a, b] of all points in the
long ray between a and b is homeomorphic to [0, 1].
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Theorem 6 Let a and b be points in the long ray. Then the set (a, b) of all points in the
long ray between a and b is homeomorphic to (0, 1).

Theorem 7 Let 0̃ be the smallest point in the long ray and let b be a point in the long ray
greater than 0̃. Then the set [0̃, b) of all points in the long ray between its first point and b
is homeomorphic to [0, 1), and the homeomorphism can be chosen to be an order preserving
map which sends the point 0̃ to 0 and the point b to 1.

Proof: Notice that theorem 5 implies that the long ray is pathwise connected and so
connected. Theorem 6 shows that at each point except its first point, the long ray is
locally-homeomorphic to R. It follows immediately that the long line, formed by gluing
two longs rays together at their first points, is a 1-manifold.

It suffices to prove theorem 7 because theorems 5 and 6 follow immediately. For instance,
if a < b, find a homeomorphism from [0̃, b) to [0, 1). Let this homeomorphism map a to
A ∈ [0, 1). Then it maps (a, b) to (A, 1), but (A, 1) is homeomorphic to (0, 1) by an obvious
stretching map.

We now prove theorem 7. We can assume that b has the form (i, 0) where i ∈ I is a given
index. Indeed if the set of all points in the long line from the first point in the line to
(i, 0) is homeomorphic to [0, 1), we can find a homeomorphic from [(i, 0), (i, t)) to [1, 2),
and then glue these homeomorphism together to get a homeomorphism from [0̃, (i, t)) to
[0, 1) ∪ [1, 2) = [0, 2). But this set is in turn homeomorphic to [0, 1).

Lemma 8 If i ∈ I is an index greater than the first index, then there is a homeomorphism
from [0̃, (i, 0)) to [0, 1) ⊂ R. This homeomorphism can be chosen to be order preserving.

Proof: If this lemma is false, let J be the set of all indices i ∈ I greater than the first
index for which such a homeomorphism does not exist. Since I is well-ordered, there is a
smallest element j0 ∈ J .

If j0 has an immediate predecessor in the index set, call this predecessor i0. Then the inter-
val [(i0, 0), (j0, 0) is just the set of all (i0, t) for t ∈ [0, 1), and this interval is homeomorphic
to [1, 2). Moreover, i0 < j0, so we can find a homeomorphism from [0̃, (i0, 0)) to [0, 1).
Gluing these two homeomorphisms together gives a homeomorphism from [0̃, (j0, 0)) to
[0, 2). This set is homeomorphic to [0, 1), so we obtain a homeomorphism from [0̃, (j0, 0))
to [0, 1), contradicting the definition of j0.

Thus j0 must be a limiting index with no immediate predecessor. For example, in the
ordering

{11, 21, 31, . . . , 12, 22, 32, . . . , 13, 23},

the indices 12 and 13 are limiting indices.

In this situation, I claim that we can find indices i0 < i1 < i2 < . . . which “converge to j0”
in the sense that the ik are all smaller than j0 and whenever i is an index smaller than j0
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then there is an in such that i < in. We can also insure that i0 is the first element of the
index set. Suppose all of this is possible for a moment.

Since j0 is the smallest index for which no appropriate homeomorphism exists, we can
find a homeomorphism from [0̃, (ik+1, 0)) to [0, 1). This homeomorphism maps the element
(ik, 0) to a point A ∈ [0, 1), so the homeomorphism maps [(ik, 0), (ik+1, 0)) to [A, 1).

Rescale these homeomorphisms so [0̃, (i1, 0)) maps to [0, 1/2) and [(i1, 0), (i2, 0)) maps to
[1/2, 3/4) and [(i2, 0), (i3, 0)) maps to [3/4, 7/8), etc. Glue these homeomorphisms together
to get a homeomorphism from ∪[(ik, 0), (ik+1, 0)) → [0, 1). Since every index i < j0 is
eventually i < in, this union is exactly [0̃, (j0, 0)), so this last interval in the long ray is
homeomorphic to [0, 1), contradicting the definition of j0.

We conclude that j0 cannot exist and thus that the lemma is true.

To finish the proof, we must show that the sequence i0 < i1 < i2 < . . . exists. In our situ-
ation, the set of all indices smaller than j0 is countable. List these indices as k1, k2, k3, . . .;
in this list, the elements are no longer ordered. Choose i0 to be the smallest element of the
index set. Choose i1 by starting at k1 and picking the first index larger than i0. Choose i2
by picking the first element of the k-list larger than i1. Etc. Such elements always exist
because j0 is a limit index which must be preceeded by infinitely many elements. Since the
k-list contains all indices smaller than j0, eventually in will be larger than any particular
index i in the list.

This completes the argument.
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