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1 Introduction

When I was a sophomore, my advanced calculus midterm was given in Memorial Hall,
Harvard’s grotesque memorial to students who died in the Civil War. The interior of the
building is a room shaped like a cathedral, with a stained glass window at the front. But
where the pews should be there are instead gigantic tables. College midterms are given in
that room, with a table reserved for each class. Over there — philosophy, and there —
German, and at our table — advanced calculus.

Our exam had four questions. At the end of the hour I realized that I was not going to
answer any question. The saving grace was that the other students had the same problem.
At the next class meeting, our professor David Widder said “You don’t know anything!
You don’t even know the series expansion of 1

1−x .”

Since then, I have known that series cold. Wake me from sleep and I can recite it.

1

1− x
= 1 + x+ x2 + x3 + . . .

I’m giving this lecture in thanks to David Widder.

2 Euler

Newton and Leibniz invented calculus in the seventeenth century, and their immediate
successors the Bernoulli’s worked at the start of the eighteenth century. But most of
that century was dominated by a single man, Leonard Euler. Euler laid the foundations
for mathematics of later centuries, and he is remembered with particular fondness as the
master of beautiful formulas. Today I’m going to show you one of his most spectacular
discoveries.
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3 Partitions

A partition of a number n is a representation of n as a sum of positive integers. Order
does not matter. For instance, there are 5 partitions of 4: 4, 3 + 1, 2 + 2, 2 + 1 + 1,
1 + 1 + 1 + 1.

Let pn be the number of partitions of n. Easily, p1 = 1, p2 = 2, p3 = 3, p4 = 5, p5 = 7.
Unfortunately, there is no formula for pn, and just writing the possibilities down and
counting is not a good idea because pn gets large fast: there are almost four trillion
partitions of 200.

Euler discovered, however, an indirect way to compute pn. I’ll describe his method, and
use it to show that p1000 = 24, 061, 467, 864, 032, 622, 473, 692, 149, 727, 991.

4 Euler’s First Formula

Euler’s technique proceeds in two steps. The first allows us to compute the pn, but slowly.
The second dramatically speeds up the process. Here is his first formula:

Theorem 1

(1 + x+ x2 + . . .)(1 + x2 + x4 + . . .)(1 + x3 + x6 + . . .)(. . .) =
∑

pn x
n

Proof: Recall the distributive law, which I like to call the “Chinese menu formula”: to
multiply (a+b)(c+d), choose one of a and b from column A, and one of c and d from column
B and multiply them, and then you add up all the possibilities, giving ac+ad+bc+bd.

This works for more complicated products as well. To compute the product

(1 + x+ x2 + . . .)(1 + x2 + x4 + . . .)(1 + x3 + x6 + . . .)(. . .)

we choose xk1 from column A, x2k2 from column B, x3k3 from column C, etc., and multiply
them to obtain xk1+2k2+3k3+...+sks , and then add up the possibilities to get∑

k1,k2,...

xk1+2k2+3k3+...+sks

The result is a sum of powers of x, ∑
k1,k2,...

xn

but the term xn will occur as many times as we can write n = k1 + 2k2 + 3k3 + . . .+ sks.
However, such an expression is just a fancy way to write n as a partition, namely as a sum
of k1 1’s, k2 2’s, k3 3’s, etc. So the final sum is

∑
pn x

n. QED.
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Euler’s first formula describes a way to organize a computation of pn. This method can
also be described in a manner that doesn’t use algebra. Notice that the term 1+x+x2+ . . .
in Euler’s product counts partitions containing only 1; each integer can be written as such
a sum in only one way. The product

(1 + x+ x2 + . . .)(1 + x2 + x4 + . . .)

counts partitions containing only 1’s and 2’s and thus equals

1 + x+ 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + . . .

because 0 and 1 have no extra partitions with 2’s, 2 and 3 have one additional partition
with 2’s, 4 and 5 have two additional partitions with 2’s, etc. (It is useful to think of
zero as having exactly one partition, the partition with no 1’s, no 2’s, no 3’s, etc. So we
sometimes write p0 = 1.)

In a similar way we can count partitions using 1’s, 2’s, and 3’s, and then partitions using
1’s, 2’s, 3’s, and 4’s, and so forth. Let’s consider one of these cases in detail. It turns out
that

(1 + x+ x2 + . . .)(1 + x2 + x4 + . . .)(1 + x3 + x6 + . . .)(1 + x4 + x8 + . . .) =

1+x+2x3+3x3+5x4+6x5+9x6+11x7+15x8+18x9+23x10+27x11+34x12+39x13+. . .

where the coefficient of xn counts partitions of n containing only 1’s, 2’s, 3’s, and 4’s.
Suppose we now want to count partitions of n containing only 1’s, 2’s, 3’s, 4’s, and 5’s.
Let’s concentrate on the case n = 13. From the above product we see that there are 39
such partitions with no 5’s. A partition containing exactly one 5 will contain 1’s, 2’s, 3’s
and 4’s adding up to 13 − 5 = 8, and the above product shows that there are 15 such
partitions. A partition of 13 containing exactly two 5’s will contain 1’s, 2’s, 3’s, and 4’s
adding up to 13− 5− 5 = 3 and there are 3 such partitions. There are no partitions of 13
with three or more 5’s. So the total number of partitions of 13 with 1’s, 2’s, 3’s, 4’s, and
5’s is 39 + 15 + 3 = 57.

Euler’s first formula is just a fancy way to summarize this technique. To count all partitions
of n, first count all partitions of all k <= n containing only 1’s, and then count all partitions
of all k <= n containing only 1’s and 2’s, and then count all partitions of all k <= n
containing only 1’s, 2’s, and 3’s, and continue in this way up to partitions containing only
1’s, 2’s, 3’s, . . ., n’s. If a0, a1, a2, . . . are counts of partitions with summands less than t,
then the b0, b1, b2, . . . counting partitions with summands less than or equal to t are given
by the formula

bk = ak + ak−t + ak−2t + . . .
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5 For Programmers

If you are a programmer, you’ll understand this much better by writing a program to do
the calculation. Almost any language will do, but you have to remember that the numbers
will get large and might overflow.. I’ll write a program in Mathematica because I have it
handy and it can deal with arbitrarily large integers.

F[limit_] :=

Block[{N, f, i, j, k, list1, list2},(* local variables *)

N = limit + 1;(* number of series coefficients *)

f[s_] := 1;

list1 = Array[f, N];(* series coefficients *)

list2 = Array[f, N]; (* fill initial list with 1’s *)

k = 2;

While[k <= limit,

Print[" "]; Print["Partitians using 1 through ", k];

For[i = 1, i <= N, i++,

sum = list1[[i]];

For[j = i - k, j > 0, j = j - k,

sum = sum + list1[[j]];];

list2[[i]] = sum;

];

For[i = 1, i <= N, i++, list1[[i]] = list2[[i]];];

For[i = 1, i <= N, i++, Print[i - 1, ": ", list2[[i]]]];

k++;

];

];

This program takes 50 seconds to compute the first fifty values of pn. In particular,
p50 = 204, 226.

However, Euler discovered a much faster method. It takes my computer a little over one
second to compute the first fifty values of pn with Euler’s second method. I’ll explain his
method in the next three sections.

6 Dealing with the Analysts

You old calculus teacher is probably whispering in your ear about convergence, rigor, and
all that. We’re going to tell the analysts to shut up by defining their objection away.
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Definition 1 Let
U = { 1 + a1x+ a2x

2 + . . . | ai ∈ Z }

Define a product on this set by writing

(1 + a1x+ a2x
2 + . . .)(1 + b1x+ b2x

2 + . . .) = 1 + c1x+ c2c
2 + . . .

where ck = ak + ak−1b1 + ak−2b2 + . . .+ bk.

Remark: Thus an element of U is a formal power series, and no convergence is required.
This multiplication is well-defined because we can compute any particular element of the
product in a finite amount of time. I need to warn you that U is my personal notation,
not something any mathematician would recognize. To me, U stands for “units.”

Theorem 2 The set U with this product is a group.

Proof: Only inverses are unclear. At first sight, it seems ridiculous to suppose that U is a
group because

1

1 + a1x+ a2x2 + a3x3 + . . .

isn’t itself a power series. But you have to remember what the axiom really says. It says
the series 1 + a1x+ a2x

2 + a3x
3 + . . . has an inverse

1 + b1x+ b2x
2 + b3x

3 + . . .

such that the product of the two series is the identity:

(1 + a1x+ a2x
2 + a3x

3 + . . .)(1 + b1x+ b2x
2 + b3x

3 + . . .) = 1

Computing this product, we want to find bi such that

1 + (a1 + b1)x+ (a2 + a1b1 + b2)x
2 + (a3 + a2b1 + a1b2 + b3) + . . . = 1

Setting each coefficient of xi to zero, we get a series of equations for the bi, which have a
unique inductive solution:

b1 = −a1
b2 = −a1b1 − a2

b3 = −a1b2 − a2b1 − a3
. . .

QED.

Remark: In particular, 1
1−x = 1+x+x2+. . ., as I learned from David Widder. Indeed

(1− x)(1 + x+ x2 + x3 + . . .) = (1− x) + (x− x2) + (x2 − x3) + (x3 − x4) + . . . = 1
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7 Euler’s Second Formula

Theorem 3
1

(1− x)(1− x2)(1− x3) . . .
=
∑

pn x
n

Proof: This follows immediately from Euler’s first formula by taking inverses of the series
on the left side.

8 The Pentagonal Number Theorem

After writing this formula, Euler multiplied out the denominator by hand, hoping to find
a pattern. One of my sources says he multiplied the first fifty terms, while another says he
multiplied as many as one hundred terms.. Amazingly, he found that

Theorem 4 (The Pentagonal Number Theorem)

(1− x)(1− x2)(1− x3) . . . = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + . . .

Notice that pairs of terms with minus signs alternate with pairs with positive signs. Notice
that the intervals between the exponents of pairs with the same sign increase by one, then
two, then three, etc. Notice that the intervals between exponents of pairs with opposite
signs increase by three, then five, then seven, etc.

The Pentagonal Number Theorem leads to a rapid method of computing the partition
numbers. Indeed rewriting theorem 4 using theorem 3 gives

(1− x− x2 + x5 + x7 − x12 − x15 + . . .)(1 + p1x+ p2x
2 + p3x

3 + . . .) = 1

Consequently the coefficient of xn in the product is zero, and so

pn − pn−1 − pn−2 + pn−5 + pn−7 − pn−12 − pn−15 + . . . = 0

Each of these expressions is a finite sum because p0 = 1 and pk = 0 for negative k by
definition. These formulas then allow us to compute the pn inductively starting with the
value p0 = 1. Thus p1 − p0 = 0, so p1 = 1. Then p2 − p1 − p0 = 0, so p2 = 2. Etc.

Using this revised formula, it takes my computer only a second to find the first 50 values of
pn and only 50 seconds to find the first 1000 values. And indeed, as promised the computer
gives p1000 = 24, 061467, 864, 032, 622, 473, 692, 149, 727, 991.

For the record, I’ll show the Mathematica program I used to do this computation. You can
easily rewrite this program in your favorite language, but keep in mind that the integers
computed by the program will be very large.
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FPentagonal[limit_] :=

Block[{N, f, P, Pinverse, k, index, n, i},(* local variables *)

N = limit + 1; (* number of series coefficients *)

f[s_] := 0;

P = Array[f, N];(* the p(n), initially filled with zeros *)

P[[1]] = 1; (* p(0) = p(1) = 1; arrays in Mathematica are one-based *)

P[[2]] = 1;

Pinverse = Array[f, N];(* inverse of p(n) series *)

k = 1;(* now fill in Pinverse using the Pentagonal Number Theorem *)

index = k (3 k - 1) / 2;

While[index <= N,

Pinverse[[index]] = (-1)^k;

index = k (3 k + 1) / 2;

If[ index <= N, Pinverse[[index]] = (-1)^k];

k = k + 1;

index = k (3 k - 1) / 2;

];

For[n = 2, n < N, n = n + 1,(* compute p(n) as inverse of Pinverse *)

P[[n ]] = 0;

For[i = 1, i < n, i = i + 1,

P[[n]] = P[[n]] - P[[n - i]] Pinverse[[i]]

];

P[[n]] = P[[n]] - Pinverse[[n]];

Print[n , ": ", P[[n]]];

]

]

I don’t know how many values of pn were computed by Euler. In 1918, MacMahon in
England computed the first 200 values of pn. This table was extended to 600 by Gupta in
1935, and to 1000 by Gupta, Gwyther and Miller in 1958. I don’t know if a computer was
used for this final table.

Why is the theorem called “the pentagonal number theorem”? The reason isn’t very
interesting mathematically, but here it is. Exponents in the pentagonal series with nonzero
coefficients have the form n = k(3k−1)

2 and n = k(3k+1)
2 . The numbers k(3k−1)

2 are called
“pentagonal numbers” because they count the number of dots in a pentagonal pattern, just
as the numbers n = k(k+1)

2 and n = k2 are “triangular numbers” and “square numbers”
because they count dots in triangular and square patterns.
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9 Euler and Proofs of the Pentagonal Number Theorem

Jordan Bell wrote an interesting paper on the history of the Pentagonal Number Theorem.
It can be found at http://arxiv.org/pdf/math/0510054v2.

The first mention of the theorem is in a letter from Daniel Bernoulli to Euler on January
28, 1741. Bernoulli is replying to a (lost) letter from Euler about the expansion, and he
writes “The other problem, to transform (1 − x)(1 − x2)(. . .) into 1 − x − x2 + x5 + . . .,
follows easily by induction, if one multiplied many factors. The remainder of the series
I do not see. This can be shown in a most pleasant investigation, together with tranquil
pastime and the endurance of pertinacious labor, all three of which I lack.”

Euler mentions the theorem many more times over the next few years, in letters we do
possess to Niklaus Bernoulli, Christian Goldbach, d’Alembert, and others, and in the first
publication of 1751. (This paper was written on April 6, 1741 and had no proof. Euler
wrote so many papers that the publishers fell dramatically behind; they were publishing
new papers many years after his death.) A typical entry, from a letter to Goldbach, reads
“If these factors (1− n)(1− n2)(1− n3) etc. are multiplied out onto infinity, the following
series 1 − n − n2 + n5 + n7− etc is produced. I have however not yet found a method by
which I could prove the identity of these two expressions. The Hr. Prof. Niklaus Bernoulli
has also been able to prove nothing beyond induction.” Here the word “induction” means
“by experiment” rather than “a proof by induction”.

Euler is not above a little trickery. Learning that d’Alembert wanted to leave mathematical
research to regain his health, he wrote him “If in your spare time you should wish to do
some research which does not require much effort, I will take the liberty to propose the
expression (1−x)(1−x2)(1−x3)(1−x4) etc., which upon expansion by multiplication gives
the series 1−x−x2+x5+x7− etc., which would seem very remarkable to me because of the
law which we easily discover within it, but I do not see how his law may be deduced without
induction of the proposed expression.” Eventually d’Alembert wrote back “regarding the
series of which you have spoken, it is very peculiar, but I only see induction to show it.
But no one is deeper and better versed on such matters than you.”
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Euler finally was able to prove the theorem on June 9, 1750, in a letter to Goldbach. His
proof is algebraic. The proof was first published in 1760, and Euler gives more details
about points which were vague in his letter to Goldbach. You can consult Bell’s paper if
you want to follow this original Euler proof.

10 Franklin’s Proof

In 1881, the American mathematician Franklin gave a proof which involves no algebra at
all. Hans Rademacher called this proof “the first major achievement of American mathe-
matics.” Here is Franklin’s proof:

Proof: The basic idea is that the series (1 − x)(1 − x2)(1 − x3)(. . .) can be interpreted
as a sophisticated count of a certain restricted type of partitions. Let us begin with the
following formula, which I’ve obtained inductively by multiplying out terms:

(1+x)(1+x2)(1+x3)(. . .) = 1+x+x2+2x3+2x4+3x5+4x6+5x7+6x8+8x9+10x10+12x11+. . .

Looking back at the proof of theorem 1, we see that the product on the left is equal to∑
k1,k2,...

xk1+2k2+3k3+...+sks

but this time each ki is either zero or one. This means that in the partition n = k1 + 2k2 +
3k3 + . . .+ sks, the number of 1’s is either zero or one, the number of 2’s is either zero or
one, the number of 3’s is either zero or one, etc. Thus the product is equal to∑

qnx
n

where qn counts partitions of n as a sum of distinct positive numbers. For example, the
coefficient of x7 is 5 because there are only five partitions of 7 with distinct factors, namely
7, 6 + 1, 5 + 2, 4 + 3, and 4 + 2 + 1.

We aren’t quite interested in this series, but instead in

(1− x)(1− x2)(1− x3)(. . .) =
∑

k1,k2,...

(−1)k1+k2+k3+...+ksxk1+2k2+3k3+...+sks

So this time when we count partitions with distinct summands, we count partitions with
an even number of terms positively, but partitions with an odd number of terms negatively.
The coefficient of xn is thus “the number of distinct partitions of n with an even number of
terms, minus the number of distinct partitions of n with an odd number of terms.”

According to the pentagonal number theorem, this product is

1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + . . .
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Notice in particular that the coefficient of xn is usually zero. Franklin concentrated on
that fact, and tried to understand why the number of distinct partitions of n with an even
number of terms is usually exactly the same as the number of distinct partitions of n with
an odd number of terms. And the explanation he gave is that you can pair up each even
partition with a corresponding odd partition. For example, there are 12 partitions of 11
into distinct summands, and we will see that the appropriate pairing is

10 + 1↔ 11

9 + 2↔ 8 + 2 + 1

8 + 3↔ 7 + 3 + 1

7 + 4↔ 6 + 4 + 1

6 + 5↔ 5 + 4 + 2

5 + 3 + 2 + 1↔ 6 + 3 + 2

How is this pairing defined?

Franklin’s trick is exposed in the next picture. You could finish the proof without reading
further by thinking carefully about this picture. Draw a distinct partition as a pattern of
rows of dots; for instance the picture below corresponds to 20 = 7 + 6 + 4 + 3. Concentrate
on the last row, and on the largest diagonal that can be drawn at the right. The idea is
to move the bottom row up to form a new diagonal, or move the diagonal down to form a
new row. In the picture below, the bottom row cannot be moved up because that would
leave a hanging dot, but the diagonal can be moved down. Notice that moving converts a
partition with an even number of terms into a partition with an odd number of terms. In
the case illustrated below, it converts 7 + 6 + 4 + 3 into 6 + 5 + 4 + 3 + 2.

What is the rule for moving? Say the bottom row has a dots and the diagonal on the right
has b dots. If we want to move the bottom row up without getting a hanging dot, we need
a ≤ b. If we want to move the diagonal down and get a shorter final row, we need a > b.
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So when a ≤ b, we can move up, but not down, and when a > b we can move down but
not up.

The one legal move for a given diagram produces a new diagram. This diagram also has
a unique legal move. But certainly one thing we can do is to reverse the original move
and return to the original diagram, so that must be the unique legal move. It follows that
our diagrams are paired: the legal move for each leads to the other. Since the number
of rows increases or decreases by one, even partitions are paired with odd partitions, as
promised.

The only problem with this argument is that it seems to show that all of the coefficients
of (1− x)(1− x2)(1− x3)(. . .) are zero. The truth is that there are “edge cases” where the
analysis just given doesn’t quite work. These edge cases occur when the row at the bottom
and the diagonal strip on the right side share a common corner, as below.

Let us again say that the bottom row has a dots and the diagonal on the right has b dots.
If we want to move the bottom row up, then the diagonal length will decrease by one, and
so to avoid a hanging dot we need a ≤ (b− 1). If we want to move the diagonal down and
get a shorter final row, then the existing final row length before the motion will decrease
by one and we need (a− 1) > b. So there are two troublesome cases where neither motion
is legal: a = b and a = b + 1. Below are two samples, the first with a = b and the second
with a = b + 1. Notice that neither motion is legal for these diagrams. The left diagram
corresponds to an odd partition of 12 and the right corresponds to an odd partition of 15.
Note that the pentagonal number theorem expansion contains −x12 − x15.
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The first list below contains diagrams with a = b. The second list contains diagrams with
a = b + 1. Each list extends infinitely to the right. The number of dots in diagrams on
the first list is 1, 5, 12, 22, . . . and the number of dots in diagrams on the second list is 2,
7, 15, 26, . . . and these are exactly the exponents which occur in the pentagonal number
expansion! The reader can check that the numbers from the first list equal k(3k−1)2 and the

numbers from the second list equal k(3k+1)
2 . QED.

11 Ramanujan

Do you know the story of Ramanujan?

The following information comes from G. H. Hardy’s book on Ramanujan. Ramanujan
was born in India, where his father was a clerk in a cloth-merchant’s office; all of his
relatives were very poor. His mathematical abilities became apparent in school, and by
the time he was thirteen he was recognized as a quite abnormal boy. In 1903 he passed
the Matriculation Examination of the University of Madras and won the Subrahmanyam
scholaship. But then he concentrated so heavily on mathematics that he failed to secure
promotion to the senior class and his scholarship was discontinued. In 1906 he appeared
as a private student for the F. A. examination, but failed. In 1909 he married, but had
no definite occupation until 1912, when he became a clerk in he Port Trust in Madras,
at a salary of thirty pounds a year. In 1913 he wrote to G. H. Hardy in Cambridge,
listing around one hundred formulas he had discovered, with no proofs. I have listed some
of those formulas at the end of these notes. Ramanujan had written to other English
mathematicians earlier that year, making no impression. But Hardy, one of the greatest
English mathematicians at that time, recognized his genius, and brought him to England.
Here are some of Hardy’s comments about the formulas in his letter:
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I thought that, as an expert in definite integrals, I could prove 1.6, and
did so, though with a good deal more trouble than I had expected. The series
formulas 1.1 - 1.4 I found much more intriguing, and it soon became obvious
that Ramanujan must possess much more general theorems and was keeping a
good deal up his sleeve. The second is a formula well known in the theory of
Legendre series, but the others are much harder than they look.

The formulae 1.10 - 1.11 are on a different level and obviously both difficult
and deep. Indeed 1.10 - 1.11 defeated me completely; I had never seen anything
in the least like them. A single look at them is enough to show that they could
only be written down by a mathematician of the highest class. They must be
true because, if they were not true, no one would have had the imagination to
invent them.

The last formulae stands apart because it is not right and shows Ramanu-
jan’s limitations, but that does not prevent it from being additional evidence
of his extraordinary powers. The function in 1.14 is a genuine approximation
to the coefficient, thought not at all so close as Ramanujan imagined, and Ra-
manujan’s false statement is one of the most fruitful he ever made, since it
ended by leading us to all our joint work on partitions.

Ramanujan is often considered the greatest inventor of beautiful formulas since Euler. But
his mathematical training was spotty. So Hardy was faced with the task of filling the
mathematical gaps in his education without destroying his natural gifts. Ramanujan died
young, in 1920.

Ramanujan was in England when Macmahon computed the first 200 values of pn using
Euler’s formula. Looking at this table, Ramanujan noticed some remarkable patterns. I’ve
printed the table of the first 200 values on the last pages. Before reading further, look at
the table and see if you can find obvious patterns.

(As a hint, look at cases when pn is divisible by 5. There are some distracting values when
a term not part of the pattern is divisible by 5, and you’ll have to ignore the distractions. If
you find a pattern, congratulations, but keep looking. Ramanujan found two other patterns
using other divisors, plus more subtle patterns I won’t discuss.)

Notice that p4 = 5. Ramanujan noticed that every fifth entry in the table after that was
also divisible by 5. In modern notation

p5m+4 ≡ 0 (mod 5)

Notice that p5 = 7. Ramanujan also noticed that every seventh entry after that was also
divisible by 7. Similarly p6 = 11 and Ramanujan noticed that every eleventh entry after
that was also divisible by 11. So
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p7m+5 ≡ 0 (mod 7)

p11m+6 ≡ 0 (mod 11)

But don’t get your hopes up. The generalization to 13 fails.

Eventually Ramanujan managed to prove all three observations. The proofs are not easy,
and the result for 11 is decidedly harder than the results for 5 and 7. There are now many
different proofs, some involving remarkable variations on the pentagonal number theorem.
For example, one proof of the mod 5 congruence depends on proving the following amazing
formula asserted (but not proved) by Ramanujan:

Theorem 5 Let

f(x) = (1− x)(1− x2)(1− x3)(. . .) = 1− x− x2 + x5 + x7 − x12 − x15 + . . .

Then ∑
p5n+4 x

n = 5
f(x5)5

f(x)6

Remark: Notice that f(x) ∈ U and f(x5) ∈ U . So the quotient on the right is a formal series
with integer coefficients. After multiplying by 5, all coefficients are divisible by 5.

Remark: Similarly the mod 7 congruence follows from the following Ramanujan for-
mula:

∑
p7n+5 x

n = 7
f(x7)3

f(x)4
+ 49x

f(x7)7

f(x)8

12 The Size of pn

Hardy and Ramanujan also provided an estimate for the size of pn. The argument, devel-
oped further by Hardy, Littlewood, and Rademacher, uses what is called the circle method
and involves relating the pentagonal number series with the theory of modular forms.

Theorem 6

pn ∼
1

4n
√

3
e
π
√

2n
3

Examples: When n = 200, this approximation is 4.10025 × 1012, compared to the exact
value of 3.97299×1012. When n = 1000, the approximation is 2.4402×1031 and the actual
value is 2.4061×1031. When n = 10000, the approximation is 3.6328×10106, far larger than
the expected number of atoms in the universe, and p10000 is thus a number with around
106 digits.
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13 Freeman Dyson

In 1944, an Oxford undergraduate named Freeman Dyson wrote a paper on Ramanu-
jan’s congruences. Dyson switched to physics in graduate school and became one of the
most important physicists of the twentieth century. A few weeks ago, he gave a talk in
Eugene.

Dyson’s undergraduate paper sketched an alternate proof of Ramanujan’s mod 5 result,
although he couldn’t prove the central observation he made (it was proved ten years later
by Atkin and Swinnerton-Dyer.) Suppose we have a partition λ1 + λ2 + . . . + λk with
λ1 ≤ λ2 ≤ . . . ≤ λ5. Dyson defined the rank of the partition to be λk − k. For a fixed n,
Dyson divided all partitions of 5n + 4 into five classes, namely those with rank divisible
by 5, those with rank congruent to one modulo 5, those congruent to two modulo 5, ...,
and those congruent to four modulo five. Purely empiracally, Dyson noticed that these
five classes always have the same number of elements, and consequently the total number
of partitions of 5n + 4 must be divisible by five. The same empirical method worked for
Ramanujan’s mod 7 result.

But curiously, Dyson noticed that his method did not work in the mod 11 case. So he con-
jectured in his paper that there was a better function from partitions to integers, replacing
the rank, and working for all of 5, 7, and 11. Dyson named this unknown function the
crank, and he wrote “Whatever the final verdict of posterity may be, I believe the ‘crank’
is unique among arithmetical functions in having been named before it was discovered.
May it be preserved from the ignominious fate of the planet Vulcan!” Forty years later,
Andrews and Garvan discovered just such a crank function.

14 Ken Ono

John Leahy is the Oregon mathematician who represented the University of Oregon at Bend
when Cascade College was founded. John and George Andrews (one of the discoverers of
the crank) were fellow graduate students at the University of Pennsylvania in the 1960’s.
Andrews later became one of the world’s experts on Ramanujan. When Andrews visited
John in Eugene, he knew fascinating stories about Ramanujan and his notebooks.

I met John at Penn, and we knew a faculty member there named Takashi Ono. Ono’s son,
Ken Ono, also became a mathematician; I am unhappy to report that Ken hadn’t been born
when John and I were in Philadelphia. Ken left college early to race bicycles as a member
of the Pepsi-Miyata cycling team, and to become a graduate student at Chicago.

For most of the twentieth century, mathematicians working on partitions tried to under-
stand the special significance of the primes 5, 7, and 11. Thus it came as an enormous
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surprise when Ken Ono proved in 2001 that there are similar congruence relations for every
prime greater than 3. Indeed, in 2006, Ono proved that whenever N is an integer whose
prime factorization does not contain 2 or 3, then there are integers a and b such that

pam+b ≡ 0 (mod N)

for all m. This is by far the greatest advance in the theory since Ramanujan.

The status of the primes 2 and 3 is still unknown. In particular, nobody knows how to
predict when pn is even, or even how to predict an infinite number of cases when pn is
even.

Why didn’t Ramanujan discover these additional congruences, and why weren’t they found
in the century after Ramanujan? You’ll understand as soon as I show your the next simplest
cases, for the primes 13 and 17:

p17303m+237 ≡ 0 (mod 13)

p48037937m+1122838 ≡ 0 (mod 17)

It is just possible that you’d notice that 13 divides p237 from the tables. But what are the
chances that you’d notice that it also divides p237+17303 = p17440? And if you noticed that,
what are the changes that you’d leap to the conclusion that after another 17303 steps, it
would divide p17540+17303, and so on forever?
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Formulas from Ramanujan’s Letter to Hardy

1.1

(1− 3!

(1!2!)3
x2 +

6!

(2!4!)3
x4 − . . . =

(
1 +

x

(1!)3
+

x2

(2!)3
+ . . .

)(
1− x

(1!)3
+

x2

(2!)3
− . . .

)

1.2

1− 5

(
1

2

)3

+ 9

(
1 · 3
2 · 4

)3

− 13

(
1 · 3 · 5
2 · 4 · 6

)3

+ . . . =
2

π

1.3

1 + 9

(
1

4

)4

+ 17

(
1 · 5
4 · 8

)4

+ 25

(
1 · 5 · 9
4 · 8 · 12

)4

+ . . . =
2

3
2

π
1
2

{
Γ
(
3
4

)}2
1.4

1− 5

(
1

2

)5

+ 9

(
1 · 3
2 · 4

)5

− 13

(
1 · 3 · 5
2 · 4 · 6

)5

+ . . . =
2

{Γ
(
3
4

)
}4

1.6 ∫ ∞
0

dx

(1 + x2)(1 + r2x2)(1 + r4x2 + . . .
=

π

2 (1 + r + r3 + r6 + r10 + . . .)

1.10

If u =
x

1+

x5

1+

x10

1+

x15

1 + . . .
, v =

x

1+

x2

1+

x3

1+

x4

1 + . . .
, then v5 = u

1− 2u+ 4u2 − 3u3 + u4

1 + 3u+ 4u2 + 2u3 + u4

1.11

1

1+

e−2π

1+

e−4π

1 + . . .
=


√√√√(5 +

√
5

2

)
−
√

5 + 1

2

 e
2
5
π

1.14

The coefficient of xn in (1− 2x+ 2x4 − 2x9 + . . .)−1 is the integer nearest to

1

4n

(
coshπ

√
n− sinhπ

√
n

π
√
n

)
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Partition Table

1: 1

2: 2

3: 3

4: 5

5: 7

6: 11

7: 15

8: 22

9: 30

10: 42

11: 56

12: 77

13: 101

14: 135

15: 176

16: 231

17: 297

18: 385

19: 490

20: 627

21: 792

22: 1002

23: 1255

24: 1575

25: 1958

26: 2436

27: 3010

28: 3718

29: 4565

30: 5604

31: 6842

32: 8349

33: 10143

34: 12310

35: 14883

36: 17977

37: 21637

38: 26015

39: 31185

40: 37338

41: 44583

42: 53174

43: 63261

44: 75175

45: 89134

46: 105558

47: 124754

48: 147273

49: 173525

50: 204226

51: 239943

52: 281589

53: 329931

54: 386155

55: 451276

56: 526823

57: 614154

58: 715220

59: 831820

60: 966467

61: 1121505

62: 1300156

63: 1505499

64: 1741630

65: 2012558

66: 2323520

67: 2679689

68: 3087735

69: 3554345

70: 4087968

71: 4697205

72: 5392783

73: 6185689

74: 7089500

75: 8118264

76: 9289091

77: 10619863

78: 12132164

79: 13848650

80: 15796476

81: 18004327

82: 20506255

83: 23338469

84: 26543660

85: 30167357

86: 34262962

87: 38887673

88: 44108109

89: 49995925

90: 56634173

91: 64112359

92: 72533807

93: 82010177

94: 92669720

95: 104651419

96: 118114304

97: 133230930

98: 150198136

99: 169229875

100: 190569292
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101: 214481126

102: 241265379

103: 271248950

104: 304801365

105: 342325709

106: 384276336

107: 431149389

108: 483502844

109: 541946240

110: 607163746

111: 679903203

112: 761002156

113: 851376628

114: 952050665

115: 1064144451

116: 1188908248

117: 1327710076

118: 1482074143

119: 1653668665

120: 1844349560

121: 2056148051

122: 2291320912

123: 2552338241

124: 2841940500

125: 3163127352

126: 3519222692

127: 3913864295

128: 4351078600

129: 4835271870

130: 5371315400

131: 5964539504

132: 6620830889

133: 7346629512

134: 8149040695

135: 9035836076

136: 10015581680

137: 11097645016

138: 12292341831

139: 13610949895

140: 15065878135

141: 16670689208

142: 18440293320

143: 20390982757

144: 22540654445

145: 24908858009

146: 27517052599

147: 30388671978

148: 33549419497

149: 37027355200

150: 40853235313

151: 45060624582

152: 49686288421

153: 54770336324

154: 60356673280

155: 66493182097

156: 73232243759

157: 80630964769

158: 88751778802

159: 97662728555

160: 107438159466

161: 118159068427

162: 129913904637

163: 142798995930

164: 156919475295

165: 172389800255

166: 189334822579

167: 207890420102

168: 228204732751

169: 250438925115

170: 274768617130

171: 301384802048

172: 330495499613

173: 362326859895

174: 397125074750

175: 435157697830

176: 476715857290

177: 522115831195

178: 571701605655

179: 625846753120

180: 684957390936

181: 749474411781

182: 819876908323

183: 896684817527

184: 980462880430

185: 1071823774337

186: 1171432692373

187: 1280011042268

188: 1398341745571

189: 1527273599625

190: 1667727404093

191: 1820701100652

192: 1987276856363

193: 2168627105469

194: 2366022741845

195: 2580840212973

196: 2814570987591

197: 3068829878530

198: 3345365983698

199: 3646072432125

200: 3972999029388
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