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1 The Cayley-Dickson Construction

This material is taken from the paper The Octonions by John C. Baez, published in the
Bulletin of the AMS in 2002 and also available on the web at http://math.ucr.edu/home/
baez/octonions/

Our goal is describe an 8-dimensional algebra satisfying the conditions of Hurwitz’s theo-
rem. This algebra was discovered by a friend of Hamilton’s, John T. Graves, on December
26th of 1843. It was independently discovered by Cayley. The algebra is known as the
octonions or Cayley numbers.

We’ll describe a later treatment of this algebra by Dickson.

An admissible structure on Rn is a bilinear product with unit on Rn and a conjugation
operation v → v on Rn, such that

• If u is the unit, u = u

• We have a = a for all a, and ab = b a for all a and b

• For any a, a + a is a multiple of the unit

• For any a, aa is ||a||2 times the unit.

Suppose we have a bilinear product on Rn. Suppose this product has a unit, and identify
the real numbers with multiples of this unit. Suppose that we have a conjugation operation
v → v on Rn, satisfying a = a and vw = w v. Suppose that a + a is a real multiple of the
unit, and vv = ||v||2 times the unit.

We identify the real numbers with the scalar multiples of the unit.

We’ll describe a construction called the Cayley-Dickson construction, which produces a
similar algebra on R2n. By definition, an element of this new algebra is a pair (a, b) with
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a, b ∈ Rn. Define
(a, b)(c, d) = (ac− db, ad + cb)

(a, b) = (a,−b)

We now must show that this new algebra has all the properties required of the original
algebra. If 1 is the unit of the original algebra, (1, 0) is the unit of the new algebra
because

(1, 0)(a, b) = (a, 1b) = (a, b) = (a, b)(1, 0) = (a, b)

This product and conjugation have all the required properties. Indeed

(1, 0) = (1,−0) = (1, 0)

and
(a, b) = (a,−b) = (a, b) = (a, b)

Note also that

(a, b)(c, d) = (ac− db, ad + cb) = (ac− db,−ad− cb) = (c a− b d,−ad− cb)

and
(c, d) (a, b) = (c,−d)(a,−b) = (c a− bd,−cb− ad)

We have (a, b) + (a, b) = (a, b) + (a,−b) = (a + a, 0), which is a multiple of (1, 0).

Finally, notice that

(a, b)(a, b) = (a, b)(a,−b) = (aa + bb,−ab + ab) = (aa + bb, 0) = ||a||2 + ||b||2 = ||(a, b)||2

Examples

We can start the construction with the usual product and trivial conjugation on R. Then
we get an algebra structure on R2 satisfying

(a, b)(c, d) = (ac− db, ad + cb) = (ac− bd, ad + bc)

(a, b) = (a,−b) = (a,−b)

Clearly this gives the complex numbers.

Next apply the Cayley-Dickson construction to the complex numbers. We claim that we get
the quaternions. To see this, notice that q = a+bi+cj−dk = (a+bi)+ j(c+di) = A+ jB
where A and B are complex. Also notice that for complex A, jA = Aj. So

(A + jB)(C + jD) = AC + jBC + AjD + jBjD = AC + jBC + jAD + j2BD
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Thus
(A + jB)(C + jD) = (AC −BD) + j(AD + BC)

and since complex numbers commute, this agrees with the formula

(a, b)(c, d) = (ac− db, ad + cb)

Moreover
(A + jB) = A + B(−j) = A− jB

agrees with the general formula
(a, b) = (a,−b)

Applying the construction once more gives an algebra structure on R8. This structure is
not associative, so great care is required when working with it. However, we will show
that ||o1o2||2 = ||o1||2||o2||2. It follows that it satisfies the conditions of Hurwitz’s theo-
rem, that non-zero elements have multiplicative inverses, and that the algebra has no zero
divisors.

All the remaining Cayley-Dickson algebras have zero divisors.

2 The Octonions

By definition, the octonions or Cayley numbers are the result of applying the Cayley-
Dickson construction to the quaternions.

We want to prove that the octonions satisfy the Hurwitz condition. To see this, let a and
b be octonions. We want to prove that ||ab||2 = ||a||2||b||2. A naive proof would proceed
as follows:

||ab||2 = (ab)(ab) = (ab)(b a) = a(bb)a

Unfortunately, this last step uses associativity, which isn’t always true in the octonions. But
ignoring this, we could note that bb = ||b||2 is real and thus commutes with all octonions,
so this is ||b||2aa = ||b||2||a||2.

Consequently, we try to prove this from first principles. Consider two octonions (a, b) and
(c, d). We form

(a, b)(c, d) = (ac− db, ad + cb)

Then
(a, b)(c, d)(a, b)(c, d) = (ac− db, ad + cb)(c a− bd,−ad− cb)

The second component of this product is

(c a− bd)(−ad− cb) + (c a− bd)(ad + cb) = 0
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The first component of the product is

(ac− db)(c a− bd)− (−ad− cb)(da + bc)

This product has eight terms. Four are

||a||2||c||2 + ||b||2||d||2 + ||a||2||d||2 + ||b|2|||d||2 = (||a||2 + ||b||2)(||c||2 + ||d||2)

This is just
||(a, b)||2||(c, d)||2

exactly the result we desire The final four terms are

−acbd− db c a + adbc + cbda

This can be rewritten
−2Re(acbd) + 2Re(cbda)

and consequently equals a purely real quaternion. On the other hand, it is the real part of
the difference

(cbd)a− a(cbd)

But the real part of a product of two quaternions (r, v)(s, w) is rs− v ·w and this does not
depend on the order of the terms. So our real part is zero. QED.
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