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Preface

The beginnings of algebra, and the discovery of the quadratic formula, are hidden in the
mists of time. At first, algebra was written entirely with words: “the thing plus one equals
two.” This “rhetorical algebra” was created in Babylonia and lasted until the early fifteenth
century. Diophantus may have been the first person to use symbols for some of these words,
in a book named Arithmetica written around 200 AD. Algebra was extensively developed
by Arabic mathematicians starting around 700 AD, eventually giving the subject its name.
The modern symbolic approach begins to appear in full dress in the works of Francois Viete
toward the end of the 1500’s and Rene Descartes’ La Geometrie of 1637.

Signs of quadratic equations appear early in this long development, but it is difficult to pick
a particular moment that the quadratic formula appears in the precise form we use today.
Perhaps it is better to say that it has been a part of the subject for many centuries.

Cubic equations appear very early in this history, even in Babylonian times. By the
1500’s, with the quadratic formula in its modern form, mathematicians began searching
for an analogous cubic formula. The first glimpse of the formula was seen by Scipione del
Ferro around 1500, but he did not publish the result, which was found in his mathematical
papers after his death. The formula was rediscovered by Niccol Tartaglia in 1530, and used
by him in a mathematical contest against del Ferro’s son-in-law, who had discovered the
formula in del Ferro’s papers. Later Tartaglia revealed the formula to Gerolamo Cardano,
on condition that he not reveal the formula until Tartaglia published it. Cardano generally
kept his word, but he did reveal the formula to an apprentice named Lodovico Ferrari, who
used it to produce a formula for solving quartic equations. This put Cardano in a bind,
since Tartaglia did not publish and Ferrari could not show his solution without revealing
the cubic formula. Eventually Cardano recalled the ancient contest of Tartaglia and del
Ferro’s son-in-law, and visited del Ferro’s widow, who turned out to have kept her husband
room intact since his death. There Cardano found del Ferro’s solution, and published it
while claiming not to break his oath to Tartaglia. All of this is covered in much greater
detail in the wonderful book Cardano, the Gambling Scholar by Oystein Ore.

The quadratic formula can be obtained by introducing a new variable y = x+λ and writing
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the quadratic in terms of y rather than x. Geometrically, this amounts to translating the
graph of the quadratic by λ. If λ is chosen appropriately, the linear term in the equation
for y cancels out and we obtain y2 +A = 0, which is easily solved.

The same trick words for cubic equations, reducing an arbitrary cubic to the form

x3 +Ax+B = 0

The cubic formula states that x is then equal to

x =
3

√
−B

2
+

√
B2

4
+
A3

27
+

3

√
−B

2
−
√
B2

4
+
A3

27

This formula has some unexpected properties. If A and B are real, the cubic either has
one real root or three real roots, except for trivial edge cases. If it has one real root, the
expression under the square root is positive and then the formula gives the real root since
any real number has a real cube root. But if there are three real roots, the expression
under the square root is negative. This suggests that a separate formula may be required
to handle the case of three real roots.

In 1572, Bombelli published L’Algebra. In this book he advanced algebraic notation and
added many examples from Diophantus after becoming one of the first modern Europeans
to rediscover this book. But Bombelli is mainly remembered today for a specific example
in his book, the solution of the cubic equation x3 − 15x− 4 = 0. He obtains x = 4, which
can be easily checked. It is his method which is significant, for he obtains this root from
the cubic formula. According to the formula,

x =
3

√
2 +

√
−121 +

3

√
2−

√
−121 = 3

√
2 + 11i+ 3

√
2− 11i

Bombelli then notices that (2 + i)3 = 2 + 11i and (2− i)3 = 2− 11i and thus

x = (2 + i) + (2− i) = 4

Before this book appeared, complex numbers were not taken seriously, and it is their
use in the cubic formula which gave mathematicians the first glimpse of their importance.
Later mathematicians computed complex cube roots using trigonometry and then the cubic
formula could solve all cubic equations.

Incidentally, we will later prove that cubic equations with three real roots cannot be solved
using only real radicals, so the cubic formula is the only game in town.

After Ferrari found a quartic formula, mathematicians tried to find formulas for higher
degree equations. In the late 1700’s, this work was taken on by Lagrange (who also created
the metric system during the French Revolution). Lagrange created various linear combi-
nations of the roots, called resolvents, and found that each satisfied a polynomial equation
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called its resolvent equation. Finding the resolvent by solving this equation often led to
a complete solution of the original equation. In the quadratic, cubic, and quartic cases,
resolvents exist whose resolvent equations have lower degree than the original equation, so
there is a general inductive procedure to solve these equations. However, Lagrange was
unable to find a general resolvent of lower degree for equations of order five. This led some
mathematicians to conjecture that no formula exists for degrees five and higher. Gauss
expresses this opinion in his book on number theory.

The first person to prove that fifth degree polynomials cannot be solved using radicals
was Paulo Ruffini, in 1799. His paper was complicated and difficult to read, and few
mathematicians were convinced. In more recent times his paper has been carefully studied;
his proof had one significant gap but the essential ideas were there.

Early in his career, Niels Henrik Abel proposed a general method to solve fifth degree
equations, and submitted a paper to that effect. The referee asked that he add a specific
numerical example. While trying to construct that example, Abel found a mistake in his
paper. In 1824, Abel published his first significant paper, ”Memoir on algebraic equations,
in which the impossibility of solving the general equation of the fifth degree is proved.” Abel
acknowledges Ruffini in this paper and then gives the first complete proof of impossibility.
He published a more detailed proof in 1826 in Crelle’s Journal. Nowadays, the theorem
that fifth degree equations cannot be solved by radicals is usually attributed to Abel-
Ruffini.

As Abel pointed out, the Abel-Ruffini argument only proves that there is no formula which
solves all fifth degree polynomials. It might still be possible that the roots of any specific
polynomial can be written as expressions that only involve radicals. Abel was working on
this more specific problem when he died at age 29.

Ebvariste Galois found a different approach to these problems, which was capable of work-
ing for specific individual polynomials. In particular, his method shows that no solution of
x5 − x− 1 can be written in a form composed only of radicals.

Ebvariste Galois, born in 1811, became interested in mathematics when he was 14, and
carefully read Lagrange’s work on solving polynomial equations. In 1829, Galois submitted
two papers on polynomial equations to the Academy of Sciences, where they were rejected
by Augustin-Louis Cauchy. This rejection is very controversial, and many authors describe
it as a case of the old guard refusing to accept new ideas from the young. But the Wikipedia
article on Galois suggests that instead Cauchy recognized the importance of Galois’ work
and suggested combining the papers into one and submitting it for the Academy’s Grand
Prize.

At the time, France was in great political turmoil. Galois’ father was the mayor of a small
French town, and after a dispute with the village priest, he committed suicide on July 28,
1829.
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Galois resubmitted his papers to the Academy in Febuary of 1830, and this time they were
read by Fourier. But Fourier soon died and the papers were lost. Galois published three
other papers in 1830, but in 1831 political events overwhelmed him and he was thrown in
jail. In January of 1831, he again submitted his papers to the Academy, and this time they
were read by Poisson. Poisson declared the papers “incomprehensible” but suggested that
Galois publish all of his work on equations so the world could form a definitive opinion.
Galois grew very angry when hearing of this report, but later was in the process of collecting
his manuscripts while still in prison. He was released on April 29, 1832. On May 30, 1832,
he was killed in a duel. The motivation behind this duel is controversial and unclear.

In 1846, Galois’ paper “Memoir on conditions to solve an equation with radicals” was
published by Liouville, who added some extra remarks praising the work, but completely
missed the group theory at the core of Galois’ arguments. Joseph Serret attended these
Liouville talks, and included Galois’ theory in an 1866 textbook. Credit for deciphering and
modernizing the theory is generally given to Serret’s pupil Camille Jordan, who described
the theory in his 1870 book “Treatise on permutations and algebraic equations.” Galois
theory becomes a central topic in modern algebra only in the beginning of the twentieth
century.

These remarks on Galois are taken from various Wikipedia articles. There are many books
on Galois, and often his story is told in a completely different way, suggesting that he
was betrayed by the mathematical elite in France. But it is astonishing how many great
mathematicians interacted with Galois in his short life: Cauchy, Fourier, Poisson, Liouville,
and others; none of them knew that he would soon die in a duel. If Galois had lived long
enough to calm his political passions, it is easy to imagine that he would have joined this
group as an equal.

It is time to turn from history to the actual theory created by these mathematicians. The
modern approach to this theory as reformulated by Jordan and many others will be given
in the following chapters, but here we’ll give a glimpse of the central ideas in the language
of the creators.

Although Galois theory works with great generality, let us assume that our polynomials
have rational coefficients. If we like, we can multiply all coefficients by a common term
and get integer coefficients, so we will deal with very explicit polynomials like

P (x) = x5 − x− 1

P (x) = x6 + x5 + x4 + x3 + x2 + x+ 1

In fact, these will be our two concrete examples, and we’ll hint at reasons that the first
cannot be solved by radicals but the second can be.

If P (x) factors over Q as P (x) = Q1(x)Q2(x), then it suffices to study the roots of Q1

and Q2 separately. So from now on, we will assume that all P (x) are irreducible over Q.
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In practice this creates difficulties because it can be hard to show that a polynomial is
irreducible, but we leave that issue to the regular text.

While P (x) is irreducible over Q, we can factor P (x) over C and thus find its complex roots.
So P (x) =

∏
(x−θi) where the θi are complex and can be approximated numerically. These

θi are not random complex numbers because several expressions involving them are rational
numbers:

θ1 + θ2 + θ3 + . . .+ θn

θ1θ2 + θ1θ3 + . . .+ θn−1θn

. . .

θ1θ2 . . . θn

Indeed, when we multiply out, these are plus or minus the coefficients of our polyno-
mial.

Next we ask if other expressions in the roots might be rational. For instance, what
about

θ21 + θ22 + . . .+ θ2n

θ31 + θ32 + . . .+ θ3n

. . .

The answer is given by “the fundamental theorem of symmetric polynomials,” which we
will later prove. A polynomial Q(X1, . . . , Xn) is said to be symmetric if any permutation
of the unknowns just reproduces the same polynomial. The fundamental theorem says
that any symmetric polynomial Q with complex coefficients can be written uniquely as a
polynomial R in the fundamental symmetric polynomials (σ1, . . . , σn) where

σ1(X1, . . . , Xn) = X1 + . . .+Xn

σ2(X1, . . . , Xn) = X1X2 +X1X3 + . . .+Xn−1Xn

. . .

σn(X1, . . . , Xn) = X1X2 . . . Xn

Moreover, if the original Q has rational or integer coefficients, so does R. It follows from
this result that any symmetric polynomial evaluated at the roots of P is a rational num-
ber.

We now ask the key question. Are there any other expressions in the roots which are
rational? This question is rather vague and we first make it more precise. Define

M̃ = { T (X1, . . . , Xn) | T (θ1, . . . , θn) ∈ Q }
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where T is a polynomial with rational coefficients. This set contains all symmetric poly-
nomials. Does it contain anything else?

The answer is rather awkward and shows that M̃ is not the correct set to study. Suppose
S is a symmetric polynomial and suppose we multiply S(X1, . . . , Xn) by X1. The resulting

polynomial is not symmetric. Does it belong to M̃? If S(θ1, . . . , θn) ̸= 0, then clearly not
because θ1 isn’t rational so its product by a non-zero rational cannot be rational. But if
S(θ1, . . . , θn) = 0, then yes because θ1 times zero is zero and thus rational.

Because of this problem, we define a slightly different set

M = { T (X1, . . . , Xn) | T (θ1, . . . , θn) = 0 }

where T is a polynomial with rational coefficients. If S(X1, . . . , Xn) is any symmetric
polynomial, then S(θ1, . . . , θn) can be written as a polynomial with rational coefficients
in the elementary symmetric functions and thus a polynomial in the coefficients of P and
thus a specific rational number, and so

T (X1, . . . , Xn) = S(X1, . . . , Xn)− S(θ1, . . . , θn)

is in M. We abbreviate this by saying that M “contains all symmetric polynomials.”
Moreover, M is now an ideal in the polynomial ring, so elements in M can be multiplied
by any polynomial with rational coefficients. We then reformulate our question to ask if
the symmetric polynomials generate this ideal. And if not, what other generators need be
added.

It turns out that the answer to this question depends on the initial polynomial we are trying
to solve by radicals. In degree five and higher and for a random P (x), M is often generated
by symmetric polynomials. But if a particular equation of high degree can be solved by
radicals, then M will be larger and contain relations that are definitely not symmetric.
We’ll illustrate this with the polynomial P (x) = x6 + x5 + x4 + x3 + x2 + x+ 1.

The roots of this polynomial can be expressed as radicals for the simple reason that

x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1)

and so the roots are all roots of unity. It isn’t clear that

x6 + x5 + x4 + x3 + x2 + x+ 1

is irreducible, but we will prove that it is. Indeed if p is prime, then

xp − 1 = (x− 1)(xp−1 + xp−2 + . . .+ x+ 1)

and both factors are irreducible. This result isn’t true in greater generality; for exam-
ple

x4 − 1 = (x− 1)(x3 + x2 + x+ 1)
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x4 − 1 = (x2 − 1)(x2 + 1) = (x− 1)(x+ 1)(x2 + 1)

and so
x3 + x2 + x+ 1 = (x+ 1)(x2 + 1)

Sticking with X6 + X5 + X4 + X3 + X2 + X + 1, let θ = e
2πi
7 . Then the roots are

θ, θ2, θ3, θ4, θ5, θ6. The final seventh root of unity is 1, which we have removed by factoring
X − 1 out.

Notice that X2 − X2
1 ∈ M because the second root is the square of the first root. If we

permute the Xi sending X1 to X2 and X2 to X3 and so forth, we convert X2 − X2
1 to

X3−X2
2 , but this does not belong to M because the third root is θ3, and it does not equal

the square of the second root (θ2)2. So this M contains elements, and surely generators,
which are not symmetric. All symmetric polynomials are in the new M, but now the set
of rational relations is much larger. This is the rough sign that our equation is solvable by
radicals.

Ruffini and Abel both studied objects likeM. Dealing with it is difficult because it contains
an infinite number of polynomials. The great idea of Galois was to deal instead with the
finite group G of permutations of the roots θi which preserve the set M. This group is now
called the Galois group of the polynomial P (x). So to be precise, a permutation σ belongs
to G if whenever T (X1, . . . , Tn) ∈ M then T (Xσ(1), . . . , Tσ(n)) ∈ M.

If the symmetric polynomials generate all of M, then G will be the full group of all per-
mutations. Indeed, every element of M would then be a sum of terms of the form

T (X1, . . . , Xn)
[
S(X1, . . . , Xn)− S(θ1, . . . , θn)

]
where T is an arbitrary polynomial with rational coefficients and S is a symmetric poly-
nomial with rational coefficients. If we permute the Xi, the first T becomes a different
polynomial. But it doesn’t matter because S is symmetric and thus the second term is still
zero. Thus our permutation belongs to G.

But if M has additional generators which are not symmetric, then some permutations
will not preserve these elements and the Galois group will be smaller. Note carefully the
pattern here. If a polynomial can be solved by radicals, we expect its M to be larger than
usual, and so its G to be smaller than usual.
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We can confirm this in the special case of X6+X5+X4+X3+X2+X+1. The equation
X7 − 1 = 0 has seven very symmetrical complex roots, shown on the left below. But when
we remove the factor X − 1, we remove one of these roots and obtain the unsymmetrical
picture shown on the right. It looks like the resulting group might just be the identity.
However, the Galois group is not a group of ordinary symmetries in the complex plane.
Instead, it is a group of “algebraic symmetries” that are not apparent in the picture of the
roots.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1: Seventh Roots of Unity Roots of X6+X5+X4+X3+X2+X+1

Our work will be motivated by a theorem we will prove later on: if P (x) is irreducible,
then the Galois group acts transitively on the roots. So the Galois permutation group in
our case has permutations which carry θ to θ, to θ2, to θ3, to θ4, to θ5, and to θ6. Once
we know where θ goes, we can easily work out the complete permutation. For instance, if
θ maps to θ2, then θ2 maps to θ4, and θ3 maps to θ6 and θ4 maps to θ8 = θ, and θ5 maps
to θ10 = θ3 and θ6 maps to θ12 = θ5. A nicer way to write this is

θ → θ2 → θ4 → θ

and
θ3 → θ6 → θ5 → θ3

Even better, we can write this permutation in cycle notation:

(θ, θ2, θ4)(θ3, θ6, θ5)
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The permutation sending θ to θ3 is even more interesting, for it has a single cycle:

(θ, θ3, θ2, θ6, θ4.θ5)

So if we arrange the six roots around a wheel as below, then this permutation is one
counterclockwise turn of the wheel. Since G is a group, all six turns of this wheel are in the
group. And since these exhaust the possible images of θ, the complete Galois group must be
the full rotational symmetries of this wheel, Z6. Notice carefully that this placement of the
roots is not at all the placement of the roots in the complex plane. The symmetry group Z6

is a figment of our algebraic imagination, not a figment of our geometric imagination.

Figure 2: Galois Group of X6 +X5 +X4 +X3 +X2 +X + 1

Let us return to the general theory. The originators of our theory provided two tools,
M and G, which pick up subtle properties of the initial equation F (x) = 0. Amazingly,
G completely determines whether our equation can be solved by radicals. We don’t even
have to understand how G acts as a group of permutations; it is enough to be given a list of
elements of G and a multiplication table for these elements. This is the astonishing climax
of Galois theory.

How does this determination work? If H is a subgroup of a group G, we can form a set
G/H, called the quotient space. There is a special kind of subgroup H called a normal
subgroup, and when H is normal, the quotient space is also a group. So G is made from
two smaller groups H and G/H. But some groups have no non-trivial normal subgroups.
These groups are called simple groups; they are not made from smaller groups, and instead
form the fundamental building blocks of group theory.

If G is an arbitrary finite group, we can find a chain of subgroups, each normal in the next
element of the chain, leading from the identity to G:

{e} = C0 ⊂ C1 ⊂ . . . ⊂ Cn = G
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To avoid trivialities, we require that each inclusion be strict, and that no inclusion can be
expanding by adding an element in the middle. It then follows easily that the Ci/Ci−1 are
simple groups; in a sense, they are the elementary pieces which create G.

This “composition series” is not unique, but a fundamental theorem says that its length is
determined by G and the simple quotients are determined by G up to order. So a crucial
feature of any finite group is the list of simple groups which make it up.

What can be said about these simple groups? It is easy to determine all abelian simple
groups; they are exactly Zp for primes p. But the theory of non-abelian simple groups is
much more difficult, The smallest such group is A5, the group of even permutations on five
letters, or equivalently the rotational symmetry group of the dodecahedron. This group
has 60 elements.

Indeed, An is non-abelian and simple whenever n ≥ 5. In the early twentieth century, a
large number of matrix groups were shown to be simple. For example, SL(n, F ), the group
of matrices with determinant one over a finite field F , modulo its center, is simple with
a small list of exceptions. Eventually, toward the end of the century, a complete list of
finite simple groups was obtained, with a proof requiring thousands of pages and dozens
of authors; most are alternating groups or matrix groups, but there are 23 sporadic groups
which appear out of thin air.

The Galois group of a polynomial P (x) of degree n has order between n and n! For a given
n, this restricts the possibilities to a finite set of groups. In the quadratic case, G = Z2. In
the cubic case, G is either Z3 or D3, where D3 is the dihedral group of symmetries of an
equilateral triangle. Notice that D3 is not abelian.

It turns out that F (x) can be solved by radicals whenever the Galois group is abelian.
The D3 example shows that this condition is not necessary, and the final beautiful result,
says

Theorem 1 An irreducible polynomial equation F (x) = 0 with rational coefficients can be
solved by radicals if and only if all composition quotients of its Galois group are abelian,
and thus of the form Zp.

A finite group with this property is called a solvable group for obvious reasons. The study
of such groups is important in group theory even if the goal has nothing to do with Galois
theory and solving equations.
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In the evening of May 29, 1832, Galois wrote a letter to his friend Auguste Chevallier. A
translation of this letter into English can be found at https://www.ias.ac.in/article/
fulltext/reso/004/10/0093-0100. Near the beginning of this letter, Galois defines what
it means for a subgroup of a group to be normal. Here is the beginning of the letter:

My dear friend,
I have studied several new ideas. In the theory of equations, I have deter-

mined which cases the equations are solvable by radicals, which has provided
me with an opportunity to go into this theory in depth and describe all possible
transformations on an equation, even when it is not solvable by radicals.

All this can be put in three papers. The first one is written, and, in spite
of what Poisson has said, I stand by it, with the corrections that I have indi-
cated. The second contains rather interesting applications from the theory of
equations. Here is a summary of the most important ones:

1. According to the propositions II and III of the first paper, one sees a
great difference between adjoining, to an equation, one of the roots or all the
roots of an auxiliary equation. In both the cases, the group of the equation
can be partitioned by adjunction into groups such that one can pass from one
to another by a self-transformation; but the condition that these groups have
the same substitutions holds only in the second case. This is called proper
decomposition.

In other words, when a group G contains another, H, the group G can be
partioned into groups each of which is obtained by operating on the permuta-
tions in H a self-transformation, in such a way that,

G = H +HS +HS′ + ..,

And we can also partition into groups which have all similar substitutions, such
that

G = H + TH + T ′H + ...

These two types of decompositions generally do not coincide. When they do
coincide, the decomposition is said to be proper. It is easy to see that, when the
group of an equation is not susceptible to any proper decomposition, however
well we might have transformed this equation, the groups of the transformed
equations will always have the same number of permutations. On the contrary,
when the group of an equation is susceptible to a proper decomposition in such
a way that we can decompose it into M groups of N permutations, we can
resolve the given equation by means of two equations: one will have a group of
M permutations and the other, one of N permutations.

Hence when we would have exhausted all possible proper decompositions
on the group of an equation, we arrive at groups which can be transformed but
for which the number of permutations will always be the same.

https://www.ias.ac.in/article/fulltext/reso/004/10/0093-0100
https://www.ias.ac.in/article/fulltext/reso/004/10/0093-0100
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If each of these groups has a prime number of permutations then the equa-
tion will be solvable by radicals; otherwise, not.

The smallest number of permutations that an indecomposable group can
have, when this number is not a prime number, is 5 4·3.

The letter continues with additional ideas, some about Galois theory and others about
modular functions and elliptic function theory. It ends with

You know, dear Auguste, that these subjects are not the only ones that
I have explored. My principal meditations, for some time now, were directed
to the application of the theory of ambiguity to transcendental analysis. But
I don’t have the time, and my ideas are not yet well developed in this area,
which is immense.

You will get this Letter printed in the Revue encyclopedique.
I have often dared in my life to advance propositions about which I was

not sure, but all that I have written down has been in my mind for over an
year, and it would not be too much in my interest to make mistakes so that
one suspects me of having announced theorems of which I would not have a
complete proof.

You make a public request to Jacobi and Gauss to give their opinion, not
as to the truth but as to the importance of these theorems.

After this, I hope there will be people who will profit by deciphering all this
mess. I embrace you effusively.

The next day, Galois was killed in the duel. In the letter, he was clearly thinking of that
duel. But he was also looking far into the future. The beginning remarks about groups
and partitioning by H define normal subgroups for the first time. But even the definition
of an abstract group is still far off, to be first given by Cayley in 1854.

We are now ready for the precise modern theory, but a word of warning. Although the
ideas just sketched will play a crucial role for us, they will appear “in disguise” and may
not at first be recognized.

We will start just as we did in the preface by fixing an irreducible P (x) with rational
coordinates. We will consider one of its complex roots θ and form the smallest field of
complex numbers containing all rational numbers and this additional root. This field is
called the root field K(θ). It is a vector space over Q and turns out to have dimension
equal to the degree of P . We will obtain a very clear and precise understanding of this
field.

Next we will form a second field by considering all of the complex roots θ1, . . . , θn and
forming the smallest field of complex numbers containing all rational numbers and these
additional θi. This field is called the splitting field K(θ1, . . . , θn). But annoyingly, we will
obtain a much fuzzier view of this field. The field itself is precisely defined, but all sorts of
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obvious questions are hard to answer. For example, this field is also a vector space over Q,
but if n is the degree of F (x) then we will only be able to prove that n ≤ dimK ≤ n! So
even if F only has degree 5, the dimension of this field is somewhere between 5 and 120.
Quite a range of ignorance!

However, there is a reason for this difficulty, since studying the splitting field is just another
way of studying M. Indeed, recall that M is an ideal in the polynomial ring Q[X1, . . . , Xn].
It turns out that the splitting field is the quotient of the polynomial ring modulo M. Thus
M will appear in these notes in a very sneaky way.

Similarly, the Galois group will be defined to be the group of all automorphisms of the
splitting field. An automorphism ofK must fix all rational numbers and thus must permute
the roots of F (x) = 0, and in this way we recover the description of the Galois group in
this preface.

Confession When I completed a course on Galois theory in college, there were many loose
ends. An extension K ⊂ L was defined to be Galois if it was normal and separable; this
sounded like a theorem, not a definition. I learned Abel’s theorem that no general formula
exists to solve fifth degree equations, but did not study specific polynomials like x5−x−1.
I could prove that angles cannot be trisected and circles cannot be squared, but with a
gap because I could not prove that π is transcendental. Later, I found that more recent
graduate students face the same problems. One of them, describing the general idea of
the theory, told another that the Galois group contains all permutations of the roots — a
pretty severe misunderstanding! Others imagined that the Galois group of z7 − 1 is cyclic
because — after all — the roots of unity form a cyclic picture in the plane.

So after I retired, I wrote these notes to straighten myself out. Whenever I got confused,
I asked Google for help. It is amazing how many lecture courses are on the internet. I’d
often try to puzzle out a result by reading one set of lectures, not understand a word,
and then come across a second author’s lectures with a clear presentation of the puzzling
point.

I didn’t write any exercises, and I didn’t keep track of any references. Every beautiful
formula here comes from someone else. My apologies!

Several years after writing the notes, I came across a book on Galois theory which had the
same philosophy as these notes. It is Ian Stewart’s Galois Theory, Third Edition, published
by Chapman & Hall. If you read these notes, I recommend that you read Stewart’s book
afterward. Stewart has many, many historical details, particularly about Galois’ life. He
has a series of interesting exercises. He has more information on the work of Ruffini and
Abel.

On the other hand, I’m happy I have these notes. They contain the answers to almost
everything that puzzled me.
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And so: Time to get to work.



Chapter 1

Arnold’s Proof of the Abel-Ruffini
Theorem

In 1963, Vladimir Arnold found a topological proof that there is no formula solving the
general quintic equation by radicals. Arnold’s proof avoids all of the abstract theory we
develop later on, but it contains two key ideas from Galois theory in raw form, uncluttered
by any polish we might later add. We sketch that proof now so the spirit of Arnold’s
analysis will hover over all of our later work.

Our sketch skips over some issues that will be mentioned at the end, so the argument in
this section has some gaps.

There is a wonderful UTube video describing this proof. See https://www.youtube.com/
watch?v=BSHv9Elk1MU.

Recall that complex radicals are multiple-valued. This follows from the multiple-valued
nature of the logarithm;

log(z) = ln |z|+ i arg(z)

where arg(z) is only defined up to a multiple of 2π. All of this is a consequence of the
polar form of complex numbers; any z can be written z = reiθ = eln reiθ = eln |z|+iθ and so
log(z) = ln |z|+ iθ. In turn,

n
√
z = e

1
n
log(z)

One way to deal with the multiple values of log z and n
√
z is to remove the origin and

negative x-axis and define the principal branch of the logarithm on the remaining set to
be

log z = ln |z|+ i arg(z) where − π < arg(z) < π

18
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Figure 1.1: Restrict Domain OR Continuously Extend Along Curve

This trick also makes n
√
z single-valued on the same set. See the picture on the left

above.

In complex analysis, we often integrate expressions containing logarithms and radicals along
paths in the complex plane. In this case, we deal with the multiple-valued nature of these
functions in another way. Suppose we are integrating an expression containing log(z) and
suppose our path γ(t) never goes through the origin. We pick a value for the logarithm at
the start of the path, and after that we require that the logarithm vary continuously with
t. This completely determines the log along the remaining path. We can apply the same
idea to radicals like k

√
z.

With this preliminary note out of the way, we are ready to begin studying polynomials and
their roots. There are two natural pictures associated with a given polynomials: its roots
in the complex plane, and its coefficients, also in this plane. See the picture below.

Figure 1.2: Roots of a Polynomial (left) and Coefficients of Polynomial (right)

There is an easy way to get from the roots to the coefficients, since we can just multiply
out (z − z1)(z − z2) . . . (z − zk) to discover that a1 = −

∑
zi and so forth.

We are going to gradually move all of the roots, keeping them distinct. If we do that,
the coefficients will also move. If these coefficients were originally real, they are likely to
become complex. See the picture at the top of the next page.
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Figure 1.3: Moving the Roots Also Moves the Coefficients

Suppose that after such a motion, the roots return to the original root positions in some
permuted order. Then the coefficients will return to their original values. See the picture
below.

Figure 1.4: Permuting the Roots Returns the Coefficients to Original Values

Let us add to this picture a final map given by a conjectured general solution by radicals
to P (z) = 0. The general solution will give multiple roots by choosing multiple values for
the radicals, but let us pick an initial value for each radical so the general solution gives a
particular root. Call this root z1. Here is that picture. In the picture, the general solution
is symbolized by a single radical sign, but of course it is a complicated expression with
many sums, products, quotients, and radicals all mixed together.

Figure 1.5: A Formula for Solving in Radicals Provides a Backward Map

Now imagine that we move the roots continuously. Then the coefficients move accordingly,
and so the expressions inside the radical signs move continuously, and so the values of
the radicals also move continuously and uniquely, always pointing to a root, and thus
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always pointing to the current position of z1. So the previous picture is not static; we can
turn on a motor and watch the roots, the coefficients, the radicals, and the solution move
continuously, all in unison.

We have now arrived at the central point of Arnold’s proof. Suppose the degree of our
polynomial is at least three. We are first going to prove a special case: no general solution
exists which contains just a single radical k

√
z. Inside this radical we allow an arbitrary

expression formed from the coefficients by addition, subtraction, multiplication, and divi-
sion. The radical does not have to appear alone; it can appear in an expression formed
from the coefficients. It can even appear more than once but all appearances must be of
the same radical.

Incidentally, there is a cubic formula, already mentioned in the Preface. But this formula
has two different radicals, one a square root and one a cube root. Moreover, one radical is
inside the other one. Both are not allowed in our preliminary lemma.

Form a specific motion of the roots as follows. First swap the roots in positions 1 and 2.
Call this movement γ(t). Then swap the roots in positions 1 and 3. Call this movement
τ(t). Each of these paths on the left induces motions on the right. Pick the particular
expression in the coefficients under the conjectured radical sign and follow it. Since the
coefficients return to their original values, so does the path of this complicated expression.
Since we have two paths on the left, γ and τ , we obtain two loops on the right, γ̂ and
τ̂ .

Figure 1.6: Transpositions on the Left Induce Loops on the Right



CHAPTER 1. ARNOLD’S PROOF OF THE ABEL-RUFFINI THEOREM 22

Consider the movement obtained by doing γ and then τ and then γ−1 and then τ−1. So
we swap the roots in positions 1 and 2, and then swap the roots in positions 1 and 3 and
then unswap the roots in positions 1 and 2 and finally unswap the roots in positions 1 and
3. Please try this yourself. You may be surprised to discover that these actions cause the
three roots to rotate by one click, as shown below.

Figure 1.7: A Commutator of Transpositions Moves Everything

Over in coefficient space, the corresponding motion consists of four loops, γ̂ followed by τ̂ ,
followed by γ̂ in reverse, and then τ̂ in reverse. But the resulting path doesn’t wind around
the origin at all, because each increase of the argument by a multiple of 2π is eventually
undone. So on the right, the radical expression returns to its original value.

It follows that our conjectured formula giving z1 does not move z1, although we already
know that z1 moves to the original position of z2. This contradiction proves the special
case.

Notice that our argument proves much more. For cubics and higher, it rules out solu-
tions containing many different radicals as long as the expressions inside these radicals
can be obtained from the coefficients of the polynomial using only addition, subtraction,
multiplication, and division.

However, expressions involving a radical inside another radical are not ruled out. Notice
that the cubic formula, shown in the preface, does indeed have a square root inside a cube
root. If we apply our argument to this situation, using a motion which is a commutator
on the left, the inside radicals will return to their original value. So the outside radicals
will be radicals of loops, but such radicals can end up at a different spot than they started,
and thus can move z1 to z2.

Let us pause at this moment. Mathematicians who work with finite groups has many tools
in their arsenal, but one of the most important is the notion of a commutator. If a and
b are group elements, their commutator is aba−1b−1. If the group is abelian, this is the
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identity, but otherwise it can be very interesting. Readers who have solved Rubic’s cube
probably used a motion which rotated one face, and then a perpendicular face, and then
unrotated the first face and then the second. That motion is a commutator, and it is useful
because it only moves a few elements.

In Arnold’s proof of the special case, the key idea is that the permutation group of the roots
is not abelian and therefore we can produce an interesting commutator on the left side of
our pictures. But the fundamental group of the space of loops around the origin is abelian,
and thus commutators of loops on the right side of the diagram will be trivial.

Now let us return to the proof that equations of the fifth degree cannot be solved by
radicals. Consider the special case where the formula contains a radical inside another
radical. We must construct a permutation which moves z1 on the left side of the diagram,
but corresponds to loops on the right side of the diagram which preserve both the inner
radical and the outer radical. We can do that using commutators of commutators. Suppose
we find two paths on the left, both given by commutators. Then the corresponding loops
on the right side will preserve the value of the inner radical. Now suppose we form the
path given by the commutator of these commutators. This time, our argument shows that
the outer radical is also preserved, and we have our contradiction.

Unfortunately, we also have to rule out radicals inside radicals inside radicals, and so
forth. So we have to construct paths which actually move z1 and are formed by a tower of
“commutators of commutators of commutators of . . . of commutators”.

To do this, we need at least five roots. Here is the beautiful and easy idea that finishes the
argument. We know that three cycles are commutators of two transpositions. From now
on, we build using only three cycles. The cycle (123) is a commutator. We will show that
it is also a commutator of commutators. Here’s the picture which shows that.

Figure 1.8: Every Three Cycle is a Commutator of Commutators
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But then every three cycle is a commutator of commutators of commutators. And so forth.
This finishes Arnold’s argument.

Remark: The key moment of the proof comes with figure 1.5, where we claim that a
general solution by radicals will produce a formula going backward. A careful reader might
worry about two situations. First, is it possible that the algebraic expressions involving the
roots will have singularities for special values. For instance, a term 1

a21+a2+3
might vanish

for exceptional values of the coefficients. And second, why are the expressions under the
radicals always non-zero? If a path avoids the origin, we can find a continuous

√
z(t), but

there are uniqueness problems if z(t) is sometimes zero.

We avoid some of these problems by only dealing with cases when the roots are all distinct.
In the case of cubics, there will be a double root if and only if the discriminant

(z1 − z2)
2(z1 − z3)

2(z2 − z3)
2

is zero. This discriminant is symmetric in the roots and thus can be written as an expression
in the coefficients by the fundamental theorem of symmetric polynomials. If

P (z) = z3 +Az +B

the discriminant is −4A3 − 27B2.

The cubic formula involves
√

B2

4 + A3

27 , so this expression is zero if and only if the polyno-

mial has a double root. But the formula also has cube roots of −B
2 ±

√
B2

4 + 4A3

27 and at

least one of these terms will be zero exactly when(
B

2

)2

=
B2

4
+

4A3

27

and thus when A = 0 and our equation is z3 + B = 0. If B ̸= 0, this has three distinct
roots and thus might occur in our analysis.

Since the Abel-Ruffini theorem will be proved later in a completely different way, we will
leave the Arnold proof as it is here, incomplete but extremely illuminating.
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Finite Group Theory

Before getting to the main subject, we prove some facts about group theory. These results
will be used later in our study of generalizations of the quadratic formula.

In chemistry, every compound is built out of atoms. Knowing the atoms is not enough
to determine the compound; for instance, graphite and diamond are both pure carbon.
Similarly, we will show that every finite group is built out of ”simple groups”. But knowing
the simple groups is not enough to determine the final group they build.

2.1 The Extension Problem; Simple Groups

Suppose we want to classify finite groups G.

It is natural to work by induction on the order of G. If H is a subgroup of G, then we
already understand H. If H is normal, we also already understand G/H. Thus in the
sequence

0 → H → G→ G/H → 0

we understand the groups at the ends and need only fill in the middle group.

One choice for G is H × G/H. There are usually others. The problem of constructing
such G is called the extension problem in group theory; it is difficult. For example, suppose
H = Z4 and G/H = Z2. Then G is a group of order 8. After some work, one can show that
there are three G which fit in the sequence, Z4 × Z2, D4, and Q. Here D4 is the dihedral
group of order four, that is, the group of symmetries of a square. The group Q is the group
of unit quaternions {±1,±i,±j,±k}. Note that {±1,±i} is a normal subgroup isomorphic
to Z4. Note also that D4 and Q are not isomorphic because D4 has five elements of order
two and Q has only one element of order two.

25
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Luckily, we don’t need to solve the extension problem for Galois theory. But suppose
we completely understood this problem. What more would be needed to classify finite
groups?

Some groups have no non-trivial normal subgroups. We call such groups simple groups and
we would need to construct them another way. This has been one of the greatest research
topics of the twentieth century, and there is now a complete list of all finite simple groups.
A knowledge of this list, and a complete solution of the extension problem (which will
never happen!) would produce a complete classification of all finite groups.

From the list we only need the abelian simple groups:

Theorem 2 A finite abelian group is simple if and only if it equals Zp for a prime p.

Proof: All subgroups of an abelian group are normal, so it suffices to list all groups with no
non-trivial subgroups. Certainly Zp has no non-trivial subgroups, since every subgroup has
order dividing p and thus equals {e} or Zp. Conversely if G is has no non-trivial subgroups
and g ̸= e is in G, then the cyclic subgroup generated by g must be all of G, so G is cyclic
of some order n. If n is not prime then it has non-trivial cyclic subgroups.

2.2 An Isomorphism Lemma

In the middle of the next section, we need a little lemma, so we prove it first.

Let G be a group with subgroups A and B. By definition AB is the set of all elements in
G of the form a1b1a2b2 . . . akbk for varying k. This set is clearly a subgroup of G. If A and
B are normal, so is AB because

g (a1b1a2b2 . . . akbk) g
−1 =

(
ga1g

−1
) (
gb1g

−1
)
. . .
(
gakg

−1
) (
gbkg

−1
)

Lemma 1 If A and B are normal,

AB/B ∼= A/(A ∩B)

Proof: We have a natural group homomorphism

A→ AB → AB/B

and clearly this map sends A ∩B to the identity. So it induces

A/(A ∩B) → AB/B

The kernel of this map is e because if a ∈ A maps to e ∈ AB/B, then a ∈ A∩B. The map
is onto because aibi ∼ ai in AB/B, so a1b1 . . . akbk ∼ a1 . . . ak ∈ AB/B.
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2.3 Jordan-Holder

Continuing with the idealistic program of the previous sections, suppose G is an arbitrary
finite group. Find a normal subgroup H1 ⊂ G unequal to G and as large as possible.
It is easy to see that G/H1 must be simple, since if K ⊂ G/H1 is a non-trivial normal
subgroup, the inverse image of K in G will be a normal subgroup K̃ with H1 ⊂ K̃ ⊂ G. If
we understood the extension problem, we could construct G from H1 and G/H1.

Continue the process. Find a normal subgroup H2 ⊂ H1 unequal to H1 and as large
as possible. Then H1/H2 is simple. If we understood the extension problem, we could
construct H1 from H2 and H1/H2.

Continuing in this vein, we eventually construct a complete composition series, that is, a
chain of subgroups

{e} = Hn ⊂ Hn−1 ⊂ . . . ⊂ H1 ⊂ G

with each Hi normal in Hi−1 and as large as possible, and each Hi−1/Hi simple. The group
G is constructed from the simple groups Hi−1/Hi by a series of group extensions.

Unfortunately, the Hi are not unique. For example, let G = Z6. Let Z2 ⊂ Z6 be the
subgroup {0, 3} and let Z3 ⊂ Z6 be the subgroup {0, 2, 4}. Then we obtain two composition
series

{e} ⊂ Z2 ⊂ Z6

{e} ⊂ Z3 ⊂ Z6

However, both series have “length 2”; the simple quotients in the first case are Z2, Z3 =
Z6/Z2 and the simple quotients in the second case are Z3, Z2 = Z6/Z3 and thus the same
up to order.

Theorem 3 (Jordan-Holder) Any two complete composition series for a finite group
have the same length, and their simple quotients are isomorphic up to order.

Remark: This theorem is a generalization of the unique factorization theorem for integers.
Indeed, if n = pn1

1 . . . pnk
k , it is easy to find a composition series for Zn with simple quotients

Zpi , each repeated ni times.

Remark: Sometimes progress is made in mathematics by throwing information away until
only the crucial information remains. Composition series allow us to throw away the
intricate extension information until only the simple quotient information remains. It is
this quotient information which is important in Galois theory.

In the previous section, we listed the three groups of order four obtained by extending Z4

by Z2. Notice that the simple quotients of all three groups are Z2, Z2, Z2. So in this case,
extension information is definitely thrown away.
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Proof: We prove the theorem by induction on the order of G; the result is trivial for groups
of order less than or equal to two.

In the induction step, suppose G has two composition series

. . . ⊂ A1 ⊂ A ⊂ G

. . . ⊂ B1 ⊂ B ⊂ G

If A = B, the theorem holds by induction, so suppose A ̸= B. Then AB is a normal
subgroup larger than A, and so AB = G. Notice that

A ∩B ⊂ A ⊂ G

A ∩B ⊂ B ⊂ G

By the isomorphism lemma, G/A = AB/A = B/A ∩B and G/B = AB/B = A/A ∩B.
It follows that the partial sequences above can be refined to composition sequences which
are the same except at the beginning, and whose last two composition quotients are inter-
changed.

. . . H2 ⊂ A ∩B ⊂ A ⊂ G

. . .H2 ⊂ A ∩B ⊂ B ⊂ G

Compare these to the existing series

. . . A2 ⊂ A1 ⊂ A ⊂ G

. . . B2 ⊂ B1 ⊂ B ⊂ G

By induction, the theorem is true for A and B, so the lengths of the Ai and Hi series for A
are equal, and the lengths of the Bi and Hi series for B are equal, and thus the lengths of
the Ai and Bi series are equal. Moreover, the composition quotients for A are equal up to
order, so {Hi/Hi+1} = {Ai/Ai+1} up to order. Similarly, the composition quotients for B
are equal up to order, so {Hi/Hi+1} = {Bi/Bi+1} up to order. Adding G/A and A/A1 to
the first set, and G/B and B/B1 to the second set and applying the isomorphism lemma
as above finishes the proof.

Important Remark: In the material which follows, we often obtain series

. . . ⊂ G2 ⊂ G1 ⊂ G

in which the Gi+1 are normal in Gi, but not necessarily maximal with this property. We
still call these composition series. It is easy to see that every such series can be extended
to a complete composition series by adding additional subgroups between the Gi+1 and
the Gi.
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2.4 The Symmetric and Alternating Groups

Let us apply the previous theory to the symmetric group Sn, which has the alternating
group An as a maximal normal subgroup. When n = 2, the alternating group is trivial and
there is only one composition factor, Z2. When n = 3, S3 is isomorphic to the dihedral
group D3 and the group has two composition factors, Z2 and Z3.

When n = 4, S4 is the group of all symmetries of a tetrahedron, and A4 is the group of
rotational symmetries of this tetrahedron. The group A4 of order 12 has a normal subgroup
Z2 × Z2 of order 4, namely the group which rotates opposite pairs of lines by 180 degrees
about their centers. Thus A4 has composition factors Z2, Z2, Z3.

We are going to prove that An is simple for n ≥ 5. This will turn out to be the central
reason that equations of degree five and higher cannot be solved by radicals.

It turns out that the group A5 of order 60 is the smallest non-abelian simple group. This
group is the group of rotational symmetries of a dodecahedron, so it is not surprising that
the dodecahedron is part of the logo of the MAA.

A few simple observations will make our work easier. Every permutation can be written as
a product of cycles: τ = (1, 3)(2, 5, 7, 8)(4, 6). The sign of a cycle with k entries is (−1)k−1

and the sign of a product of cycles is the product of the signs of the individual cycles. If
σ is a permutation, an easily calculation shows that, for instance,

στσ−1 = σ ◦ (1, 3)(2, 5, 7, 8)(4, 6)◦σ−1 =
(
σ(1), σ(3)

) (
σ(2), σ(5), σ(7), σ(8)

) (
σ(4), σ(6)

)
Theorem 4 If n ≥ 5, An is simple. Thus the composition quotients of Sn are Z2 and An.

Proof of Theorem: It is well known that every element of Sn is a product of transpositions.
Similarly, every element of the alternating group is a product of three cycles. Indeed,
every element is a product of an even number of transpositions, so it suffices to show that
the product of any two transpositions is a three cycle. If the transpositions contain a
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letter in common, then up to conjugation we have (1, 2)(2, 3) = (1, 3, 2). Otherwise up to
conjugation we have (1, 2)(3, 4) = (3, 2, 4)(1, 3, 2).

Since n ≥ 5, a normal subgroup of An with one three cycle contains all three cycles and
consequently is all of An. For instance, if the normal subgroup contains (1, 2, 3) and σ is
a permutation taking i1 to 1, i2 to 2, and i3 to 3, then after conjugation by σ it contains

(i1, i2, i3) =
(
σ(1), σ(2), σ(3)

)
.We need to make sure that the conjugating σ has even sign,

but if not, choose two other indices i4 and i5 and multiply σ by the transposition which
interchanges these extra indices.

We now prove that a nonzero normal subgroup of An is all of An. Suppose first that this
subgroup contains an element g whose cycle notation has at least one cycle of length greater
than three. For example, suppose the element is g = (1, 2, . . . , k)(...). Then the subgroup
contains

g−1
[
(1, 2, 3)−1g(1, 2, 3)

]
= (2, 3, k)

and so all three cycles, and so is all of An.

Suppose next that this subgroup contains an element g whose cycle notation has at least
two cycles of length three. For instance, suppose g = (1, 2, 3)(4, 5, 6) . . . is in the subgroup.
Then

g−1
[
(1, 2, 4)−1g(1, 2, 4)

]
= (1, 2, 4, 3, 6)

and so by the previous step the subgroup is all of An.

Suppose next that the subgroup contains an element g whose cycle notation has only
one cycle of length three and otherwise just transpositions. For instance, suppose g =
(1, 2, 3) . . . is in the subgroup. Then the subgroup contains g2 = (1, 3, 2) and so the
subgroup is all of An.

Suppose finally that every element of the subgroup is a product of transpositions. Since
there must be at least two of these transpositions, we can suppose g = (1, 2)(3, 4) . . ..
Then

g
[
(1, 2, 3)−1g(1, 2, 3)

]
= (1, 4)(2, 3)

is in the subgroup. So

(1, 4)(2, 3)
[
(1, 2, 5)−1(1, 4)(2, 3)(1, 2, 5)

]
= (1, 2, 3, 4, 5)

is in the subgroup and consequently the subgroup is all of An. QED.

Remark: It is easy to connect the ideas in Arnold’s proof to the ideas in this section. If G is
a finite group, the set of all commutators in G forms a normal subgroup, and the quotient
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of G by this subgroup is abelian. We can continue by taking the commutator subgroup of
the commutators, obtaining a composition series

Cn ⊂ Cn−1 ⊂ . . . ⊂ C1 ⊂ G

If this sequence eventually gives {e}, then G has a composition series whose composition
quotients are all abelian, and it easily follows that we can extend to a maximal composition
series and thus all composition factors of G are Zp. On the other hand, this does not happen
if G has non-abelian composition factors, essentially because the commutator of any simple
group is a non-trivial normal subgroup and thus the entire group, and thus every element
of G can be written as a commutator of a commutator of a commutator of . . . for as long
as necessary.

So the central idea of Arnold’s proof is very close to the climactic theory of Galois theory
which we prove much later on: every polynomial has an associated Galois group, and every
root of the polynomial can be expressed by radicals if and only if all composition factors
of the Galois group are abelian.



Chapter 3

The Quadratic, Cubic, and Quartic
Formulas

3.1 The Quadratic Formula

Theorem 5 (Quadratic Formula) The solutions of ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac

2a

Proof: Introduce new coordinates u = x − λ where λ is a constant to be chosen soon.
Substituting in the equation gives

a(u+ λ)2 + b(u+ λ) + c = au2 + (2aλ+ b)u+ (aλ2 + bλ+ c) = 0

Now choose λ to make the coefficient of u vanish, so λ = − b
2a . The equation becomes

au2 +

(
b2

4a
− b2

2a
+ c

)
= 0

or

u2 =
b2

4a2
− 4ac

4a2

This equation is easily solved:

u = ±
√
b2 − 4ac

2a

Hence

x = u+ λ = ±
√
b2 − 4ac

2a
− b

2a
=

−b±
√
b2 − 4ac

2a

32
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3.2 The Cubic Formula

We easily reduce an arbitrary cubic to the special form below, as will be seen shortly.

Theorem 6 (Cubic Formula) The solutions of x3 +Ax+B = 0 are

x =
3

√√√√−B +
√
B2 + 4A3

27

2
+

3

√√√√−B −
√
B2 + 4A3

27

2

Remark: Consider the equation ax3 + bx2 + cx+ d = 0. Again introduce new coordinates
u = x− λ where λ is a constant. Substituting,

a(u+ λ)3 + b(u+ λ)2 + c(u+ λ) + d = 0

or
au3 + (3aλ+ b)u2 + (3aλ2 + 2bλ+ c)u+ (aλ3 + bλ2 + cλ+ d) = 0

Now choose λ to make the coefficient of u vanish, so λ = − b
3a and the equation be-

comes

au3 +
3ac− b2

3a
u+

2b3 − 9abc+ 27a2d

27a2
= 0

Dividing by a gives

u3 +
3ac− b2

3a2
u+

2b3 − 9abc+ 27a2d

27a3
= 0

Naming the coefficients in this equation A and B gives u3 +Au+B = 0, and it suffices to
solve this simpler equation.

All of this was known early in the Renaissance. In Italian, the word “cosa” means “thing.”
So “cosa nostra” means ”our thing” in the gangster world, and the above equation was
known in Renaissance Italy as the equation of the “cube and the cosa.” Many people
tried to find the solution; even Omar Khayyam. The solution was discovered around 1500
by Scipione del Ferro. Independently, Niccolo Tartaglia found the solution, and later his
solution was published by Gerolamo Cardano in his book Ars Magna.

Proof: To deduce the solution we introduce a trick. Write

x = u+
α

u

where α is a nonzero constant to be determined later. We can certainly write x in this
form, since solving for u amounts to solving

u2 − xu+ α = 0
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and this equation has a nonzero solution. However, u might be complex even if x is
real.

Substituting in the original equation gives(
u+

α

u

)3
+A

(
u+

α

u

)
+B = 0

or

u3 + (3α+A)u+ (3α2 +Aα)
1

u
+B + α3 1

u3
= 0

We now choose

α = −A
3

and notice that the resulting equation is

u3 +B − A3

27u3
= 0

or

(u3)2 +Bu3 − A3

27
= 0

but this is a quadratic equation in u3. So

u3 =
−B ±

√
B2 + 4A3

27

2

and

u =
3

√√√√−B ±
√
B2 + 4A3

27

2

Therefore

x =
3

√√√√−B ±
√
B2 + 4A3

27

2
− A

3
3

√
−B±

√
B2+ 4A3

27

2

Our cubic has multiple roots, which can be obtained by taking different square roots and
different cube roots; more detail will be given soon. But notice that the same cube root
and the same square root must be used in both terms of the above formula. Let us replace
the plus/minus sign with just a plus. The square root may be complex and thus can have
two values with no easy way to distinguish one over the other.
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Notice that−B +
√
B2 + 4A3

27

2

 −B −
√
B2 + 4A3

27

2

 =
B2 − (B2 − 4A3

27 )

4
=
A3

27

and therefore

3

√√√√−B +
√
B2 + 4A3

27

2

3

√√√√−B −
√
B2 + 4A3

27

2
=
A

3

provided we pick the value of the second cube root making this product A
3 . This allows us

to rewrite the formula in the form

x =
3

√√√√−B +
√
B2 + 4A3

27

2
+

3

√√√√−B −
√
B2 + 4A3

27

2

Remark: In the final formula, we must choose one of the two values of the square root and
use it in both places. Then we must select one of the three values of the first cube root; the
second cube root will also have three values, but we must choose the value which makes
the product of the two cube roots equals A

3 .

Notice that if we change the sign of the square roots, then the two cubics are just inter-
changed, and their product is still A

3 . So it suffices to fix one value for the square root, and
then the three possible cube roots for the first term give the three possible roots.

Remark: By putting the equations of the previous paragraphs together, it is possible to
write a single formula solving the general cubic and thus generalizing the quadratic formula.
If you insist on doing so, go right ahead. In practice, we always simplify as above and solve
the easier x3 +Ax+B = 0.

Remark: In these equations, we are to choose one of the two values of the square root and
use it consistently, and we are to choose one of the three values of the cube root and use
it consistently. All told, then, there are six possible choices to produce the three solutions
of the original cubic equation. So we expect that each root will be given twice by these
formulas.

Remark: There are some unfortunate features of this solution. Consider what happens
when the equation we want to solve is

x3 − 2x− 4 = (x− 2)(x2 + 2x+ 2) = 0

In this case A = −2 and B = −4 and

u3 =
4±

√
16− 32

27

2
= 2± 10

√
1

27
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Taking the positive square root and the real cube root, we obtain

x =
3

√
2 + 10

√
1

27
+

3

√
2− 10

√
1

27

There is no hint here that the solution is an integer. I leave it to the reader to show that
this expression equals 2.

A different problem is revealed by the example below, which shows that complex numbers
can occur even if the final solution is real:

Example: Consider the equation X3 − 15X − 4 = 0. The cubic formula asks us to com-
pute

−B ±
√
B2 + 4A3

27

2
=

4±
√
16− 4·153

27

2
= 2±

√
4− 53 = 2±

√
−121 = 2± 11i

According to the formula, the solution is then

X = 3
√
2 + 11i+ 3

√
2− 11i

According to the paper On The Casus Irreducibilis of Solving the Cubic Equation by Jay
Villaneuva at Florida Memorial University, Bombelli noticed in 1550 that (2+ i)3 = 2+11i
and (2− i)3 = 2− 11i and thus that

X = (2 + i) + (2− i) = 4

which indeeds solves X3 − 15X − 4 = 0.

Remark: If a cubic has a multiple root, it is easily solved. Otherwise a cubic with real
roots either has one real root or three real roots. It turns out that when there is one real
root, the expression under the square root sign is positive. The cubic formula then asks
for the cube root of some real number, which always exists. So the cubic formula yields
the real solution.

But if there are three real roots, then the expression under the square root sign is negative,
and the cubic formula forces us to compute the cube root of a complex number. The final
formula involves this cube root twice, and miraculously the complex part of the result
cancels and we obtain real roots.

The case of the cubic formula when the cubic has three real roots is known as the casus
irreducibilis. The real reason that mathematicians introduced complex numbers and began
to take them seriously is that the cubic formula requires us to calculate cube roots of
complex quantities in this case.
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We will later prove that in the casus irreducibilis case, there is no expression involving
only real roots giving the roots of the cubic. So the use of complex numbers in this case is
essential.

Theorem 7 If x3+Ax+B has one real root and two imaginary roots, B2+ 4A3

27 is positive

and u can be chosen to be real. If x3 + Ax + B has three distinct real roots, B2 + 4A3

27 is
negative and u is necessarily complex.

Proof: Call the roots x1, x2, and x3. We are going to show that

[(x1 − x2)(x1 − x3)(x2 − x3)]
2 = −27B2 − 4A3.

If the roots are real and distinct, it follows that 27B2+4A3 is negative. On the other hand,
if x1 = a, x2 = b+ ic, x3 = b− ic, then (x1 − x2)(x1 − x3)(x2 − x3) = [(a− b)2 + c2](−2ic)
and the square of this expression is [(a− b)2 + c2]2(−4c2) and so negative, so 27B2 + 4A3

is positive.

Consider the expression (x − x1)(x − x2)(x − x3) = x3 + Ax + B. Differentiate and then
set x successively to x1, x2, x3 to obtain

(x1 − x2)(x1 − x3) = 3x21 +A

(x2 − x1)(x2 − x3) = 3x22 +A

(x3 − x1)(x3 − x2) = 3x23 +A

Multiply left sides and right sides together to obtain

[(x1 − x2)(x1 − x3)(x2 − x3)]
2 = −(3x21 +A)(3x22 +A)(3x23 +A)

The right side of this expression is

−27(x1x2x3)
2 − 9A(x21x

2
2 + x21x

2
3 + x22x

2
3)− 3A2(x21 + x22 + x23)−A3

and we want to show that it equals −(27B2 + 4A3).

However (x− x1)(x− x2)(x− x3) = x3 +Ax+B and consequently

x1 + x2 + x3 = 0

x1x2 + x1x3 + x2x3 = A

x1x2x3 = −B

Squaring the first of these formulas gives x21 + x22 + x23 + 2(x1x2 + x1x3 + x2x3) = 0 and
consequently

x21 + x22 + x23 = −2A
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Squaring the second formula gives x21x
2
2+x21x

2
3+x22x

2
3+2(x1x2x3)(x1+x2+x3) = A2 and

consequently
x21x

2
2 + x21x

2
3 + x22x

2
3 = A2

Thus the expression which interests us is

−27(x1x2x3)
2 − 9A(x21x

2
2 + x21x

2
3 + x22x

2
3)− 3A2(x21 + x22 + x23)−A3 =

−27B2 − 9A(A2)− 3A2(−2A)−A3 = −27B2 − 4A3

3.3 The Quartic Formula

The quartic formula was discovered by Lodovico Ferrari in 1540. Ferrari’s formula reduces
the quartic to a related cubic, which is then solved using the result of del Ferro and
Tartaglia.

Ferrari was a student of Cardano, and he learned of Tartaglia’s solution from Cardano.
Unfortunately, Tartaglia revealed his solution to Cardano late at night over a glass of wine,
and made Cardano swear an oath never to reveal his solution. Although Tartaglia claimed
that he would soon publish the result, he never did. This put Cardano and Ferrari in a
bind, because solving a quartic depended on Tartaglia’s secret solution of the cubic.

This knot was untangled when Cardano realized that del Ferro, who by that time had died,
had independently solved the cubic. So Cardano visited del Ferro’s widow and discovered
that she saved her husband’s papers. Sacred oaths were taken seriously in the Renaissance,
but they were also taken literally, so revealing del Ferro’s formula was not the same thing
as revealing Tartaglia’s formula. In this way, Cardano published del Ferro’s cubic formula,
and Ferrari’s quartic result became public.

Rather than using Ferrari’s method, we discuss a simple method described in the Wikipedia
article on the quartic. Begin with a general quartic equation

ax4 + bx3 + cx2 + dx+ e = 0

Divide the equation by a to obtain a corresponding equation with a = 1. Set x = u − b
4

and notice that the corresponding equation for u has the form

u4 +Au2 +Bu+ C = 0

Now comes the main trick. We attempt to factor this as a product of two quadratics:

u4 +Au2 +Bu+ C = (u2 + pu+ q)(u2 + ru+ s)

If we can find p, q, r, s, then we can solve the two quadratics by the quadratic formula and
find all four roots of the quartic. Multiplying out, we find that we need to solve

0 = p+ r
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A = s+ pr + q

B = ps+ qr

C = qs

The first equation implies that
r = −p

so it suffices to solve
A = s− p2 + q

B = ps− pq

C = qs

The first and second equations can be rewritten

A+ p2 = s+ q

B

p
= s− q

C = qs

We can solve these equations for s and q in terms of p:

s =
1

2

(
A+ p2 +

B

p

)
q =

1

2

(
A+ p2 − B

p

)
Thus it suffices to find p satisfying the last equation

C = qs =
1

4

(
(A+ p2)2 − B2

p2

)
or equivalently

p6 + 2Ap4 + (A2 − 4C)p2 −B2 = 0

This is a cubic equation in p2. To solve the reduced quartic, we solve this equation for
p2, extract a root to find p, and use the result to compute r, s, q, and then solve the two
resulting quadratics.

Remark: From here, it is possible to write down explicit formulas for the roots. I won’t
bother.

We should worry about edge cases. This happens when all solutions of the cubic are zero.
That can only happen if A = 0, C = 0 and B = 0, but then the quartic is u4 = 0, which
has trivial solutions. We might worry that the cubic formula would produce a complicated
expression which happens to simplify to zero. This would happen if the cubic has one zero
solution, which happens if B = 0. But then the quartic is a quadratic equation in u2,
u4+Au2+C = 0, which can be solved by two applications of the quadratic formula.
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Field Extensions and Root
Fields

4.1 Motivation for Field Theory

We now want to show that there cannot be equivalent formulas for equations of degree five
and higher. This, of course, is much harder. To get started, we have to look at our earlier
formulas from a more general point of view.

Consider the solution of a cubic. Starting with the coefficients A and B of the equation and
the standard rational numbers, we use addition, subtraction, multiplication, and division
to obtain the expression

B2 +
4A3

27
.

Then we form the square root of this expression:√
B2 +

4A3

27

Using this new number, A, B, and the rationals, we use addition, subtraction, multiplica-
tion, and division to obtain a fancier expression:

−B +
√
B2 + 4A3

27

2

Then we form the cube root of this expression:

3

√√√√−B +
√
B2 + 4A3

27

2

40
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Finally, starting from A, B, the rationals, and the two radicals, we apply additional,
subtraction, multiplication, and division to obtain the actual root:

x =
3

√
2 + 10

√
1

27
+

2

3

1

3

√
2 + 10

√
1
27

It is convenient to think of this process in the following way. Imagine a large pot of numbers
— indeed an infinite pot of numbers. When we begin, this pot contains the positive integers
1, 2, 3, . . . and A and B. We want to add numbers to the pot until finally it contains the
solutions to the cubic. We can add numbers in five ways: by adding two numbers already
in the pot, by multiplying two numbers already in the pot, by subtracting two numbers
already in the pot, by dividing two numbers already in the pot, and by adding a radical of
a number already in the pot.

It turns out that adding a radical is by far the most important of these operations. So
it is convenient to imagine the process as follows. First we add all numbers that can be
obtained from the positive integers and A and B by adding, subtracting, multiplying, and
dividing. This adds infinitely many numbers; call the resulting set K0. Next compute a
radical of one of the numbers in the pot and add that. This radical might be a square
root, or a cube root, or whatever. After that, add all numbers which can be obtained
from numbers now in the pot by adding, subtracting, multiplying, and dividing. Call the
resulting set K1, so K0 ⊂ K1.

Continue. Add a radical of a number currently in the pot, and then add all numbers that
can be obtained from these by adding, subtracting, multiplying, and dividing. Call the
new set K2. In this way we obtain a finite chain of sets of numbers:

K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn

In the end, the roots of our equation should belong to Kn.

This way of thinking puts the emphasis on constructing the radical, since that’s the process
that gives the inclusion sign ⊂. The process of adding, subtracting, multiplying, and
dividing is hidden in the construction of Ki after the radical is added. In the following
sections, we study these two processes in detail. We’ll begin with the process of completing
a set using addition, subtraction, multiplication, and division.
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4.2 Fields

Definition 1 A field is a set K with two binary operations x, y → x+ y and x, y → x · y
satisfying the following axioms:

1. x+ y = y + x for all x, y

2. (x+ y) + z = x+ (y + z) for all x, y, z

3. there is an element 0 such that 0 + x = x for all x

4. given x, there is an element −x such that x+ (−x) = 0

5. x · y = y · x for all x, y

6. (x · y) · z = x · (y · z) for all x, y, z

7. there is an element 1 ̸= 0 such that 1 · x = x for all x

8. given x ̸= 0, there is an element x−1 such that x · x−1 = 1

9. x · (y + z) = (x · y) + (x · z) for all x, y, z

Remark: It is easy to prove that 0 and 1 are unique, and that (−x) and x−1 are uniquely
determined by x.

Remark: Clearly the set of rational numbers Q, the set of real numbers R, and the set of
complex numbers C are fields. Almost all of the fields in these notes are subsets K ⊂ C
with the standard addition and multiplication. Such a subset is a field if it satisfies five
conditions:

1. 0 ∈ K and 1 ∈ K

2. x, y ∈ K implies x+ y ∈ K

3. x ∈ K implies −x ∈ K

4. x, y ∈ K implies x · y ∈ K

5. x ∈ K and x ̸= 0 implies x−1 ∈ K

Remark: The set Zn of integers modulo n is a commutative ring, satisfying all field axioms
except possibly axiom 8. If n = ab has a non trivial factorization, then Zn is not a field
because a and b represent nonzero elements of Zn whose product is zero. But if n = p is
prime, then Zp is a field; indeed if 0 < a < p, then a and p are relatively prime, so there
exist integers A and B with Aa + Bp = 1 and consequently A represents a multiplicative
inverse of a in Zp.
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Theorem 8 Every field K has a smallest subfield, which is isomorphic to either Q or Zp

for some prime p.

Proof: The intersection F of all subfields ofK is a field, and thus the smallest subfield.

Define a map φ : Z → F by sending the generator 1 ∈ Z to 1 ∈ F . This map is necessarily
a ring homomorphism, and thus its kernel is an ideal, I. This ideal is prime, for if ab ∈ I,
then 0 = φ(ab) = φ(a)φ(b), so φ(a) = 0 or φ(b) = 0 and thus a ∈ I or b ∈ I. We conclude
that I = (0) or else I = (p) for some prime p. In the first case Z ⊂ F and we rapidly
conclude that Q ⊂ F . In the second case Zp ⊂ F . Since F is the smallest subfield, Q = F
or Zp = F .

4.3 An Important Example

Example: In the previous section we started with 1 ∈ K and discovered that by adding
all sums, additive inverses, products, and quotients we would end up with either Q or
Zp.

It is instructive to examine a similar example. Suppose we start with Q and
√
2 in a larger

field K, and again add all sums, additive inverses, products, and quotients, to arrive at the
smallest subfield of K containing Q and

√
2. In the argument, imagine that the larger K

is either R or C.

If a, b ∈ Q, then surely we will obtain all a+b
√
2. Surprisingly, we get nothing more. Indeed

the sum of two such elements is another, and the additive inverse of such an element is
another. It is only slightly harder to see that the product of two such elements is another,
essentially because

√
2 ·

√
2 = 2 ∈ Q. Finally the quotient of two such elements is another

because

a+ b
√
2

c+ d
√
2
=

(a+ b
√
2)(c− d

√
2)

(c+ d
√
2)(c− d

√
2)

=
(ac− 2bd) + (bc− ad)

√
2

c2 − 2d2
=

(
ac− 2bd

c2 − 2d2

)
+

(
bc− ad

c2 − 2d2

)√
2

Notice that if c ̸= 0 or d ̸= 0 then c2 − 2d2 ̸= 0 because
√
2 is not rational.

4.4 Extension Fields

Imagine a very large field like the field of complex numbers, which we will pretend is the
set of all possible numbers. Suppose we have a subfield K of this large field and an element
a of the large field. Define K(a) to be the set of all numbers which an be formed from K
and a by adding, subtracting, multiplying, and dividing. We are going to obtain a very
concrete description of such fields K(a). Of course if a ∈ K then K(a) is just K, so assume
that a ̸∈ K.
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There are two possibilities. If a satisfies a non-trivial polynomial P (x) with coefficients in
K, we say the extension K(a) is algebraic over K. If there is no such polynomial, we say
the extension is transcendental over K. For instance, if K is the field of rational numbers
Q and a =

√
2, then a satisfies x2 − 2 = 0. But if K = Q and a = π, then there is no such

polynomial.

We’ll consider the easier transcendental case first. If P (x) and Q(x) are polynomials with
coefficients in K and Q(x) is not identically zero, then P (a) and Q(a) are certainly in the

extension field K(a). Moreover Q(a) ̸= 0 because a is transcendental. So P (a)
Q(a) is in this

field. On the other hand, the set of all such elements is a field, and so

K(a) =

{
P (a)

Q(a)
| P (x) and Q(x) ∈ K[x]

}

This is not the end of the story, because it is conceivable that polynomials P1, P2, Q1, and
Q2 exist with

P1(a)

Q1(a)
=
P2(a)

Q2(a)

But if so, then P1(a)Q2(a)−P2(a)Q1(a) = 0 and so the polynomial P1(x)Q2(x)−P2(x)Q1(x)
vanishes on x = a. Since a is transcendental, this polynomial must be trivial and P1(x)Q2(x) =
P2(x)Q1(x).

The quotient field of the integral domain K[x] is by definition the set of all P (x)
Q(x) with

two such elements identified exactly if P1(x)Q2(x) = P2(x)Q1(x). It is called the field of
rational functions over K in x. We have therefore proved

Theorem 9 If K is a subfield of a larger field which contains a ̸∈ K, and if a is tran-
scendental over K, then the field K(a) is canonically isomorphic to the field of rational
functions over K in x.

4.5 Algebraic Extensions; Root Fields

We now study the more interesting case of K(a) when a is algebraic over K. It is useful
to keep in mind the special case when K = Q and a =

√
2 studied at the end of section

ten.

Since a is algebraic, it satisfies a polynomial P (x) with coefficients in K. Factoring this
polynomial if necessary, we can assume P is irreducible. Of all such irreducible polynomials
vanishing on a, select P to have smallest degree and leading coefficient 1. We call this P
the minimal polynomial of a.
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The minimal polynomial divides any polynomial over K which vanishes on a. Indeed if
Q(x) is nontrivial and vanishes on a, we can divide Q(x) by P (x) to obtain

Q(x) = A(x)P (x) +R(x)

with R(x) either zero or else of smaller degree than P . Since R vanishes on a and P is
minimal, we conclude that R is identically zero and thus that P divides Q. If P and Q are
both minimal, they both have leading coefficient one and must be equal.

Suppose the minimal polynomial has degree n and consider the set of expressions

K(a) =
{
r0 + r1a+ r2a

2 + . . .+ rn−1a
n−1 | ri ∈ K

}
This set contains K and a and is clearly closed under addition. It is also closed under
multiplication, for if we multiply two such expressions, we get another expression of the
same form, but with degree possibly larger than n− 1. However, a is a root of its minimal
polynomial P (x) = xn + kn−1x

n−1 + . . .+ k0, so we can write

an = −k0 − k1a− . . .− kn−1a
n−1

Thus an ∈ K(a) and by the same technique all higher powers of a belong to this set.

Finally, the set K(a) is also closed under division by the following lemma (justifying our
notation):

Lemma 2 Let K be a field, and suppose K ⊂ L where L is an integral domain which is
finite dimensional over K. Then L contains inverses of all nonzero elements and thus is
itself a field.

Proof: Let b ∈ L, b ̸= 0. Consider the map L → L given by multiplication by b. This is
a linear transformation over K. Since L is an integral domain, the map is one-to-one. By
linear algebra, it is thus onto, so there exists c ∈ L with bc = 1.

Remark: Notice that this simple lemma replaces the calculation at the end of section 3.3
showing that inverses exist in that special case.

4.6 Irreducible Polynomials over Q

In applications of Galois theory, we often assume the ground field is the field Q of rational
numbers. We need an ample supply of irreducible polynomials over this field to give
examples of the root fields just introduced. Such polynomials are usually found using two
well-known results:

Theorem 10 (Gauss) If a polynomial with integer coefficients factors over Q, then it
factors over the integers.
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Theorem 11 (Eisenstein) Let P (X) = a0X
n + a1X

n−1 + . . .+ an be a polynomial with
integer coefficients. Fix a prime p and suppose

1. p does not divide a0

2. p divides ai for i > 0

3. p2 does not divide an

Then P (X) is irreducible over the rationals.

Proof: Call a polynomial over the integers primitive if no prime divides all of its coefficients.
If P (X) is a nonzero polynomial over the integers, we can factor out integers that divide
all coefficients, and eventually write P (X) = cP P̃ where cP is a positive integer and P̃ is
primitive. This representation is clearly unique.

If P (X) is a nonzero polynomial over Q, we can similarly factor out all denominators of
individual terms and eventually write P (X) = cP P̃ where cP is a positive rational and P̃
is a primitive polynomial over the integers. This representation is again unique.

Now we come to the key point: the product of two primitive polynomials is again primitive.
Indeed consider such a product

(a0X
m + a1X

m−1 + . . .+ am) (b0X
n + b1X

n−1 + . . .+ bn)

If the result is not primitive, there is a prime p which divides all terms of the product.
Since a0X

m + . . .+ am is primitive, there is a j such that p does not divide aj but divides
aj+1, . . . , am. Note that j might be m. Similarly there is a k such that p does not divide
bk but does divide bk+1, . . . , bn. Consider the term

. . .+ aj−1bk+1 + ajbk + aj+1bk−1 + . . .

This coefficient in the product is not divisible by p because every subterm is divisble by p
except ajbk, contradicting our assumption on p.

We can now prove Gauss’ result. Suppose that P (X) is a polynomial with integer coeffi-
cients which factors over the rationals as Q(X)R(X). Then

cP P̃ = cQQ̃cRR̃ = (cQcR)Q̃R̃.

Since Q̃R̃ is primitive and this representation is unique, we find that P̃ = Q̃R̃. Since P

has integer coefficients, cP is an integer and P = cP P̃ = cP Q̃R̃ =
(
cP Q̃

)
R̃.

We propose to prove Eisenstein’s result using the notation of the proof just given. Suppose
P is not irreducible over the rationals. Then it can be factored as a product of polynomials
with integer coefficients:

. . .+ aj−1bk+1 + ajbk + aj+1bk−1 + . . .
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If the constant coefficient of the product is divisible by p but not p2, then p must divide
exactly one of ambn. Say p divides am and p does not divide bn. Find k such that p does
not divide ak but p divides ak+1, . . . , am. Such a k must exist, else p would divide all ai
and thus the highest coefficient of the product. One of the coefficients of the product is
then

akbn + ak+1bn−1 + . . .

and p does not divide this term because it divides all subterms except the first. So this
must be the highest coefficient of the product, and k + n = 0. So the second term is
constant and we really don’t have a factorization.

Example: It follows from this result that there are root field extensions of the rational
numbers with any degree. Indeed, Xn + 2Xn−1 + . . . + 2 is irreducible by Eisenstein’s
result and has degree n.

4.7 The Degree of a Field Extension

At the end of the previous section, we proved a result using linear algebra. This section is
about the deeper structure behind that proof.

Suppose K ⊂ L is a field extension. By forgetting some of the axioms of L, we see that L
is a vector space over K. The dimension of this vector space is called the degree of L over
K and denoted [L : K].

Corollary 1 If K ⊂ K(a) is an extension, then [K(a) : K] if infinite when a is transcen-
dental over K, and finite if a is algebraic over K. In this second case, [K(a) : K] is the
degree of the minimal polynomial of a.

Proof: This is an immediate consequence of previous results.

Theorem 12 Suppose K ⊂ L ⊂M . Then

[M : K] = [M : L][L : K]

Proof: Suppose [M : L] has degree p and let m1, . . . ,mp be a basis for M over L. Suppose
[L : K] has degree q and let l1, . . . , lq be a basis of L over K. We will prove that {milj} is
a basis of M over K. The theorem immediately follows.

We first prove these elements linearly independent. Suppose
∑

i,j aijlimj = 0 with aij ∈ K.
Then

∑
i (
∑

i aijli)mj = 0. Since the mj are linearly independent over L, (
∑

i aijli) = 0
for each fixed j. Since the li are linearly independent over K, each aij = 0.
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We now prove these elements generate M over K. Let m ∈ L. Since the mj form a basis
of M over L, we can write m =

∑
j bjmj for coefficients bj ∈ L. Since the li form a basis

of L over K, each bj can be written bj =
∑

i aijli. So m =
∑

i,j aijlimj .

4.8 Existence of Root Fields

This section contains an important new way to look at the results of section 3.5. In that
section, we started with a “universal field” like the complex numbers and an element a in
this field, produced a minimal polynomial P (x), and constructed a larger extension field
K(a) containing K and the root a of P .

There is another way to think of this result. Suppose we do not have a universal field
or a root a, but instead start with a field K and an irreducible polynomial P over K.
We can then construct a new field L, whose elements are abstract symbols rather than
complex numbers, with the properties that K ⊂ L, that P (x) has a root in L, and that
L is generated by this root and K. We call this the abstract root field associated with
P .

The construction is very simple. Start with the set of all polynomials with coefficients in
K. Denote this set by K[X]. It is a commutative integral domain. Let J be the ideal
in this ring generated by the polynomial P (X). Thus it consists of all polynomials of the
form P (X)R(X) for arbitrary polynomials R. It is easy to check that J is a prime ideal,
and therefore the quotient ring K[X]/J is a field. This is our new field L. So

L = K[X]/J

It is easy to make this construction look more concrete. If A(X) ∈ K[X] is a polynomial,
we can divide A by P to obtain A(X) = P (X)Q(X) + R(X) where the degree of R is
smaller than the degree of P . In the quotient field, A is equivalent to R because their
difference is in the ideal J . So every element in the quotient is equivalent to exactly one
polynomial of degree smaller than n:

L =
{
k0 + k1X + k2X

2 + . . .+ kn−1X
n−1 | ki ∈ K

}
Notice that this expression is essentially the same as the expression for a general element
of the root field K(a):

L =
{
k0 + k1a+ k2a

2 + . . .+ kn−1a
n−1 | ki ∈ K

}
Clearly addition in both fields is “the same”. Remarkably, multiplication is also “the
same”. A special case will make this clear. Let us compare the operation of multiplying an



CHAPTER 4. FIELD EXTENSIONS AND ROOT FIELDS 49

arbitrary element of the abstract field by X and the operation of multiplying an arbitrary
element of the root field by a. We then get two expressions

k0X + k1X
2 + . . .+ kn−1X

n

and
k0a+ k1a

2 + . . .+ kn−1a
n

The trouble is that the first expression contains Xn and the second contains an. In the
abstract case, P (X) = Xn + p1X

n−1 + . . .+ pn ∈ J so we can write

Xn = −pn − pn−1X − . . .− p1X
n−1

In the second case, a has minimal polynomial P (X), so P (a) = an + p1a
n−1 + . . .+ pn and

we can write
an = −pn − pn−1a− . . .− p1a

n−1

These formulas allow us to write the product as a linear combination of 1, X, . . . ,Xn−1 in
the first case, and as a linear combination of 1, a, . . . , an−1 in the second case, and we get
completely analogous results in the two cases.

It remains to show that the polynomial P has a root in the abstract case. Indeed X ∈ L,
so we can insert this element into P to obtain P (X). Since P (X) ∈ J , the result is zero
and X is a root of P .

So we have constructed an abstract field L, with K ⊂ L such that P has a root in L.

Clearly this abstract field is isomorphic to the concrete root field K(a) we constructed in
a previous section. This isomorphism deserves a separate section.

Optional remark: Some people find the proof that X is a root of P in L unconvincing.
These people have a point because our notation is ambiguous.

To clarify the argument, write the initial polynomial as P (Y ) and let the initial integral
domain be K[X]. Here X and Y are two abstract symbols. Introduce the quotient field
K[X]/J . Distinguish elements of K[X] and elements of the quotient field by writing

Q(X)

to indicate the element of the quotient field represented by a polynomialQ(X) ∈ K[X].

We want to form P (X) by substituting X for Y in the formula for P (Y ). Clearly this can
be done using representatives, so P (X) represents the element P (X) ∈ L.

But P (X) ∈ J , so P (X) represents zero, and thus

P (X) = 0

(These overline symbols rapidly become distracting, so I urge the reader to adopt the more
relaxed treatment in these notes.)
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4.9 Isomorphism and Uniqueness

If K and L are fields, an isomorphism φ : K → L if a one-to-one and onto map which
preserves addition and multiplication. That is

• φ(x+ y) = φ(x) + φ(y)

• φ(xy) = φ(x)φ(y)

It is easy to prove that such a map preserves 0, 1, subtraction, and division.

SupposeK is a subfield of a universal field, which we suppose is the complex numbers. Sup-
pose P (x) is a polynomial irreducible over K. Since the complex numbers are algebraically
closed, we can find a complex root a of P (x), and form K(a). We can also construct the
abstract field L of the previous section. Comparing sections 12 and 14, it is clear that we
have proved

Theorem 13 There is a unique isomorphism φ : L → K(a) which is the identity on K
and takes X ∈ L to a.

This theorem has a very important corollary:

Corollary 2 Suppose K is a subfield of the complex numbers, P (x) is a polynomial irre-
ducible over K, and a and b are complex roots of P . Then there is a unique isomorphism
K(a) → K(b) which is the identity on K and maps a to b.

For example, consider P (x) = x2 − 2, which has ±
√
2 as roots. In this case, K(

√
2)

and K(−
√
2) contain the same elements, but the isomorphism sends k1 + k2

√
2 to k1 −

k2
√
2.

Consider P (x) = x3−2. If θ = e
2πi
3 , the roots are a = 3

√
2, b = 3

√
2θ, and c = 3

√
2θ2, and the

fields K(a),K(b),K(c) do not contain the same elements. Geometrically as subsets of the
plane, these fields look different; the first is a subset of the real numbers, while the other
two are spread out across the entire plane. But as abstract fields, they are isomorphic.
The reader might like to check this directly.

4.10 Putting It All Together

It is useful to reread sections ten through fifteen, because they illustrate two ways of
thinking about fields which we will employ often. In the first few sections, we thought of
fields contained in the complex numbers. Our polynomials often had rational coefficients,
and we were particularly interested in fields Q ⊂ K ⊂ C such that K could be obtained
from Q by adding a finite number of algebraic elements.
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But we might also be interested in extensions of Zp. In this case, we haven’t produced an
analogue of the complex numbers. It is possible to prove that any field can be extended
to an algebraically closed field, but the proof involves the axiom of choice and can be very
abstract. We prefer to avoid this approach, and section fourteen allows us to do that.

Here is a simple example to make this concrete. Consider the field Z2. It turns out that
this field is contained in larger finite fields, and the number of elements in each such field
is a power of two. Let us construct the simplest, a field with four elements.

To use the technique of section fourteen, we need to start with an irreducible polynomial
P (x). Notice that when this P is quadratic, the resulting L = { r0 + r1a } where the
ri ∈ Z2, and thus has four elements. So we must find an irreducible monic polynomial of
degree two.

The complete list of such polynomaials is

• x2

• x2 + 1 = (x+ 1)2

• x2 + x = x(x+ 1)

• x2 + x+ 1

The first three are reducible, but the last isn’t. Let P (x) = x2 + x+ 1. Then we obtain a
field with four elements, represented by the four polynomials 0, 1, x, and 1+x. It is trivial
to write down an addition table. In the multiplication table, 0 times anything is zero and
1 times anything is that thing, and the only non-trivial products are

• x ◦ x = x2 = x+ 1

• x ◦ 1 + x = x+ x2 = 1

• 1 + x ◦ 1 + x = x2 + 1 = x

For example, x ◦ x = x2, but since x2 + x+ 1 = 0 we have x2 = −x− 1 and since −1 = 1
in Z2, this equals x+ 1.



Chapter 5

Splitting Fields

5.1 Factoring P

Recall that if a polynomial P (x) has a root a, then it can be factored as P (x) = (x−a)Q(x).
Indeed, dividing by x−a gives P (x) = (x−a)Q(x)+R(x) where R has smaller degree than
x− a and thus is a constant. Setting x = a, we discover that the constant is zero.

In the previous sections, we started with an irreducible P over K, and constructed a
field K(a) containing a root a of P . Thus P factors over K(a), but the nature of this
factorization is unpredictable. In some cases, P suddenly factors completely, while in
others the term x− a factors out and the remaining polynomial Q(x) is irreducible.

For example, consider x3 − 2 over Q. One extension field is generated by 3
√
(2), but the

two remaining roots are complex and thus not in this field. So P (x) factors in Q( 3
√
2)

into
(x− 3

√
2)(x2 +

3
√
2x+

3
√
22)

On the other hand, consider x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1). Ignoring the trivial
factor x− 1, we let P (x) = x4 + x3 + x2 + x+1. Later on we prove that this polynomial is

irreducible. Notice that the complex roots of this polynomial are θ = e
2πi
5 , θ2, θ3, and θ4.

Thus P factors completely in Q(θ) as

(x− θ)(x− θ2)(x− θ3)(x− θ4)

5.2 The Splitting Field

Definition 2 Let K be a field and P (x) a polynomial over K, not necessarily irreducible.
An extension field L of K is called a splitting field of P (x) overK if P (x) factors completely

52
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into linear terms over L, so P (x) = (x− α1)(x− α2) . . . (x− αn) and if L is the smallest
subfield of L containing K and the αi.

Suppose as before that K is a subfield of the complex numbers and P (x) is an irreducible
polynomial over K. Let a1, . . . , an be the complex roots of P , which exist by the fundamen-
tal theorem of algebra. Then K(a1, a2, . . . , an) is clearly a splitting field, and is contained
in C.

Such a field exists because it can be defined as the intersection of all subfields containing
these elements. Clearly this K(a1, a2, . . . , an) is unique.

Theorem 14 Every element of L = K(a1, a2, . . . , an) is algebraic over K. In particular,
if P (x) is irreducible of degree n, then

n ≤ [L : K] ≤ n!

Proof: We can construct K(a1, . . . , an) as a chain of root fields, each of finite degree over
K:

K ⊂ K(a1) ⊂ K(a1, a2) ⊂ . . . ⊂ K(a1, a2, . . . , an)

so K(a1, . . . , an) has finite degree over K. It immediately follows that each element is
algebraic.

If P (x) is irreducible, [K(a1) : K] = n, so the first inequality is clear.

Factor P (x) over K(a1) and write P (x) = (x − a1)Q(x)R(x) where a2 is a root of the
irreducible Q(x) over K(a1). The degree of Q(x) is at most n− 1, so [K(a1, a2) : K(a1)] is
at most n−1. So [K(a1, a2) : K] = [K(a1, a2) : K(a1)][K(a1) : K] is at most n(n−1).

Continue.

Remark: We have much less control over the splitting field than we had over the root
field. For the root field, we know the exact degree over K and the exact structure. For
the splitting field, we only know the degree within broad bounds, and we do not know the
algebraic structure, or a basis over K.

We can also construct the splitting field in the situation when there is no large containing
field like the complex numbers. Let Q1(x) be an irreducible factor of P (x) over K, and
construct the root field of Q1 as in section fourteen. Call it K1. It contains a root of Q1(X)
and thus a root of P (X). Earlier we called this root X. But now the actual form of the
elements of K1 is irrelevant, so just call the root a1.

Factor P (x) over K1. One term is x − a1, and there may be other linear factors corre-
sponding to other roots of P (x) which are already in K1. If all factors are linear, we are
done. Otherwise let Q2(x) be an irreducible factor of P (x) over K1. Construct the root
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field of Q2(x) over K1 and call it K2. Then K2 contains an additional root of P (x) not in
K1. Call it a2.

Continue in this manner until a field is constructed containing all roots of the original
P (x).

Theorem 15 The splitting field is unique up to isomorphism.

Proof: This is obvious in the situation when we have an enclosing field like C. But a proof
is required if we use the abstract construction to obtain a splitting field, because the order
in which we add roots isn’t clear.

Our proof will gradually construct the required isomorphism. We start with two roots θ1
and θ2. By previous results, the root fields K(θ1) and K(θ2) are isomorphic. We extend
this isomorphism to larger and larger subfields until we get an isomorphism between the
complete splitting fields.

Our construction still gives something interesting when there is an enclosing field C, namely
an isomorphism of the splitting field to itself mapping θ1 to θ2. An isomorphism from a
field to itself is called an automorphism. Automorphisms are the central tool in Galois
theory, and our proof of the above theorem will become the main tool used to construct
them.

Because of the importance of this proof, we will give it in an unusual way. We give the
general proof in the next section. In the following section, we go through the proof again,
this time studying the special case P (X) = X3 − 2, to make certain the central ideas are
clear.

5.3 Proof that Splitting Fields Are Unique

Suppose we have two splitting fields L1 and L2 of a polynomial P (x) over K. If P (x)
factors into linear terms over K, then L1 = L2 = K and we are done.

Otherwise select an irreducible factor Q(x) of P (x) over K of degree at least two. Both L1

and L2 contain all roots of P (x); choose one such root in each, calling them a1 and b1. Let
K(a1) ⊂ L1 and K(b1) ⊂ L2 be the root fields, that is, the smallest subfields containing
K and either a1 or b1. By previous results, these fields are isomorphic by an isomorphism
which is the identity on K and takes a1 to b1, because both fields are isomorphic to the
“abstract root field” constructed in section fourteen. Let φ : K(a1) → K(b1) be such an
isomorphism.

Factor P (x) over K(a1). The factors are polynomials with coefficients in K(a1), and
consequently φ can be extended to this polynomial product and gives a corresponding
factorization of P (x) over K(b1). These factors are still irreducible, for otherwise we could
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find an additional factorization over K(b1) and then pull it back via φ−1 to a factorization
over K(a1).

If all of the factors are linear, then all roots of P (x) belong to K(a1) and K(b1), so
L1 = K(a1) and L2 = K(b1) and they are isomorphic.

Otherwise let Q1(x) be an irreducible non-linear factor of P (x) over K(a1) and let Q2(x) be
the corresponding irreducible non-linear factor of P (x) overK(b1). Since Q1 is a factor of P
and P factors completely in L1, there is a root a2 of Q1 in L1. Similarly there is a root b2 of
Q2 in L2. Form the root fields K(a1) ⊂ K(a1, a2) ⊂ L1 and K(b1) ⊂ K(b1, b2) ⊂ L2.

We now claim that we can extend φ to an isomorphism φ : K(a1, a2) → K(b1, b2) which is
the identity on K and takes a1 to b1 and a2 to b2. If so, the rest of the proof will be obvious,
for we can again factor P (x) over K(a1, a2) and proceed as before. Eventually, we will have
isomorphic K(a1, a2, . . . , ak) and K(b1, b2, . . . , bk) over which P factors into linear terms.
It will follow that the first is L1 and the second is L2 and they are isomorphic.

So we need a lemma. But this lemma will be applied again and again in later sections, so
we promote it to a theorem. QED modulo:

Theorem 16 Let φ : K1 → K2 be an isomorphism, and let P1(X) be irreducible over K1

and P2(X) be the image of this polynomial over K2, obviously still irreducible.

Suppose K1 ⊂ L1 and suppose a ∈ L1 is a root of P1(X). Suppose K2 ⊂ L2 and b ∈ L2 is
a root of P2(X). Form K1 ⊂ K1(a) ⊂ L1 and K2 ⊂ K2(b) ⊂ L2.

Then φ extends to an isomorphism K1(a) → K2(b) mapping a to b.

Proof: A typical element of K1(a) is k0 + k1a+ k2a
2 + . . .+ kn−1a

n−1 where the ki ∈ K1

and n is the degree of P1(X). A typical element of K2(b) is k0+k1b+k2b
2+ . . .+kn−1b

n−1

where the ki ∈ K2 and n is the degree of P2(X). Define our extended isomorphism to
be

k0 + k1a+ . . .+ kn−1a
n−1 → φ(k0) + φ(k1)b+ . . .+ φ(kn−1)b

n−1

This map is clearly one-to-one and onto, so it suffices to prove that it respects multi-
plication. But the multiplication rule in K1(a) is derived from the polynomial P1(X) =
Xn + r1X

n−1 + . . .+ rn by repeated applications of the rule

an = −r1an−1 − . . .− rn

and the multiplication rule in K2(X) is derived from the polynomial P2(X) = φ(P1(X)) =
Xn + φ(r1)X

n−1 + . . .+ φ(rn) by repeated applications of the rule

bn = −φ(r1)bn−1 − . . .− φ(rn)

and our extended isomorphism maps the first of these to the second. QED.
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Corollary 3 Let L be the splitting field of an irreducible polynomial P (X), and let θ1 and
θ2 be roots of P in L. Then there is an automorphism φ of L mapping θ1 to θ2.

Proof: This follows from the proof of theorem 14, since we began the proof by constructing
an isomorphism of root fields K(θ1) → K(θ2) and ended by extending it to an automor-
phism of L.

5.4 Uniqueness of Splitting Fields, and P (X) = X3 − 2

In this section we repeat the proof in the previous section, this time using the specific
example P (X) = X3 − 2 over the base field Q.

It is convenient to simplify the notation before starting the proof. Let α = 3
√
2 and

ω = e
2πi
3 = −1

2 +
√
3
2 i. Here α is real. The roots of our equation are θ1, θ2, θ3 = α, ωα, and

ω2α.

Let’s try to guess a basis for the splitting field. This field must contain α, ωα, and ω2α. It
must contain quotients, so it also contains ω and ω2. It must be closed under multiplication,
so it contains powers of α. Since α3 = 2, we only need α and α2. This leads to an initial
guess that a basis is {1, ω, ω2, α, ωα, ω2α, α2, ωα2, ω2α2}.

However, ω3−1 = 0 = (ω−1)(ω2+ω+1) and so ω2 = −1−ω. Removing dependencies, a
better guess is that a basis is { 1, α, α2, ω, ωα, ωα2 }. This indeed turns out to be a basis.
Without giving details, we could prove it by showing that these elements are linearly
independent, and that the set of linear combinations is closed under multiplication by each
basis element. Division then takes care of itself by an earlier argument.

We won’t use this guess because it follows from our more general considerations be-
low.

Our P is already irreducible over Q. Let us arbitrarily select θ1 = α and θ2 = ωα. Form
the root fields

Q(θ1) = { q0 + q1α+ q2α
2 }

Q(θ2) = { q1 + q1ωα+ q2ω
2α2 }

They are isomorphic by a map φ fixing rational numbers and sending α to ωα.

Now factor P (X) over Q(θ1):

X3 − 2 = (X − α)(X2 + αX + α2)

The splitting field L1 can be obtained from Q(θ1) by adding a root of the quadratic term,
which is irreducible over Q(θ1) because its roots are complex and Q(θ1) only contains
real numbers. Once we add one such root, the polynomial P (X) splits completely over
L1.
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Since we know all roots of X3 − 2, it is easy to guess the factorization of the quadratic
term:

X2 + αX + α2 = (X − ωα)(X − ω2α)

This is easily checked by direct multiplication.

Let us arbitrarily pick one of the roots of the quadratic term, say ωα. We can then write
down the full splitting field starting with Q(θ1) using our standard root construction:

Q(α, ωα) = { (q0 + q1α+ q2α
2) + (q3 + q4α+ q5α

2)ωα }

We now repeat this construction over Q(θ2). Notice that our factorization of X3 − 2
does not make sense over Q(θ2); for instance example, α ̸∈ Q(θ2). But φ maps Q(θ1) to
Q(θ2), so it maps polynomials over Q(θ1) to polynomials over Q(θ2). Consequently, the
corresponding factorization over Q(θ2) is

X3 − 2 = (X − φ(α))(X2 + φ(α)X + φ(α2)) = (X − ωα)(X2 + ωα+ ω2α2)

Therefore, another way to get the full splitting field is to start with Q(θ2) and add a root
of X2 + ωα+ ω2α2.

It is easy to find the desired roots without resorting to the quadratic formula because we
know all the roots of X3 − 2; the roots of X2 + αX + α2 over Q(θ2) are α and ω2α, as is
easily checked. Let us arbitrarily pick the root ω2α. Then our standard root construction
gives another version of the splitting field

Q(ωα, ω2α) = { (q0 + q1ωα+ q2ω
2α2) + (q3 + q4ωα+ q5ω

2α2)ω2α }

The map φ was originally chosen to map α → ωα. We extend it to also map the root ωα
of X2+αX+α2 to the root ω2α of X2+ωα+ω2α2. In the end, we obtain an isomorphism
between our two representations of the splitting field of X3 − 2:

(q0+ q1α+ q2α
2)+(q3+ q4α+ q5α

2)ωα→ (q0+ q1ωα+ q2ω
2α2)+(q3+ q4ωα+ q5ω

2α2)ω2α

This isomorphism was our goal. But the previous formula gives more. It is easy to see
directly that our two forms of the splitting field can be rewritten to have the basis we
guessed originally: { 1, α, α2, ω, ωα, ωα2 }. After doing this rewritting, our isomorphism
becomes an automorphism of this field mapping α to ωα.

Indeed, we can rewrite the isomorphism to get

q0+q1α+q2α
2+g3ωα+g4ωα

2+q52ω → q0+q1ωα+q2(−α2−ωα2)+q3(−α−ωα)+q4α2+q52ω

and so our basis vectors map as follows
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• 1 → 1

• α→ ωα

• α2 → −α2 − ωα2 = ω2α

• ω → ω

• ωα→ −α− ωα = ω2α

• ωα2 → α2

Notice that this isomorphism permutes the roots of X3 − 2; indeed

α→ ωα→ ω2α→ α

Final Remark: Our proof that splitting fields are unique ends up finding a non-trivial
isomorphism of the splitting field L for X3 − 2. We made several random choices during
the argument. Changing these choices would yield additional automorphisms of L. Indeed,
a careful inventory of all the choices would give the complete automorphism group of L.
We do this more generally in later sections.



Chapter 6

Finite Fields

6.1 Finite Fields

At this point, our field theory consists of three central ideas: the degree of an extension, the
root field of an irreducible polynomial, and the splitting field of an arbitrary polynomial.
In this intermission, we use this results to obtain a complete theory of finite fields.

If F is a finite field, then F contains a smallest subfield Zp ⊂ F . Then F is a vector space
over Zp of some finite dimension n. It immediately follows that F contains pn elements
since every element has the form a1f1 + . . . + anfn for coefficients ai ∈ Zp and a basis
f1, . . . fn. So

Theorem 17 Every finite field has order pn for some prime p and positive integer n.

Remark: Thus there might be fields of orders 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, but certainly cannot
be fields of orders 6, 10, 12, 14, 15.

Theorem 18 If p is a prime and n is a positive integer, there is a field of order pn. This
field is unique up to isomorphism.

Proof: The nonzero elements of a field F of order pn form a multiplicative subgroup of
order pn − 1, so every element except the identity satisfies xp

n−1 − 1 = 0. Multiplying by
x, every element of the field would satisfy P (x) = xp

n − x = 0.

Let F be a splitting field for this polynomial over Zp. Factor the polynomial. If two terms
are equal, then P (x) = (x− a)2Q(z) = xp

n − x. Formally differentiating both sides,

2(x− a)Q(x) + (x− a)2Q′(x) = pnxp
n−1 − 1 = −1
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Substituting x = a gives 0 = −1, which is impossible. So all roots are distinct, and there
are pn roots.

On the other hand, the roots themselves form a field, and so the splitting field contains
only roots and thus is a field with pn elements. Indeed 0 and 1 are roots. If a and b are
roots, then (ab)p

n
= ap

n
bp

n
= ab, so products of roots are roots. Also (a + b)p = ap + bp

because all remaining binomial coefficients are divisible by p. So (a+ b)p
2
= ((a+ b)p)p =

(ap + bp)p = ap
2
+ bp

2
, and so forth, so (a+ b)p

n
= ap

n
+ bp

n
= a+ b. So sums of roots are

roots. If a is a root, then (−a)pn = (−1)p
n
ap

n
= (−1)p

n
a = −a is p is odd, and −1 = 1 if

p is even, so additive inverses of roots are roots. So the set of all roots is a finite integral
domain, and thus automatically closed under inverses and a field.

In short, the splitting field is a finite field of order pn. Since the splitting field is unique up
to isomorphism, a field of order pn is unique up to isomorphism.

Theorem 19 The multiplicative group of a finite field is cyclic and thus has a generator.
More generally, any finite multiplicative subgroup of a field is cyclic.

Example: Consider the field of order four described on page 20. The nonzero elements are
x, x2 = x+ 1, and x3 = x2 + x = 1.

Proof: Many proofs are known. Here is one I like. Consider first the special case Z2 + Z4.
We claim this cannot be a multiplicative subgroup of a field. For if it were, then every
element would satisfy x4−1 = 0, but this polynomial has at most 4 roots, not eight.

In general suppose G is a finite subgroup of a field. Any finite abelian group is a sum
of groups of the form Zpk . Let p1, . . . , ps be the primes for G and let their highest order

subgroups have orders pk11 , . . . , p
ks
s . Let m = pk

1

1 · . . . · pkxs . Note that every element of
G satisfies xm = 1 and there are at most m roots of this polynomial. Consequently the
Zp

si
i

are the only groups involved, and there are no other summands with pi of the same

or lower order. But the sum of cyclic groups of prime power order, for different primes, is
itself cyclic. QED.



Chapter 7

Beginning Galois Theory

7.1 Motivation for Galois Theory

Ruffini is the first mathematician to prove that the quadratic formula cannot be generalized
to equations of degree five or higher, but his proof had a gap. This gap was filled by Abel,
who gave the first complete proof. Galois gave a deeper proof by bringing ideas hidden in
Abel’s argument to the foreground. I don’t know if Galois knew about Abel’s or Ruffini’s
work.

Galois succeeded in finding a necessary and sufficient condition that a polynomial P (x)
be solvable by radicals. To do this, he had to find a deep property that is true of some
polynomials but not others. In our previous work, with each irreducible P (x) we associated
two fields, the root field K(θ) and the splitting field K(θ1, . . . , θn). All root fields had the
same concrete structure, so it is unlikely that they reveal the required deep property of P .
But splitting fields are not all the same. Sometimes adding one root gives all roots, while
other times adding a root still leaves us far from the complete field. It turns out that the
idea we need is hidden in the construction of the splitting field.

At the end of the previous chapter, we constructed the splitting field L of X3 − 2 and
in the process found an automorphism of this field mapping the root α to the root ωα.
At several points in the argument, we made arbitrary choices. Changing these choices
would have led to different automorphisms. In this particular case, there are six possible
automorphisms.

If K ⊂ L, the automorphisms of L fixing each point of K form a group G, now called the
Galois group. As it turns out, this group codifies the secrets of the splitting field. Galois
proved that knowledge of the group completely determines whether or not the polynomial
can be solved with radicals.
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The mathematicians Ruffini, Abel, and Galois did not immediately introduce the Galois
group. They were led to it by other considerations. It is useful to try to reconstruct their
line of reasoning and we’ll do that next.

Suppose we have an irreducible polynomial P (X) with rational coefficients. By the fun-
damental theorem of algebra, this polynomial can be factored over the complex numbers.
Let θ1, θ2, . . . , θn be its roots. We can calculate these numerically. For instance, perhaps
θ1 = 0.43895 + 2.71834 i.

We only know approximate values for the roots. But the θi are far from arbitrary complex
numbers because θ1 + . . .+ θn and θ1θ2 . . . θn are rational. More generally

(X − θ1)(X − θ2) . . . (X − θn) = Xn − (
∑
i

θi)X
n−1 + (

∑
i<j

θiθj)X
n−2 + . . .± (θ1θ2 · θn)

and all of these coefficients are rational.

We can construct a large number of additional relations as follows. A polynomial S(X1, . . . , Xn)
is said to be symmetric if any permutation of the Xi gives the same polynomial. For in-
stance, the following polynomials, known as the elementary symmetric polynomials, are
symmetric:

• σ1 = X1 +X2 + . . .+Xn

• σ2 = X1X2 +X1X3 + . . .+Xn−1Xn

• σi = . . .

• σn = X1X2 . . . Xn

A key theorem about symmetric polynonials asserts that any symmetric polynomial can
be written uniquely as a polynomial in the σi:

S(X1, . . . , Xn) = Q(σ1, . . . , σn)

If S has rational coefficients, so does Q. If S has integer coefficients, so does Q.

It follows that when S is any symmetric polynomial with rational coefficients, the expression
S(θ1, . . . , θn) is rational. This gives a gigantic number of relations satisfied by the roots of
P . For example, θ21 + θ22 + . . .+ θ2n is rational.

For some polynomials, there are additional relations that arise for a completely different
reason. Consider, for example, X7 − 1. Factoring, we have

X7 − 1 = (X − 1)(X6 +X5 +X4 +X3 +X2 +X + 1)

We’ll later show that the second factor is irreducible. The roots of the second factor are
generated by θ = e

2πi
7 and equal θ, θ2, θ3, θ4, θ5 and θ6.
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These roots satisfy new relations, including

• θ21 − θ2 = 0

• θ31 − θ3 = 0

• θ41 − θ4 = 0

• θ51 − θ5 = 0

• θ61 − θ6 = 0

The new relations don’t come from symmetric polynomials because they aren’t invariant
under all permutations of the roots. For instance, if we leave θ1 fixed and interchange θ2
and θ3, the resulting equations are no longer all true.

On the other hand, some permutations leave these relations unchanged. Indeed, we can
map θ1 to any desired root, but if we want to retain the previous relations, then the
remaining roots must map as in the rows of the following table:

θ1 θ2 θ3 θ4 θ5 θ6
θ2 θ4 θ6 θ1 θ3 θ5
θ3 θ6 θ2 θ5 θ1 θ4
θ4 θ1 θ5 θ2 θ6 θ3
θ5 θ3 θ1 θ6 θ4 θ2
θ6 θ5 θ4 θ3 θ2 θ1

For example, if we map θ1 → θ2 and we want the equation θ21 = θ2 to be invariant, then the
equation will become θ22 = ? where ? is the image of θ2, so we must map θ2 → θ4.

These symmetries of the roots are transitive; any root can be taken to any other root by
a symmetry. It is tempting to say “of course, since these are seventh roots of unity, and
these occur at the vertices of a regular 7-gon, which can be rotated at will.” However!
When we factored, we removed 1 as a root, so geometrically there are no symmetries. The
above symmetries are algebraic.

Each map from the top line to another line gives a permutation of the roots which preserves
the equations listed earlier. Notice that the resulting six permutations form a group. The
permutation θ1 → θ2 represented by the second line of the matrix has order three in
the group, for applying it three times will send θ1 → θ2 → θ4 → θ1. On the other
hand, the permutation sending θ1 → θ3 has order six, since applying it six times sends
θ1 → θ3 → θ2 → θ6 → θ4 → θ5 → θ1.

So surprisingly, the algebraic symmetries of the roots of X6+X5+X4+X3+X2+X +1
form the group Z6, not at all like the full group S6 of all permutations of the roots. Indeed
Z6 has order 6, while S6 has order 720.
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7.2 Motivation; Putting the Ideas Together

How, then, are the notions of splitting fields, relations among roots, and automorphisms
related?

Suppose P (X) has rational coefficients. The splitting field L consists of all sums and
products of the roots θi. Therefore if Q(X1, X2, . . . , Xn) is a polynomial with rational
coefficients, Q(θ1, θ2, . . . , θn) is an element of L. Just as the root field is modeled by poly-
nomials in Q[X], the splitting field is modeled by polynomials in Q[X1, X2, . . . , Xn].

In the root field case, the root θ satisfies P (θ) = 0, so the actual root field is

Q[X]/
(
multiples of P (X)

)
Similarly let us define J to be the set of all polynomials R(X1, X2, . . . , Xn) with rational
coefficients which satisfy R(θ1, θ2, . . . , θn) = 0. This is the set of all relations satisfied by
the roots. It is easy to see that J is an ideal in the polynomial ring, and the splitting field
is

L =
Q[X1, . . . , Xn]

J
=

Q[X1, . . . , Xn]

(ideal of relations R)

Among these relations are all symmetric polynomials. Galois’ initial idea is that equations
solvable by radicals will have many, many more relations than just these. Studying the
relations is difficult because there are so many. Galois’ second idea is that it is better to
study the symmetry group G of the relations. By definition, a symmetry of the set of
relations is a permutation σ of the Xi such that whenever R(X1, . . . , Xn) is a relation,
R(Xσ(1), . . . , Xσ(n)) is also a relation. As we get more relations, we get fewer symmetries.
Often the group G is the full set Sn of all permutations, but for X6 + X5 + X4 + X3 +
X2 +X + 1, it is much smaller, just Z6. Studying G is much easier than studying the set
of relations because G is a finite group.

A permutation of the roots which leaves the relations invariant obviously induces an au-
tomorphism of the full L. Conversely, each automorphism of L must send a root of P to
another root and thus must permute the roots; to induce an automorphism, this permuta-
tion must preserves the relations.

In this way, we are led from the construction of the splitting field to the relations among
the roots, and thus to the automorphisms of the splitting field.



CHAPTER 7. BEGINNING GALOIS THEORY 65

7.3 The Galois Group

Definition 3 Let K ⊂ L be fields and suppose [L : K] is finite. The Galois group G of this
extension is the set of all automorphisms of L which leave all elements of K individually
fixed.

Remark: Unfortunately, this group may give no information. For example, consider Q ⊂
Q( 3

√
2). An automorphism must map the polynomial X3 − 2 back to itself, and thus map

each root of this polynomial to another root. Since the field only contains the real root,
the only automorphism is the identity map.

Theorem 20 Let P (X) be a polynomial over K, not necessarily irreducible. Let L be a
splitting field of P .

• Every element of the Galois group of K ⊂ L permutes the roots of P

• This permutation completely determines the element of G

• If P (X) is irreducible over K and θi and θj are two roots, there is an element σ in
the Galois group of the splitting field L such that σ(θi) = θj

Proof: If P (θ) = 0 and σ is a Galois automorphism, then σ fixes the coefficients of P and
therefore P (σ(θ)) = 0. Since the roots generate the splitting field, the second assertion is
clear.

The third assertion was proved as theorem 13 in section 18 on splitting fields.

Remark: The last theorem of the previous section was the first of a string of theorems
showing that non-trivial automorphisms exist. We now come to a somewhat difficult, but
extremely important theorem which guarantees the existence of many more automorphisms:

Theorem 21 Let P (X) be a polynomial over K, not necessarily irreducible. Let L be a
splitting field for P (X). Suppose that P (X) does not have multiple roots in L. Then

|G| ≥ [L : K]

and thus the Galois group has many elements.

Proof: Factor P and let P1(X) be one of the irreducible factors. This polynomial factors
completely in L; call its roots a1, . . . , an1 . The root fields K(a1), . . . ,K(an1) inside L are
isomorphic by a previous result. Let φi : K(a1) → K(ai) be such isomorphisms over
K. In particular, φ1 is the identity map from K(a1) to itself. We are going to extend
these isomorphisms to automorphisms of L. We know that this will give [K(a1) : K]
automorphisms because all the roots of P1 are distinct.
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Factor P (X) over K(a1). If P factors completely into linear factors, then K(a1) = L and
consequently φi : L → L. This gives the same number of automorphisms as [L : K] =
[K(a1) : K] and we are done.

Otherwise factor P (X) over K(a1) as Q1Q2 . . . Qs and let P2(X) be one of the nonlinear
factors. We have isomorphisms φi : K(a1) → K(ai); in particular φ1 is the identity.
Applying these isomorphisms, we discover that P (X) also factors as

φi(Q1)φi(Q2) . . . φi(Qs)

over K(ai). In particular, φi(P2(X) is one of the factors over K(ai). For each i, including
i = 1, let bij be all roots of φi(P2(X)) in K(ai). The extension lemma on page 24 implies
that we can uniquely extend the φi to isomorphisms φij : K(a1, b11) → K(ai, bij). Notice
that the map K(a1, b11) to itself is the identity.

Now factor P (X) overK(a1, b1). Suppose first that all factors are linear. Then allK(ai, bij)
are L and each φij : K(a1, b1) → K(ai, bij) is an automorphism L → L. These automor-
phisms are all different. Indeed, they take a1 to ai and the ai are all different, so two equal
automorphisms must be associated with the same i. But then the automorphisms map b1
to elements bij for fixed i, and these are roots of φij(P2(X), hence roots of P (X), and so
all different. The total number of automorphisms is the number of ai multiplied by the
number of bij , which equals the degree of P1(X) multiplied by the degree of P2(X), or
[K(a1) : K][K(a1, b1) : K(a1)] = [L,K].

If the factorization P (X) = R1(X)R2(X) . . . Rp(X) of P (X) over K(a1, b1) has non-linear
terms, fix one and call it P3(X). Applying the isomorphism φij : K(a1, b1) → K(ai, bij),
we discover that P (X) also factors as

φij(R1)φij(R2) . . . φij(Rp)

over K(ai, bij). For each i and j, let cijk be all roots of φij(P3(X)) over K(ai, bij).

Then for fixed i we have an isomorphism carrying a1 to ai, and once i is fixed we have a fixed
extended isomorphism carrying b2 to bij and for fixed i and j we have an isomorphism de-
fined on K(a1, b1, c1) carrying c1 to cijk. These isomorphisms extend to automorphisms of
L. If two are equal, they have the same i since the ai are distinct. They then have the same
j since for fixed i the bij are distinct, and they have the same k since for fixed i and j the cijk
are distinct. Counting as before, we have at least deg(P1(X))deg(P2(X)deg(P3(X)) auto-
morphisms, and this last number is K[a1 : K][K(a1, b1) : K(a1)][K(a1, b1, c1] : K(a1, b1)].
If we stop at this stage, this number is [L : K] and we have enough automorphisms.

Otherwise continue step by step in the same way. QED.

Remark: In the next chapter we will prove that for any finite extension K ⊂ L, we have
|G| ≤ [L : K]. Combining this with the previous theorem then gives the exact number of
automorphisms for splitting fields of polynomials with no repeated roots.



Chapter 8

Galois Extensions and the
Fundamental Theorem

8.1 Galois Extensions

Definition 4 We say K ⊂ L is a Galois extension is the only elements of L left fixed by
every element of the Galois group are elements of K.

Remark: The Galois theory developed in the next section works only for Galois extensions.
So the remaining results in this section are crucial, showing that many important field
extensions are Galois extensions.

The next developments come from the paper On the Characterization of Galois Extensions
by Meinolf Geck, American Mathematical Monthly, August-September, 2014.

Lemma 3 The Galois group of a finite extension K ⊂ L is finite.

Proof: Let α1, . . . , αn be a basis for L over K. An automorphism is completely determined
by its action on the αi, so it suffices to prove that each αi can have only finitely many
images. Let P (X) be the minimal polynomial of αi over K and notice that the image of
αi must also be a root of this minimal polynomial, which has finitely many roots.

Lemma 4 If K ⊂ L is a finite extension, then L is not the union of a finite number of
strict subfields K ⊂M ⊂ L.

Proof: If K is infinite, an even stronger statement is true: a finite dimensional vector space
over an infinite field cannot be a union of a finite number of proper subspaces. To prove
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this, pick a basis for L, and write the elements of L as n-tuples. Consider the set S of
elements (1, t, t2, . . . , tn−1) ∈ L. There are infinitely many such elements.

We can enlarge each subspaceM to a subspace of codimension one, and thus to a subspace
defined by an equation a0x0 + a1x1 + . . . + an−1xn−1 = 0. The element (1, t, . . . , tn−1)
belongs to this subspace only if a0+a1t+ . . .+an−1t

n−1 = 0, and this polynomial equation
has only finitely many roots. So only finitely many elements of the set S belong to the
finite union of subspaces.

If K is finite, we need to restrict to subfields M ⊂ L, but then everything in sight is a
finite field. So the multiplicative group L⋆ of nonzero elements of L is cyclic. Let g ∈ L be
a generator. This g cannot belong to any strict subfield M ⊂ L. QED.

Corollary 4 For an arbitrary finite extension K ⊂ L, there is an element θ ∈ L moved
by every nontrivial element of the Galois group.

Proof: For each nontrivial g ∈ G, the set Mg of fixed points of g is a proper subfield of L
containing K. By the lemma, the union of the subfields is not the entire field.

Corollary 5 We have |G| ≤ [L : K]. If equality holds, there exists θ ∈ L such that
L = K(θ), and L is a splitting field of the minimal polynomial of θ, which has no multiple
roots.

Proof: Choose θ as in the previous corollary and let P (X) be its minimal polynomial over
K. The Galois group must map θ to other roots of P (X). Since no element of the Galois
group except the identity leaves θ fixed, the number of distinct roots of P (X) must be at
least |G|, so the degree of P is at least |G|. Therefore

|G| ≤ deg(P ) = [K(θ) : K] ≤ [L : K]

If equality holds, then |G| = deg(P ) and K(θ) = L. In particular, every root of P must
equal σ(θ) for some σ ∈ G, so P splits and its roots are distinct.

Theorem 22 Let K ⊂ L be a field extension of finite degree. The following are equivalent:

• |G| = [L : K]

• K ⊂ L is a Galois extension

• L is a splitting field over K for a polynomial P (X) without multiple roots.

• L = K(θ) where θ is a root of a polynomial P (X) which splits completely in L and
does not have multiple roots.

If the characteristic of the ground field is zero, we can add a fifth item

• L is a splitting field over K for an arbitrary polynomial P (X)
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Proof of theorem: First a) implies b), for let M be the set of all elements of L fixed by
every element of G. Clearly M is a subfield and K ⊂ M ⊂ L. Hence G is also the Galois
group of L over M , and by corollary 5 we have |G| ≤ [L :M ] ≤ [L : K]. The left and right
sides of this equation are equal by assumption, so M = K.

Second, b) implies c) as follows. Find a basis x1, . . . , xn for L over K. For each i satisfying
1 ≤ i ≤ n and each σ ∈ G we can form σ(xi) ∈ L. The set of all these elements is a set
which may have duplicates; let S be the same set with duplicates removed.

If we act on the σ(xi) on the left by a fixed τ ∈ G, we just rearrange the elements. If a
particular element occurs r times originally, the image of this element will occur r times.
Consequently we can remove duplicates before or after multiplication by τ and get the
same result. So the set S is invariant under the action of any fixed τ.

Form the polynomial

P (X) =
∏
S

(X − σ(xi))

The coefficients of this polynomial are left fixed by applying any τ . For example, the first
coefficient is the sum of elements in S and the set S is invariant under multiplication by τ .
Since K ⊂ L is a Galois extension and the coefficients of P are invariant under the Galois
group, all of these coefficients belong to K.

Since G contains the identity, the set S contains all xi, so the field generated by the roots
of P is L. Since P splits completely, it is a splitting field. By construction, P has no
repeated roots.

Third, c) implies a). We already know that |G| ≤ [L : K] from Corollary 5. By theorem
20 in section 6.3, c) implies that |G| ≥ [L : K]. Therefore |G| = [L : K].

Condition d) implies condition c). This condition implies conditions a) and b), and condi-
tion a) implies condition d) by corollary 5.

Condition c) implies condition e). Conversely, if the ground field has characteristic zero,
condition e) implies condition c) as follows.

If the characteristic of the ground field is zero, suppose K ⊂ L is a splitting field of an
arbitrary P (X). Factor P (X) over K into irreducible polynomials P1(X)P2(X) . . . Pj(X).
If an irreducible factor occurs more than once, we can remove the redundant term and get
a new polynomial P̃ with the same roots and the same splitting field. So we can assume
there are no redundancies.

Fix i and consider Pi(X). If θ is a root in a splitting field L, then Pi is the minimal
polynomial of θ. If θ is a multiple root, we can write Pi(X) = (X−θ)2Q(X) over L. Taking
formal derivatives, P ′

i (X) = 2(X − θ)Q(X) + (X − θ)2Q′(X) and consequently θ is a root
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of P ′
i (X). Writing Pi(X) = Xk+a1X

k−1+ . . ., we have P ′
i (X) = kXk−1+ . . . . In a field of

characteristic zero, k ̸= 0 and so P ′
i (X) has smaller degree than Pi, a contradiction.

A root cannot be a root of two terms Pi and Pj , for otherwise they would both be minimal
polynomials of the root, and thus equal up to a constant, so one of them would have been
removed when we removed redundant terms. QED.

8.2 Fundamental Theorem of Galois Theory

Let K ⊂ L be a fixed Galois extension with Galois group G. Suppose that K1 is a field,
K ⊂ K1 ⊂ L. Associate this field with a subgroup of G, namely

{g ∈ G | g fixes each element of K1}

Conversely let H be a subgroup of G, {e} ⊂ H ⊂ G. Associate this subgroup with a
subfield of L, namely

{ l ∈ L | h(l) = l for all h ∈ H}

Theorem 23 (The Fundamental Theorem of Galois Theory) The maps just defined
are inverse to each other and set up a one-to-one correspondence between the set of all sub-
groups of G and the set of all subfields of L containing K.

Remark: This is astonishing, since fields are complicated and hard to pin down, while
subgroups of a finite group can be enumerated mechanically.

Remark: We gather here a few extra features which are part of the theorem and will be
proved as we prove the theorem.

• The correspondence is order reversing. The identity subgroup corresponds to L and
the entire G corresponds to K.

• Suppose K ⊂ M ⊂ L is a subfield of L corresponding to a subgroup H of G. Then
the extension M ⊂ L is a Galois extension, and its Galois group is H. The extension
K ⊂ M is a Galois extension if and only if H is normal, and in that case its Galois
group is G/H.

Proof of Fundamental Theorem: Consider the map

{fields} → {groups} → {fields}

Suppose we start with a subfield M on the left. Since K ⊂ L is a Galois extension, it is
a splitting field for a polynomial P (X) over K without multiple roots in L. This P (X)
certainly has coefficients in M , so L is the splitting field of P over M and there are no
multiple roots. Hence M ⊂ L is Galois.
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The Galois group of M ⊂ L is the set of all automorphisms of L which fix M . Such an
automorphism certainly fixes K, so it belongs to the Galois group of K ⊂ L. Thus it is
{ σ ∈ G | σ fixes M }.

This is exactly the group H assigned to M by the Galois correspondence. The correspond-
ing subfield attached to this group is the set of all elements of K fixed by the elements of
H. Since M ⊂ L is Galois, this set is M itself.

Consider the map
{groups} → {fields} → {groups}

Start with a subgroup H and consider the set M of all elements fixed by H. This M ⊂ L
is a Galois extension as above. It’s Galois group is the set N of all automorphisms of L
fixing M , and this is the group assigned to M on the right of the above sequence. So
|N | = [L :M ]. Notice that H ⊂ N .

By corollary 5 in section 7.1, there is a θ ∈ L such that L =M(θ). Define

P1(X) =
∏
σ∈H

(
X − σ(θ)

)
By the standard argument, the coefficients of this polynomial are invariant under H and
thus belong to M . Since θ is a root of P1(X), the minimal polynomial of θ over M divides
P1(X) and thus has degree at most |H|. But [L : M ] equals the degree of this minimal
polynomial, so [L :M ] ≤ |H|. Therefore |N | ≤ |H]. Since H ⊂ N , we have H = N . QED.

Theorem 24 If K ⊂ L is a Galois extension and K ⊂M ⊂ L corresponds to a subgroup
H ⊂ G, then K ⊂M is Galois if and only if H is normal in G, and in that case the Galois
group of K ⊂M is G/H.

Proof: Let σ ∈ G. If K ⊂ M ⊂ L corresponds to H ⊂ G, then σ(M) corresponds to
σHσ−1, since an element of this group maps σ(M) to M , and then leaves M fixed, and
then maps it back to σ(M). It follows that H is normal in G if an only if σ(M) ⊂ M for
all σ ∈ G.

Suppose H is normal, and thus σ(M) ⊂ M . It follows that every automorphism in G
induces an automorphism of M . Two automorphisms σ1 and σ2 induce the same auto-
morphism of M if and only if σ−1

1 σ2 is the identity on M , or equivalently if and only if
σ−1
1 σ2 ∈ H, so the group G/H acts effectively on M . Notice that |G| = |H||G/H| and

[L : K] = [L : M ][M : K]. Since K ⊂ L and M ⊂ L are Galois, |G| = [L : K] and
|H| = [L : M ]. It follows that |G/H| = [M : K], so M is Galois with Galois group
G/H.

Conversely if K ⊂ M is Galois, then there is a θ ∈ M such that M = K(θ) where θ is a
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root of a polynomial P (X) which splits completely. If σ ∈ G, then σ maps θ to other roots
of P , and thus maps M to itself, so H is normal. QED.

8.3 Important Note

The Galois theory developed above works for all fields, including fields of positive charac-
teristic. The only cautionary note is that we cannot apply the theorem to a splitting field
in characteristic p > 0 unless we know that it is the splitting field of a polynomial with no
multiple roots.

8.4 An Example

Consider the polynomial P (X) = X3 − 2 studied in section 4.4. It is irreducible over Q by
Eisenstein’s theorem. The splitting field of P (X) is Q(α, ωα, ω2α). Since it is a splitting
field, Q ⊂ L is Galois and the Galois group is a transitive permutation group on the roots
and hence Z3 or D3. But complex conjugation is clearly an automorphism of degree 2, so
G = D3.

The subgroups of D3 are {e}, three copies of Z2 formed by the three reflections of the
equilateral triangle, Z3, and D3. The Galois correspondence is order reversing, and the
corresponding subfields of L are L, the three root fields Q(α), Q(ωα), and Q(ω2α), a field
corresponding to Z3, and Q itself.

What subfield corresponds to Z3? Notice that the cube roots of unity belong to L, and
thus M = Q(θ) is a subfield with splitting polynomial X3 − 1 = (X − 1)(X2 + X + 1).
Hence [Q(θ) : Q] = 2. This field is a Galois extension of Q, so it must correspond to a
normal subgroup of D3 and thus to Z3. It’s Galois group is D3/Z3 = Z2.

8.5 Finite Fields Again

In section 16 we constructed a field with four elements. This construction works in general.
Suppose we want a field L with pn elements. Find an irreducible polynomial over Zp of
degree n. Then our field will be the root field of this polynomial.

We know that an irreducible polynomial of degree n exists for the following reason. We
proved that there is a field L with pn elements. The group L⋆ is cyclic with generator γ.
So L = Zp(γ). The minimal polynomial P (X) of γ has degree n.

Since γ satisfies Xpn −X = 0, P (X) is a factor of this polynomial.

Example: Suppose we want a field with 27 elements. We must find an irreducible poly-
nomial over Z3 with degree 3. It suffices to find a cubic with no roots in Z3. Randomly
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trying examples, X3 + 2X + 2 works. So a typical element of the field is a0 + a1X + a2X
2

and X3 = −2X − 2 = X + 1.

Definition 5 The field with pn elements is often denoted GF (pn).

Definition 6 Let F = GF (pn). The Frobenius automorphism is the map σ : F → F given
by a→ ap.

Theorem 25 The extension Zp ⊂ GF (pn) is Galois with Galois group Zn generated by
the Frobenius automorphism.

Proof: The extension is a splitting field for Xpn − X. The roots of this polynomial are
distinct, indeed exactly the elements of GF (pn). The Frobenius automorphism satisfies
σ(a + b) = (a + b)p = ap + bp = σ(a) + σ(b) because all remaining coefficients in the
expansion are divisible by p. It trivially preserves multiplication and takes nonzero elements
to nonzero elements. It fixes each element of Zp. Since it is a linear transformation over
Zp which is one-to-one, it is also onto.

We show that σ has order n in the full Galois group. Certainly its order divides this
number, because every element a ∈ GF (pn) satisfies ap

n
= a. If σ has smaller order d,

then every element of GF (pn) would satisfy Xpd −X = 0, but this equation has at most
pd roots.

Finally, we show that every automorphism of GF (pn) is a power of σ. An automorphism of
GF (pn) must fix 1, hence Zp. Therefore the number of automorphisms is [GF (pn) : Zp] = n,
and powers of σ give this many automorphisms. QED.

Remark: The fundamental theorem of Galois theory then reveals the lattice structure
for the subfields of GF (pn). The subgroups of Zn are all abelian and have the form
{all powers of σd} for d|n. The order of such a subgroup is n

d . The corresponding subfield

is all elements satisfying σd(a) = ap
d
= a, but these elements exactly form GF (pd). It

follows that the Galois group of GF (pn) over GF (pd) is Zn/d, and generated by σd.

The finite subfields of GF (pn) are GF (pd) for d/n.



Chapter 9

Concrete Cases of the Theory

9.1 Cyclotomic Fields

We now want to prove Galois’ theorem giving a necessary and sufficient condition that an
equation be solvable in radicals. This proof requires partial calculation of a small number
of specific Galois groups. In this chapter, we only carry calculations far enough to deduce
what we will need in our discussion of solvability. A later chapter will completely compute
the Galois groups discussed here.

Theorem 26 Let n be a positive integer and consider P (X) = Xn−1. Suppose the ground
field K has characteristic zero or else that its characteristic does not divide n. Then the
splitting field L of P (X) is a Galois extension, and its Galois group is abelian.

Proof: Some caution is required, because the polynomial P is reducible. For example,
X4 − 1 = (x2 − 1)(X2 + 1) = (X − 1)(X + 1)(X2 + 1).

Notice that P cannot have multiple roots by the standard argument, since its formal
derivative nXn−1 is not zero. So K ⊂ L is a Galois extension. Every root of P is an nth
root of unity, and there are n distinct roots. So the roots are exactly the nth roots of unity.
This is a finite subgroup of a field, hence cyclic.

Let ω be a generator of the group of nth units. If σ belongs to the Galois group, σ(ω) = ωi

for some fixed i, 1 ≤ i ≤ n. Then σ(ωj) = σ(ω)j = ωij . It follows that i completely
determines the automorphism. The map σ → i sends the Galois group of K ⊂ L in a

one-to-one manner into Zn. If σ → i and τ → j, then τ
(
σ
(
ω
))

= τ
(
ωi
)
= τ(ω)i = ωij , so

our map is a group homomorphism into the multiplicative group Z⋆
n of invertible elements

in Zn, which is abelian. Since G is injected into an abelian group, it is abelian. The map

74



CHAPTER 9. CONCRETE CASES OF THE THEORY 75

in question need not be onto Z⋆
n, and certainly isn’t when K already contains some roots

of unity. QED.

9.2 Galois Group of a Radical Extension

Theorem 27 Let K be a field containing all nth roots of unity. If the characteristic is a
positive prime p, suppose that p does not divide n. Suppose a ∈ K, and let L = K( n

√
a).

Then K ⊂ L is a Galois extension, and its Galois group is cyclic.

Proof: Since the roots of unity are solutions to Xn − 1 and p does not divide n, the
standard argument via differentiation shows that the roots of this polynomial are distinct.
Thus the nth roots of unity in K form a group of order n. Let ω be a primitive nth root
of unity.

Then the roots of Xn − a are ωk n
√
a, so L is a splitting field for F and thus a Galois

extension. Notice that the ωk n
√
a need not be linearly independent over K, and Xn − a

need not be irreducible.

Each element of the Galois group sends the root n
√
a to some other root ωk n

√
a. Then ωj n

√
a

must map to ωj+k n
√
a, so the initial k determines the automorphism. Notice also that

composition corresponds to addition of exponents, since n
√
a→ ωk n

√
a→ ωk+l n

√
a.

Hence the set of all k in 0 ≤ k < n corresponding to automorphisms of L is a subgroup of
Zn. All subgroups of Zn are cyclic of some order d dividing n. It follows that the Galois
group of K ⊂ L is cyclic. QED.

9.3 Structure of Extensions with Cyclic Galois Group

Next we’d like to go backward and understand the structure of a Galois Extension if we
only know that the Galois group is cyclic. The following theorem is a sort of converse of
the previous result.

Theorem 28 Let K be a field containing all nth roots of unity. If the characteristic is a
positive prime p, suppose that p does not divide n. Let K ⊂ L be a Galois extension with
Galois group cyclic of order n. Then there exists a nonzero a ∈ L such that L is a splitting
field for F (X) = Xn − a over K, and this polynomial has distinct roots.

Proof: Let σ generate the Galois group.

Lemma 5 The maps 1, σ, σ2, . . . , σn−1 : L → L are linearly independent over L, so it is
impossible to choose ai not all zero in L with

∑
aiσ

i identically zero on L.
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Proof: Suppose we have n distinct automorphisms σi and ignore the assumption that these
are the only automorphisms. We prove the maps independent by induction on n. To prove
the induction step, suppose σ1, . . . , σn−1 independent. Let

∑n
i=1 aiσi = 0. Since σ1 ̸= σn,

we can find k0 with σ1(k0) ̸= σn(k0). Then
∑
aiσi(kk0) = 0 so that∑

aiσi(k)σi(k0) = 0∑
aiσi(k)σn(k0) = 0

Subtracting, ∑
aiσi(k)

(
σi(k0)− σn(k0)

)
= 0

The last term vanishes, so this is a dependence relation among the first n−1 terms. Hence

all coefficients vanish. In particular, a1

(
σ1(k0) − σn(k0)

)
= 0. Since σ1(k0) ̸= σn(k0), we

have a1 = 0.

Repeat the argument using a different k0 chosen so σ2(k0) ̸= σn(k0). This time we conclude
that a2 = 0. Etc. Eventually all ai vanish for i < n. We conclude that anσn = 0, and so
an = 0. QED.

Proof of theorem: Let ω be a primitive nth root of unit and consider

1 + ωσ + ω2σ2 + . . .+ ωn−1σn−1

This expression is not identially zero, so we can find β ∈ L making it nonzero:

θ = β + ωσ(β) + ω2σ2(β) + . . .+ ωn−1σn−1(β) ̸= 0

Applying ωσ to both sides gives

ωσ(θ) = ωσ(β) + ω2σ2(β) + . . .+ ωnσn(β)

The last term is β, so

ωσ(θ) = β + ωσ(β) + ω2σ2(β) + . . .+ ωn−1σn−1(β) = θ

So σ(θ) = ω−1θ and σ(θn) = θn. It follows that θn ∈ K. Let a = θn.

The element θ is then n
√
a. Consider the polynomial F (X) = Xn − a. The roots of this

polynomial are ωi n
√
a, which are distinct. Thus K(θ) is a splitting field for F (X) over K,

and the roots of this polynomial in K(θ) are distinct. QED.



Chapter 10

Solving Polynomials by Radicals

10.1 Solving Polynomial Equations with Radicals

In this entire chapter, we assume that P (X) is irreducible over a field of characteristic zero.
Often this ground field is Q.

Definition 7 Suppose P (X) is an irreducible polynomial over a field K of characteristic
zero. We say this polynomial can be solved by radicals if there are fields

K ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Km

such that each extension Ki is a root field over Ki−1 of Xn − ai for some ai ∈ Ki−1, and
the splitting field of P (X) over K is inside Km.

Definition 8 A finite group G is said to be solvable if each of its Jordan-Holder simple
quotients is abelian, and hence cyclic of prime order p.

Remark: Galois proved the beautiful theorem that an irreducible polynomial over a field
of characteristic zero can be solved by radicals if and only if its Galois group is solvable.
In particular, a polynomial with a Galois group equal to Sn cannot be solved by radicals
if n ≥ 5.

We will give a very easy proof of half of this theorem: if the polynomial can be solved
by radicals, then the Galois group is solvable. Unfortunately, our proof is wrong, as we’ll
explain in the next section. It turns out that our error is exactly the gap in Ruffini’s original
proof that there is no formula solving all equations of degree five by radicals.
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Theorem 29 (Proof below incorrect) If P (X) is an irreducible polynomial over a base
field of characteristic zero, and P can be solved by radicals, then the Galois group of P is
solvable.

Proof: By taking the least common multiple of the degrees of the successive roots, we can
find a common N such that each radical extension adds an Nth root. Instead of extending
to a root field, let us extend to the full splitting field of XN − a. Consequently we have a
tower

K = K1 ⊂ K2 ⊂ . . . ⊂ Km

of Galois extensions, each a splitting field of XN − ai. Without loss of generality, we
can suppose that the first extension K1 ⊂ K2 is a splitting field of XN − 1, so that all
subsequent fields contain all Nth roots of unity. By assumption the splitting field L of
P (X) is contained in Kn. Apply the fundamental theorem of Galois theory to obtain a
corresponding reverse tower of Galois groups

G1 ⊃ G2 ⊃ . . . ⊃ Gm = {e}

By the previous sections on the Galois group of a cyclotomic extension and the Galois group
of a radical extension, we know that each intermediate composition factor is abelian. Refine
to a complete composition series, which must still have abelian composition factors.

By assumption K ⊂ L ⊂ Km, so Gm ⊃ G ⊃ {e} where G is the Galois group of L. Refine
this series to a complete composition series, and then apply the Jordan-Holder theorem.
It follows that the composition quotients for G are all abelian. QED.

10.2 The Flaw

In the previous proof, we applied the fundamental theorem of Galois theory to the Galois
extension K1 ⊂ Km generated by a tower of splitting fields, and thus a tower of Galois
extensions

K1 ⊂ K2 ⊂ . . . ⊂ Km

But why is K1 ⊂ Km Galois?

It is tempting to guess that there is a simple lemma stating that if K ⊂ L ⊂ M and each
extension is Galois, then K ⊂M is Galois. But this lemma is false.

Consider, for example, the extensions Q ⊂ Q(
√
2) ⊂ Q( 4

√
2). The first is Galois because

it is a splitting field of X2 − 2. The second is Galois because it is the splitting field of
X2−

√
2. However the full extension is not Galois because X4− 2 is irreducible with roots

± 4
√
2 and ±i 4

√
2, so its splitting field contains complex numbers.

Remark: Looking back at the previous section, we notice that the proof only requires
knowing that K ⊂ Km is Galois. We don’t really need to know that Ki−1 ⊂ Ki is Galois.
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So in the argument given in the previous section, we can assume that each Ki−1 ⊂ Ki is
merely a root field of XN − ai, a more natural assumption.

10.3 The Fix

The following lemmas allow us to fix the argument.

Lemma 6 Suppose K ⊂ L is a Galois extension. If F (X) is an irreducible polynomial
over K and F has a root in L, then F factors completely in L.

Proof: Let θ ∈ L be a root, and form G(X) =
∏

σ∈G

(
X − σ(θ)

)
. By the standard

arguments, G(X) has coefficients in K. Since F (X) is a minimal polynomial for θ and θ
is a root of G(X), F (X) divides G(X). Consequently, F (X) splits completely. QED.

Lemma 7 Suppose we can find a tower of extensions

K ⊂ K1 ⊂ K2 . . . ⊂ Km

such that each Ki is obtained from Ki−1 as a root field of a polynomial Xn − a, where
a ∈ Ki−1. The exponents are allowed to vary from extension to extension. Then there is
a splitting field M over K containing all of these fields, such that M can be obtained as
a (possibly different) tower of radical extensions. If all of the original extensions satisfy
Xn − a = 0 for a common n, we can assume this true for the new tower for M .

Remark: In this lemma, there is no hypothesis that the first extension adds roots of unity,
and no requirement that each radical extension be Galois over its predecessor.

Proof: The tower of extensions has the form

K ⊂ K1 = K(α1) ⊂ K2 = K(α1, α2) ⊂ . . . ⊂ Km = K(α1, α2, . . . , αm)

where αki
i ∈ Ki−1. For each i, let Li(X) be the minimal polynomial of αi over K. Let

M equal the splitting field of L1(X)L2(X) . . . Lm(X). Then M is Galois over K. Let
G = {σ1, . . . , σt} be the Galois group.

Each Li is irreducible over K with a root αi ∈M . It follows that each Li factors completely
over M . Let αi = ui1, ui2, . . . , uiki be the roots of Li. For each j, there is an isomorphism
of root fields σ : K(αi) → K(uij). This isomorphism can be extended to an automorphism
of M . Hence the roots of Li for a fixed i all have the form σ(αi) for some σ in the Galois
group. Conversely, automorphisms of L map roots of Li to other roots of Li. So the roots
of Li are precisely the σ(αi).

The field M is generated by the roots of its splitting polynomial and thus by all

{σ(αi) | σ ∈ G, i = 1, 2, . . . ,m}
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Let B1 be the subfield of M generated by {σ(α1) | σ ∈ G}. Notice that

K ⊂ K(σ1(α1)) ⊂ K(σ1(α1), σ2(α1)) . . . ⊂ K(σ1(α1), σ2(α1), . . . σt(α1)) = B1

Each of these extensions is a radical extension because αn
1 = A ∈ K implies σi(α1)

n =
σi(α

n
1 ) = σi(A) = A. Some of our inclusions may be equalities, and there is no claim that

n is the smallest exponent making σi(α1)
n ∈ K.

Now assume by induction that a radical extensionBi was constructed generated by all

{σ(αj) | 1 ≤ j ≤ i and σ ∈ G}

Let
Bi+1 = Bi({σ(αi+1) | σ ∈ G})

To finish the proof, we need only prove that Bi+1 is a radical extension of Bi. Notice that
αn
i+1 is in the field generated by α1, . . . , αi. Thus we can find a polynomial with coefficients

in K such that αn
i+1 = P (α1, . . . , αi). Applying σ ∈ G, we have σ(αi+1)

n = σ(αn
i+1) =

σP (α1, . . . , αi) = P (σ(α1), . . . , σ(αi)). This element is in Bi since the σ(αj) are in Bi and
Bi is a field. So Bi+1 is a radical extension of Bi. QED, and whew!

10.4 Galois’ Theorem on Solving Via Radicals

Theorem 30 (Galois) Let P (X) be an irreducible polynomial over a field K of charac-
teristic zero. If one root of P (X) can be written in terms of radicals, then every root of
P (X) can be written that way.

Let K ⊂ L be the splitting field of P . Then K ⊂ L is a Galois extension. The Galois group
of this extension is solvable if and only if P (X) = 0 is solvable by radicals.

Proof: If one root of the equation is solvable by radicals, we can find a tower of exten-
sions

K ⊂ K1 ⊂ K2 . . . ⊂ Km

such that each Ki is obtained from Ki−1 as a root field of a polynomial Xk − a, where
a ∈ Ki−1, such that K ⊂ L ⊂ Km. By finding the least common multiple of the various
k, we can find a common n and assume that all extensions are root fields of a polynomial
of the form Xn − a. To simplify matters further, we can add to the start of the chain an
extension K ⊂ K̃ ⊂ K1 where K̃ is a splitting field of Xn − 1. That is, we can assume
that all nth roots of unity belong to the ground field.

We now apply the main theorem of the previous section. This theorem allows us to extend
Km to a field M such that K ⊂ M is a Galois extension, and each intermediate field in
the chain is a radical extension generated by a root of Xn − a for our common n. Some
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care is required here because the first extension in our chain, K ⊂ K̃, need not itself be
a radical extension. But it can clearly be written as a sequence of radical extensions. So
in the construction of M , this sequence can be left alone, and only later extensions will
require the addition of additional radical extensions to finally give M .

Let G be the Galois group of K ⊂ M . By the fundamental theorem of Galois theory, the
sequence of radical extensions gives rise to a sequence of reverse inclusions

G ⊃ G1 ⊃ G2 . . . ⊃ Gn−1 ⊃ {e}

The sequence on the left, G ⊃ G1 ⊃ {e} corresponds to the field extensions K ⊂ K̃ ⊂ M .
Since K ⊂ K̃ is a splitting field and thus a Galois extension, G1 is a normal subgroup of
G and the quotient group G/G1 is the Galois group of the cyclotomic extension K ⊂ K̃.
By the main theorem in section 8.1, this group is abelian.

The remaining Gi ⊃ Gi+1 ⊃ M correspond to field extensions Ki ⊂ Ki+1 ⊂ M . Each of
these field extensions is a radical extension obtained by adding a root of Xn−a = 0. Since
Ki contains all roots of unity, this extension completely splits the polynomial, and thus is
a Galois extension. So Gi+1 is a normal subgroup of Gi with quotient group the Galois
group of Ki ⊂ Ki+1. By the main theorem in section 8.2, this Galois group is cyclic.

It follows that G has a composition series for which all composition quotients are abelian.
Therefore a maximal composition series will have composition quotients Zp for primes p.
In particular, G is solvable.

Now we bring the polynomial P (X) into play. If this polynomial has one root which can
be expressed via radicals, then there is a radical extension as above which contains one
root of P (X). Since the final K ⊂M is a splitting field, P (X) splits completely and thus
all roots can be expressed by radicals.

The sequence K ⊂ L ⊂ M corresponds to a sequence G ⊃ H ⊃ {e} where H is the
Galois group for F (X). Extend this to a complete composition sequence for G. Since G is
solvable, all composition quotients are abelian. In particular, all composition quotients for
H ⊃ {e} are abelian, so H is solvable.

Proof in the converse direction: Suppose the splitting field L of F (X) has a Galois group
H which is solvable. Then we can find a sequence

H ⊃ H1 ⊃ H2 ⊃ . . . ⊃ {e}

where each Hi ⊃ Hi+1 is a normal subgroup and each quotient group is Zp for some
prime p. By the fundamental theorem of Galois theory, this corresponds to a sequence of
fields

K ⊂ K1 ⊂ K2 ⊂ . . . ⊂ L
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Choose n a multiple of each [Ki+1,Ki] and let L ⊂ L̃ be a splitting field for Xn − 1. The
set of nth roots of unity in L̃ is cyclic of order n. Let ω be a generator. Note that ω could
actually be in L or even in K. Extend each Ki by ω, obtaining

K ⊂ K(ω) ⊂ K1(ω) ⊂ K2(ω) ⊂ . . . ⊂ L(ω)

We claim each of these extensions is a radical extension. In that case, L is inside such an
extension, and thus F is solvable by radicals.

Certainly K ⊂ K(ω) comes from a sequence of radical extensions.

Since Hi ⊃ Hi+1 ⊃ {e} is normal, Ki ⊂ Ki+1 ⊂ L is Galois. So Ki ⊂ Ki+1 is a Galois
extension with cyclic Galois group. We now claim that Ki−1(ω) ⊂ Ki(ω) is Galois with
Galois group a possibly different cyclic group. If this is true, then since Ki−1(ω) contains
all nth roots of unity, the main theorem in section 8.3 asserts that the extension is radical,
and we will be done.

Since Ki−1 ⊂ Ki is Galois, we can apply theorem 21 of section 7.1 to find a polynomial
G(X) over Ki−1 such that Ki = Ki−1(θ) for a root θ of G, and such that the polynomial
splits completely. Clearly Ki−1(ω) ⊂ Ki(ω) is a splitting field of G(X), and so it is a Galois
extension. However, G(X) may not be irreducible over Ki−1(ω). Factor it and let G1(X)
be an irreducible factor with root θ.

Let σ : Ki(ω) → Ki(ω) be an automorphism over Ki−1(ω). Then σ is determined by σ(θ),
and σ(θ) is another root of G1(X). This other root is a root of G(X), so σ comes from
an automorphism of Ki over Ki−1. The conclusion is that the automorphism group of
Ki(ω) is a subgroup of the automorphism group of Ki. Since the automorphism group of
Ki is cyclic, the automorphism group of K(ω) is also cyclic, possibly of a different order.
QED.

10.5 Solving Generic Equations by Radicals

Let a1, . . . , an be arbitrary symbols. Form the field K = Q(a1, . . . , an) consisting of all P
Q

where P and Q are polynomials in the symbols.

The equation P (X) = Xn + a1X
n−1 + . . .+ an = 0 is called the generic equation of degree

n. The quadratic formula gives a solution of the generic equation of degree 2:

Solution of X2 + a1X + a2:
−a1 ±

√
a21 − 4a2
2

Similarly the cubic and quartic formulas give solutions of the generic equations of degree
3 and 4.
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Theorem 31 The generic equation of degree n cannot be solved by radicals if n ≥ 5

Proof: This follows from Galois’ theorem and earlier results on the symmetric group, once
we prove that the Galois group of the generic equation of degree n is the symmetric group
of order n.

Let λ1, . . . , λn be new arbitrary symbols, and form the field Q(λ1, . . . , λn). Formally
write

(X − λ1)(X − λ2) . . . (X − λn) = Xn + a1X
n−1 + . . .+ an

This holds if ai = (−1)iσi(λ1, . . . , λn) where the σi are the elementary symmetric functions.
Recall the definitions:

σ1(X1, . . . , Xn) = X1 +X2 + . . .+Xn

σ2(X1, . . . , Xn) = X1X2 +X1X3 + . . .+Xn−1Xn

. . . = . . .

σn(X1, . . . , Xn) = X1X2 . . . Xn

Redefine the original field Q(a1, . . . , an) to be

Q(−σ1(λ1, . . . , λn), . . . ,±σn(λ1, . . . , λn))

so Q(a1, a2, . . . , an) ⊂ Q(λ1, λ2, . . . , λn). Clearly the field Q(λ1, . . . , λn) is a splitting field
of the polynomial P (X) = (X − λ1) . . . (X − λn) = Xn + a1X

n−1 + . . .+ an. The elements
of the Galois group permute these roots. Since the elementary symmetric functions are
preserved by all permutations, all permutations work and the Galois group is the full
symmetric group.

However, there is something else to prove. We have identified the transcendental extension
i Q(a1, . . . , an) with the subfield of Q(λ1, . . . , λn) generated by the elementary symmetric
polynomials. This is only legal if the σi are independent. So we must prove that whenever
P is a polynomial such that P (σ1, . . . , σn) = 0, we have P = 0.

Lemma 8 The elementary symmetric functions are algebraically independent; if P is a
polynomial and P (σ1, . . . , σn) = 0, then P is identically zero.

Proof: Each elementary symmetric function involvesX1, X2, . . . , Xn. We prove the theorem
by induction on n. The result is clear when n = 1.

Assume the result for n−1 variables. To prove the induction step, suppose that P (Y1, . . . , Yn)
is a polynomial of minimal total degree satisfied by the elementary symmetric functions
λ1, . . . , λn, each a function ofX1, . . . , Xn. Write P = p0(Y1, . . . , Yn−1)+p1(Y1, . . . , Yn−1)Yn+



CHAPTER 10. SOLVING POLYNOMIALS BY RADICALS 84

. . . + pk(Y1, . . . , Yn−1)Y
k
n . If p0 is zero, then P = YnQ̃(Y1, . . . , Yn) for a polynomial Q̃ of

smaller degree and σnQ(σ1, . . . , σn) = 0. Since σn = X1 . . . Xn in the integral domain
Q[X1, . . . , Xn], we have Q̃(σ1, . . . , σn) = 0, contradicting the assumption that P has small-
est degree. So we can assume p0(σ1, . . . , σn−1) ̸= 0.

We have
p0(σ1, . . . , σn−1) + p1(σ1, . . . , σn−1)σn + . . . = 0

Each σi is a function of X1, . . . , Xn. Substitute 0 for Xn. Then σn(X1, . . . , Xn−1, 0) = 0,
and we obtain p0(σ1, . . . , σn−1) = 0. However σi(X1, X2, . . . , Xn−1, 0) are exactly the
elementary symmetric functions in the first n − 1 variables, so we get the contradiction
that p0 = 0 by induction on n. QED.

10.6 A Polynomial Equation Which Cannot Be Solved by
Radicals

We now know that there is no general formula solving an equation of degree n ≥ 5. It
is possible, however, that a solution can always be found involving radicals, but varying
from equation to equation. To rule this out, we will find a quintic with integer coefficients
whose solutions cannot be written in terms of radicals.

We will prove that P (x) = x5 − 4x + 2 is not solvable by radicals. Note that P (x) is
irreducible over the rationals by Eisenstein’s theorem, using p = 2.

Lemma 9 (Cauchy) If a prime p divides the order of a group G, then G has an element
of order p.

Proof: Consider the set X of all p-tuples (g1, g2, . . . , gp) whose product is the identity. The
first p − 1 elements of such a tuple can be arbitrary, and these determine gp. So X has
|G|p−1 elements. This number is divisible by p.

We can cyclically permute the elements in a particular p-tuple. Suppose we first return to
the starting point after k steps. Clearly k divides p, so either k = 1 or k = p. If k = 1
then all terms are equal; otherwise all terms in the cyclic permutation are different. Since
p divides the number of such terms and p divides the size of X, p must divide the number
of (g, g, . . . , g) in X. Each represents an element of order p except (e, e, . . . , e). QED.

Calculation of the Galois Group: Below is a plot of P (X):

This plot shows that the polynomial has three real roots between −2 and 2. It has no
other real roots, for x > 2 implies that P (x) = x(x4 − 4) + 2 > 2 and x < −2 implies that
P (x) = x(x4 − 4) + 2 ≤ 12x+ 2 ≤ −10.

Consequently, P has two complex roots which are not real. They must be conjugates.
The splitting field L is generated by the three real roots, and the two conjugate complex
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Figure 10.1: example caption

roots, so complex conjudation is an automorphism of Q ⊂ L. As a permutation, it is a
two-cycle.

The extension Q ⊂ L contains a root field Q(θ) for P . Since P is irreducible, the order of
the root field is 5. It follows that [L : K] is divisible by 5. Since [L : K] is also the order of
the Galois group, the order of the group is divisible by 5. Then by Cauchy’s lemma, the
Galois group contains an element σ of order five. Imagine this element written in cyclic
notation. It must be a five cycle, else it would have order relatively prime to 5.

To complete the argument, we show that any subgroup G of S5 containing a five cycle and
a two cycle must be the entire group.

The 2-cycle and the 5-cycle have two elements in common. Number the roots so one
common element is 1 and the 5-cycle is (1 2 3 4 5). The square of this element is (1 3 5 2
4), its cube is (1 4 2 5 3), etc. All of these elements except the identity are also 5-cycles
whose powers give all these 5-cycles. The second element of one of these elements is the
second element of the 2-cycle. By renumbering, we can suppose the 5-cycle is (1 2 3 4 5)
and the 2-cycle is (1 2).

The set of all two cycles generates the full symmetric group Sn. To see this, write an
arbitrary permutation in cycle notion and consider one of the cycles. By renumbering, it
equals (1 2 . . . k) and

(12 . . . k) = (1k) . . . (13)(12)

So it suffices to show that our group contains all two cycles.

But στσ−1 applies the permutation σ to the elements of τ . For instance (12345)(12)(12345)−1 =
(23).

It follows that our group contains (1 2), (2 3), (3 4), (4 5), and (5 1).

Also (1 3) = (2 3) (1 2) (2 3), (1 4) = (3 4) (1 3) (3 4), and (1 5) = (4 5) (1 4) (4 5). Also
(2 4) = (3 4)(2 3) (3 4), (2 5) = (4, 5) (2 4) (4 5). Also (3 5) = (4 5) (3 4) (4 5).
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So our group contains all 2-cycles and equals S5. This group is not solvable, so x5− 4x+2
cannot be solved with radicals.



Chapter 11

Straightedge and Compass
Constructions

11.1 Constructions With Straightedge and Compass

Euclidean geometry is based on straightedge and compass constructions. The fundamental
postulates immediately reveal this, since they proclaim the existence of lines through two
points, and of circles with given center and radius. The very first theorem in Euclid asserts
that equilateral triangles exist, proving this by a construction. Draw a base, draw circles
with radius the base through the two endpoints of the base, and select the intersection of
these circles as a third point.

It is well-known that many important constructions cannot be done with straightedge and
compass; Galois theory provides exactly the tools needed to show this.

Our first step is to describe a straightedge and compass construction with sufficient rigor.

Definition 9 A construction problem is a finite set of points in the plane, called the
givens, and another finite set of points in the plane, called the unknowns. Additional
points may be added to the givens using one of the three methods listed below. The goal is
to do this over and over until finally the unknowns are among the givens.

• If P1 and Q1 are distinct points already known, and if P2 and Q2 are distinct points
already known, draw the line L1 through P1 and Q1 and draw the line L2 through P2

and Q2. If these lines are different and not parallel, their intersection point can be
added to the givens.

• Suppose P1 and P2 are distinct points already known. Suppose P3 is a known point.

87
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Suppose P4 and P5 are distinct points already known. Draw the circle C through P3

with radius the distance from P1 to P2. Draw the line L through P4 and P5. This
line and circle intersect in from 0 to 2 points. These intersection points can be added
to the givens.

• Suppose P1 and P2 are distinct points already known. Suppose P3 is a known point.
Suppose P4 and P5 are distinct points already known, and P6 is a known point. Draw
the circle through P3 with radius the distance from P1 to P2. Draw the circle through
P4 with radius the distance from P4 to P5. If the two circles are not equal, they may
intersect in from zero through two points. In this case, add any intersection points
to the givens.

Remark: At first it is not clear that these rules capture what is allowed during a construc-
tion. Consider the problem of bisecting an angle. We are actually given two intersecting
lines, and we are asked to construct a third line.

However, we easily translate to the new language. We could describe this problem by
giving the vertex P1 and a second point P2 on the first line. Once we know the second line,
we could intersect it with the circle with center P1 through P2, so we can give the second
line by giving the point P3 where this circle intersects the second line. The angle bisector
will then determine a final point on the circle, which becomes our unknown P4.

Select coordinates so P1 = (0, 0) and P2 = (1, 0). Then P3 = (cos θ, sin θ). These three
points are our givens. The unknown is

(
cos θ

2 , sin
θ
2

)
.

Theorem 32

• If only one point is given, it is impossible to construct other points.

• If at least two points P1 and P2 are given, we can choose orthonormal coordinates so
P1 = (0, 0) and P2 = (1, 0). If P3 = (a, b) is a third point, we can construct (a, 0)
and (b, 0). Conversely if these points are given, we can construct (a, b).

Proof: The first item, and the first line of the second option, are obvious. So assume
P1 = (0, 0) and P2 = (1, 0). Construct a perpendicular to the line through these points at
P1. If (a, b) is given, construct the perpendiculars from these points to the two coordinate
lines, getting (a, 0) and (0, b). Using a circle with vertex the origin, construct (b, 0) from
(0, b).

Conversely, given (a, 0) and (b, 0), draw the perpendicular at (0, 0) as before. Using a circle
through the origin, convert (b, 0) to (0, b). Construct perpendiculars to (a, 0) and (0, b).
These perpendiculars intersect at (a, b). QED

Remark: Using this theorem, the general construction problem can be reformulated. With-
out loss of generality, we can take the givens to be finitely many real numbers, including
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in particular 0 and 1, and we can take the unknowns to be finitely many additional real
numbers.

Theorem 33 Given a known finite set of given real numbers, additional unknowns can be
constructed using addition, subtraction, multiplication, division, and taking square roots of
givens. Conversely, any constructible real can be formed by a finite combination of these
operations.

Proof: Adding and subtracting reals by compass is easy. Notice that multiplication only
makes sense if we have a scale, for a2 will be larger than a if a > 1 but smaller than a if
a < 1. So the technique for multiplying must involve the segment of length 1. Once this is
known, a construction is easy.

One is shown below. The idea of this construction is to form similar triangles and notice
that a

1 = ab
b . The reader can easily provide details.

Figure 11.1: Multiply

The same diagram can be used to divide, using the similarity condition a
b =

a
b
1 .

Figure 11.2: Divide
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Calculating square roots also requires a unit. Below is one possible construction from
http://math.stackexchange.com. Let the horizontal distance AC = 1 and draw the vertical
line AD. Call its length L. By similar triangles, a

L = L
1 and so L =

√
a.

Figure 11.3: Square Root

Conversely, consider the operation of adding the intersection of two lines, when the co-
ordinates of the given points and points constructed so far generate a field K. Each line
is determined by two points with coordinates in K, so the equations of the lines have
the form ax + by + c = 0 and dx + ey + f = 0 where a, b, c, d, e, f ∈ K. Ordinary high
school algebra can be used to find the intersection point, and this algebra only requires
addition, subtraction, multiplication, and division of the coordinates. So the coordinates
of the intersection point are still in K.

Consider the operation of intersecting a line with a circle. Leaving the special case of a
vertical line to the reader, we can assume that the line is given by y = ax+b where a, b ∈ K.
The equation of the circle is (x− p)2+(y− q)2 = r2 where r is the radius. This radius can
be computed using the Pythagorian theorem applied to two points with coordinates in K,
so p, q, r2 ∈ K. To solve, we replace y by ax+ b, obtaining (x− p)2 + (ax+ b− q)2 = r2.
This is a quadratic equation in x, and solving for x only requires a square root. Once x
is known, y can be found by solving the same formula, possibly requiring another square
root. (There is no need to worry about cases where there is no solution, because if the line
and circle do not intersect, we don’t generate new points.)

Finally, the operation of intersecting two circles involves solving two equations (x− p)2 +
(y− q)2 = r2 and (x− s)2+(y− t)2 = u2 simultaneously. If we subtract one equation from
the other, the terms x2 and y2 cancel out and we get a linear equation in x and y. Points
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on both circles lie on this line, so we are back to the previous case. QED

Remark: Summarizing, a straightedge and compass construction begins with gives; num-
bers which can be constructed from them using addition, subtraction, multiplication, and
division. This gives a field Q ⊂ K1. We can then construct the extension K2 formed from
K1 by adding the square root of a positive number in K1, and then extending to the field
this root generates. Call this K2. In general

Theorem 34

• If a set of givens generates a field Q ⊂ K1 and a set of unknowns generates a field
Q ⊂ L, then we can construct the unknowns from the givens if and only if there is a
sequence of extensions

Q ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn

where each Ki is formed from Ki−1 by adding a square root of a positive number in
Ki−1, such that L ⊂ Kn.

• In particular, the dimension of L over K1 must be a power of 2.

Proof: This is obvious from the discussion above.

11.2 Complex Extensions and Constructions

In the previous section, we reduced straightedge and compass constructions to the existence
of a chain of real extensions Q ⊂ K1 ⊂ . . . ⊂ Kn. The results remain unchanged, however,
if we work in the plane and use complex extensions.

We could then assume that the givens form a set of points in the plane. Label two of them as
0 and 1 and use this to identify the plane with the set of complex numbers. The unknowns
form a larger subset of C. Using straightedge and compass constructions, we can add,
subtract, multiply, and divide complex numbers. We can also find complex square roots,
essentially because we can form real square roots and can bisect angles. Therefore

Theorem 35

• If a set of givens generates a field Q ⊂ K1 and a set of unknowns generates a field
Q ⊂ L, then we can construct the unknowns from the givens if and only if there is a
sequence of extensions

Q ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn

where each Ki is formed from Ki−1 by adding a square root of a complex number in
Ki−1, such that L ⊂ Kn.

• In particular, the dimension of L over K1 must be a power of 2.
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11.3 Trisecting Angles; Doubling the Cube

Theorem 36 It is not possible in general to trisect an angle using straightedge and com-
pass. In particular, given two starting points (0, 0) and (1, 0), we can construct a 60-degree
angle at the origin, but cannot construct a 20-degree angle at the origin.

Proof: Construct an equilateral triangle at the origin using Euclid’s first theorem. Intersect
this triangle with the circle centered at the origin and with radius 1, to get the point

(cos 60◦, sin 60◦) =
(
1
2 ,

√
3
2

)
. The unknown is the point (cos 20◦, sin 20◦) = (cos θ, sin θ).

By de Moivre,

(cos θ + i sin θ)3 = (cos 3θ + i sin 3θ) =

(
1

2
,

√
3

2

)
Comparing real parts, cos3 θ − 3 cos θ sin2 θ = 1

2 . So cos3 θ − 3 cos θ(1 − cos2 θ) = 1
2 . If

X = cos θ, then

4X3 − 3X − 1

2
= 0

But P (X) = 4x3 − 3X − 1
2 is irreducible over Q since it does not have a rational root.

Indeed if a
b is written in lowest terms and solves the equation, then 8a3 − 6ab2 − b3 = 0.

If p divides a, then p divides b, which is disallowed, so we can assume a = 1. Thus
8− 6b2 − b3 = 0. Since 2 divides 8− 6b2, 2 divides b, so b = 2B. Then 8− 24B2 − 8B3 = 0
and so 1− 3B2 −B3 = 0. If p divides B, then p divides 1, so B is ±1, but neither of these
works.

So Q ⊂ Q(cos 20◦) has degree 3 and that is not a power of 2. QED.

Warning: It does not follow that trisection is always impossible. For example, a 45◦ angle
is easily trisected, because a 15◦ angle can be constructed by making an equilateral triangle
and bisecting a vertex angle twice.

Remark: In an article on the web by J. J. O’Connor and E. F. Robertson, http://www-
history.mcs.st-and.ac.uk/PrintHT/Doubling the cube.html, we read two accounts of the
so-called Delian problem of ancient Greek mythology. Theon of Smyra quotes Eratosthenes,
as translated by Heath:

Eratosthenes, in his work entitled Platonicus relates that, when the god
proclaimed to the Delians through the oracle that, in order to get rid of a
plague, they should construct an altar double that of the existing one, their
craftsmen fell into great perplexity in their efforts to discover how a solid could
be made the double of a similar solid; they therefore went to ask Plato about
it, and he replied that the oracle meant, not that the god wanted an altar of
double the size, but that he wished, in setting them the task, to shame the
Greeks for their neglect of mathematics and their contempt of geometry.
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Eutocius writes

Eratosthenes to King Ptolemy, greetings. The story goes that one of the
ancient tragic poets represented Minos having a tomb built for Glaucus, and
that when Minos found that the tomb measured a hundred feet on every side,
he said ”Too small is the tomb you have marked out as the royal resting place.
Let it be twice as large. Without spoiling the form, quickly double each side of
the tomb”. This was clearly a mistake. For if the sides are doubled the surface
is multiplied fourfold and the volume eightfold.

The Greek geometers took this ancient mythology to have the following meaning. Given
the base of a cube, construct using straightedge and compass the base of a larger cube
whose volume is twice the volume of the original cube.

Theorem 37 It is impossible to double a cube using straightedge and compass.

Proof: If we take the endpoints of the base of the original cube to be (0, 0) and (1, 0), then
it is required that we construct (a, 0) where a3 = 2. Thus we are to form Q( 3

√
2). But

the minimal polynomial of this number is X3 − 2, which is irreducible by Eisenstein. So
[Q( 3

√
2 : Q] = 3, and the construction cannot be done. QED.

The most famous of all Greek construction problems is the problem of squaring the circle.
Given the radius of a circle, the problem is to construct the side of a square with the same
area. If the center of the circle is (0, 0) and the circle goes through (1, 0), we asked to
construct a line of length

√
π, and so (

√
π, 0).

Theorem 38 It is impossible to square a circle using straightedge and compass.

Proof: All constructed points are algebraic over Q. But π is not algebraic, and therefore√
π is not algebraic. This is proved in the next chapter.



Chapter 12

Irrationality and Transcendence of
π and e

To complete the proof that it is impossible to square a circle, we must prove that π is
transcendental. The proof uses eiπ = −1, so we study e and π simultaneously.

12.1 Irrationality e and π

Theorem 39 The number e is irrational

Proof: Write

e = 1 + 1 +
1

2!
+ . . .+

1

n!
+

1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 2)(n+ 3)
+ . . .

)

Therefore

n!e = n!

(
1 + 1 +

1

2!
+ . . .+

1

n!

)
+R

where 0 < R < 1
n+1(e − 1). If e = a

b and n is larger then b, then n!e is an integer. The

number n!
(
1 + 1 + 1

2! + . . .+ 1
n!

)
is an integer, so R is an integer. But as n increases, the

estimate on R shows that it is positive and bounded by a series of numbers approaching
0. Such a series of R’s cannot all be integers. QED.

Remark: The following beautiful proof is essentially due to Niven. It is not the original
proof of the theorem, which was by Lambert using continued fractions.

Theorem 40 π is irrational

94
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Proof: Consider

In =

∫ π

0

xn(π − x)n

n!
sinx dx

These integrals can be computed using integration by parts, and a short calculation shows
that

• I0 = 2

• I1 = 4

• I2 = 24− 2π2

• I3 = 240− 24π2

• I4 = 3360− 360π2 + 2π4

• I5 = 60480− 6720π2 + 60π4

We claim that this pattern continues; In is a polynomial in π of degree at most n, with
integer coefficients. An easy calculation gives the results in the table for n = 0, 1.

We now work by induction, and integrate by parts twice. Let G(x) = xn(π−x)n

n! . The
boundary terms from integrating by parts will vanish because F (x) and F ′(x) vanish at
the limits of integration. So

In =

∫
G[x]

d

dx
(− cosx) dx =

∫
G′(x) cosx dx =

∫
G′(x)

d

dx
sinx dx = −

∫
G′′(x) sinx dx

Moreover

G′(x) =
xn−1(π − x)n

(n− 1)!
− xn(π − x)n−1

(n− 1)!

and

G′′(x) =
xn−2(π − x)n

(n− 2)!
− 2n

xn−1(π − x)n−1

(n− 1)!
+
xn(π − x)n−2

(n− 2)!

This expression equals

G′′(x) =
(
(π − x)2 + x2

)xn−2(π − x)n−2

(n− 2)!
− 2n

xn−1(π − x)n−1

(n− 1)!

Notice that
(π − x)2 + x2 = π2 − 2πx+ x2 + x2 = π2 − 2x(π − x)

It follows that

In = −π2In−2 + 2(n− 1)In−1 + 2nIn−1 = (4n− 2)In−1 − π2In−2

and the lemma follows by induction.
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Suppose π = a
b . Then bnIn is an integer, because bn clearers the denominators of all

powers of a
b of degree less than or equal to n. From the definition, bnIn > 0. However, by

symmetry, the integrand is largest at π
2 when it is

(
π
2

)2n 1
n! . Let A = π2

4 .

0 < bnIn ≤ π

(
A

1

)(
A

2

)
. . .

(
A

n

)
The right side of this expression goes to zero as n goes to infinity, so bnIn cannot always
be a positive integer. QED

12.2 Transcendence of e

The proofs of this section come from a 1970 course by Ian Steward.

Theorem 41 (Hermite) e is transcendental

Proof: Suppose
a0 + a1e+ a2e

2 + . . .+ ane
n = 0

with the ai integers.

The proof starts with a simple calculation from freshman calculus. For p an arbitrary
positive integer, define

f(x) =
xp−1(x− 1)p(x− 2)p . . . (x− n)p

(p− 1)!

Define
F (x) = f(x) + f ′(x) + f ′′(x) + . . .

where the terms eventually vanish because f is a polynomial. Then

d

dx

(
e−xF (x)

)
= e−x

(
F ′(x)− F (x)

)
= −e−xf(x)

and therefore

aj

∫ j

0
e−xf(x) dx = aj

[
− e−xF (x)

]j
0
= ajF [0]− aje

−jF [j]

Multiply by ej and sum from j = 0 to j = n to get

n∑
j=0

aje
j

∫ j

0
e−xf(x) dx =

n∑
j=0

aje
jF [0]−

n∑
j=0

ajF [j]
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= −
n∑

j=0

∑
i

ajf
(i)(j)

In the end, we obtain the following result:

n∑
j=0

aje
j

∫ j

0
e−xf(x) dx = −

n∑
j=0

∑
i

ajf
(i)(j)

This equation will lead to a contradiction as follows. The function f(x) depends on an
integer p. We will prove that as p goes to infinity, the left side of the equation goes to
zero. We will then show that f (i)(j) is always an integer, and thus the right side is always
an integer. Finally we restrict to the case that p is a prime larger than n. We’ll show
thatf (i)(j) is divisible by p except when j = 0 and i = p−1. We’ll also show that the term
with j = 0 and i = p − 1 is not divisible by p. It follows that the right side is a nonzero
integer for all large primes, and we obtain a contradiction. The theorem follows.

Here are the details. First we estimate the left side of the equation. The term
∑n

j=0 aje
j

is a constant, so we need only estimate the integral. We can be fairly sloppy. Over the
interval [0, j] ⊂ [0, n] we have |x − k] < n and consequently the integrand is at most n to
the power (p − 1) + np. The term e−x is bounded by 1. The length of the interval gives

an extra n. so the total integral is smaller than n1+(p−1)+np

(p−1)! = n(n+1)p

(p−1)! . The term nn+1 is a

constant C and this term is Cp

(p−1)! which equals

C
C

1

C

2
. . .

C

p

As p increases, this term goes to zero.

Now the details for the right side. From now on, assume p prime. If 1 ≤ j ≤ n, notice
that the f (i)(j) will vanish unless the (x− j)p term was differentiated exactly p times, and
in that case the (p− 1)! in the denominator will be canceled and there will be an extra p
in the numerator. When (x− j)p is differentiated p times, the other terms may also have
been differentiated, but these will only contribute integer multiples of an integer already
divisible by p.

The term f (i)(0) will vanish unless the term x(p−1) is differentiated exactly p − 1 times.
In that case the (p − 1)! in the denominator will be cancelled, but there will be no p in
the numerator. Of course the remaining terms may also have been differentiated, but if
a remaining term is differentiated even once, we’ll get an extra p and the term will be
divisible by p. The only exception is when xp−1 is differentiated p− 1 times and no other
term is differentiated. In this case, the value at 0 is not divisible by p because p > n.
QED.
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12.3 Intermission: Fundamental Theorem of Symmetric Poly-
nomials

We alluded to the following theorem earlier, but now we need it in the proof of the tran-
scendence of π.

Theorem 42 Let P (X1, . . . , Xn) be a polynomial over a field K. Suppose P is symmetric
in the sense that P (Xτ(1), . . . , Xτ(n)) = P (X1, . . . , Xn) for all permutations τ ∈ Sn. Then
P can be written as a polynomial in the elementary symmetric functions:

P (X1, . . . , Xn) = Q(σ1(X1, . . . , Xn), . . . , σn(X1, . . . , Xn))

for some polynomial Q. If P has integer coefficients, so does Q.

Preliminary Remark: When K is a finite field, a polynomial can vanish identically on
K × . . . × K and yet not be the zero polynomial. This theorem is about polynomials,
not about functions on K × . . . × K. When we claim that two polynomials are equal,
we are claiming that they have the same coefficients, not just that they take the same
values.

Proof: We prove both parts at the same time by assuming that our polynomials have
coefficients in a commutative ring with unit A. Define the weight of a polynomial to be
the maximum of the weights of the monomials which occur in it, and define the weight of
Xk1

1 Xk2
2 . . . Xkn

n to be k1 + 2k2 + . . .+ nkn.

We will prove a slightly stronger theorem, namely that Q exists and has weight at most
the degree of P . This result will be proved by a double induction, first on the number of
variables n, and then on the degree d of P .

The theorem is obvious if n = 1 because then there is only one variable and Q = P . So
assume the theorem is true for all polynomials in n − 1 variables. We prove it true when
there are n variables. The result is obvious if the degree of P is zero, so we can assume it
true when the degree of a polynomial is smaller than d. Suppose our P has degree d.

Then P (X1, . . . , Xn−1, 0) can be written as a polynomial G in the n− 1 elementary sym-
metric functions in X1, . . . , Xn−1. It is easy to see that these are exactly the first n − 1
elementary symmetric functions in X1, . . . , Xn, evaluated when Xn = 0. Form

P1(X1, . . . , Xn) = P (X1, . . . , Xn)−G(σ1(X1, . . . , Xn), . . . , σn−1(X1, . . . , Xn))

Since the degree of P (X1, . . . , Xn−1, 0) is at most d, the weight of G is at most d, and
therefore the degree of G(σ1(X1, . . . , Xn), . . . , σn−1(X1, . . . , Xn)) is at most d.

It now suffices to prove the result for P1, which vanishes when Xn = 0. Since we are dealing
with polynomials rather than functions on the ground field, this statement actually means
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that every monomial in the polynomial contains Xn. By invariance under the symmetric
group, every monomial contains all Xi. It follows that

P1(X1, . . . , Xn) = σn(X1, . . . , Xn)P2(X1, . . . , Xn)

The polynomial P2 must be symmetric, and it must have degree d − n. So by induction,
P2(X1, . . . , Xn) = G(σ1, . . . , σn) where the weight of G is at most d − n. It follows that
P2 = σnG(σ1, . . . , σn) and the weight of the polynomial is at most d. QED.

12.4 Transcendence of π

Theorem 43 (Lindemann) π is transcendental

Proof: If π is algebraic, so is iπ and eiπ+1 = 0. Let α1, . . . , αn be the roots of an irreducible
polynomial over Q satisfied by iπ. Then

(eα1 + 1)(eα2 + 1) . . . (eαn + 1) = 0

Rewrite this in the form
eβ1 + . . .+ eβr + k = 0

where k is a positive integer and the βi are partial sums, like α3 + α7 + α8, of the
α1, α2, . . . , αn. The 1’s in our formula correspond to those subsums that add to zero.

We claim there is a polynomial P (X) = c0+c1X+ . . .+crX
r with integer coefficients such

that the roots of P are exactly the nonzero βi.

Indeed, the polynomial Q(X) has integer coefficients and roots αi. Call this Q1(X).

Define
Q2(X) =

∏
i<j

(
X − (αi + αj)

)
The coefficients of this polynomial are clearly symmetric polynomials in the αi with integer
coefficients. By the fundamental theorem of symmetric polynomials, each coefficient can
be written as a polynomial in the elementary symmetric functions of the αi with integer
coefficients. These elementary symmetric functions of the αi are exactly the coefficients of
the original Q(X), and so each is an integer. It follows that the coefficients of Q2(X) are
integers.

Define
Q3(X) =

∏
i<j<k

(
X = (αi + αj + αk

)
By the previous argument, this polynomial has integer coefficients.
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Continue. In the end, let P (X) = Q1(X)Q2(X) . . . Qn(X). This polynomial has integer
coefficients and its roots are all sums of subsets of the αi. Factor out as many X as possible,
and redefine P (X) to be the remaining polynomial, which now has no zero roots.

We are now in a position to apply the ideas used in the proof that e is transcendental. Let
r be the degree of P (X) and let c be the coefficient of the highest power of X in P (X). If
p is a positive integer, define

f(x) = crp−1xp−1 P (X)p

(p− 1)!

Define
F (x) = f(x) + f ′(x) + f ′′(x) + . . .

where the terms eventually vanish because f is a polynomial. Then

d

dx

(
e−xF (x)

)
= e−x

(
F ′(x)− F (x)

)
= −e−xf(x)

and therefore ∫ y

0
e−xf(x) dx =

[
− e−xF (x)

]y
0
= F [0]− e−yF [y]

We now diverge slightly from the algebra in the case of e. In the integral on the left,
substitute x = yλ. Then we get y

∫ 1
0 e

−λyf(λy)dλ = F [0] − e−yF (y). Multiplying both
sides by ey gives

y

∫ 1

0
ey(1−λ)f(λy) dλ = eyF (0)− F (y)

Substitute βi for y and sum. Recall that
∑
eβi = −k. So∑

βi

∫ 1

0
eβi(1−λ)f(λβi) dλ = −kF (0)−

∑
F (βi)

As before, we come to the moment when we can derive a contradiction. We claim that for
all large primes p, the right hand side is a nonzero integer. But an easy calculation shows
that the left side goes to zero as p goes to infinity.

Let us study the left side first. The only term in this expression depending on p is f(λβi).
Note that

f(x) = cr−1P (X)
(crxP (x))p−1

(p− 1)!

We need to evaluate this on a bounded set of the complex plane containing λβi where
0 ≤ λ ≤ 1. On this set, x and P (X) are bounded. Clearly, then, the absolutely value of
the expression is bounded by

B1
B2

p−1

(p− 1)!
= B1

B2

1

B2

2
. . .

B2

p− 1
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and this expression goes to zero as p goes to infinity.

Finally, consider the right hand side. We claim −kF (0) is an integer not divisible by p
for p large enough, and we claim that

∑
F (βi) is an integer divisible by p. If these claims

hold, then for all sufficiently large p, the right hand side is an integer not divisible by p,
and thus a nonzero integer, and we have a contradiction.

Consider first kF (0) = k (f(0) + f ′(0) + f ′′(0) + . . .). The only terms that matter at 0 are
terms when xp−1 was differentiated exactly p − 1 times. For exactly one of these terms,
P (X)P was not differentiated. For the remaining terms, P (X)p was differentiated at least
once. Differentiating xp−1 for p − 1 times removed the (p − 1)! in the denominator; this
term is not divisible by p for large p since P (0) = c0 is not divisible by p. The remaining
terms involve at least one pP (X)p−1 and thus are divisible by p.

Therefore the full term −kF (0) is an integer which is not divisible by p. To finish the
argument, it suffices to show that

∑
F (βi) is an integer which is divisible by p.

Since P (βi) = 0, f (i)(βi) can vanish only if the term P (X)p were differentiated at least
p times. Each time a derivative is taken, many other algebraic terms form, but unless a
term in the derivative has no P (X) remaining, it will be zero at βi. Consequently, the
only terms in the derivatives which matter contain p!, which cancels out the (p − 1)! in
the denominator and leaves an extra p. What is left after all of this differentiation is a
polynomial Q(X), possibly of very large degree, with integer coefficients. But

∑
Q(βi) will

then be an expression in terms of the form βk1β
k
2 . . . β

k
b . These are symmetric in the βi and

thus can be expressed as polynomials with integer coefficients in the elementary symmetric
functions, and thus polynomials with integer coefficients in the coefficients of P (X). So we
get integers divisible by p.



Chapter 13

Special Cases

In this chapter, we obtain much more explicit results about the Galois groups of special
extensions.

In particular, we obtain results on cyclotomic extensions. The results are required in the
following chapter, when we return to straightedge and compass constructions and discuss
regular polygons.

13.1 The Discriminant

Definition 10 Let P (X) = a0X
n+a1X

n−1+. . .+an be a polynomial with roots λ1, λ2, . . . , λn.
The discriminant of the polynomial is the expression

D = a2n−2
0

∏
i<j

(λj − λi)
2

Remark: This expression is invariant under all permutations of the roots, and thus express-
ible in terms of the elementary symmetric functions. These elementary functions give the
coefficients of P (X), so the discriminant can be written as a polynomial in the coefficients
of P (X). For example, the discriminant of aX2 + bX + C is

a2

(
−b+

√
b2 − 4ac

2a
− −b−

√
b2 − 4ac

2a

)2

= a2

(√
b2 − 4ac

a

)2

= b2 − 4ac

The discriminant of aX3 + bX2 + cX + d is

b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

102
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In particular the discriminant of X3 + aX + b is

−4a3 − 27b2

The discriminant of ax4 + bx3 + cx2 + dx+ e is

256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e− 27a2d4 + 144ab2ce2 − 6ab2d2e

−80abc2de+ 18abcd3 + 16ac4e− 4ac3d2 − 27b4e2 + 18b3cde− 4b3d3 − 4b2c3e+ b2c2d2

Theorem 44 Let K ⊂ L be a splitting field for an irreducible P (X) without multiple roots
over a field whose characteristic is not 2. Recall that the Galois group permutes the roots
of P and thus is a subgroup of the symmetric group Sn. The Galois group is a subgroup of
the alternating group An if and only if the discriminant of P has a square root in K.

Proof: Since P does not have repeated roots, D ̸= 0.

The expression √
D = an−1

0

∏
i<j

(λj − λi)

belongs to the splitting field and has square D. It belongs to K if and only if it is invariant
under every element of the Galois group G. If τ is a permutation of the roots,we clearly
have τ(

√
D) = sgn(τ)

√
D, so

√
D ∈ K if and only if every element of the Galois group has

sign equal one and thus is in An.

13.2 The Cubic Case

The Galois group of a cubic is a transitive subgroup of S3. The full S3 is just the dihedral
group D3, the symmetries of an equilateral triangle. This group has order 6, and contains
three reflections and three rotations of 0, 120, and 240 degrees. A transitive subgroup
must contain either 3 or 6 elements. If the group has three elements, these elements must
be the rotations, because otherwise the group would contain two reflections, and any two
reflections generate the full group. So the Galois group can only be Z3 or D3.

Theorem 45 Let P (X) be an irreducible cubic over a field of characteristic zero. Then
D ̸= 0. If D is a perfect square in K, the Galois group is Z3. If D is not a perfect square,
the Galois group is D3

Proof: This is a special case of the result in the previous section.

Theorem 46 Let P (X) be a polynomial with real coefficients. If D < 0, P (X) has one
real root and two conjugate complex roots. If D = 0, P (X) has a repeated real root, and in
particular is not irreducible. If D > 0, P (X) has three real roots.
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Proof: It is clear that D = 0 if and only if P (X) has a repeated root. In that case, P ′

divides P . If P has three real roots, each (λj − λi) is real and nonzero, and their product
squared is positive. If P has one real root and two complex roots, the complex roots must
be conjugate, so the three terms (λj − λi) contain one purely imaginary term, and two
conjudate terms e+ fi and e− fi with f ̸= 0. The square of the purely imaginary term is
negative, and the square of (e+ fi)(e− fi) = e2 + f2 is positive, so D < 0.

Remark: Turn back to the solution of a cubic of the form X3 + aX + b on page 11. Notice

that this solution contains
√
b2 + 4a3

27 = 1
3
√
3

√
4a3 + 27b2 = 1

3
√
3

√
−D.

If D < 0, then our cubic has one real root and two complex roots. In this case the square
root in the formula is real, and the formula involves a cube root of a real number, which
always exists as a real number. So we can compute the real root without using complex
numbers. In this case the Galois group is D3.

But if D > 0, then there are three real roots, but the square root in the formula is a pure
imaginary. We thus must use trigonometric functions to find the cube root. Miraculously,
the complex parts of the two cube roots cancel out and the formula gives three real roots.
The Galois group can be either Z3 or D3.

Remark: To prove the next result, we need

Lemma 10 Let K be a field of characteristic zero, a ∈ K, and p a prime. Then P (X) =
Xp − a is irreducible over K if and only if a is not the pth power of an element in K.

Proof: If a = bp, then Xp − a = Xp − bp has a root b and therefore factors as P (X) =
(X − b)S(X).

Conversely suppose P (X) = Xp − a = R(X)S(X) over K and the degree of R(X) is
r < p. Let L be the splitting field of P (X). Then both P and R factor completely
in L and roots of R are roots of P . So we can write R(X) = (X − λ1) . . . (X − λr).
Since the coefficients of this polynomial are in K, ω = λ1 · λ2 · . . . · λr ∈ K. We have
ωp = λp1 · . . . · λ

p
r = a · a · . . . · a = ar.

Since r and p are relatively prime, we can find integers A and B with 1 = Ar +Bp. Then
a = aAraBp = (ar)A aBp = (ωp)A aBp =

(
ωAaB

)p
. It follows that p

√
a = ωAaB ∈ K. QED.

Theorem 47 (Casus Irreducibilis) If F (X) is an irreducible cubic with real coefficients
and D > 0, then the complex roots which occur in the cubic formula are unavoidable. It is
impossible to write any root of F (X) as a combination of real roots of various orders.

Proof Let K be the base field; often K = Q. Consider the extension K ⊂ K(
√
D) where

D is the discriminant of P (X). Since D > 0, the left side still contains only real numbers.
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Since P (X) is irreducible of degree 3 over K, any root field of P has degree 3, and thus
K(

√
D) does not contain any root of P (X).

If the theorem is false, we can find a series of extensions

K(
√
D) ⊂ K1 ⊂ . . . ⊂ Kn

such that each extension is obtained by adding one real radical to the previous field, and
such that one root of P (X) belongs to Kn. We can suppose each radial extension adds a
pth root for p a prime, since any root is a composition of such roots.

Clearly we can suppose that no root of P (X) is in Kn−1 by backing up the tower until we
come to the transition point.

Let Kn−1 ⊂ L be the splitting field of P (X) over Kn−1. This is a Galois extension. Since
the discriminant D is a square in Kn−1, the Galois group is Z3, so [L,Kn−1] = 3. But
any root field Kn−1 ⊂ Kn−1(λ) ⊂ L also has degree 3. So any root extension over Kn−1

contains all the roots of P . Since Kn contains a root, we must have Kn−1 ⊂ L ⊂ Kn.

But [Kn : Kn−1] = p by the previous lemma. Since [Kn : Kn−1] = [Kn : L][L : Kn−1], we
conclude that p = 3 and L = Kn. But then Kn is a Galois extension of Kn−1, and must

contain all roots of X3− a = 0, which are 3
√
a, 3

√
aω and 3

√
aω2 for ω = e

2πi
3 . Since ω is not

real, this is a contradiction. QED.

13.3 Cyclotomic Fields

We begin with cyclotomic extensions, that is, extensions of the form Q ⊂ Q(e
2πi
n ), and

thus with the polynomial P (X) = Xn − 1. We restrict to a ground field Q and thus in
particular to the characteristic zero case.

A common high school exercise factors this polynomial as (X−1)(Xn−1+Xn−2+ . . .+1),
but we can often continue factoring: X4−1 = (X2−1)(X2+1) = (X−1)(X+1)(X2+1).
In

To understand the general situation, notice that the set of all cyclotomic roots is a cyclic

group Zn generated by θ = e
2πi
n . The elements of order n in this group are called the

primitive nth roots of unity, and it turns out that they are the roots of an irreducible
polynomial Φn(X) with integer coefficients. For instance, the primitive fourth roots of
unity are ±i, which are the roots of X2 + 1. For each divisor d of n, the primitive dth
roots of unity are exactly the elements of the group of order d . They satisfy Φd(X) = 0.
It follows that Xn − 1 =

∏
d|nΦx(X). For instance, the primitive square root of unity

is −1, the root of X + 1, the primitive first root of unity is 1, the root of X − 1, and
X4 − 1 = (X − 1)(X + 1)(X2 + 1).
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Theorem 48 The polynomial Xn − 1 factors as∏
d|n

Φd(X)

where the roots of Φd are exactly the primitive dth roots of unity. The polynomials Φd,
called the cyclotomic polynomials, are all irreducible over Q with integer coefficients.

Proof: Define Φd(X) =
∏
(X − αi) over all primitive dth roots of unity. This is a monic

polynomial, but for a moment the coefficients are unclear. However, Xn− 1 =
∏

d|nΦd(X)
for all n because every nth root of unity has some order d in the group of units.

These equations serve to recursively define the Φi. We have Φ1 = X − 1 and X2 − 1 =
(X − 1)(X + 1) = Φ1(X)Φ2(X), so Φ2(X) = X + 1. In general

Xn − 1 =
( ∏

d|n;d<l

Φd(X)
)
Φn(X)

where the product is over known monic polynonials with integer coefficients, so by simple
division we discover that Φn has integer coefficients.

Therefore we need only prove

Lemma 11 Each Φn(X) is irreducible over Q.

Proof: The proof isn’t particularly difficult, but it is tricky.

Let ω be a primitive nth root of unity, with minimal polynomial F (X) over Q. If we can
prove that all primitive nth roots are roots of F (X), then F (X) must be divisible by Φn

over C. Since both polynomials have rational coefficients, it must be divisible by Φn over
Q. Since F is minimal, it must be equal to Φn.

Every nth root of unity equals ωk for some k. The new root is primitive if and only if k is

relatively prime to n. Indeed if j divides both k and n, then
(
ωj
)n/j

= 1 and so ωj is not

a primitive root. Conversely if k and n are relatively prime, we can find integers a and b

with 1 = ak + bn and then ω =
(
ωk
)a

and so ωk is primitive.

Therefore every primitive root can be obtained by starting with ω and a prime p not
dividing n, forming ωp, finding a prime q not dividing n, raising the new number to the
qth power, etc. So it is enough to prove the following lemma:

Lemma 12 Let F (X) be the minimal polynomial for a primitive nth root of unity ω. Let
p be a prime which does not divide n. Then F (ωp) = 0, ωp is a primitive nth root, and
F (X) is the minimal polynomial for ωp.
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Note that the lemma is clear provided we can prove that F (ωp) = 0.

Since ω is a root of Xn − 1, F (X) divides Xn − 1 and Xn − 1 = F (X)G(X). We claim
F and G are monic with integer coefficients. This follows from Gauss’ lemma on primitive
polynomials.

If ωp is not a root of F , then it must be a root of G. So ω is a root of G(Xp). Since F (X)
is the minimal polynomial of ω, it follows that G(Xp) = F (X)H(X). Repeating the Gauss
technique, we see that since G(Xp) has integer coefficients, so do F (X) and H(X).

Reduce modulo p to discover that in Zp[X] we have Xn − 1 = F (X)G(X) and G(Xp) =
G(X)p = F [X]H[X]. Here we use the fact that G(Xp) = G(X)p over Zp.

But then any irreducible factor of F (X) is a factor of G(X)p and thus a factor of G(X),
so Xn − 1 has a repeated factor and thus over some extension field of Zp, a multiple root.
But this is impossible because Xn − 1 = (X − α)2K(X) implies by formal differentiation
that nXn−1 = 2(X − α)K(X) + (X − α)2K ′(X) and so nαn−1 = 0. This is impossible
because αn − 1 = 0 implies α ̸= 0 and n ̸= 0 because p does not divide n. QED.

Remark: Once we know that Φn(X) is irreducible over Q, we get a Galois extension with
a known Galois group. Indeed

Theorem 49 Let L be the splitting field of Xn − 1 over Q. Then L is a Galois extension,
and its Galois group is the group of units in Zn.

Proof: Let ω be a primitive nth root of unity and consider the root field of Φn(X). This
field contains all powers of ω and hence all roots of unity. In particular, the irreducible
Φn splits completely, so it is a splitting field over a field of characteristic zero, and hence
a Galois extension.

An automorphism of this field is completely determined by the image of ω. An image must
be another root of Ψn(X) and so another primitive nth root of unity. Since the Galois
group is transitive, all such roots occur.

Thus an automorphism has the form ω → ωk where k is only unique modulo n. The only
k that can occur are those relatively prime to n. Said another way, k induces a unique
element of Zn and this element is a unit.

If j and k represent the automorphisms ω → ωj and ω → ωk, then their product is given
by

ω → ωk →
(
ωj
)k

= ωjk

so the group product is given by multiplication in the ring Zn.
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Remark: The determination of the group structure of the ring of units in Zn is a famous
topic of elementary number theory. If n = p is prime, the group of units is Z⋆

p , which
is isomorphic to Zp−1. Other interesting cases are Z⋆

4 = Z2 and Z⋆
8 = Z2 × Z2. So the

resulting group is not always cyclic.

The general result is given by the following theorem, which we will not prove:

Theorem 50

• If n = pk11 p
k2
2 p

k3
3 . . ., then

Z⋆
n =

(
Z
p
k2
1

)⋆
×
(
Z
p
k2
1

)⋆
×
(
Z
p
k2
1

)⋆
× . . .

• If p is odd, (
Zpk
)⋆

= Zpk(pk−1)

•
(Z2)

⋆ = {e}

•
(Z4)

⋆ = Z2

• For k ≥ 3,
(Z2k)

⋆ = Z2 × Z2k−2

Remark: In particular, the Galois group of any cyclotomic extension is abelian. It follows
that all subgroups are normal and abelian, and therefore any subgroup of the cyclotomic
group produces a Galois extension Q ⊂ K with abelian Galois group.

In 1853, Kronecker proved the converse of this theorem: Every Galois extension of Q with
abelian Galois group is a subfield of Q(ζn) for some primitive root of unity ζm.

Kronecker’s proof had gaps, by his own admission. The gaps were supposedly filled by
Weber in 1886, but this proof also had an error. In 1896, Hilbert gave the first complete
proof.

Every quadratic extension Q ⊂ K has Galois group Z2 and thus can be embedded in a
cyclotomic extension. By comparing the factorization of prime ideals (p) in the quadratic
extension and in the cyclotomic extension, Gauss’ law of quadratic reciprocity turns out
to be a consequence of Kronecker’s theorem.

Weber’s theorem led to the development of class field theory, which is essentially the number
theory of Galois extensions K ⊂ L with abelian Galois groups. This subject was developed
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in the first half of the twentieth century by Hilbert, Takagi, Artin, Hasse, and Chevalley.
See the web document History of Class Field Theory by Keith Conrad. An important
subfield of modern number theory flows from attempts to generalize class field theory to
non-abelian extensions.

13.4 Galois Group of Xp − a over Q

In our discussion of solving equations with radicals, we fixed a base field K containing all
nth roots of unity. We then proved that the splitting field of Xn − a over K has a cyclic
Galois group.

We now generalize to the case when these roots of unity are missing. We’ll consider the
special case where P (X) = Xp − a, p is prime, and the base field is Q. Assume that a is
not a pth power in Q. We’ll determine the splitting field of P completely and compute its
Galois group.

Since a is not a pth power, P (X) is irreducible over Q by an earlier result, so the splitting
field contains all of its roots and is generated by these roots. The roots of P (X) are ωk p

√
a

where ω is a non-trivial pth root of unity. Dividing two roots, we find that the splitting field
contains all roots of unity. So it is natural to construct the splitting field as an extension
chain

Q ⊂ Q(ω) ⊂ Q(ω p
√
a)

We know that Q ⊂ Q(ω) is a Galois extension with multiplicative Galois group Z⋆
p ; this

group is cyclic and isomorphic to Zp−1. We’ll continue to write it multiplicatively; in that
case the nonzerom ∈ Z⋆

p corresponds to the automorphism determined by ωi → ωmi.

We know that Q(ω) ⊂ Q(ω, p
√
a is also Galois with additive Galois group Zp. The auto-

morphism corresponding to n ∈ Zp maps ωi p
√
a→ ωi+n p

√
a.

Since there are p roots, the Galois group is a subgroup of the permutation group Sp. This
group can have more than p elements; indeed p ≤ |G| ≤ p!. Moreover, |G| = [Q(ω, p

√
a) : Q].

It is natural to suppose that the Galois group is some sort of product of the Galois groups of
extensions in the above chain, and thus has order p(p− 1). Indeed Q(ω, p

√
a) must contain

higher powers of p
√
a. Writing α = p

√
a, we rapidily discover that a basis is{

ωiα
j | 0 ≤ i ≤ p− 2 and 0 ≤ j < p

}
We require all of those powers of α because a root field of Xp − a will have dimension p
(recall that the root field adds only one root, not all roots). We only require powers of ω
up to the p− 2 power because ω satisfies Xp−1 +Xp−2 + . . .+X +1 = 0 and thus ωp−1 is
a combination of lower powers of ω.
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We now extend the operations of m ∈ Z⋆
p and n ∈ Zp on roots of P in Q to the full field.

Consider first n ∈ Zp. We know this element fixes Q(ω) and maps α to ωnα. It follows
that it maps αj → ωnjαj . So the full extension is

n ∈ Zp : ωiαj → ωi+njαj

Next consider m ∈ Z⋆
p . We know it maps ωi → ωmi. Moreover, it maps α → ωnα for

some n, since it preserves roots of P (X). We can multiply the automorphism by any
automorphism fixing Q(ω) and get another possible extension. One such automorphism
maps α → ω−nα. The composition of these maps fixes α. Let us take this extension.
So

m→ Z⋆
p : ωiαj → ωmiαj

Form the set Z⋆
p × Zp. Typical elements of this product have the form < m,n >. Define

an action of this element on the basis elements by letting m act first and following with
the action of n:

ωiαj → ωmiαj → ωmi+njαj

In particular, on roots < m,n > acts via

< m,n >: ωiα→ ωmiα→ ωmi+nα

Now notice that

< m2, n2 >< m1, n1 >: ωiα→ ωm1i+n1α→ ωm2(m1i+n1)+n2α

We conclude that Z⋆
p × Zp becomes a group with product

< m2, n2 >< m1, n1 >=< m2m1,m2n1 + n2 >

This is a semi-direct product induced by φ : Z⋆
p→Aut(Zp) where φ(m)(n) = mn. Notice

that φ(m) preserves addition and is one-to-one, hence onto.

Note: In general, let G1 and G2 be groups and let φ : G1 → Aut(G1) be a group homo-
morphism. We define the semi-direct product of the two groups with respect to φ to be
the set G1 ×G2 with product

< g̃1, g̃2 >< g1, g2 >=< g̃1g1, φ(g̃1)(g2) + g̃2 >

It is easy to see that this semidirect product is a group. Both G1 and G2 are subgroups of
this group. The group G2 is a normal subgroup.

In our case Z⋆
p × Zp, the Zp is a normal subgroup of the Galois group whose fixed field is

Q(ω). Therefore Q ⊂ Q(ω) is Galois with Galois group (Z⋆
p ×Zp)/Zp. Clearly this quotient

is Z⋆
p , as it ought to be.



Chapter 14

Constructing Regular Polygons

14.1 Constructing Regular Polygons

It is easy to inscribe a regular hexagon in a circle: take the compass used to draw the
circle, and mark off six equal segments with the compass. Each straight segment joining
two adjacent points has the same radius as the circle, so the interior angle is 60◦ and
therefore six of these segments exactly fit around the circle. By joining every other point,
a regular 3-gon can be inscribed.

Similarly, it is easy to inscribe a square. Draw the diameter, and the perpendicular to it
at the center, and join the four intersection points of these lines with the circle. Bisecting
each angle gives a regular 8-gon.

It is not so easy to inscribe a pentagon. Here’s one way to proceed if you have com-
pletely forgotten what you learned in high school. We need to construct cos(2π5 ) = cos θ.
Then (cos θ+ i sin θ)5 = 1. Taking imaginary parts, 5i cos4(θ) sin(θ)− 10i cos2(θ) sin3(θ) +
i sin5(θ) = 0. Factoring out i sin(θ), we obtain(

5 cos4(θ)− 10 cos2(θ)(1− cos2(θ)) + (1− cos2(θ))2
)
= 0

or
16 cos4(θ)− 12 cos2(θ) + 1 = 0

So cos θ satisfies 16X4 − 12X2 + 1. Consequently X2 = 12±
√
144−64
32 = 12±

√
80

32 = 3±
√
5

8 .

Since 3+
√
5

8 = 1
4

(
1+

√
5

2

)2
, we have cos θ = 1

2

(
1+

√
5

2

)
. This number can be constructed by

our methods, so a regular pentagon can be inscribed in a circle. Consult the internet for

many beautiful constructions. Incidentally, 1+
√
5

2 is the Golden Mean.

Theorem 51

111



CHAPTER 14. CONSTRUCTING REGULAR POLYGONS 112

• If an n sided polygon can be inscribed in a circle using straightedge and compass, then
a 2kn sided polygon can also be inscribed

• If an m sided polygon and an n sided polygon can be inscribed and m and n are
relatively prime, then an mn sided polygon can be inscribed.

Proof: Bisect the angles of a polygon to double the number of sides. If m and n are
relatively prime, integers a and b exist with am+ bn = 1. These integers may be positive
or negative or both. Then

a

(
2π

n

)
+ b

(
2π

m

)
= (am+ bn)

(
2π

mn

)
=

2π

mn

Hence we can obtain a side of themn-sided polygon by taking a multiple of the angle of one
of the polygons and reversing by a different multiple of the angle of the other. QED.

Remark: It follows that up to 20, we can construct polygons with 3, 4, 5, 6, 8, 10, 12, 15,
16, and 20 sides, leaving 7, 9, 11, 13, 14, 17, 18, and 19 in doubt.

When he was very young, Gauss succeeded in constructing a 17 sided polygon. This was
the first progress in the theory since the Greeks, and it caused Gauss to decide to become
a mathematician. The theory of this polygon and its generalizations is covered in the last
chapter of Gauss’s book on number theory, written when he was 24 years old.

Theorem 52 A polygon with n sides can be constructed using straightedge and compass if
and only if

n = 2kp1p2 . . . pk

where the pk are distinct odd primes of the form 22
n
+ 1.

Remark: This theorem rules out n = 9, 18 since the factorization of each contains a repeated
off prime.

Primes of the form 22
n
+ 1 are called Fermat primes because Fermat conjectured that all

such numbers are prime. The first few such numbers are 3, 5, 17, 257, and 65537 and each
is prime. The next number is 4294967297 which was too large to factor by hand in Fermat’s
day. Euler later proved that it is not prime by showing that it does not satisfy Fermat’s
little theorem for 3. No other prime has been found in the sequence of Fermat numbers,
but it is unknown whether others exist. If one assumes that the 22

n
+ 1 are random and

takes into account the rough distribution of the primes, the likely number of primes in the
sequence is only 4 or 5, but this is just a heuristic argument.

Proof: Starting with (0, 0) and (1, 0), we want to construct
(
cos 2π

n , sin
2π
n

)
. It suffices to

construct the cosine, for then the sin can be found by taking one square root. Starting from
Q, suppose a sequence of quadratic extensions can be found with the final one containing
cos 2π

n . By taking one more quadratic extension (this one complex), we can get a tower
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whose last element contains cos 2π
n + i sin 2π

n = ω where ω is a primitive nth root of unity.
The dimension of the final element of the tower over Q is a power of 2, so [Q(ω) : Q] must
equal a power of 2.

In section 12.3 on cyclotomic fields, we discovered that Xn − 1 =
∏

d|nΦd(X) where
each Φd is irreducible over Q. Moreover [Q(ω) : Q] = degree(Φn(X)). The numbers
φ(d) = degree(Φd(X)) define what is called the Euler Phi Function. Recall that φ(d) is
the number of generators of Zd, or alternately the number of a ∈ Zd with a relatively prime
to d.

Lemma 13

• If p is prime, φ(pk) = pk − pk−1 = pk
(
1− 1

p

)
• if m and n are relatively prime, φ(mn) = φ(m)φ(n)

Proof of theorem from lemma: Factor n into primes: n = 2kpk11 . . . pkmm Then φ(n) is a
product of terms and each must be a power of 2 if an n-sided can be constructed. We
have φ(2k) = 2k − 2k−1 = 2k(2− 1), which is a power of 2. We have φ(pk) = pk − pk−1 =
pk−1(p− 1). If k > 1, the first term is odd and the polygon is ruled out. If k = 1, the p− 1
must be a power of 2, and thus p = 2k + 1. But such a number cannot be prime unless k
is itself a power of 2, for if b is odd prime then for

22
kb + 1 = (22

k
)b + 1 =

(
(22

k
+ 1
)((

22
k
)b−1

−
(
22

k
)b−2

+ . . .−
(
22

k
)
+ 1
)

Consequently the condition of the theorem is necessary.

To prove that this condition is also sufficient, it suffices to study the case when n = p =
22

n
+1 by the previous theorem. ConsiderQ ⊂ Q(ω). This is a Galois extension, with Galois

group Z⋆
p = Zp−1. Since p = 22

n
+1, p−1 is a power of 2. The subgroups of Zp−1 correspond

to divisors of this power of two, and therefore form a single chain e ⊂ Z2 ⊂ Z4 ⊂ . . . ⊂ Zp−1.
Therefore the subfields of Q(ω) form a single chain Q ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn−1 ⊂ Q(ω)
and there are no other subfields to mess up this picture.

But we can easily find a candidate for Kn−1, namely Q(cos 2π
p ). Indeed, the extension is

generated by X = i sin 2π
p and X2 = − sin2 2π

p = cos2 2π
p − 1. So Kn−1 is a field of real

numbers, and therefore every other extension in the chain was obtained by adding a real
square root. So cos 2π

p can be constructed by straightedge and compass. QED.

Proof of lemma: Recall that φ(pn) is the number of a ∈ Zpn relatively prime to pn. There
are pn elements altogether; those not relatively prime to pn are multiples of p and so those
of the form pb for 1 ≤ b < pn−1. Since there are pn−1 of the latter, there are pn − pn−1

relatively prime to pn.
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Suppose m and n are relatively prime. Then Zmn is isomorphic to Zm × Zn.

An element of Zs is relatively prime to s if and only if it is a unit in the multiplicative
group Z⋆

s . Indeed if a and s are relatively prime, we can find A and B with Aa+Bs = 1.
Then in Zs we have Aa = 1, so a is a unit. Conversely if Aa = 1 in Zs, then Aa− 1 = Bs,
so a and s are relatively prime.

The number of units in Zmn is φ(mn). Clearly (a, b) ∈ Zm × Zn is a multiplicative unit
if and only if a is a unit in Z⋆

m and b is a unit in Zs
ntar and the number of such units is

φ(m)φ(n).

Remark: We can now say more about trisection of angles:

Theorem 53 There is a straightedge and compress construction to divide every angle into
n equal pieces if and only if n is a power of 2.

Proof: If there were such a construction and we applied it to the angle 2π, we’d obtain the
vertices of an inscribed n-gon. Or analogously, we could apply the construction to a right
angle and get a 4n-gon, from which an n-gon is easily obtained. So n = 2kp1 . . . pk where
the pi are distinct odd primes. By connecting vertices with similar gaps, we could construct
a p-gon. But then by dividing each interior angle into p pieces we’d have a pp gone, and
odd primes would be repeated, which is impossible. So no pi can occur. QED.

Remark: In high school, we learn that a small number of angles have precise trigonometric

values. For example, cos 0◦ = 1, cos 30◦ =
√
3
2 , cos 45◦ = 1√

2
, cos 60◦ = 1

2 . An earlier result

in these notes gave cos 72◦ = 1
2
1+

√
5

2 .

Gauss’ results show that a small number of other values can be expressed using only square
roots. In his number theory book, Gauss worked out the exact value of cos 2π

17 . The value
is

cos
2π

17
=

1

16

[
− 1+

√
17 =

√
34− 2

√
17+ 2

√
17 + 3

√
17−

√
34− 2

√
17− 2

√
34 + 2

√
17

]



Chapter 15

Normal and Separable
Extensions

15.1 Normal Extensions, Separable Extensions, and All That

In traditional treatments of Galois theory, an extension K ⊂ L is called a Galois extension
if L is normal and separable over K.

Definition 11 A finite extension K ⊂ L is said to be normal if whenever Q(X) is an
irreducible polynomial over K with a root in L, then Q(X) splits completely over L.

Theorem 54 Let K ⊂ L be a finite extension.

• If L is the splitting field of some polynomial P (X), then L is normal.

• Conversely, if L is normal, then L is the splitting field of some polynomial P (X) over
K.

Proof: Suppose L is a splitting field of P (X), and suppose Q(X) is irreducible over K and
has a root in L. Let K ⊂ M be the splitting field of Q(X)P (X). Then M contains all
roots of P (X), and these generate L, so K ⊂ L ⊂ M . Suppose a is a root of Q(X) in L.
By assumption Q(X) splits completely in M ; let b ∈M be a second root.

By corollary 3 in section 4.3, there is an automorphism σ of M over K taking a to b. Since
σ is an automorphism over K, it must map roots of P (X) to other roots. But the roots
of P (X) generate L, so σ maps L to L. Hence b ∈ L. This holds for any root of Q(X), so
Q(X) splits completely in L.

115
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The other direction is essentially trivial. If L = K, we are done. Otherwise find a1 ∈ L and
let P1(X) be its minimal polynomial over K. By assumption all roots of Q are in L. We
haveK ⊂ K(a1) ⊂ L. IfK(a1) is not L, find a2 ∈ L not inK(a1). Let P2(X) be its minimal
polynomial. This polynomial splits completely in L. Then K ⊂ K(a1) ⊂ K(a1, a2) ⊂ L.
Continue. The sequence of fields is strictly increasing, so eventually we get L, and then
P (X) = P1(X)P2(X) . . . is the splitting polynomial.

Definition 12 Let P (X) be a polynomial over a field K. We say P (X) is separable if all
of its roots are distinct in the splitting field of P (X).

Remark: So P (X) is separable if and only if the roots are “separated” in L, i.e., there are
no multiple roots.

Definition 13 Let K ⊂ L be a finite extension. We say the extension is separable if
whenever θ ∈ L and P (X) is its minimal polynomial, then P (X) is separable.

Theorem 55 A finite extension K ⊂ L is a Galois extension if and only if it is normal
and separable.

Proof: Suppose K ⊂ L is normal and separable. Since the extension is normal, there is a
polynomial P (X) such that L is the splitting field of P over K. Factor P into irreducible
polynomials P1(X) . . . Pk(X) over K. If there are redundant factors, we can eliminate
repetitions, so assume the factors are distinct.

Since the extension is separable, no irreducible factor has repeated roots. Suppose both Pi

and Pj share a root. Then both are minimal polynomials of this root, and by uniqueness of
the minimal polynomial they are equal. So P (X) is a splitting polynomial with no repeated
roots, and thus K ⊂ L is Galois.

Conversely, suppose K ⊂ L is Galois. Then there is a polynomial P (X) making L a
splitting field of P , so the extension is normal.

The most difficult step comes last; we want to prove that L is separable. Let α ∈ L and let
Q(X) be its minimal polynomial. We need to prove that all roots of Q are distinct. Since
K ⊂ L is normal, all roots of Q are in L.

Extend α to a set of generators of L: α = α1, α2, . . . , αn. No assumption is being made
about where these generators come from. We have a chain

K ⊂ K(α1) ⊂ K(α1, α2) ⊂ . . . ⊂ K(α1, . . . , αn) = L

For each i, let Qi(X) be the minimal polynomial of αi over K(α1, . . . , αi−1). In particular,
Q(X) = Q1(X). Normality of K ⊂ L again implies that all roots of Qi(X) are in L.
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Let ni be the number of distinct roots of Qi in L and let di be the degree of Qi. Clearly
ni ≤ di.

We have [L : K] = [K(α1, . . . , αn) : K(α1, . . . , αn−1] . . . [K(α1) : K] = dndn−1 . . . dn.
Since K ⊂ L is Galois, this is also the number of automorphisms of L. On the other
hand, an automorphism σ must map α1 to another root of Q1. There are n1 choices for
this root, and thus n1 homomorphisms φi : K(α1) → L. We then extend these maps
to K(α1, α2) by choosing possible images of α2. There are n2 such choices, and so n1n2
possible homomorphisms from K(α1, α2) into L. Continue. We conclude that the total
number of automorphisms of L is at most n1n2 . . . nn. This can only equal d1d2 . . . dn is
each ni = di, and in particular n1 = d1. So Q(X) cannot have repeated roots. QED.

Remark: Now the theorem implying that separability is a weak requirement, often auto-
matically true.

Theorem 56

• In characteristic zero, every irreducible polynomial is separable and every extension
is separable.

• In characteristic p, an irreducible polynomial P (X) is separable unless there is a
Q(X) with P (X) = Q(Xp).

• If every element in K is a pth power, then every irreducible polynomial is separable
and every extension is separable.

• If K is a finite field, every irreducible polynomial is separable and every extension is
separable.

Proof: Let α be a repeated root of an irreducible P (X). Since P (X) is irreducible, it is the
minimal polynomial for α. But if α is a repeated root, then it is also a root of the formal
derivative P ′(X), which cannot vanish in characteristic zero. Contradiction.

In characteristic p, the same argument works unless P ′(X) is identically zero. This can
only happy if the only terms in P are (Xp)k.

In a field of characteristic p, the map σ : K → K defined by k → kp is a one-to-one
homomorphism. Indeed, (a+ b)p = ap + bp because all remaining binomial coefficients are
divisible by p; clearly (ab)p = apbp. If ap = 0, then a = 0.

Suppose each element of K is a pth power. Then if an irreducible polynomial P (X) is not
separable, it equals

Q(Xp) = a0+a1X
p+. . .+ak(X

p)k = bp0+b
p
1X

p+. . .+bpk(X
p)k =

(
b0 + b1X + . . .+ bkX

k
)p

but this is not irreducible.



CHAPTER 15. NORMAL AND SEPARABLE EXTENSIONS 118

If K = Zp, and a ∈ K, then ap = a by Fermat’s Little Theorem. If L is a finite field of
characteristic p, then Zp ⊂ K is finite dimensional and σ(k) = kp is a one-to-one map from
K → K, hence onto. QED.

Corollary 6 If K has characteristic zero or K is a finite field, then every splitting field
K ⊂ L of an arbitrary polynomial P (X) is a Galois extension.

Proof: Obvious.

Definition 14 Let K ⊂ L be a finite extension. A primitive element is a θ ∈ L such that
L = K(θ).

Remark Several of our results guarantee the existence of a primitive element. They are all
covered by the following:

Theorem 57 If K ⊂ L is finite and separable, it has a primitive element.

Proof: The theorem is obvious if K and L are finite fields because L⋆ is cyclic. So we can
assume that K is infinite.

Write L = K(α1, α2, . . . αn) where the αi have no special properties. Notice thatK(α1, . . . , αi)
is separable for each i. We prove that each K(α1, . . . , αi) has a primitive element induc-
tively. Clearly, it suffices to study the case K(α, β). In this case, we look for a primitive
element of the form α+ cβ.

Let P1(X) be the minimal polynomial of α overK and let P2(X) be the minimal polynomial
of β over K and let P (X) be the product of these polynomials. Then P (X) is a polynomial
over K(α, β). Let S be its splitting field, so

K ⊂ K(α) ⊂ K(α, β) ⊂ S

The key observation of the proof is that we can find exactly [K(α, β) : K] one-to-one
homomorphisms σi : K(α, β) → S. Suppose for a moment that this has been done.

Next we find c ∈ K such that σi(α + cβ) ̸= σj(α + cβ) for all i ̸= j. This is easy. If the
two expressions are equal, then

σi(α)− σj(α) = (−c) (σi(β)− σj(β))

This equation cannot hold if σi(β)− σj(β) because it would imply that σi and σj agree on
both α and β and thus everywhere, but σi ̸= σj . Otherwise the equation rules out exactly
one c for each i and j, and so only finitely many c’s. Since K is infinite, we can find an
appropriate c.
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Consider
K ⊂ K(α+ cβ) ⊂ K(α, β) ⊂ S

Let R(X) be the minimal polynomial of α + cβ over K and let it have degree d. Since
R has a root in the separable K(α, β), its roots in S are distinct. Any homomorphism
K(α+cβ) → S must map α+cβ to a root of R, so there are at most d such homomorphisms.
But there are [K(α, β) : K] homomorphisms, so [K(α, β) : K] ≤ d = [K(α+ cβ) : K] and
we conclude that K(α+ cβ) = K(α, β).

Now we prove the existence of the σi.

Since K ⊂ L is separable and P1(X) is irreducible over K, all of its roots are distinct in
L. Call them α = α1, . . . , αd1 , where d1 is the degree of P1(X). We can find exactly n
one-to-one homomorphisms φi : K(α) → S, since such a map is determined by the image
of α, which can be any root of P1(X).

Our goal is now to extend the φi to one-to-one homomorphisms K(α, β) → S, and count
the number of ways this can be done. The polynomial P2(X) is irreducible over K, so
all of its roots are distinct in S. It might be reducible in K(αi). Factor P2(X) over
K(α) and let Q2(X) be the irreducible factor with root β. Since P2 has coefficients in
K, P = φi(P ) factors in K(αi), and φi(Q2(X)) is a factor over K(αi). Call the roots of
this polynomial βij in S. For a fixed i, these roots are distinct and their number d2 is the
degree of φi(Q2(X)), which equals the degree d2 of Q2(X). We can extend φ to a map
K(α, β) → S sending α to αi and sending β to some βij . The number of such maps is
d1d2 = [K(α : K][K(α, β) : K(α)]. QED.

Corollary 7 Every finite K ⊂ L has a primitive element if the characteristic is zero, or
if the fields are finite.

Remark: Let P (X) be a polynomial, and let K ⊂ L be its splitting field. The Galois group
of P is then a subgroup of the permutation group on the roots of P . We have found cases
when this group is the full S5. It is thus highly transitive, since any 5 elements can be
taken to any other 5 elements.

This is a particular “permutation representation” of G, but it is not the only one. By the
previous theorem, we can write the splitting field as K ⊂ K(γ). Let M(X) be the minimal
polynomial of γ. Then each automorphism is completely determined by the value on γ, so
the Galois group is a simply transitive subgroup on 5! = 120 elements.

The Galois group is an abstract group; it makes sense to think of it as a permutation group
only when we have a particular generating polynomial for the extension.



Chapter 16

Galois Theory and Reduction
Modulo p

16.1 Preview

We often want to prove that a particular P (X) over Q is irreducible and then find its
Galois group. In these notes, we introduced a small number of tools to do these tasks. For
instance, irreducibility was mainly proved using Eisenstein’s theorem.

In this chapter, we discuss new methods for both calculations. The methods involve re-
ducing modulo a prime p. We factor P (X) over Zp and compute the Galois groups of the
resulting irreducible factors. Brute force methods and computer programs are available
for these tasks. By varying the prime p, we gain additional information. Then this in-
formation can be assembled to provide information about the original problems over the
rationals.

Consider the problem of factoring over Q. When a polynomial has rational coefficients, it
does not make sense to reduce modulo p. But luckily Gauss associated to each polynomial
with rational coefficients an associated primitive polynomial with integer coefficients, and
proved that factoring the primitive polynomial over the integers is equivalent to factoring
the original polynomial over the rational numbers. We can certainly reduce the primitive
polynomial modulo a prime p. Suppose the resulting polynomial is irreducible. Then so is
the primitive polynomial over Z, and also the original polynomial over Q.

But even if the reduced polynomial factors, we gain important information. For instance,
suppose a primitive polynomial factors as a cubic times a quartic over Z5, and factors as a
quadratic times an irreducible polynomial of degree 6 over Z7. Factorization over Z must
be consistent with both of these results, and a little thought shows that our polynomial

120
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must be irreducible.

At the moment, it is unclear how we could start with a splitting field Q ⊂ L and reduce
modulo p. The essential idea is to introduce a notion of “integers” in both fields, so the field
extension induces a ring inclusion I(Q) = Z ⊂ I(L) and then reduce modulo p. Details we
will provided in a later section. The ultimate theorem we obtain is due to Dedekind:

Theorem 58 (Dedekind) Let P (X) be a monic irreducible polynomial with integer co-
efficients. Suppose the reduction of P modulo a prime p factors as a product of irreducible
polynomials over Zp of degrees d1, d2, . . . , dk over Zp. Suppose this reduced polynomial has
distinct roots in its splitting field over Zp. If we regard the Galois group of the original P
as a permutation group on its roots, then this group has an element τ that can be written
as a product of k distinct cycles of degrees d1, d2, . . . , dk.

16.2 X5 −X − 1

We postpone the proof of Dedekind’s theorem to the end of this chapter, and begin with
a series of applications.

The most famous example of a polynomial which cannot be solved by radicals is

P (X) = X5 −X − 1

This example was discovered by Artin. It has only one real root, so the techniques of
section 9.6 do not suffice to find its Galois group. We will prove it irreducible with Galois
group S5.

We begin by proving this polynomial irreducible. The symbolic algebra program Mathe-
matica has a built-in function to Factor polynomials modulo a prime. Let’s factor over Z5.
Here is the command to run the function, and the resulting output:

Factor[X^5 - X - 1, Modulus -> 5]

X^5 + 4X + 4

It follows that X5 −X − 1 is irreducible over Z5, and thus irreducible over Q.

Just this once, imagine factoring over Z5 by brute force. If a ∈ Z5, a
5 = a. Therefore, for

any a we have a5 − a − 1 = −1. If follows that the reduced polynomial modulo 5 has no
linear factors. If it factors at all, it must have one quadratic and one cubic factor.

W can ignore quadratic candidates which factor. So it suffices to divide by X2 + aX + b
when

√
a2 − 4b ̸∈ Z5, and thus when a2 + b = 2, 3. If a = 0, this gives X2 + 2 and X2 + 3.

If a = 1 it gives X2+X+1 and X2+X+2. If a = 2 it gives X2+2X+3 or X2+2X+4.
If a = 3 it gives X2 + 3X + 3 and X2 + 3X + 4 and if a = 4 it gives X2 + 4X + 1 and
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X2 +4X +2. So it suffices to test the following list, and the reader can show that none of
these is a factor of the reduced X5 −X − 1.

X2 + 2, X2 + 3, X2 +X + 1, X2 +X + 2, X2 + 2X + 3, X2 + 2X + 4

X2 + 3X + 3, X2 + 3X + 4, X2 + 4X + 1, X2 + 4X + 2

We now compute the Galois group of X5 −X − 1. The argument in section 9.6 showing
that the group contains a 5-cycle is still valid here. But the argument that it has a 2-cycle
fails. We will use Dedekind’s theorem to find a 2-cycle. Then section 9.6 shows that the
Galois group is the full S5.

Let us ask Mathematica to factor X5 −X − 1 over Z7. Here is the session:

Factor[X^5 - X - 1, Modulus -> 7]

{X^2 + 6 X + 3} {X^3 + X^2 + 5X + 2}

We can apply Dedekind’s theorem, since X5 −X − 1 has non-zero formal derivative in Z7

and thus cannot have multiple roots in an extension field. Dedekind’s theorem allows us to
find an element τ in the Galois group with disjoint 2-cycle and 3-cycle. An example would
be τ = (12)(345). Notice that τ3 then has a 2-cycle but no 3-cycle. Hence the Galois group
has a 2-cycle and a 5-cycle, and so must be the full S5.

Remark: Curiously, the similar polynomial X5 +X +1 is solvable by radicals. Indeed if ω
is a primitive third root of unity, then ω5 = ω2, so substituting in P gives ω2 + ω + 1 = 0.
It follows that X2 +X + 1 divides P , and indeed

X5 +X + 1 = (X2 +X + 1)(X3 −X2 + 1)

Remark: If we replace X by −X in X5+X−1, we obtain −(X5+X+1) and it immediately
follows that X5 + X − 1 factors and is solvable by radicals. If we replace X by −X in
X5 − X + 1, we obtain −(X5 − X − 1) and it immediately follows that X5 − X + 1 has
Galois group S5 and is not solvable by radicals.

It turns out that all quintics can be reduced to X5 + aX + b by transformations which
preserve the Galois group. If a or b is zero, the quintic can be solved by radicals. If
|a| = |b| = 1, we obtain one pair X5 +X + 1 and X5 +X − 1 of solvable quintics, and one
pair X5 −X − 1 and X5 −X + 1 of unsolvable quintics.

16.3 A Tricky Point Concerning Straightedge and Compass
Constructions

If Q ⊂ L is an extension generated by constructible numbers, then the degree [L : Q] is
a power of 2. The converse of this theorem is false, and the purpose of this section is to
explain.
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Suppose first thatQ ⊂ L is a Galois extension of degree a power of 2. Then the Galois group
of the extension has order a power of two, and thus is solvable by the Sylow theorems. So
we can find a composition series with composition quotients Z2. The fundamental theorem
of Galois theory then gives a series of quadratic extensions Q ⊂ K1 ⊂ K2 ⊂ . . . ⊂ L. So
every element of L can be constructed by straightedge and compass.

However, suppose r is algebraic with minimal polynomial a power of 2. We can form the
root field Q(r), but this root extension need not be Galois, and we cannot employ Galois
theory to obtain a tower of quadratic extensions. We now show by example that in this
situation, r may not be constructable by straightedge and compass.

Consider the polynomial X4 +8X +12 and let θ be a root. We claim that the polynomial
is irreducible, so [Q(θ) : Q] = 4 = 22. We also claim that the Galois group of the splitting
field L is A4. Assuming this is correct, suppose we can find a field Q ⊂ K ⊂ Q(θ) ⊂ L. By
the fundamental theorem of Galois theory, the field K would correspond to a subgroup of
A4 of order 6. But A4 is the group of the 12 rotational symmetries of a tetrahedron, and
this group contains no subgroup of order 6. QED.

To prove X4 + 8X + 12 irreducible, we factor over Z5 and Z17.

Factor[X^4 + 8 X + 12, Modulus -> 5]

{X + 1} {X^3 + 4 X^2 + X + 2}

Factor[X^4 + 8 X + 12, Modulus -> 17]

{X^2 + 4 X + 7} {X^2 + 13 X + 9}

Over Z, X4 +8X +12 cannot have a linear factor, since there is no linear factor over Z17.
It cannot have a quadratic factor, since there is no quadratic factor and no product of two
linear factors, over Z5. So X

4 + 8X + 12 is irreducible.

The discriminant of our polynomial is 5762, so the Galois group is a subgroup of A4. We
want to prove that the Galois group is the full A4, and for that it is enough to prove that
the order of the group is divisible by both 3 and 4, since than it has at least 12 elements
and thus must be all of A4.

If L is the splitting field of P , we have Q ⊂ Q(r) ⊂ L. Then |G| = [L : Q] = [L :
Q(r)][Q(r) : Q]. Since [Q(r) : Q] = 4, the order of G is divisible by 4.

Apply Dedekind’s theorem. The derivative of our polynomial over Z5 is not zero, so it has
no multiple roots over an extension. By the above factorization, there is a τ in the Galois
group with a one cycle and a three cycle. This element has order 3, so the order of the
Galois group is divisible by 3.
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16.4 Polynomials with Galois Group Sn

Theorem 59 For each n > 0, there is a polynomial of degree n with integer coefficients
whose Galois group is the full Sn.

Proof: This result is trivial for n = 1 and n = 2.

Suppose p is prime and n ≥ 1 is an integer. We first claim there is a monic polynomial
over Z which is irreducible in Zp[X]. Indeed, we proved that a field GF (pn) of order pn

exists. So Zp ⊂ GF (pn) is a Galois extension. By an earlier result, there exists θ ∈ GF (pn)
generating this extension. The minimal polynomial of θ is monic in Zp[X] and irreducible
there. Lift it to a monic polynomial over Z.

Find P1(X) a monic polynomial of degree n with integer coefficients such that P1 is irre-
ducible over Z2. Find a monic polynomial P2 of degree n which factors in Z3[X] into a
linear polynomial and an irreducible polynomial of degree n− 1. If n is odd, find a monic
polynomial P3 of degree n which factors over Z5 as a product of an irreducible quadratic and
an irreducible polynomial of degree n−2. If n is even and n ̸= 4, find a similar polynomial
which factors over Z5 as an irreducible quadratic times a product of two irreducible polyno-
mials of distinct odd degrees. If n = 4, let P3(X) be a product of an irreducible quadratic
and two linear terms with distinct roots. Let P (X) = −15P1(X) + 10P2(X) + 6P3(X).
Notice that this polynomial is monic of degree n. Since the polynomial reduced modulo 2
is irreducible, P (X) is irreducible.

Notice that modulo 2, P (X) = P1(X). Also modulo 3, P (X) = P2(X). Finally modulo 5,
P (X) = P3(X). Since P1(X) is irreducible over Z2, all of its roots are distinct by theorem
55 in section 14.1. Since P2(X) factors over Z3 into a linear factor and an irreducible
factor, the linear factor cannot be one of the roots of the irreducible factor and the roots
of the irreducible factor are all distinct by theorem 55. So all roots are distince. When n
is odd, P3(X) factors over Z5 as a product of an irreducible quadratic and an irreducible
polynomial of degree n− 2. Each irreducible factor has distinct roots by theorem 55, and
the two polynomials cannot have a common root, else they would be minimal polynomials
for this root, but one has even degree and one has odd degree.

If n is even and not four, P3(X) factors over Z5 as an irreducible quadratic and two
irreducible polynomials of distinct odd degrees. The same reasoning shows that all roots
are distinct. If n = 4, P3(X) still factors into terms with distinct roots.

Hence we can apply Dedekinds theorem. It first implies that the Galois group has an
n-cycle. Second, it implies that the group contains an (n − 1)-cycle. When n is odd, it
implies that the group has a 2-cycle and an (n - 2)-cycle. When n is even and not 4, it
implies that the group has a 2-cycle and two odd cycles. When n = 4 it implies that the
group has a 2-cycle.
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By taking powers of elements, we conclude that the group always contains a 2-cycle, an
n-cycle, and an (n - 1)-cycle. For instance, if it contains a 2-cycle σ multiplies by a disjoint
cycle τ of odd order k, then (στ)k = σ.

We now prove that such a group must be all of Sn. Numbering the elements appropriately,
we can assume that the n − 1-cycle is (1 2 . . . n − 1). If the 2-cycle is σ = (i j) with
1 ≤ i < j < n, then find τ ∈ G mapping n to j; this is possible since G is transitive on
roots. Then τ−1στ maps n to τ−1(i) and τ−1(i) to n and leaves everything else fixed. So
this product is (τ−1(i) n). In short, we may assume that G contains (1 2 3 . . . n− 1) and
(k n) for some k < n.

We now show that such a group must be all of Sn. Let τ = (1 2 . . . n−1) and let σ = (k n).
If j < n, we can find a power τ s mapping j to k. Then τ−sστ s maps j to n and maps n
to j and leaves everything else fixed. So G contains (j n) for all j < n.

Now notice that (in)(jn)(in) = (ij). Hence all transpositions are in G, so G = Sn.

16.5 Every Finite G is a Galois Group

Theorem 60 If G is a finite group, there is a Galois extension Q ⊂ K ⊂ L such that the
Galois group of K ⊂ L is G

Proof: Assume G has n elements. Define an action of G on itself by

g : g1 → gg1

This is a group homomorphism from G to Sn, the permutation group on n symbols. It is
one-to-one, because if gg1 = g1 for all g1, then g = e. So we can identify G with its image
in Sn. Notice that this subgroup has order n, while Sn has order n!.

Find a polynomial P (X) whose splitting field Q ⊂ L has Galois group Sn. By the fun-
damental theory of Galois theory, the subgroup G corresponds to a subfield Q ⊂ M ⊂ L.
Indeed M ⊂ L is a Galois extension with Galois group G. QED.

Remark: It is unknown whether every G is the Galois group of a Galois extension of Q.
Hilbert proved that all Sn and all An are realizable. Shafarevich proved that all solvable
groups are realizable. It is known that all sporadic groups except possibly the Mathieu
group M23 are realizable.

16.6 Proof of Dedekind’s Theorem

The proof we give is due to John Tate, from two web expositions of the proof.
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Step 1: Let K ⊂ L by the splitting field of P (X) and denote the roots of P by {r1, . . . , rn}.
Define

D =
∑

0≤e1,...,en<n

Zre11 r
e2
2 . . . renn

Since the degree of P is n, powers of ri of size n or larger can be written in terms of lower
powers. Consequently D is a subring of L. It contains Z since r01r

0
2 . . . r

0
n = 1.

Notice that the re11 . . . renn need not be linearly independent. But we easily deduce the
general structure of D. It is a finitely generated abelian group. Moreover, it has no torsion
elements since it is contained in a field of characteristic zero. So by the classification of
finitely generated abelian groups, it equals Z × Z × . . . × Z. Said another way, it has a
basis d1, . . . , dN of linearly independent elements and equals Zd1⊕Zd2⊕ . . .⊕ZdN .

Fix a prime p. Clearly pD is a proper ideal of D, since it contains linear combinations of
the di whose coefficients are multiples of p. Let m be a maximal ideal containing pD. Then

E =
(
D/m

)
is a finite field. This field has characteristic p, since p times any element of

E is zero. So
(
Z/pZ

)
⊂
(
D/m

)
.

Step 2: Let φ : D → D/m be the natural map. We have Z ⊂ D; φ sends integers to their
values modulo p, and thus maps P (X) to Pp(X). But P splits and all of its roots belong

to D, so φ(P ) = Pp =
∏(

X − φ(ri)
)
. We are assuming that Pp has distinct roots, so the

φ(ri) are distinct.

Step 3: Let R be the set of roots of P in L, and let Rp be the set of roots of Pp in E. It
follows from the above that φ maps R to Rp in a one-to-one and onto manner.

Step 3: Let G be the Galois group of Q ⊂ L. If σ ∈ G, , σ permutes the ri. So it maps
D → D, inducing an automorphism of D. It follows that φ ◦ σ is a ring homomorphism
from D to E. This map again maps R to Rp bijectively. Moreover, if σ ̸= τ , then φ ◦ σ
and φ ◦ τ are unequal because induce different maps from R to Rp. But we know that an
element of the Galois group is completely determined by the resulting permutations of the
roots.

Step 4: Let G = {σ1, . . . , σN}. It follows that {φ ◦ σ1, φ ◦ σ2, . . . , φ ◦ σn} are distinct
homomorphisms from D to E. Notice that one of these is the original φ since e ∈ G.

Step 5: We claim that the φ ◦ σi are the only homomorphisms from D to E sending the
identity to the identity. This is the most difficult step in the proof, so we will postpone its
proof until the bitter end.

Step 6: The Galois group of E is generated by the Frobenius automorphism π(e) = ep. If
φ : D → E is a homomorphism, then so is π ◦ φ. Hence by the previous result there is an
automorphism τ ∈ G such that π ◦ φ = φ ◦ τ. But τ and π induce permutations of R and
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Rp and φ sets up a bijection between these sets of roots. The equation π ◦ φ = φ ◦ τ then
implies that τ and π have the same cycle structure as permutations.

Step 7: Notice that Pp is not irreducible; it factors as P1P2 . . .¶k. Each of these has
different roots, so the roots Rp separate into k pieces, each left invariant by π. On each of
these pieces, π generates a transitive cycle. So the cycle structure of π corresponds to the
factorization of Pp. This completes the argument.

Step 8: To finish, we need only prove step 5.

We have D = Zd1⊕Zd2⊕. . .⊕ZdN . The di are linearly independent over Z, but then they
are linearly independent over Q because a dependent relation q1d1 + . . .+ qNdN = 0 could
be written with common denominator a1

b d1+ . . .+
aN
b dN = 0, implying a1d1+ . . .+aNdN =

0.

Consider Qd1 + . . . +QdN . This is a ring containing Q and finite dimensional over Q, so
it is a field. This field contains D, hence all powers of the roots of P . So it must be L. In
particular, [L : Q] = N , so the Galois group G of Q ⊂ L has N elements.

We want to prove that the N homomorphisms already introduced are all there are. Suppose
not and suppose there is another, ψN+1.

Step 9:

Lemma 14 The maps ψ1, . . . , ψN+1 : D → E are linearly independent over E.

Proof: We prove this by induction on the number of maps. It suffices to study the induction
step. Suppose

∑N+1
i=1 eiψi = 0.

Since ψ1 ̸= ψN+1, they are not equal on some non-zero element k0. Then
∑
eiψi(kk0) = 0

and so ∑
eiψi(k)ψi(k0) = 0∑

eiψi(k)ψN+1(k0) = 0

Subtracting ∑
eiψi(k)

(
ψi(k0)− ψN+1(k0)

)
= 0

This is a dependence relation on the first N terms, so by induction all coefficients are

zero. In particular, e1

(
ψ1(k0) − ψN+1(k0)

)
= 0. By the choice of k0 we conclude that

e1 = 0.

Repeat the argument, selecting k0 such that ψ2(k0) ̸= ψN+1(k0). We conclude that e2 = 0.
Continue. Eventually ei = 0 for i ≤ N. Consequently eN+1ψN+1 = 0. Since the ψ map the
identity to itself, eN+1 = 0, proving the lemma.
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Step 10: We have N + 1 linearly independent maps from D to E, where D has a basis
d1, . . . , dN over Z, and these elements are actually linearly independent elements of L over
Q. Consider the equations

N+1∑
i=1

xiψi(dj) = 0

These are N linear equations in unknowns x1, . . . , xN+1 belonging to E. Consequently,
they have a non-zero solution. This solution is a dependence relation among the ψi, which
holds for each di ∈ D and consequently is identically true in D. This contradiction proves
step 5, and consequently the entire theorem. QED.
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