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ON RESTRICTIONS OF MODULAR SPIN REPRESENTATIONS
OF SYMMETRIC AND ALTERNATING GROUPS

ALEXANDER S. KLESHCHEV AND PHAM HUU TIEP

Abstract. Let F be an algebraically closed field of characteristic p and H be
an almost simple group or a central extension of an almost simple group. An
important problem in representation theory is to classify the subgroups G of H
and FH-modules V such that the restriction V ↓G is irreducible. For example,

this problem is a natural part of the program of describing maximal subgroups
in finite classical groups. In this paper we investigate the case of the problem

where H is the Schur’s double cover Ân or Ŝn.

1. Introduction

Let F be an algebraically closed field of characteristic p and H be an almost
simple group or a central extension of an almost simple group. An important
problem in representation theory is to classify the subgroups G of H and FH-
modules V such that the restriction V ↓G is irreducible. For example, this problem
is a natural part of the program of describing maximal subgroups in finite classical
groups, see [1, 23, 27].

In this paper we investigate the case of the problem where soc
(
H/Z(H)

)
is the

alternating group An. Assume first that the center Z(H) is trivial, i.e. H = An

or Sn. In this case Saxl [30] has classified all pairs (G,V ) as above, providing the
ground field F has characteristic 0. In positive characteristic the same has been
achieved in [25, 7, 26], at least if p 6= 2, 3 (and we have obtained a lot of partial
information even in the exceptional cases p = 2, 3).

Assume from now on that Z(H) is non-trivial. If n 6= 6, 7 then the only non-
trivial central extensions are the Schur’s double covers Ân, Ŝn and S̃n. So we may
and will assume from now on that p 6= 2, as otherwise the center acts trivially and
so the problem reduces to the case Z(H) = 1. Moreover, the group algebras FŜn

and FS̃n are canonically isomorphic, so we only have to deal with Ân and Ŝn.
To be more precise, Ŝn is the double cover of the symmetric group Sn, in which

transpositions lift to involutions. It can be described as the group generated by
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t1, t2, . . . , tn−1, z subject to the following relations:

z2 = 1 = t2i (1 ≤ i ≤ n− 1),
titi+1ti = ti+1titi+1 (1 ≤ i ≤ n− 2),
titj = ztjti (1 ≤ i, j ≤ n− 1 and |i− j| > 1).

Then z ∈ Ŝn is a central element of order 2, and we have the following exact
sequence:

1 −→ 〈z〉 −→ Ŝn
π−→ Sn −→ 1.

For any subgroup G < Sn we denote Ĝ := π−1(G), where π : Ŝn → Sn is the
natural projection. For example, we have Ân for the alternating group An < Sn.

The results of Kleidman and Wales [22] deal with the problem of irreducible
restrictions from Ŝn and Ân to subgroups under the assumption that the ground
field has characteristic 0. In this paper we study the situation in characteristic p.

In §3 we get our first main result: a lower boundary for dimensions of faithful FŜn

and FÂn-modules. This turns out to be an effective tool for studying irreducible
restrictions. In positive characteristic our result refines the Wagner’s lower bound
[31]. Set

δ(Ŝn) =

 2k−1 if n = 2k,
2k−1 if n = 2k + 1 and p|n,
2k if n = 2k + 1 and p 6 |n;

δ(Ân) =

 2k−2 if n = 2k and p|n,
2k−1 if n = 2k and p 6 |n,
2k−1 if n = 2k + 1.

Setting κn = 1 if p|n and 0 otherwise, we have

(1.1) δ(Ŝn) = 2b(n−1−κn)/2c and δ(Ân) = 2b(n−2−κn)/2c.

Let H = Ŝn or Ân. It is known (see Lemma 2.1 below) that δ(H) is the dimension
of a basic spin FH-module. The following theorem shows that δ(H) is actually
the minimal possible dimension of a faithful FH-module, and there are no other
faithful modules with dimensions in the interval [δ(H), 2δ(H)).

Theorem A. Let n ≥ 8, H = Ŝn or Ân, and let V be an irreducible faithful
FH-module of dimension less than 2δ(H). Then V is a basic spin module and
dimV = δ(H).

Our next main theorem classifies the irreducible restrictions from Ŝn and Ân to
subgroups G such that π(G) is a primitive subgroup of Sn. We refer the reader to
§2 for the definition of the second basic module.

Theorem B. Let H = Ŝn or Ân with n ≥ 5, D be a faithful irreducible FH-module,
and let G be a subgroup of H such that π(G) < Sn is a primitive subgroup which
does not contain An. Then D↓G is irreducible if and only if one of the following
holds:

(i) H = Ŝn, D is a basic spin representation, and one of the following holds:
(a) n = 5, p 6= 5, and π(G) = Z5 : Z4;
(b) n = 6, and π(G) = S5;
(c) n = 6, p 6= 3, and π(G) = A5;
(d) n = 8, and π(G) = AGL3(2);
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(e) n = 10, p 6= 3, 5, and π(G) = S6,M10 or Aut(A6);
(f) n = 11, p = 11, and π(G) = M11 (two classes);
(g) n = 12, p 6= 3, and π(G) = M12.

(ii) H = Ân, D is a basic spin representation, and one of the following holds:
(a) n = 5, p 6= 5, and π(G) = Z5 : Z2;
(b) n = 6, and π(G) = A5;
(c) n = 7, and π(G) = L2(7) (two classes);
(d) n = 8, and π(G) = AGL3(2) (two classes);
(e) n = 9, p 6= 3, and 32 : Q8 ≤ π(G) ≤ 32 : SL2(3) or L2(8) ≤ π(G) ≤

Aut(L2(8));
(f) n = 10, p 6= 3, and π(G) = M10;
(g) n = 10, p = 5, and π(G) = A6;
(h) n = 11, p 6= 3, and π(G) = M11 (two classes);
(i) n = 12, p 6= 3, and π(G) = M12 (two classes).

(iii) H = Ân, D is a second basic spin representation, and one of the following
holds:
(a) n = 6, p = 3, and π(G) = A5;
(b) n = 8, p 6= 7, and π(G) = AGL3(2) (two classes);
(c) n = 12, p 6= 3, 11, and π(G) = M12 (two classes).

(iv) D is neither a basic nor a second basic spin representation, and one of the
following holds:
(a) n = 5, p 6= 3, 5, H = Ŝ5, π(G) = Z5 : Z4, and dim(D) = 4;
(b) n = 6, p 6= 3, 5, H = Ŝ6, π(G) = S5, and dim(D) = 4;
(c) n = 7, p = 3, H = Â7, π(G) = L2(7) (two classes), and dim(D) = 6.

Theorem B is proved in §5. In §6, we treat the nearly simple case, that is we
classify the triples (G,H,D) such that H = Ŝn or Ân, G < H with soc

(
G/Z(G))

simple, D a faithful FH-module, andD↓G is irreducible. This is the most interesting
case for applications to maximal subgroups in finite classical groups. We note that
the case p = 0 has not been treated completely in [22]: Theorem 1.3 of [22] assumes
that G/Z(G) is simple. The missing information can be recovered from Theorem C
below by looking at the cases where p > n.

To state Theorem C, we need to introduce a delicate combinatorics and recall
some results from [9]. For any n ≥ 0, let λ = (λ1, λ2, . . . ) be a partition of n. We
call λ a p-strict partition if p divides λr whenever λr = λr+1. Let Pp(n) denote
the set of all p-strict partitions of n. We say that λ ∈ Pp(n) is restricted if{

λr − λr+1 < p if p|λr,
λr − λr+1 ≤ p if p - λr

for each r ≥ 1. Let RPp(n) denote the set of all restricted p-strict partitions of n.
Let λ ∈ Pp(n). We identify λ with its Young diagram

λ = {(r, s) ∈ Z>0 × Z>0 | s ≤ λr}.

Elements (r, s) ∈ Z>0 × Z>0 are called nodes. Define ` := (p− 1)/2, and label the
nodes of λ with residues, which are the elements of the set I = {0, 1, . . . , `}. The
labelling depends only on the column and follows the repeating pattern 0, 1, . . . , `−
1, `, ` − 1, . . . , 1, 0, starting from the first column and going to the right, see the
example below. The residue of the node A is denoted resA. Denote by a(λ) the
number of nodes in the Young diagram λ of residue different from 0.
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Let i ∈ I. A node A = (r, s) ∈ λ is called i-removable (for λ) if one of the
following holds:

(R1) resA = i and λ− {A} is again a p-strict partition;
(R2) the node B = (r, s+1) immediately to the right of A belongs to λ, resA =

resB = i, and λ− {A,B} is a p-strict partition.
Similarly, a node B = (r, s) /∈ λ is called i-addable (for λ) if one of the following
holds:

(A1) resB = i and λ ∪ {B} is again a p-strict partition;
(A2) the node A = (r, s− 1) immediately to the left of B does not belong to λ,

resA = resB = i, and λ ∪ {A,B} is a p-strict partition.
We note that (R2) and (A2) above are only possible in case i = 0.

Now label all i-addable nodes of the diagram λ by + and all i-removable nodes
by −. Then, the i-signature of λ is the sequence of pluses and minuses obtained by
going along the rim of the Young diagram from bottom left to top right and reading
off all the signs. The reduced i-signature of λ is obtained from the i-signature by
successively erasing all neighboring pairs of the form +−. Note the reduced i-
signature always looks like a sequence of −’s followed by +’s. Nodes corresponding
to a − in the reduced i-signature are called i-normal. The rightmost i-normal node
(corresponding to the rightmost − in the reduced i-signature) is called i-good. If
A is the i-good node, we write λ[i] for λ − {A}. A node is called normal if it is
i-normal for some i.

Example. Let p = 5, so ` = 2. The partition λ = (16, 11, 10, 10, 9, 5, 1) is restricted
5-strict, and its residues are as follows:

0 1 2 1 0 0 1 2 1 0 0 1 2 1 0 0
0 1 2 1 0 0 1 2 1 0 0
0 1 2 1 0 0 1 2 1 0
0 1 2 1 0 0 1 2 1 0
0 1 2 1 0 0 1 2 1
0 1 2 1 0
0

The 0-addable and 0-removable nodes are as labelled in the diagram:

− −
−

−
−

hh

h

+
+

Hence, the 0-signature of λ is −,−,+,+,−,−,− and the reduced 0-signature is
−,−,−. The 0-normal nodes are circled in the diagram above.

It is proved in [9] that the irreducible FŜn-modules are labelled by the symbols
(λ, σ) where λ runs over all restricted p-strict partitions of n, σ is 0 if a(λ) is even
and σ runs over {+,−} if a(λ) is odd. The irreducible module corresponding to a
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pair (λ, σ) is denoted by D(λ, σ). Moreover, we have D(λ, 0)⊗ sgn ∼= D(λ, 0) and
D(λ,±) ⊗ sgn ∼= D(λ,∓), so Clifford theory yields the following. If λ ∈ RPp(n)
has a(λ) even, then D(λ, 0)↓Ân

decomposes as a direct sum E(λ,+) ⊕ E(λ,−) of
two non-isomorphic irreducible FÂn-modules. If a(λ) is odd, then D(λ,+)↓Ân

∼=
D(λ,−)↓Ân

is irreducible denoted E(λ, 0). Now,

{E(λ, 0) | λ ∈ RPp(n), a(λ) odd} t {E(λ,+), E(λ,−) | λ ∈ RPp(n), a(λ) even}

gives a complete set of pairwise non-isomorphic irreducible FÂn-modules.
The partition ωn, for which D(ωn, σ) and E(ωn, σ) are basic spin modules, can

be described as follows, see [9, 9.12]. Write n = ap+ b with 0 ≤ b < p. Then

(1.2) ωn :=
{

(pa, b) if b 6= 0,
(pa−1, p− 1, 1) if b = 0.

Let λ ∈ RPp(n). We write λ ∈ JS if the bottom removable node of λ is its
only normal node (JS stands for Jantzen-Seitz, cf. [18, 24]). Let i ∈ I. We write
λ ∈ JS(i) if λ ∈ JS and the bottom removable node of λ has residue i.

We set Ω := {1, 2, . . . , n} and say that a subgroup X < Sn is of type

(n1, n2, . . . , nt)

if the X-orbits on Ω have lengths n1, n2, . . . , nt.
The following result includes Theorems 9.17, 9.18 from [9] and some results from

[29] (all of which are used in the proof).

Theorem C. Let H = Ŝn or Ân, D be a faithful irreducible FH-module, and G be
a subgroup of H such that G/Z(G) is almost simple and π(G) does not contain An.
Set S := soc

(
π(G)

)
. Then D↓G is irreducible if and only if one of the following

holds:

(i) S = Am (m ≥ 5), n = m+1, and one of the following holds (all embeddings
being of type (m, 1)):
(a) H = Ŝm+1, G = Ŝm, and either D = D(λ, 0) for some λ ∈ JS(0)

with a(λ) even or D = D(λ,±) for some λ ∈ JS with a(λ) odd.
(b) H = Ŝm+1, G = Âm, and D = D(λ,±) for some λ ∈ JS(0) with

a(λ) odd.
(c) H = Âm+1, G = Âm, and either D = E(λ, 0) for some λ ∈ JS(0)

with a(λ) odd or D = E(λ,±) for some λ ∈ JS with a(λ) even.
(ii) S = Am (m ≥ 5), n = m+ 2, and one of the following holds:

(a) H = Ŝm+2, G = Ŝm (embedding of type (m, 1, 1)), and D = D(λ,±)
for some λ ∈ JS(0) with a(λ) odd, such that λ[0] ∈ JS(1).

(b) H = Âm+2, π(G) = (Sm × S2) ∩ Am+2
∼= Sm (embedding of type

(m, 2)), and one of the following holds:
(1) D = E(λ, σ) for some λ ∈ JS(0) such that λ[0] ∈ JS(1).
(2) D is basic spin, m is odd, and m 6≡ −2, 0 (mod p).

(c) H = Ŝm+2, π(G) = (Sm × S2) ∩ Am+2
∼= Sm (embedding of type

(m, 2)), and D = D(λ,±) for some λ ∈ JS(0) with a(λ) odd such
that λ[0] ∈ JS(1).

(d) H = Âm+2, G = Âm (embedding of type (m, 1, 1)), and D = E(λ,±)
for some λ ∈ JS(0) with a(λ) even such that λ[0] ∈ JS(1).
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(iii) S = Am (m ≥ 5), n = m + 3, 3 6= p|n, m is odd, H = Âm+3, π(G) =
(Sm × S2 × S1) ∩Am+3

∼= Sm of type (m, 2, 1), and D is basic spin.
(iv) π(G) is primitive on Ω, S ∈ {A5, A6, L2(7), L2(8),M11,M12}, and the

triple (G,H,D) is as listed in Theorem B.
(v) S = A5, n = 7, π(G) is of type (6, 1), and one of the following holds:

(a) H = Â7, π(G) = A5, and either p = 3 and D is second basic (of
dimension 6), or p 6= 3 and D is basic spin.

(b) H = Ŝ7, p = 7, π(G) = A5 or S5, and D is basic spin.
(vi) S = A6, n = 11, D is basic spin, and π(G) is of type (10, 1). If H = Â11

then p 6= 3, 5 and π(G) = M10. If H = Ŝ11 then p = 11 and π(G) = M10,
S6, or Aut(A6).

(vii) S = L2(8), H = Â10, p = 5, π(G) = S or Aut(S), π(G) is of type (9, 1),
and D is basic spin.

(viii) S = M12, D is basic spin, and one of the following holds:
(a) n = 13, π(G) = S is of type (12, 1), and (H, p) = (Ŝ13, 13) or (Â13, 6=

3);
(b) n = 14, π(G) = S is of type (12, 1, 1), and (H, p) = (Â14, 7).

Finally, we consider subgroups G of Ŝn and Ân with π(G) imprimitive and not
almost simple. Here we have the following results.

Theorem D. Let p > 3, n ≥ 7 and H = Ŝn or Ân. Suppose that G < H
is a subgroup with π(G) imprimitive on Ω, and such that G/Z(G) is not almost
simple. Assume further that D is a faithful non-basic FH-module such that D↓G is
irreducible. Then π(G) is transitive, n is even, and one of the following happens:

(i) π(G) has 2 blocks of imprimitivity of size n/2.
(ii) π(G) has n/2 blocks of imprimitivity of size 2.

We believe that even in the exceptional cases of Theorem D the restriction is
usually reducible (with very few exceptions, like the one in [22, Theorem 1.1(6)]),
and that the restriction p > 3 is unnecessary, but we can not prove this at the
moment. Note also that we have excluded basic modules in Theorem D. The
following result describes the irreducible restrictions of basic modules to maximal
imprimitive subgroups. We refer the reader to §4 for more results on basic modules.

Theorem E. Let H = Ŝn or Ân, D be a basic spin FH-module, and let G < H be
a subgroup with π(G) maximal imprimitive. Then D↓G is irreducible if and only if
one of the following holds:

(i) H = Ŝn and one of the following holds:
(a) π(G) = Sn−a × Sa, a < n/2, p 6 | a, p 6 | (n − a), and either n is even,

or n is odd and p | n.
(b) π(G) = Sa o Sb for some a, b ≥ 2 with n = ab and p 6 | a.

(ii) H = Ân and one of the following holds:
(a) π(G) = An ∩ (Sn−a × Sa), a < n/2, p 6 | a, p 6 | (n− a), and either n is

odd, or n is even and p | n.
(b) π(G) = An ∩ (Sa o Sb) for some a, b ≥ 2 with n = ab and p 6 | a.

Finally we mention a result from §8 on irreducible tensor products, which is also
relevant to the problem on maximal subgroups, and follows from the results of §7.
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Similar results for symmetric and alternating groups in arbitrary characteristic or
Schur’s double covers in characteristic 0 were obtained in [4, 5, 6, 3, 13]. In the
next theorem h(λ) denotes the number of non-zero parts of a partition λ and λM

is the Mullineux image of λ.

Theorem F. Let p > 3 and n ≥ 7.

(i) Let H = Ŝn or Ân, and V,W be non-basic faithful FH-modules. Then
V ⊗W is reducible.

(ii) Let V be a non-basic faithful FŜn-module, and W = Dλ be an irreducible
FSn-module with h(λ) > 2 and h(λM) > 2. Then V ⊗W is reducible.

Acknowledgement. The authors are grateful to Jan Saxl for useful discussions.

2. Preliminaries

Recall that F is an algebraically closed field of characteristic p 6= 2. For any
group G we denote by 1G or just 1 the trivial FG-module. Also denote by sgn the
1-dimensional sign representation of the symmetric group Sn.

If g ∈ Sn is any element, we denote by ĝ any element in π−1(g). Thus, π−1(g) =
{ĝ, zĝ}. Also, if g ∈ Sn is an element of odd order then we can write π−1(g) =
{g+, g−}, where g+ has the same order as g and g− = zg+.

For any composition λ of n we denote the corresponding Young subgroup of Sn

by Sλ and Aλ := Sλ ∩An. Set

Mλ = (1Ŝλ
)↑Ŝn .

Note that z acts trivially on Mλ. On restriction, Mλ is also an FÂn-module,
isomorphic to (1Âλ

)↑Ân .
If G is a finite group and V is a finite dimensional CG-module, we denote by

V̄ its reduction modulo p, considered as an element of the Grothendieck group of
FG-modules. If L1, . . . , Lk are irreducible FG-modules, the notation

V̄ = a1L1 + · · ·+ akLk

means that V̄ = a1[L1] + · · · + ak[Lk] in the Grothendieck group. We will often
abuse the notion and speak of V̄ as a module—for example if V̄ is irreducible then
we will speak of the irreducible module V̄ , which is defined up to isomorphism.

Let G = Ŝn or Ân. Then G possesses (one or two) basic (spin) modules over C—
these are the modules whose characters correspond to the partition (n) in Schur’s
classification. Composition factors of their reductions modulo p will be called basic
(spin) modules over FG. Moreover, the irreducible CG-modules with characters
corresponding to the partition (n − 1, 1) will be referred to as second basic (spin)
modules. Composition factors of their reductions modulo p, different from basic
spin modules, will be referred to as second basic (spin) modules over FG. Basic and
second basic modules over CG and FG were studied in detail by Wales, see [32,
Tables III, IV]. We reproduce this information for basic modules:

Lemma 2.1. [32, Table III] Suppose n ≥ 4.

(i) Let n be even. There are two basic spin modules Y +
n,C and Y −

n,C over CŜn

and one basic spin module Un,C over CÂn, all of dimension 2(n−2)/2, and
Y +

n,C↓Ân

∼= Y −
n,C↓Ân

∼= Un,C. Moreover,
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(a) If p 6 |n, then Y ±
n := Ȳ ±

n,C and Un := Ūn,C are irreducible. Moreover,
Y +

n 6∼= Y −
n , and Y +

n ↓Ân

∼= Y −
n ↓Ân

∼= Un.
(b) If p | n, then Yn := Ȳ +

n,C
∼= Ȳ −

n,C is irreducible. Moreover, Yn↓Ân

∼=
U+

n ⊕U−
n for irreducible Ân-modules U+

n 6∼= U−
n , and Ūn,C = U+

n +U−
n .

(ii) Let n be odd. There is one basic spin modules Yn,C over CŜn and two
basic spin modules U+

n,C and U−
n,C over CÂn, with dimYn,C = 2 dimU±

n,C =
2(n−1)/2, and Yn,C↓Ân

∼= U+
n,C ⊕ U−

n,C. Moreover,
(a) If p 6 |n, then Yn := Ȳn,C and U±

n := Ū±
n,C are irreducible. Moreover,

U+
n 6∼= U−

n , and Yn↓Ân

∼= U+
n ⊕ U−

n .
(b) If p | n, then Ȳn,C has two composition factors Y +

n 6∼= Y −
n , and Un :=

Ū−
n,C

∼= Ū+
n,C is irreducible. Moreover, Y +

n ↓Ân

∼= Y −
n ↓Ân

∼= Un.

Occasionally, while speaking of the basic spin representations Y (±)
n,C , Y (±)

n , etc.,
we will allow for n = 2 and 3. For such n, projective representations of Sn and
An are linear, and we use the following interpretations: Y +

2,C (resp. Y +
2 ) is the

trivial CS3-(resp. FS3-)module, Y −
2,C (resp. Y −

2 ) is the sign CS3-module, Y3,C is
the natural 2-dimensional CS3-module, Y3 is the natural 2-dimensional FS3-module
if p > 3, and Y +

3 and Y −
3 are, respectively, the trivial and the sign modules over

FS3 if p = 3. Observe that under these interpretations the formulas for dimensions
in Lemma 2.1, and the facts about reductions modulo p and restrictions to An still
hold.

We recall some other known results. The first one is due to Wagner.

Lemma 2.2. [31] Let n ≥ 9, s be the number of terms in the 2-adic expansion
of n, and let H = Ŝn or Ân. Then 2b(n−s−1)/2c divides dimD for any faithful
FH-module D. �

Lemma 2.2 implies that dimD ≥ 2b(n−s−1)/2c for any faithful FH-module D. In
§3 we prove Theorem A, which improves this lower bound. Next, we cite a result of
Wales. If p 6= 3, it shows that certain elements of order 3 in Ŝn have three different
eigenvalues on irreducible modules, except possibly basic spin modules.

Lemma 2.3. [32, 8.1] Let n ≥ 5, c = (123)+ ∈ Ŝn, and let V be an irreducible
FŜn-module on which c has a quadratic minimal polynomial. Then V is basic spin.
�

The following ‘recognition’ result for basic spin representations was also essen-
tially demonstrated by Wales in the proof of [32, 8.1].

Lemma 2.4. Let n ≥ 6, and V be an irreducible FŜn-module (resp. FÂn-module).
Then V is basic spin if and only if all composition factors of the restriction V ↓Ŝn−1

(resp. V ↓Ân−1
) are basic spin.

Proof. We prove the result for Ŝn, the proof for Ân being similar. By Frobenius
reciprocity we may assume that V is a constituent of a reduction modulo p of
(Y (±)

n−1,C)↑Ŝn. By the branching theorem [15, 10.2], this induced module is a sum of

basic modules Y (±)
n and second basic modules Z(±)

n . Now if V is not basic, then V
has to be a non-basic constituent of reduction Z̄

(±)
n . But then it follows from [32,

Table IV] that the restriction V ↓Ŝn−1
contains a non-basic constituent, contrary to

our assumption. �
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Lemma 2.5. Let n ≥ 7, p 6= 2, 3, and ϕ be an irreducible faithful Brauer character
of Ŝn. Define the elements c, d ∈ Ŝn by setting c := (123)+ and d := ((123)(456))+.
Then ϕ(c) and ϕ(d) are rational integers with

(i) ϕ(1)/7 ≥ ϕ(c) ≥ −ϕ(1)/2, and ϕ(c) = −ϕ(1)/2 if and only if ϕ is basic
spin.

(ii) ϕ(1)/4 ≥ ϕ(d) ≥ −ϕ(1)/8, and ϕ(d) = ϕ(1)/4 if and only if ϕ is basic
spin. Moreover, if n ≥ 11 then ϕ(d) ≥ −ϕ(1)/56.

Proof. We prove (i), the proof of (ii) being similar. Apply induction on n. The
statement is true for small n by [19]. For inductive step, assume (i) holds for
n − 1. Then ϕ↓Ŝn−1

=
∑t

i=1 ϕi for some irreducible faithful Brauer characters ϕi

of Ŝn−1. By induction hypothesis, ϕi(1)/7 ≥ ϕi(c) ≥ −ϕi(1)/2 for each i, whence
ϕ(1)/7 ≥ ϕ(c) ≥ −ϕ(1)/2. Moreover, if ϕ(c) = −ϕ(1)/2 then ϕi(c) = −ϕi(1)/2
for each i, whence ϕi is basic by induction hypothesis, and so ϕ itself is basic by
Lemma 2.4. �

3. Minimal dimensions (Theorem A)

In this section we prove Theorem A. Apply induction on n. For small n the
statement holds by [19]. Let n ≥ 12. Assume V is not basic. We have to show that
dimV ≥ 2δ(H). Let ϕ be the Brauer character of V . We will often use the fact
that the minimal polynomial of c on V has degree 3, see Lemma 2.3. We consider
several cases.

Case S1: H = Ŝn, n = 2k, and p 6 |(n−2). Note that CH(t1) ≥ 〈t1〉×Ân−2. Since
t1 is not central, it has both eigenvalues 1 and −1 on V . Let V+ and V− be the
corresponding eigenspaces. We have t3t1t3 = zt1 and z = −1 on V , so t3 swaps V+

and V−. Observe that V± are Ân−2-modules, and t3 normalizes Ân−2. In particular,
all composition factors of V+ are basic for Ân−2 if and only if all composition factors
of V− are basic for Ân−2. But all composition factors of both V+ and V− could not
be basic as then V itself would be basic by Lemma 2.4. Thus both V± have non-
basic composition factors. By induction hypothesis, dimV± ≥ 2δ(Ân−2) = 2k−1,
hence dimV ≥ 2k = 2δ(Ŝn).

Case S2: H = Ŝn, p|n = 2k + 1. Argue as in S1.
Case S3: H = Ŝn, n = 2k, p|(n − 2), and p 6= 3. Clearly, CH(c) ≥ 〈c〉 × Ŝn−3.

By Lemma 2.3, c has all three eigenvalues ωi, i = 0, 1, 2, on V , where ω ∈ F is a
primitive third root of unity. Let Vi, i = 1, 2, 3, be the corresponding eigenspaces,
considered as modules over Ŝn−3. Then at least one of them has a non-basic
composition factor by Lemma 2.4. Thus

dimV ≥ 4δ(Ŝn−3) = 4 · 2k−2 = 2δ(Ŝn).

Case S4: H = Ŝn, n = 2k + 1, p 6 |n, p 6 |(n − 3), and p 6= 3. We restrict V to
K := S3 × Ân−3, where S3 is generated by t1 and t2. Since p 6= 2, 3, there are
three irreducible characters of S3: the trivial character χ, the sign character ψ, and
a character α of degree 2. By Lemma 2.3, α and at least one of χ, ψ appear in
V ↓S3

. Next, t4 centralizes c and t4t1t4 = zt1, hence t4 swaps the characters χ and
ψ. Thus, all three characters χ, ψ, and α appear in ϕ↓S3

, and we can write

ϕ↓K
∼= α⊗ β1 + χ⊗ β2 + ψ ⊗ β3,
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for some Brauer characters β1, β2, β3 of Ân−3. Moreover, the characters β2 and β3

are t4-conjugate. We have α(c) = −1 and β3(g) = β2(t4gt4) for any g ∈ Ân−3. In
particular, β2(1) = β3(1). So ϕ(c) = −β1(1)+2β2(1). Let c′ = (6, 7, 8)+ ∈ Ân−3. As
c′ is conjugate to c and is centralized by t4, we get ϕ(c) = ϕ(c′) = 2β1(c′)+2β2(c′).
Therefore

(3.1) β1(1) + 2β1(c′) = 2(β2(1)− β2(c′)) > 0.

Hence β1 contains a non-basic irreducible Brauer character by Lemma 2.5. If β1 is
not irreducible, then

ϕ(1) ≥ α(1) (2δ(Ân−3) + δ(Ân−3)) + 2δ(Ân−3) = 2k+1 = 2δ(Ŝn).

Now, let β1 be irreducible. If either β2 is not irreducible or β2 is not basic, then

ϕ(1) ≥ 2α(1)δ(Ân−3) + 4δ(Ân−3) ≥ 2δ(Ŝn).

We are left with the case where all βi are irreducible and β2, β3 are basic. Moreover,
we may assume that β1(1) < 3 · 2k−2. By Lemma 2.5, the right-hand side of (3.1)
equals 3 ·2k−2, so β1(c′) > 0. As cc′ is conjugate to the element d from Lemma 2.5,
we now have by that lemma:

−ϕ(1)/8 ≤ ϕ(d) = −β1(c′) + 2β2(c′) < 2β2(c′) = −β2(1) = −2k−2.

Hence ϕ(1) > 2k+1.
Case S5: H = Ŝn, n = 2k + 1, p 6 |n, p|(n − 3), and p 6= 3. We restrict V to the

central product K := Â4 ∗ Ŝn−4, where Ŝn−4 is generated by tj , 5 ≤ j ≤ n − 1,
and Â4 is generated by c = t1t2 and t2t3. Observe that Â4

∼= Q8 · 〈c〉 has exactly 3
faithful irreducible characters, say αi, i = 0, 1, 2, all of degree 2, with αi(c) = −ωi

(see also [15, 4.8]). So we can write

ϕ↓K = xα1 ⊗ β1 + yα2 ⊗ β2 + zα3 ⊗ β3

for some faithful Brauer characters βi of Ân−3 and x, y, z ∈ {0, 1}. Note that
u := t1t5 normalizes both Â4 and Ŝn−4. Also ucu−1 = c−1, so the characters α2

and α3 are u-conjugate. It follows that the components yα2 ⊗ β2 and zα3 ⊗ β3 are
u-conjugate. Now Lemma 2.3 implies that y = z = 1.

If β2 is not basic or is not irreducible, then

dimV ≥ 8δ(Ŝn−4) = 8 · 2k−2 = 2δ(Ŝn).

Otherwise x = 1 and β1 has to be non-basic by Lemma 2.4. Then β1(1) ≥ 2δ(Ŝn−4)
and again dimV ≥ 8δ(Ŝn−4) = 2δ(Ŝn).

Case S6: H = Ŝn, n = 2k, and 3 = p|(n − 2). Set V i = Ker((c − 1)i) for
i = 1, 2, 3, V 0 = 0, and W i = V i/V i−1. By Lemma 2.3, each W i is a non-zero
faithful module for Ŝn−3 ≤ CH(c). Also, at least one of the modules W i is non-basic
by Lemma 2.4. Therefore

dimV ≥ 4δ(Ŝn−3) = 4 · 2k−2 = 2δ(Ŝn).

Case S7: H = Ŝn, n = 2k+ 1, and 3 = p 6 |n. We restrict V to K := 〈t1〉 × Ân−3

and use the notation of S6. Since t1 inverts c and Ân−3 centralizes c, each W i

is a (nonzero) K-module. Let V ↓Ân−3
consist of a + b (not necessarily distinct)

composition factors, with a of them non-basic and b basic. The argument with t4
given in S1 shows that both a and b are even. Also, a > 0 by Lemma 2.4. Moreover,
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the multiplication by c − 1 yields injective homomorphisms W 3 ↪→ W 2 ↪→ W 1 as
Ân−3-modules, whence a ≥ 3 or b ≥ 3. If a ≥ 3, then a ≥ 4 as a is even, whence

dimV ≥ 4 · 2δ(Ân−3) = 8 · 2k−2 = 2δ(Ŝn).

If a = 2, then b ≥ 4, whence

dimV ≥ (2a+ b)δ(Ân−3) ≥ 8δ(Ân−3) = 2δ(Ŝn).

The induction step for Ŝn is complete. So we now assume that the result holds
for Ŝn.

Case A1: H = Ân, and either p|n = 2k or p 6 |n = 2k + 1. Using the result for
Ŝn, we get

dimV ≥ (1/2) · 2 · δ(Ŝn) = 2δ(Ân).

Case A2: H = Ân, n = 2k+1, and p|n. Since V is non-basic, at least one of the
composition factors of V ↓Ân−1

is non-basic. Hence dimV ≥ 2δ(Ân−1) = 2δ(Ân).

Case A3: H = Ân, n = 2k, p 6 |n, p 6 |(n − 4), and p 6= 3. The same argument as
in S5 but applied to K = Â4 ∗ Ân−4 yields

dimV ≥ 8δ(Ân−4) = 8 · 2k−3 = 2δ(Ân).

Case A4: H = Ân, n = 2k, p 6 |n, p 6 | (n − 3), and p 6= 3. In this and the next
cases we restrict V to the subgroup G = Ân−3 · 〈u〉 inside NH(〈c〉), where u = t1t4.
First, we prove:

(∗) Let p ≥ 3, n = 2k, p 6 |(n− 3), and W be a faithful FG-module of dimension
less than 2k−1. Then W is irreducible of dimension 2k−2 and W↓Ân−3

involves only
basic spin modules.

Indeed, let us identify all the groups under consideration with subgroups of
GL(W ). Let i ∈ GL(W ) be the multiplication by a primitive fourth root of unity
(in F) on W . Then (iu)2 = i2z = 1 = (t4)2. Next, i and t1 centralize Ân−3, so
the (conjugation) action of iu on Ân−3 is exactly the same as that of t4. It follows
that B := Ân−3 · 〈iu〉 ∼= Ŝn−3. Now W is also a faithful irreducible B-module of
dimension less than 2k−1 = 2δ(Ŝn−3), whence W is basic for B, of dimension 2k−2,
and so W↓Ân−3

involves only basic modules.

Abusing the terminology, we will call W as in (∗) basic module for G.
As in S3, V0 and V ′ := V1 ⊕ V2 are nonzero faithful G-modules. By Lemma 2.4,

at least one of V0 and V ′ have to involve non-basic G-modules. If both of them
involve non-basic modules, or only one of them involves a non-basic module and
one of them is not irreducible, then by (∗), dimV ≥ 2 · 2k−1 = 2δ(Ân). Hence we
may assume that both of them are irreducible and exactly one of them is non-basic,
and that dimV < 2k.

Assume first that V0 is non-basic and V ′ is basic. Then dimV ′ ≤ (dimV0)/2 by
(∗), and so dimV ≤ 3(dimV0)/2. By the definition of V ′, the trace of c on V ′ is
−(dimV ′)/2. Hence

ϕ(c) = dimV0 − (dimV ′)/2 ≥ 3(dimV0)/4 ≥ (dimV )/2 = ϕ(1)/2,

contrary to Lemma 2.5.
Assume next that V0 is basic, with Brauer G-character ϕ0, and V ′ is non-basic,

with Brauer G-character ϕ′. Then

ϕ(c) = dimV0 − (dimV ′)/2 = 2k−2 − ϕ′(1)/2.
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Choosing a conjugate c′ of c lying in Ân−3 we have

ϕ(c′) = ϕ0(c′) + ϕ′(c′) = −2k−3 + ϕ′(c′).

Hence

(3.2) ϕ′(c′) = 3 · 2k−3 − ϕ′(1)/2 > 0,

as ϕ′(1) = dimV − dimV0 < 3 · 2k−2 by our assumption. Next, we look at the
element d = cc′. Decompose V ′ as the sum of two nontrivial c-eigenspaces and let
α, β be the characters of Ân−3 on them. Since t1 inverts c and centralizes Ân−3,
we have β(g) = α(t1gt1) = α(g) for any g ∈ Ân−3. Thus

ϕ′(d) = ωα(c′) + ω2β(c′) = (ω + ω2)α(c′) = −α(c′) = −ϕ′(c′)/2.
Using (3.2), the assumption that V0 is basic, and dimV < 2k, we now obtain

ϕ(d) = ϕ0(d) + ϕ′(d) = ϕ0(c′)− ϕ′(c′)/2

= −ϕ0(1)/2− ϕ′(c′)/2 < −2k−3 < −ϕ(1)/8,

contrary to Lemma 2.5.
Case A5: H = Ân, n = 2k, p 6 |n, p 6 |(n−3), and p = 3. We use the notation of A4

and S6. Arguing as in S6, we see that each W i is a nonzero faithful G-module, and
by Lemma 2.4, at least one of them is non-basic. According to the claim proved in
A5, dimV ≥ 2k−1 + 2 · 2k−2 = 2δ(Ân), as desired.

The proof of Theorem A is complete. �

The following easy corollary of Theorem A will be often used in what follows.

Corollary 3.1. Let n ≥ 5, H = Ŝn or Ân, and D be an irreducible faithful FH-
module. If G is a subgroup of H containing Z(H) and such that D↓G is irreducible,
then

|π(G)| ≥ (dimD)2 ≥ 2(n−4).

Proof. Indeed, the second inequality comes from Theorem A if n ≥ 8 and [12, 19]
if n = 5, 6, 7. As D↓G is irreducible and D is faithful, G has a faithful irreducible
complex representation of degree ≥ dimD. The sum of squared degrees of irre-
ducible complex representations of G that are trivial on Z equals |π(G)|. Hence
|G| − |π(G)| = |π(G)| is at least (dimD)2. �

4. Basic spin modules

Basic modules play a very special role in the representation theory of Ŝn and Ân.
In this section we will study restrictions of these modules to subgroups G such that
π(G) is either a Young subgroup or a wreath product subgroup. These subgroups
are important because among them we find maximal imprimitive subgroups.

We will have to use the terminology of superalgebra and some result from [8, 9].
We review what is needed referring the reader to [8, 9] for details. Let Sn be the
twisted group algebra of Sn. This may be described as the superalgebra with degree
1̄ generators t1, . . . , tn−1 and relations t2i = 1, titj = −tjti, titi+1ti = ti+1titi+1 for
all admissible i, j with |i−j| > 1. Any subgroup H of Sn yields a sub(super)algebra
H ⊂ Sn. We identify spin modules over Ŝn with modules over Sn (there is an
isomorphism of categories) and do the same for Ĥ and H . Thus we are interested
in irreducible restrictions from Sn to H . If H is a standard Young subgroup
Sa1 × · · · ×Sab

< Sn then we have H ∼= Sa1 ⊗ · · · ⊗Sab
where the tensor product
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is the tensor product of superalgebras, i.e. to multiply the tensors we use the usual
sign rule.

We recall also that irreducible supermodules over superalgebras can be of two
types: type M when the supermodule is irreducible considered as a usual module,
and type Q when the supermodule splits as a direct sum of two non-isomorphic
irreducible modules considered as a usual module. If A and B are superalgebras, V
is an A-supermodule, and W is a B-supermodule, we denote by V �W the outer
tensor product of V and W , which is an A ⊗ B-supermodule. Note that that we
use the sign rule to define the action of A⊗B on V ⊗W , namely

(a⊗ b)(v ⊗ w) = (−1)deg b deg vav ⊗ bw

for homogeneous elements a ∈ A, b ∈ B, v ∈ V, w ∈ W . If V and W are both
irreducible of type M then V �W is also irreducible of type M. If one of V and W is
of type M and another one is of type Q then V �W is irreducible of type Q. Finally
if both V and W are irreducible of type Q then V �W splits as a direct sum of two
copies of the same irreducible supermodule of type M, which is denoted by V ~W .
To have a unified notation we also denote V �W by V ~W in the first two cases.
Thus, ~ is an operation which always takes a pair of irreducible supermodules to
an irreducible supermodule.

An example of a superalgebra is obtained as follows. Let G be a finite group and
H < G be a subgroup of index two. Let A be a group algebra of G with canonical
basis {tg | g ∈ G}. Define the Z2-grading on A by setting A0̄ := span{tg | g ∈ H}
and A1̄ := span{tg | g 6∈ H}. Let sgn denote the 1-dimensional non-trivial FG-
module with trivial action of H. Let L±1 , . . . , L

±
k , Lk+1, . . . , Lm be a complete list

of irreducible non-isomorphic FG-modules, such that L±i ⊗ sgn ∼= L∓i for 1 ≤ i ≤ k
and Li ⊗ sgn ∼= Li for k < i ≤ m. An application of the Clifford theory implies
that there are m irreducible A -supermodules L1, . . . ,Lm such that, considered as
usual modules, Li = L+

i ⊕L−i for 1 ≤ i ≤ k and Li = Li for k < i ≤ m, and these
are all irreducible A -supermodules up to isomorphism.

Recall the basic modules Y (±)
n from Lemma 2.1. By general facts described in the

previous paragraph and Lemma 2.1, there is an irreducible supermodule Yn, called
the basic supermodule, which is determined uniquely up to an isomorphism by the
following property. Considered as a usual module, Yn is Yn if n is even and p|n or
n is odd and p 6 |n, and it is Y +

n ⊕ Y −
n otherwise, see Lemma 2.1. Correspondingly,

the supermodule Yn is of type M if and only if n is even and p|n, or n is odd and
p 6 |n. By Lemma 2.1, we have

dim Yn =


2n/2 if n is even and p 6 |n
2(n−1)/2 if n is odd
2(n−2)/2 if n is even and p | n

.

Similarly, if the ground field is C, we get the basic spin supermodule Yn,C which is
of type M if and only if n is odd. We have

dim Yn,C =
{

2n/2 if n is even
2(n−1)/2 if n is odd

.

Lemma 4.1. Let λ = (a1, a2, . . . , ab) be a composition of n, and

Ŝλ = π−1(Sa1 × Sa2 × · · · × Sab
) < Ŝn, Âλ = Ân ∩ Sλ.
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Suppose that V (resp. V ′) is an irreducible FŜλ- (resp. FÂλ-)module such that
composition factors of every restriction V ↓Ŝai

(resp. V ′↓Âai
), i = 1, 2, . . . , b, are

basic spin. Then

dimV = 2(n−s−u)/2−t−b(r+s+1)/2c (resp. dimV ′ = 2(n−s−u)/2−t−b(r+s+2)/2c),

where

r = ]{i | ai is even and p 6 |ai},
s = ]{i | ai is odd and p | ai},
t = ]{i | ai is even and p | ai},
u = ]{i | ai is odd and p 6 |ai}.

Proof. Let V be an irreducible supermodule over S (a1) ⊗ · · · ⊗ S (ab) such that
all composition factors of its restriction to any S (ai) are basic. Then V = Ya1 ~
· · · ~ Yab

. Moreover, dimV = dimV ′ = (dim V )/2 if V is of type Q and dimV =
2 dimV ′ = dim V if V is of type M. Therefore

dimV = 2−b(r+s+1)/2c
b∏

i=1

dim Yai , dimV ′ = 2−b(r+s+2)/2c
b∏

i=1

dim Yai ,

which implies the result. �

Corollary 4.2. Let H = Ŝn or Ân, D be a basic spin FH-module, and λ =
(λ1, . . . , λh) be a composition of n with h > 1 non-zero parts. Let G be Ŝλ or Âλ.
Then the restriction D↓G is irreducible if and only if p 6 |λi for all i = 1, 2, . . . , h and
one of the following happens:

(i) H = Ŝn, G = Ŝλ, and either n is even and h = 2, or n is odd, p|n, and
h ≤ 3.

(ii) H = Ŝn, G = Âλ, n is odd, p|n, and h = 2.
(iii) H = Ân, G = Âλ, and either n is odd and h = 2, or n is even, p|n, and

h ≤ 3.

Theorem 4.3. Let D be a basic spin FŜn-module, and let G be a maximal subgroup
of Ŝn with π(G) imprimitive. Then D↓G is irreducible if and only if one of the
following holds:

(i) π(G) = Sn−a × Sa, a < n/2, p 6 | a, p 6 | (n − a), and either n is even, or n
is odd and p | n.

(ii) π(G) = Sa o Sb for some a, b ≥ 2 with n = ab and p 6 | a.

Proof. By assumption we only need to consider subgroups G with π(G) = Sn−a ×
Sa, a < n/2, or π(G) = Sa o Sb, a, b ≥ 2, ab = n. In the former case the result
follows from Corollary 4.2. So let π(G) = Sa oSb. We will sometimes write Ga,b for
G. Denote

Ka,b := π−1(Sa × · · · × Sa) CG.

Then Ga,b/Ka,b
∼= Sb. We will also need the subgroup

B := π−1(Sa oAb) CGa,b.

It is proved in [22] that the restriction to G of a basic module DC over the field of
complex numbers to G is irreducible.

Consider the irreducible FKa,b-supermodule Ya ~ · · ·~ Ya, where Ya appears b
times. This supermodule is of type Q if and only if b is odd and either a is even and
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p 6 |a, or a is odd and p|a. Now consider Ya ~ · · · ~ Ya as a usual module. Then it
has two composition factors, M+

a,b and M−
a,b say, when the supermodule is of type

Q, and only one composition factor, Ma,b say, otherwise. The dimensions of M (±)
a,b

can be found using Lemma 4.1. Note that M (±)
a,b are the only possible composition

factors of the restriction D↓Ka,b
.

Now we apply Clifford theory to identify possible composition factors of the
restriction D↓G. From the previous paragraph, we conclude that these factors may
be of two forms:

(a) V ⊗W , where V and W are (possibly projective) irreducible representations
of FG such that V ↓Ka,b

∼= M
(±)
a,b and Ka,b acts trivially on W . Here the inertia

group is G.
(b) indG

B(V ⊗ W ), where V and W are (possibly projective) irreducible FB-
representations such that V ↓Ka,b

∼= M±
a,b and Ka,b acts trivially on W . Here the

inertia group is B.
In case (a) (resp. (b)), W may be a considered as a (possibly projective) rep-

resentation of FSb (resp. FAb). We claim that this representation must be basic
spin. By a reduction modulo p argument it suffices to prove this over C. As DC↓G

is irreducible, it must be isomorphic to a module described in (a) or (b), namely
VC ⊗WC or indG

B(VC ⊗WC) with VC↓Ka,b
∼= M

(±)
a,b,C. Using known dimensions of

DC and M (±)
a,b,C, we find that dimWC is equal to the dimension of the basic module

Y
(±)
b,C (resp. U (±)

b,C ) if the restriction is of type (a) (resp. type (b)). Using [2, 2.4],
we deduce that WC is not a linear representation if b ≥ 10. In this case Theorem A
implies that WC is basic spin. Finally, for small values of b, pick sufficiently large
c > b, and note that composition factors of Y (±)

ab,C↓Ga,b
are among the composition

factors of the restrictions Y (±)
ac,C↓Ga,c

↓Ga,b
. Now the required result follows from the

one for c ≥ 10, as all composition factors of the restriction Y (±)
c,C ↓Ŝb

are basic spin.

We also note that the restriction Y
(±)
n,C ↓G is of type (b) if and only if a is even

and b is odd. Indeed, in all other cases there is only one irreducible CKa,b-module
Ma,b,C, which can appear as a composition factor, so Y (±)

n,C ↓G could only be of type
(a). On the other hand, if a is even and b is odd, there are two possible composition
factors M+

a,b,C and M−
a,b,C. To see that in this case the restrictions Y ±

n,C↓G are of
type (b), it suffices to note that Y ±

n,C↓Ka,b
∼= M+

a,b,C ⊕M−
a,b,C. If the last equality

does not hold then (up to a choice of signs) we have Y ±
n,C↓Ka,b

∼= 2M±
a,b,C, and in

particular Y +
n,C↓Ka,b

6∼= Y −
n,C↓Ka,b

. But the characters of Y +
n,C and Y −

n,C only differ
on conjugacy classes corresponding to the n-cycle [22, 2A], and there are no such
elements in Ka,b, which shows that the characters of the restrictions Y +

n,C↓Ka,b
and

Y −
n,C↓Ka,b

are the same, giving a contradiction.
Now we consider various cases.
Case 1. a is odd and p 6 |a. Here dimMa,b = 2(ab−b)/2, and all composition factors

of the restriction D↓G must be of type (a) above. Now one checks that in all cases
we have dimD = dimMa,b dimY

(±)
b , so D↓G must be irreducible.

Case 2. a is odd and p|a. If b is even, then we have dimMa,b = 2(ab−2b)/2, and
all composition factors of the restriction D↓G must be of type (a) above. Now one
checks that dimD > dimMa,b dimY

(±)
b , so D↓G could not be irreducible. If b is
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odd, then we have dimM±
a,b = 2(ab−2b−1)/2, and so whether we have a composition

factor of type (a) or (b), its dimension is strictly less than that of D, and so the
restriction is reducible again.

Case 3. a is even and p|a. We have dimMa,b = 2(ab−2b)/2, and we can use
dimensions as in Case 2 to see that the restriction is reducible.

Case 4. a is even, p 6 |a, b is even. We have dimMa,b = 2(ab−b)/2, and the
restriction is irreducible by dimensions.

Case 5. a is even, p 6 |a, b is odd. We have dimM±
a,b = 2(ab−b−1)/2. Assume first

that p 6 |b. Then dimYb = 2(b−1)/2, and dimU±
b = 2(b−3)/2, see Lemma 2.1. Now a

composition factor of D↓G of type (a) has dimension

2(ab−b−1)/2 · 2(b−1)/2 = 2(n−2)/2 = dimD,

so D↓G is irreducible if such composition factor occurs. On the other hand, compo-
sition factor of type (b) has dimension 2 · 2(ab−b−1)/2 · 2(b−3)/2 = dimD, so D↓G is
irreducible anyway. We finally assume that p|b. Then dimY ±

b = dimUb = 2(b−3)/2,
and the dimension argument as above shows that the restriction is irreducible if
there is a composition factor of type (b), but it is reducible otherwise. So in this
final case we do have to figure out what composition factors occur. We proved
above that DC↓G

∼= indG
B(VC ⊗ U±

b,C). Now, we reduce both sides of this equality
modulo p to see that composition factors of the restriction D↓G are of type (b),
which completes the proof. �

Theorem 4.4. Let D be a basic spin FÂn-module, and let H be a maximal subgroup
of Ân with π(H) imprimitive. Then D↓H is irreducible if and only if one of the
following holds:

(i) π(H) = An ∩ (Sn−a × Sa), a < n/2, p 6 | a, p 6 | (n− a), and either n is odd,
or n is even and p | n.

(ii) π(H) = An ∩ (Sa o Sb) for some a, b ≥ 2 with n = ab and p 6 | a.

Proof. (i) is proved using Corollary 4.2. We now prove (ii). Let G = π−1(Sa o Sb).
Then H is a subgroup of G of index 2. We will use notation introduced in the proof
of Theorem 4.3.

Assume first that there is only one basic spin module Yn over Ŝn, and the re-
striction Yn↓G is irreducible. Then the module

U+
n ↓H ⊕ U−

n ↓H
∼= Yn↓G↓H

has at most two composition factors. This proves that U±
n ↓H is irreducible. Thus

D↓H is irreducible in the cases where either n is odd and p 6 |n or n is even, p 6 |a,
and p|b. Now we consider the remaining cases.

Case 1. n is even and p 6 |n. In this case p 6 |a and p 6 |b, so reductions modulo p of
(the complex analogues of) all the modules involved are irreducible, and the result
follows from the corresponding result over C, see [22].

Case 2. n is odd and p|n. Assume first that p|a. Composition factors of Un↓H

are restrictions from G to H of composition factors of Y ±
n ↓G, whose dimension

is at most 2(ab−b−2)/2 (see the proof of Theorem 4.3), while dimUn = 2(ab−3)/2.
Therefore Un↓H must be reducible. Now, let p 6 |a. By Lemma 2.1 we have Y ±

n ↓Ân
=

Un, and by Theorem 4.3, the restrictions Y ±
n ↓G is irreducible. We have Yn,C↓G =

VC ⊗ Yb,C. Reducing modulo p we get (Y +
n + Y −

n )↓G = V ⊗ (Y +
b + Y −

b ), so up to a
choice of signs we must have Y ±

n ↓G = V ⊗ Y ±
b . By uniqueness in Clifford theory,
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we have V ⊗ Y +
b 6∼= V ⊗ Y −

b . It follows that V ⊗ Y +
b

∼= (V ⊗ Y −
b ) ⊗ sgn, so the

restrictions V ⊗ Y ±
b ↓H are irreducible, whence D↓H is also irreducible.

Case 3. a is even, b is odd, and p|a. We introduce the new subgroup

K ′
a,b := Ka,b ∩ Ân.

Note that K ′
a,b CH, and H/K ′

a,b
∼= Sb. We apply Clifford theory to this situation.

By Lemma 4.1, dimMa,b = 2(ab−2b)/2. Also, Ma,b comes from the corresponding
supermodule of type M, so on restriction to K ′

a,b it splits as a direct sum of two
irreducible modules of dimension 2(ab−2b−2)/2. If the inertia group of a composition
factor W of D↓H is H then we get from Clifford theory that

dimW = 2(ab−2b−2)/2 dimYb < 2(ab−4)/2 = dimD,

so the restriction D↓H is reducible. Otherwise the inertia group is K ′
a,bAb < H, in

which case we still have

dimW = 2 · 2(ab−2b−2)/2 dimU
(±)
b = 2(ab−b−3)/2 < dimD

as b ≥ 3.
Case 4. b is even, and p|a. Here dimU±

n = 2(ab−4)/2, and composition factors of
Yn↓G have dimensions 2(ab−b−2)/2, so we may assume that b = 2. Set

J := π−1(Aa ×Aa).

Also, pick an element y in π−1
(
(1, a + 1)(2, a + 2) . . . (a, 2a)

)
if a is even and

π−1
(
(1, a + 1)(2, a + 2) . . . (a, 2a)(1, 2)

)
if a is odd. Finally, set x = t1ta where

ti are the standard generators of Ŝn. Then J C H, K ′ := K ′
a,2 = 〈J, x〉, and

H = 〈J, x, y〉.
Assume now that a is odd. Then π(y2) = π(x), whenceH/J ∼= Z4. LetW be any

composition factor of D↓H . Every composition factor of W↓J must be isomorphic
to the module M := Ua ⊗ Ua of dimension 2a−3, so M must be H-stable. Since
H/J is cyclic, M extends to H, so dimW = 2a−3 < 2a−2 = dimD.

Finally, let a be even. Now, there are two basic modules U±
a for Âa, and

dimU±
a = 2(a−4)/2. It follows that there can be two different composition factors

V1 and V2 in the restriction D↓K′ , characterized by V1↓J = U+
a ⊗ U+

a ⊕ U−
a ⊗ U−

a

and V2↓J = U+
a ⊗U−

a ⊕U−
a ⊗U+

a . Observe that the Brauer characters of V1 and V2

are zero on K ′ \ J and y stabilizes V1↓J and V2↓J . It follows that y stabilizes the
Brauer characters of V1 and V2, so V1 and V2 extend to H, whence the dimension
of every composition factor of D↓H equals dimVi, which is less than dimD. Thus
in both subcases D↓H is reducible. �

5. Primitive subgroups (Theorem B)

In this section we prove Theorem B. Assume D↓G is irreducible. Without loss
of generality we may assume that G contains Z := Z(H) (however Z may split out
in G). The cases n = 5, 6, 7 can be checked easily using [12] and [19], so we will
assume that n ≥ 8.

In view of Corollary 3.1, we may assume that π(G) is a primitive subgroup of
Sn of order ≥ 2n−4. Such subgroups are classified in [22, 6.2]. We will proceed
case by case according to that classification. If π(G) is almost simple, we set
S := soc

(
π(G)

)
, and let ϕ be the Brauer character of D. We will use results from

[12, 19] without special reference.
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A. First we assume that the FH-module D does not lift to characteristic 0, that
is it is not a reduction modulo p of an ordinary irreducible module. In particular,
p divides |H|.

Case n = 8. Here we have either (a) S = L2(7) or (b) Z3
2 Cπ(G) ≤ AGL3(2). By

Lemma 2.2, 8 divides dimD. In the case (a) G has no irreducible characters of de-
gree > 8, so dimD = 8. But in this case D lifts to characteristic 0, a contradiction.
In the case (b), using Corollary 3.1, we conclude that dimD ≤ 32. But D does not
lift to characteristic 0, so either p = 5 and dimD = 32, or p = 7 and dimD = 16. In
particular |π(G)| ≥ 162, whence π(G) = AGL3(2) = Z3

2 : GL3(2). As A := GL3(2)
acts irreducibly on Z3

2, we have that K := π−1(Z3
2) ∼= Z4

2. If p = 5 then one can view
D↓G as an irreducible complex representation of G, whence (dimD)|[G : K] = 168
by Ito’s Theorem [16, 6.15], a contradiction. So p = 7 and dimD = 16. Decompose
ϕ↓K = s

∑t
i=1 λi, where t ≥ 2 and {λ1, . . . , λt} is an A-orbit on the set of 8 linear

characters of K that are faithful on Z. As t |dimD, t is a 2-power. Inspecting the
subgroups of A we see that A0 := StabA(λ1) is isomorphic to Z7 : Z3 and t = 8.
Thus A acts transitively on the eight linear characters of K that are faithful on
Z. Now ϕ↓G = θ↑G, where θ is an irreducible Brauer character of degree 2 of
G0 := K : A0 and θ↓K = 2λ1. The quotient of G0 by Ker(λ1) is (Z2 × Z7) : Z3.
But p = 7 so Z7 acts trivially. Thus θ yields an irreducible character of degree 2 of
Z2 : Z3

∼= Z6, a contradiction.
Case n = 9. Here either (a) S = L2(8) or (b) Z2

3 Cπ(G) ≤ AGL2(3). As D does
not lift to characteristic 0, either dimD ≥ 48 or p = 3, H = Ŝ9, and dimD = 8.
But the former case is impossible by Corollary 3.1. In the latter case we must be
in (b), as in (a) G has no irreducible 3-Brauer character of degree 8. But then G
has a normal subgroup Z2

3, which must act trivially on D. So D factors through
to give an irreducible module of dimension 8 over G/Z2

3, which is impossible by
Corollary 3.1.

Case n = 10. Here S = A5 or S = A6. As |Out(S)| ≤ 4 and π−1(S) has no
irreducible character of degree > 10, we have dimD ≤ 40. On the other hand,
8 |dimD by Lemma 2.2 and D does not lift to characteristic 0. Hence p = 5,
H = Â10 and dimD = 8. Then S 6= A5. The analysis in [22, p. 463] shows that
π(G) = A6 or M10 and π−1(S) = Z2×A6. Now one checks that D↓π−1(S) is in fact
irreducible, giving exceptions in (ii)(g) and (ii)(f).

Case n = 11. Here S is L2(11) or M11. Checking the irreducible characters of G,
we conclude that dimD ≤ 55. Also, D does not lift to characteristic 0. Therefore
p = 11, H = Ŝ11, dimD = 16, and S = M11, in which case D↓G is irreducible,
giving (i)(f).

Case n = 12. Here S is L2(11), M11, or M12. Checking the irreducible characters
of G, we conclude that dimD ≤ 320. As D does not lift to characteristic 0, one of
the following holds: (a) p = 3 and dimD = 16, 144, 288 or 320; (b) p = 11 and
dimD = 128. However, G has no irreducible p-Brauer characters of those degrees.

Case n = 13. Here S = L3(3), whence dimD ≤ 52. As D does not lift to
characteristic 0, we have p = 13, H = Ŝ13, and dimD = 32. But G does not have
irreducible 13-Brauer characters of such degree.

Case n = 14. Here S = L2(13), whence dimD ≤ 14, which contradicts Corol-
lary 3.1.

Case n = 15. Here S is A7 or A8. By Lemma 2.2, 32 |dimD. By checking
the Brauer characters of G we see that dimD = 32, 64, S = A8, and p 6= 3, 7.
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But D does not lift to characteristic 0. By Theorem A and [32, Table III], this
implies p = 5, H = Ŝ15, and dimD = 64. Now if c ∈ G is an element of order 3
corresponding to a 3-cycle in S then ϕ(c) = 4. On the other hand, D↓Â15

is just
the reduction modulo 5 of a complex basic spin module of Â15, and so ϕ(c) = −2
(see e.g. [22, p. 465]), a contradiction.

Case n = 16. Here π(G) = Z4
2 : A for some A ≤ GL4(2). By Lemma 2.2,

27 |dimD, so |A| ≥ 210 using Corollary 3.1. Moreover, A acts irreducibly on Z4
2

by an argument similar to the one in [22, p. 461]. It follows that A = A7 or A8,
and A acts transitively on the non-trivial elements of Z4

2. This in turn implies that
K := π−1(Z4

2) ∼= Z5
2. Writing dimD = 27 · a for an integer a, we have 1 ≤ a ≤ 4

because of Corollary 3.1. Decompose ϕ↓K = s
∑t

i=1 λi, where 16 ≥ t ≥ 2 and
{λ1, . . . , λt} is an A-orbit on the set of 16 linear characters of K that are faithful
on Z. Set A0 := StabA(λ1). Then ϕ↓G = θ↑G, where θ is an irreducible Brauer
character of degree s of K : A0 and θ↓K = sλ1. Analyzing possible subgroups A0 of
A and dimensions of modules over them, we see that θ↑G can not have dimension
of the form 27 · a as above.

Cases n = 17 and n = 21. Here S = L2(16) and L3(4), respectively, and we
argue as in the case n = 14.

Case n = 22. Here S = M22. By Lemma 2.2, 29 |dimD. If U is a composition
factor of D↓G then, since Out(S) = Z2, we see that 28 |dimU . But G has no such
irreducible representation U .

Similarly we can deal with the cases n = 23 (where S = M23), n = 24 (where
S = M24), and n = 32 (where Z5

2 CH ≤ AGL5(2)).
B. Now we assume that the FH-module D lifts to characteristic 0. So D is a

reduction modulo p of a complex irreducible spin representation V of H. As D↓G is
irreducible so is V ↓G, and we can apply Theorems 6.3 and 6.4 of [22] which describe
all such pairs (V,G). It remains to check whether reduction modulo p of V ↓G is
irreducible for each such pair. Denote this reduction by Vp.

B1. Suppose H = Ŝn. Here V is always a basic spin representation.
Case n = 8. Then π(G) = AGL3(2). Using analysis of the case n = 8 in A,

we conclude that K ∼= Z4
2 and G permutes transitively the 8 linear characters of K

that occur on V . This implies that Vp is irreducible (as p 6= 2), giving the exception
(i)(d).

Case n = 10. By [22, p. 463], we have π−1(S) = Z2 × A6. If p > 5 then p 6 | |G|,
and we get the exceptions in (i)(e). On the other hand, if p = 3 or 5 then G does
not have irreducible modules of dimension 16.

Case n = 12. This leads to the exception (i)(g).
B2. Suppose H = Ân.
Case n = 8. Then π(G) = AGL3(2) and V is either basic or second basic. The

basic module lifts to Ŝn, so (ii)(d) follows from the case n = 8 in B1. Let V be
second basic. Then p 6= 7, as V reduces modulo 7. Adopt the notation of the case
n = 8 in A. Then K ∼= Z4

2 and G acts transitively on the 8 linear characters of
K that occur on V . Note that A0 acts on V0, the λ1-homogeneous component of
dimension 3, as Z2 × (Z7 : Z3), with Z3 cyclically permuting 3 nontrivial linear
characters of Z7 on V0. Hence Vp is irreducible for p 6= 7, giving (iii)(b).

Case n = 9. Here V is basic and either Z3
2 : Q8 ≤ π(G) ≤ Z3

2 : SL2(3) or
S = L2(8). In the former case V3 is reducible, as otherwise Z2

3 would act trivially



20 ALEXANDER S. KLESHCHEV AND PHAM HUU TIEP

on V3, contrary to the faithfulness. If p > 3 then p is coprime to |G|, leading to
part of (ii)(e). The rest of (ii)(e) comes from checking the characters of L2(8) and
its automorphism group.

Case n = 10 leads to the exception (ii)(f) (except for the case p 6= 5, which has
been covered in the case A).

Case n = 11 leads to the exception (ii)(h).
Case n = 12 leads to the exceptions (ii)(i) and (iii)(c).
The proof of Theorem B is complete.

6. Nearly simple subgroups (Theorem C)

We rely on the following result of Kleidman and Wales:

Proposition 6.1. [22, 6.1] Assume that S is a non-abelian proper simple subgroup
of An and that |Aut(S)| ≥ 2n−4. Then one of the following holds:

(a) S ∼= Am for some m ≥ 9 and each orbit of S on Ω has length 1 or m.
(b) S ∼= Am with m = 5, 6, 7 or 8, and n ≤ 10, 14, 16, or 19, respectively.
(c) S ∼= L2(q) with q = 7, 8, 11, 13, or 16, and n ≤ 12, 14, 14, 15, or 17,

respectively.
(d) S ∼= L3(3) or L3(4), and n ≤ 17 or 21, respectively.
(e) S ∼= Mt with t = 11, 12, 22, 23, or 24, and n ≤ 16, 21, 23, 27, or 31,

respectively.

Let H = Ŝn or Ân, and D be a faithful FH-module which remains irreducible
on restriction to a nearly simple subgroup G. Then π(G) is almost simple, because
Z(G) acts as scalar matrices on D. Moreover, by Corollary 3.1, we may assume that
the socle S of π(G) is among the subgroups listed in Proposition 6.1. Finally, in view
of Theorem B, we may assume that π(G) is imprimitive on Ω (cf. Theorem C(iv)).
The following result of Phillips will help us to deal with intransitive subgroups. The
proposition treats the irreducible restrictions of non-basic modules over Ŝn and Ân

to Young type subgroups. The basic modules are treated in Corollary 4.2. The
terminology used in Proposition 6.2 is explained in the introduction.

Proposition 6.2. [29] Let H = Ŝn or Ân, D be a non-basic faithful irreducible
FH-module. Suppose µ = (µ1, µ2, . . . ) is a non-trivial composition of n, and G is
a subgroup in H satisfying

Aµ1 ×Aµ2 × · · · ≤ π(G) ≤ Sµ1 × Sµ2 × . . . .

Then the restriction D↓G is irreducible if and only if one of the following happens:
(i) H = Ŝn, D = D(λ, σ), and one of the following happens:

(a) G = Ŝn−1, λ ∈ JS, and λ ∈ JS(0) if a(λ) is even.
(b) G = Ân−1, λ ∈ JS(0), and a(λ) is odd.
(c) π(G) = Sn−2 × S2, λ ∈ JS(0), and λ[0] ∈ JS(1).
(d) π(G) = (Sn−2 × S2) ∩ An

∼= Sn−2, λ ∈ JS(0), a(λ) is odd, and
λ[0] ∈ JS(1).

(e) G = Ŝn−2, λ ∈ JS(0), a(λ) is odd, and λ[0] ∈ JS(1).
(ii) H = Ân, D = E(λ, σ), and one of the following happens:

(a) G = Ân−1, λ ∈ JS, and λ ∈ JS(0) if a(λ) is odd.
(b) π(G) = (Sn−2 × S2) ∩An

∼= Sn−2, λ ∈ JS(0), and λ[0] ∈ JS(1).
(c) G = Ân−2, λ ∈ JS(0), a(λ) is even, and λ[0] ∈ JS(1).
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Now, we can deal with a major part of Theorem C.

Proposition 6.3. Let H = Ŝn or Ân, D be a faithful irreducible FH-module, and
G be a subgroup of H such that π(G) < Sn is an almost simple subgroup with
S := soc

(
π(G)

) ∼= Am for some 5 ≤ m < n. Assume that each orbit of S on Ω has
length 1 or m. Then D↓G is irreducible if and only if one of the one of the cases
(i)-(iii) of Theorem C occurs.

Proof. If H,G,D are as in (i)-(iii) of Theorem C then the restriction is irreducible
by Proposition 6.2 and Corollary 4.2, using the description of the partition ωn,
which labels the basic spin module over FH, given in (1.2). Conversely, let D↓G be
irreducible for G as in the assumption.

We claim that there is only one S-orbit of length m and other orbits are of
length 1. Indeed, otherwise π(G) is contained in a Young subgroup of the form
Sm×Sm× . . . . If D is non-basic, it follows from Proposition 6.2 that the restriction
is reducible. If D is basic then using Corollary 4.2 we conclude that H = Ŝn and
one of the following happens:

(1) p 6 |n = 2m, S < Sm × Sm;
(2) p|n = 2m+ 1, S < Sm × Sm × S1.

However, in both cases π(G) belongs to the subgroup Aµ := Sµ ∩ An, and the
restriction to (the double cover of) such subgroup is reducible by Corollary 4.2
again.

So π(G) is actually itself a Young type subgroup, i.e. G satisfies the assump-
tions of Proposition 6.2. The result now follows by applying Proposition 6.2 and
Corollary 4.2, and (1.2). �

Now we complete the proof of Theorem C by going through the remaining cases
listed in Proposition 6.1(b)-(e). If (H,G,D) is as in Theorem C(iv)–(viii), then one
readily checks using [12] and [19] that D↓G is irreducible. Conversely, let D↓G be
irreducible, and G be as in Proposition 6.1(b)-(e) but not satisfy the assumptions
of Proposition 6.3. Denote by µ(G) the largest dimension of an irreducible FG-
representation. Then, of course, we have

(6.1) µ(G) ≥ δ(H) ≥ δ(Ân).

We now claim that S has exactly one nontrivial orbit on Ω, on which it acts
primitively. For groups listed in Proposition 6.1(c)-(e) this is clear, because the
minimal index P (S) of proper subgroups of S is bigger than n/2 (see [12]). Let S
be as in Proposition 6.1(b) and S have more than one nontrivial orbit on Ω. Then
the upper bound on n implies that S ∼= Am (5 ≤ m ≤ 8) has exactly 2 orbits of
length m and n− 2m fixed points on Ω. So we can apply Proposition 6.3. Thus S
has exactly one non-trivial orbit Ω1, and we can use [12] again to conclude that S
must be primitive on this orbit. Let s = |Ω1|. Define

(6.2) K = π−1
( ⋂

j∈Ω−Ω1

Stabπ(H)(j)
)
.

Now, we consider the groups appearing in (b)-(e) of Proposition 6.1 one by one.
For the cases appearing in (b) we will assume that s > m, as otherwise the situation
is covered by Proposition 6.3. In all cases we will assume that s < n, as otherwise
π(G) is primitive on Ω.
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Case 1: S = A5. Here s = 6. As µ(G) ≤ 6, we have n ≤ 7, thanks to (6.1).
So n = 7 and G is of type (6, 1). Using the fact that π(G) is primitive on Ω1 and
Theorem B, we arrive to the cases listed in Theorem C(v).

Case 2: S = A6. As µ(Â6.22) ≤ 10, we have µ(G) ≤ 20, so n ≤ 12 by (6.1).
Suppose n = 12. Since δ(Â12) = 32 for p 6= 3, we have p = 3. Moreover, dim(D) ≤
20 implies that H = Â12, D is basic spin, and dim(D) = 16. If D↓G is irreducible
and U is any composition factor of D↓Ŝ then the dimension of U must divide 16.
It follows that dim(U) = 2 or 4, whence U extends to Ŝ.22. This in turn implies
that dim(D) ≤ 8, a contradiction. Now, let n ≤ 11. Then s = 10, n = 11, π(G) is
of type (10, 1) and π(G) is contained in π(K) as a primitive subgroup. Applying
Theorem B and Corollary 4.2 leads to the cases in Theorem C(vi).

Case 3: S = A7. Here µ(G) ≤ 36, so n ≤ 14 by (6.1). Hence s = 7, and so there
are no cases to consider (as we have assumed that s > m).

Case 4: S = A8. Here µ(G) ≤ 112, hence n ≤ 15 by (6.1). As we have assumed
m < s < n, there are no cases to consider.

Case 5: S = L2(7). Here µ(G) ≤ 8, hence n ≤ 10 by (6.1) and s = 7 or 8.
Moreover, δ(Â8) = 8, so dim(D) = 8 and D is basic spin. First suppose that
s = 8. In this case Ŝ < Â8, and D↓Â8

lifts to a complex representation, say W .
According to [22, p. 462], W↓Ŝ has two irreducible constituents, of degree 1 and 7.
This implies that D↓G is reducible. Next suppose that s = 7. Clearly, π(G) acts
on the S-orbit Ω1 of length 7, but L2(7).2 has no subgroup of index 7. Therefore
π(G) = S and G is contained in K as a primitive subgroup. By Theorem B applied
to (K,G,D), dim(D) = 4 or 6, a contradiction.

Case 6: S = L2(8). Here µ(G) ≤ 27, hence n ≤ 12 by (6.1) and s = 9.
Suppose n = 11 or 12. Then dim(D) ≥ δ(Â11) = 16, but π(G) = S or S.3.
Therefore dim(D) = 21 or 27, which is a contradiction as H has no irreducible
representations of such degree. Hence n = 10, and G is contained in K = Â9

as a primitive subgroup. By Theorem B applied to (K,G,D), D is basic spin of
dimension 8. This leads to Theorem C(vii).

Case 7: S = L2(11), or L2(13). Here µ(G) ≤ 14, hence n ≤ 10 by (6.1). On the
other hand, n ≥ P (S) ≥ 11, a contradiction.

Case 8: S = L2(16), or L3(4). In this case n ≤ P (S), whence π(G) is primitive
on Ω, a contradiction.

Case 9: S = L3(3). Here n ≤ 17 and so s = 13. Since L3(3).2 cannot have
an orbit of length 13, π(G) = S. Thus G is contained in K = Â13 as a primitive
subgroup. This is impossible by Theorem B applied to (K,G,D).

Case 10: S = M11. Here n ≤ 16 and so s = 11 or 12. Moreover π(G) = S,
therefore G is contained in K = Âs as a primitive subgroup. By Theorem B applied
to (K,G,D), s = 11, p 6= 3, and dim(D) = 16. But n > s, so dim(D) ≥ δ(Â12) =
32, a contradiction.

Case 11: S = M12. Here n ≤ 21 and so s = 12. As M12.2 cannot have an orbit
of length 12, π(G) = S. Thus G is contained in K = Â12 as a primitive subgroup.
By Theorem B applied to (K,G,D), either p 6= 3 and dim(D) = 32, or p 6= 3, 11
or dim(D) = 160. The first case leads to Theorem C(viii). The second case is
impossible as K < Â13 ≤ H and Â13 has no irreducible representation of degree
160.
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Case 12: S = M22, M23, or M24. If S = M22 then n ≤ 23 = P (S) + 1, whence
s = 22 and π(G) is of type (22, 1). If S = M23 or M24, then π(G) = S and
s = 23, resp. 24. In all cases G is contained in K as a primitive subgroup. This is
impossible by Theorem B applied to (K,G,D).

The proof of Theorem C is complete.

7. Arbitrary subgroups (Theorem D)

In this section we consider restrictions of non-basic modules over Ŝn and Ân to
arbitrary subgroups. For information on basic modules see §4. In most results of
this section we have to assume that p > 3. Recall the notation ĝ from §2.

Lemma 7.1. Let p > 3, n ≥ 6, and C be the elementary abelian subgroup of order
8 in Sn generated by the transpositions (1, 4), (2, 5), and (3, 6). Set

x :=
∑
c∈C

(sgn c)ĉ(1 + t1t2 + t2t1)ĉ−1 ∈ FÂn.

Then xD 6= 0 for any non-basic faithful irreducible FÂn-module D.

Proof. If we prove the lemma for n = 6 then the general case will follow by induction
on n using Lemma 2.4. So let n = 6. First, we consider the case F = C. Let V
be an irreducible faithful CÂ6-module not isomorphic to a basic spin module. It
suffices to show that the trace trV (xt1t2) of the element xt1t2 ∈ CÂ6 on V is a
non-zero integer not divisible by p. Indeed, this implies that x does not annihilate
any reduction V̄ of V modulo p. If p > 5 then p does not divide the order of Â6, so
any irreducible module looks like V̄ . In fact, for faithful modules the same is true
even for p = 5, see [12, 19].

Finally, we prove that trV (xt1t2) is a non-zero integer not divisible by p. Note
that x =

∑
c∈C(sgn c)ĉ(t1t2+t2t1)ĉ−1. We will write cy for ĉyĉ−1, c ∈ Sn, y ∈ FŜn.

By conjugating with t1t2t4t5, we note that the elements c(t1t2)t1t2 are conjugate
to each other for

c ∈ {(14), (2, 5), (3, 6)} and c ∈ {(1, 4)(2, 5), (1, 4)(3, 6), (2, 5)(3, 6)}.
The same is true for the elements of the form c(t2t1)t1t2. So, if χ is the character
of V , then

trV (xt1t2) = χ(t2t1) + χ(1)− 3χ((1,4)(t1t2)t1t2)− 3χ((1,4)(t2t1)t1t2)

+3χ((1,4)(2,5)(t1t2)t1t2) + 3χ((1,4)(2,5)(t2t1)t1t2)

−χ((1,4)(2,5)(3,6)(t1t2)t1t2)− χ((1,4)(2,5)(3,6)(t2t1)t1t2).

To identify the corresponding conjugacy classes it suffices to show, using relations,
that

(i) t2t1 is the lift of (1, 3, 2) ∈ S6 of order 3;
(ii) t2t1t1t2 = 1;
(iii) (1,4)(t1t2)t1t2 = t2t3t1t2 is a lift of (1, 3)(2, 4) ∈ S6 (all such lifts are

conjugate);
(iv) (1,4)(t2t1)t1t2 = t3t1t2t1 is a lift of (1, 4, 3) ∈ S6 of order 6;
(v) (1,4)(2,5)(t1t2)t1t2 = t1t3t4t2 is a lift of (1, 2, 4, 5, 3) ∈ S6 of order 10;
(vi) (1,4)(2,5)(t2t1)t1t2 = t1t4t3t2 is a lift of (1, 2, 5, 4, 3) ∈ S6 of order 10;
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(vii) (1,4)(2,5)(3,6)(t1t2)t1t2 = t1t2t4t5 is a lift of (1, 2, 3)(4, 5, 6) ∈ S6 of order 3;
(viii) (1,4)(2,5)(3,6)(t2t1)t1t2 = t1t2t5t4 is a lift of (1, 2, 3)(4, 6, 5) ∈ S6 of order 3.
Now, using the known character values of Ŝ6 [12], we find that trV (xt1t2) equals

18, 3, 3, 12, and 12 for irreducible non-basic spin representations V of Ŝn of dimen-
sions 4, 8, 8, 10, and 10, respectively. �

Let H = Ŝn or Ân. Recall the FH-modules Mλ from §2. For an FH-module D,
we set

(7.1) Hj(D) := HomFH(M (j,n−j),EndF(D)) and dj(D) := dimHj(D).

The following is a crucial technical result.

Theorem 7.2. Let p > 3, n ≥ 6, H = Ŝn or Ân, and D be a non-basic irreducible
faithful FH-module. Then d3(D) > d2(D).

Proof. Note that M (j,n−j) is the permutation module on the set of unordered j-
tuples {i1, i2, . . . , ij} of different numbers i1, i2, . . . , ij ∈ {1, 2, . . . , n}. Set

f : M (3,n−3) →M (2,n−2), {i1, i2, i3} 7→ {i1, i2}+ {i1, i3}+ {i2, i3}.
By [7, 3.1], f is surjective. Hence f∗ : H2(D) → H3(D) defined by f∗(ψ) = ψ ◦ f is
injective. So it suffices to prove that Imf∗ 6= H3(D). To show this, we construct an
element ϕ ∈ H3 \ Imf∗. Set ϕ({1, 2, 3}) to be the element of EndF (D) which maps
v ∈ D to (1+t1t2+t2+t1)v. Moreover, if σ ∈ H is the element with σ(1) = i1, σ(2) =
i2, σ(3) = i3 then we set ϕ({i1, i2, i3}) to be the element of EndF (D) which maps
v ∈ D to σ(1 + t1t2 + t2t1)σ−1v. As any σ ∈ G := H ∩ Ŝ(3,n−3) commutes with
(1 + t1t2 + t2t1), ϕ is a well defined FH-homomorphism from M (3,n−3) = indH

G1G

to EndF (D).
Now assume for a contradiction that ϕ ∈ Imf∗. Then ϕ = f∗(ψ) = ψ◦f for some

ψ ∈ H2. Let C be as in Lemma 7.1. Set e =
∑

c∈C(sgn c)ĉ{1, 2, 3} ∈M (3,n−3). In
view of [17, 4.10], we have f(e) = 0, so ϕ(e) = ψ(f(e)) = 0. By definition of ϕ, this
means that xD = 0 for x as in Lemma 7.1. But this contradicts Lemma 7.1. �

For 1 ≤ k ≤ n and a subgroup G ≤ Sn, we set

rk(G) = ]
{
G-orbits on unordered k-element subsets of {1, 2, . . . , n}

}
.

If rk(G) = 1, the group G is called k-homogeneous. If k ≤ n/2, it is well known [28]
that rk(G) ≥ rk−1(G) for any G. The following result shows that often r3(G) >
r2(G).

Lemma 7.3. [11, §5, Corollary] Let n > 5, G < Sn be transitive, and r2(G) =
r3(G). Then one of the following holds:

(i) n is even and G has 2 blocks of imprimitivity of size n/2.
(ii) n is even and G has n/2 blocks of imprimitivity of size 2.
(iii) G is 3-homogeneous.

Theorem 7.4. Let p > 3, n ≥ 6, H = Ŝn or Ân, and G < H be a subgroup.
Assume that the restriction D↓G is irreducible for some non-basic faithful FH-
module D. Then one of the following holds:

(i) n is even, π(G) is transitive and has 2 blocks of imprimitivity of size n/2.
(ii) n is even, π(G) is transitive and has n/2 blocks of imprimitivity of size 2.
(iii) π(G) is 3-homogeneous.
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(iv) π(G) has an orbit of length n − 1 or n − 2 on {1, 2, . . . , n}, and π(G) is
3-homogeneous on this orbit.

Proof. Suppose π(G) does not satisfy the conditions (i)–(iv) above. There are three
cases:

(1) π(G) is transitive. Then r3(π(G)) > r2(π(G)) by Lemma 7.3.
(2) π(G) is contained in a Young subgroup Sλ or Aλ, call it Hλ, with λ 6=

(n− 1, 1), (n− 2, 2), (n− 2, 1, 1). One easily checks that we have r3(Hλ) >
r2(Hλ).

(3) π(G) is contained in a Young subgroup Hλ, with λ ∈ {(n − 1, 1), (n −
2, 2), (n − 2, 1, 1)}, but π(G) is not 3-homogeneous on the ‘long’ orbit.
Here again we have r3(π(G)) > r2(π(G)).

Thus, if we can show that the restriction to a subgroup G with r3(π(G)) > r2(π(G))
is reducible, the theorem will be proved (in the case (2) we will have that already
the restriction to Hλ is reducible).

As rk(π(G)) equals the dimension of the G-invariant space (M (n−k,k))G and
d3(D) > d2(D) by Theorem 7.2, the proof of Proposition 3.4 in [7] shows that
dim EndFG(D↓G) > 1, and so the result follows from Schur’s Lemma. �

Remark. (i) In the case (iii) of Theorem 7.4, π(G) is primitive, and so this case is
covered by Theorem B.

(ii) Proposition 6.2 proved in [29] shows that irreducible restrictions of a non-
basic spin module from H to Hλ are possible only if

λ ∈ {(n− 1, 1), (n− 2, 2), (n− 2, 1, 1)}.
Theorem 7.4 provides an easier proof of this result, providing p > 3.

To complete the proof of Theorem D, it remains to refine the case (iv) of Theo-
rem 7.4. We need the following proposition:

Proposition 7.5. Let n ≥ 5, and X < Sn be a 3-homogeneous subgroup with
soc(X) not simple. Then one of the following holds:

(i) X = AGLm(2) with n = 2m;
(ii) X = 24.A7 with n = 16;
(iii) X = AGL1(8) or AΓL1(8) with n = 8;
(iv) X = AΓL1(32) with n = 32.

Proof. The 3-homogeneous groups which are not 3-transitive were described in [20].
This yields the cases (iii) and (iv) above. Now we may assume thatX is 3-transitive.
Set Ω := {1, 2, . . . , n}. Since soc(X) is not simple, it follows from the O’Nan-Scott
Theorem that soc(X) = Zm

q , for some prime q, and it acts regularly on Ω. Then
X = V X0, where V = Zm

q and X acts on Ω = V as affine transformations.
Now, X0 acts 2-transitively on V \ {0}. On the other hand, if q > 2 and m > 1,

or if q > 3 and m = 1, then X0 ≤ GL(V ) acts imprimitively on V \ {0}. In our
case qm ≥ 5. Hence q = 2 and X0 ≤ GLm(2). Now consider Y := soc(X0). We
have two cases.

1) Y is non-abelian simple. Since N := |V \ {0}| = 2m − 1 ≥ 7, in view of the
classification of 2-transitive groups, (see [10, 21]) one of the following holds:

a) Y = AN . This is impossible as AN with N = 2m − 1 cannot be embedded in
GLm(2).

b) Y = A7 and N = 15. This leads to the case (ii).
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c) Y = 2B2(q) and N = q2 + 1. Impossible as N = 2m − 1.
d) Y = 2A2(q) and N = q3 + 1. Impossible as N = 2m − 1.
e) Y = PSLd(q) and N = (qd − 1)/(q − 1). Assume q is even. Then, since

N = 2m − 1 ≥ 7, we see that q = 2, d = m, X0 = GLm(2), and G = ASLm(2),
giving the case (i) of the proposition. Finally, let q be odd. Since N = 2m − 1 ≥ 7,
we see that d ≥ 3 and d is odd. Now, Y = PSLd(q) embeds into GLm(2), giving
a cross-characteristic representation of PSLd(q). By [14, Corollary 6.2], we have
m ≥ (qd − 1)/(q − 1)− 2. This contradicts the equality 2m − 1 = (qd − 1)/(q − 1).

2) Y is elementary abelian, i.e. Y = Zk
r for a prime r. Then 7 ≤ 2m − 1 = rk.

An elementary number theory argument shows that k = 1 and r = 2m − 1. In this
case X0 ≤ NGLm(2)(Zr) = Zr.Zm. In particular, |X0| ≤ rm. On the other hand,
X0 is 2-transitive on V \ {0}, so |X0| ≥ r(r − 1), a contradiction. �

Now, let G be as in (iv), and let Ω1 be the ‘long’ orbit. Assume that D↓G is
irreducible. Set s := |Ω1|, and let K be defined as in (6.2). We have s = n − 1 or
n − 2, K ∼= Ŝs if H = Ŝn, and K ∼= Âs if H = Ân. Let X < Ss be the image of
π(G) with respect to its action on Ω1. We apply Proposition 7.5 to the action of X
on Ω1. We have that X is as in the cases (i)-(iv) in Proposition 7.5. In particular,
X has no subgroups of index 2.

We claim that π(G) = X and π(G) ≤ π(K). This is obvious if s = n − 1, or if
s = n− 2 and π(G) is of type (n− 2, 1, 1). Assume s = n− 2 and π(G) is of type
(n−2, 2). Then π(G)∩π(K) has index 2 in π(G), and it embeds in X. But X has no
subgroups of index 2, so π(G) ∩ π(K) = X. We may assume π(G) = 〈X,x〉, where
x interchanges the two points of Ω \Ω1. Since π(G)∩π(K) = X, there is y ∈ π(G)
that fixes Ω \ Ω1 pointwise and induces the same action as x on Ω1. Replacing x
by xy−1, we may assume that x is a transposition. Since X has no subgroups of
index 2, X̂ is contained in Âs and so it is centralized by x̂. Thus G is centralized
by x̂, a non-central involution in Ŝn, so D↓G is reducible, a contradiction.

Now we know that G ≤ K, and the action of π(G) on Ω1 is certainly primitive,
not containing As. Moreover, as D is non-basic, we have by Lemma 2.4 that the
restrictionD↓K has a non-basic composition factorD′. So we may apply Thmeorem
B to (K,G,D′), and we also know that π(G0 is as in (i)-(iv) of Proposition 7.5.
We then get s = 8, m = 3, π(G) = AGL3(2), dim(D) = 24. Here n ≥ 9, so we get
a contradiction as H ∈ Â9,10, Ŝ9,10 has no non-basic representation of degree 24.
The proof of Theorem D is complete.

8. Tensor products (Theorem F)

Recall the notation dj(V ) introduced in (7.1).

Theorem 8.1. Let p > 3, H = Ŝn or Ân with n ≥ 7. Suppose A,B are irreducible
FH-modules such that d3(A) > d2(A) and d3(B) > d2(B). Then the H-module
A⊗B is reducible.

Proof. Consider the irreducible FSn-moduleDj labelled by (n−j, j) with j = 0, 1, 2,
or 3. In particular, D0 = 1. It is well known that Dj is self-dual, and the modules
Dj ↓An are also irreducible and distinct. Throughout this proof we write G = π(H)
for short. The condition d3(A) > d2(A) means that

dim HomFH(M (n−3,3), A⊗A∗) > dim HomFH(M (n−2,2), A⊗A∗).
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The proof of [7, 3.4] applied to EndF(A) ∼= A⊗A∗ shows that one of the following
holds.

(I) There is no r such that 1 ≤ r ≤ 3 and n ≡ 5 − r(mod p). Then there is an
injective G-homomorphism

1⊕D3
α
↪→A⊗A∗.

(II) There is (a unique) r such that 1 ≤ r ≤ 3 and n ≡ 5 − r(mod p). Let
s := 3− r. Then, in the notation of [7], one of the following holds:

(A1) There is an injective G-homomorphism

1⊕ (S(n−3,3))∗ = 1⊕D3|Ds
α
↪→A⊗A∗.

(A2) r 6= 3 and there is an injective G-homomorphism

1⊕ S(n−3,3) = 1⊕Ds|D3
α
↪→A⊗A∗.

(A3) r = 3 and there is an injective G-homomorphism

Y (n−3,3) = 1|D3|1
α
↪→A⊗A∗.

We label the corresponding cases for B by (B1), (B2), (B3), respectively, and
the corresponding G-homomorphism by β.

We aim to show that dim HomFG(B ⊗B∗, A⊗A∗) > 1. As

HomFH(B ⊗B∗, A⊗A∗) ∼= HomFH(A⊗B,A⊗B),

this implies that A⊗ B is not irreducible by Schur’s Lemma. There is an obvious
nonzero homomorphismB⊗B∗�1 ↪→ A⊗A∗. Here and below � means a surjective
homomorphism. We show that there is another homomorphism γ which is linearly
independent from this one.

Suppose (I) holds. Then take γ to be the map

B ⊗B∗ β∗

� (1⊕D3)∗ ∼= 1⊕D3
α
↪→A⊗A∗.

Now suppose we are in the case (II).
If (A1) holds for A and (B1) holds for B, take γ to be the map

B ⊗B∗ β∗

� (1⊕D3|Ds)∗ ∼= 1⊕Ds|D3�D3
α
↪→A⊗A∗.

Now assume that r = 3. Then Ds
∼= 1. If (A3) holds for A and (B3) holds for

B, then take γ to be the map

B ⊗B∗ β∗

� (1|D3|1)∗ ∼= 1|D3|1
α
↪→A⊗A∗.

If (A1) holds for A and (B3) holds for B, then take γ to be the map

B ⊗B∗ β∗

� (1|D3|1)∗ ∼= 1|D3|1�D3|1
α
↪→A⊗A∗.

In the case of (A3) and (B1) we can interchange A and B.
Finally, assume that r 6= 3. In this case Ds 6∼= 1. If (A2) holds for A and (B2)

holds for B, then take γ to be the map

B ⊗B∗ β∗

� (1⊕Ds|D3)∗ ∼= 1⊕D3|Ds�Ds
α
↪→A⊗A∗.

If (A1) holds for A and (B2) holds for B, then take γ to be the map

B ⊗B∗ β∗

� (1⊕Ds|D3)∗ ∼= 1⊕D3|Ds
α
↪→A⊗A∗.

In the case of (A2) and (B1) we can interchange A and B. �
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Now Theorem F(i) follows from Theorems 7.2 and 8.1, and Theorem F(ii) follows
from Theorems 7.2, 8.1, and [7, 3.9].
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