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JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

Abstract. We give a presentation for the finite W -algebra associated to a nilpo-
tent matrix inside the general linear Lie algebra over C. In the special case that the
nilpotent matrix consists of n Jordan blocks each of the same size l, the presenta-
tion is that of the Yangian of level l associated to the Lie algebra gln, as was first
observed by Ragoucy and Sorba. In the general case, we are lead to introduce some
generalizations of the Yangian which we call the shifted Yangians.

1. Introduction

Let g be a finite dimensional reductive Lie algebra over C equipped with a non-
degenerate invariant symmetric bilinear form (., .). Pick a nilpotent element e ∈ g, i.e.
an element which acts nilpotently on every finite dimensional g-module. A Z-grading
g =

⊕
j∈Z gj of g is called a good grading for e if e ∈ g2 and the linear map

ad e : gj → gj+2

is injective for j ≤ −1, surjective for j ≥ −1. This definition originates in [KRW] in the
study of certain W -algebras defined from affine Lie algebras by quantum Hamiltonian
reduction. A complete classification of all good gradings of simple Lie algebras up to
conjugacy can be found in [EK].

Since ad e : g−1 → g1 is bijective, the skew-symmetric bilinear form 〈., .〉 on g−1

defined by 〈x, y〉 := ([x, y], e) is non-degenerate. Pick a Lagrangian subspace l of g−1

with respect to the form 〈., .〉 and set m := l⊕
⊕

j≤−2 gj . This is a nilpotent subalgebra
of g, and the map χ : m → C, x 7→ (x, e) defines a representation of m. Let Iχ denote
the kernel of the corresponding associative algebra homomorphism U(m)→ C, where
U(m) denotes the universal enveloping algebra of m. Let

Qχ := U(g)⊗U(m) Cχ
∼= U(g)/U(g)Iχ

denote the induced g-module, and consider the endomorphism algebra

W (χ) := EndU(g)(Qχ)op.

Following terminology used in the mathematical physics literature, we refer to these
algebras as finite W -algebras; see e.g. [BT]. Applying Frobenius reciprocity, it is often
more convenient to view W (χ) instead as the subspace of U(g)/U(g)Iχ consisting of all
cosets y+U(g)Iχ such that [x, y] ∈ U(g)Iχ for all x ∈ m. In this realization, the algebra
structure on W (χ) is defined by the formula (y+U(g)Iχ)(y′+U(g)Iχ) = yy′+U(g)Iχ
for y, y′ ∈ U(g) such that [x, y], [x, y′] ∈ U(g)Iχ for all x ∈ m.

In the special case that our fixed good grading is even, i.e. gj = 0 for all odd j,
the algebras W (χ) were already well studied by the end of the 1970s by Lynch [L],
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generalizing work of Kostant [K] treating regular nilpotent elements. Of course in
the even case, we have simply that m =

⊕
j≤−2 gj . Letting p :=

⊕
j≥0 gj , the PBW

theorem implies that
U(g) = U(p)⊕ U(g)Iχ.

The projection prχ : U(g) → U(p) along this direct sum decomposition induces an
isomorphism U(g)/U(g)Iχ

∼→ U(p) which leads to an easier definition of the algebra
W (χ) in the even case as a subalgebra of U(p). To make this precise, define a twisted
action of m on U(p) by x · y := prχ([x, y]) for x ∈ m and y ∈ U(p). Then prχ induces
an isomorphism between W (χ) and subalgebra U(p)m of U(p) consisting of all twisted
m-invariants. This is the original definition used by Kostant and Lynch.

The most important examples of good gradings arise as follows. By the Jacobson-
Morozov theorem, we can embed e into an sl2-triple (e, h, f), so [e, f ] = h, [h, e] = 2e
and [h, f ] = −2f . Then the representation theory of sl2 implies that the adh-
eigenspace decomposition of g is a good grading for e. We refer to a good grading
obtained in this way as a Dynkin grading. For a Dynkin grading, the module Qχ is a
generalized Gelfand-Graev representation in the sense of Kawanaka [Ka] and Moeglin
[M]. Its endomorphism algebra W (χ) has been studied by Premet [P] as an applica-
tion of results on Lie algebras in positive characteristic. Subsequently, a more direct
approach has been given by Gan and Ginzburg [GG] which we follow here.

Returning to an arbitrary good grading, [EK, Lemma 1.1] shows that we can always
embed the given element e ∈ g2 into an sl2-triple (e, h, f) with h ∈ g0 and f ∈ g−2.
Letting cg(f) denote the centralizer of f and m⊥ := {y ∈ g | (x, y) = 0 for all x ∈ m},
the following crucial formula is proved as in [GG, §2.3], using [EK, Theorem 1.4]:

m⊥ = [m, e]⊕ cg(f).

Remarkably, given this formula, all the arguments from [GG] in the context of Dynkin
gradings extend absolutely unchanged to arbitrary good gradings. Let us just state
briefly here the analogue of [P, Proposition 6.3] which we regard as the fundamental
structure theorem for W (χ); see also [GG, Theorem 4.1] and [L, Theorem 2.3]. Intro-
duce the Kazhdan filtration · · · ⊆ FdU(g) ⊆ Fd+1U(g) ⊆ · · · of U(g) by declaring that
a generator x ∈ gj is of degree (j+2), i.e. FdU(g) is the span of all monomials x1 · · ·xm

for m ≥ 0 and x1 ∈ gj1 , . . . , xm ∈ gjm with (j1 +2)+ · · ·+(jm +2) ≤ d. Viewing W (χ)
as a subspace of the quotient U(g)/U(g)Iχ, there is an induced Kazhdan filtration
on W (χ); we denote the associated graded Poisson algebra by grW (χ). Recall also
that the Slodowy slice through the nilpotent orbit containing e is the affine subspace
e + cg(f); see [S]. It has a natural Poisson structure which may be defined following
[GG, §3.2] as the Hamiltonian reduction of the Kirillov-Kostant Poisson structure on
g. Now the basic fact is that there is a canonical isomorphism

ν : grW (χ) ∼→ C[e+ cg(f)]

of Poisson algebras; see [GG, §4.4] for its precise definition. Hence, W (χ) can be viewed
as a quantization of the Slodowy slice e+cg(f). Moreover, up to canonical isomorphism,
the algebra W (χ) is independent of the particular choice of the Lagrangian subspace
l of g−1; see [GG, §5.5].

Another fundamental result in this subject is Skryabin’s theorem proved in [Sk]
for Dynkin gradings; see also [GG, Theorem 6.1]. Again, Skryabin’s proof extends
unchanged to any good grading. To state the result, let C(χ) be the category of all
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g-modules on which (x − χ(x)) act locally nilpotently for all x ∈ m (“generalized
Whittaker modules”). If M ∈ C(χ) then the subspace

Mm := {v ∈M | (x− χ(x))v = 0 for all x ∈ m} ∼= HomU(g)(Qχ,M)

is aW (χ)-module, henceM 7→Mm is a functor F from C(χ) to the categoryW (χ) -Mod
of all left W (χ)-modules. Also, we have the functor G := Qχ⊗W (χ)? from W (χ) -Mod
to C(χ). Skryabin’s theorem asserts that the functors F and G are quasi-inverse
equivalences between C(χ) and W (χ) -Mod. Moreover, every M ∈ C(χ) is an injec-
tive m-module and Qχ is a free right W (χ)-module. Somewhat weaker results in the
even case can already be found in the work of Kostant and Lynch; see for example [L,
Theorems 2.4, 4.1].

In the remainder of the article we study the algebras W (χ) in the special case that
e is a nilpotent matrix of Jordan type p1 ≤ · · · ≤ pn inside the Lie algebra g = glN
over C, taking the bilinear form (., .) to be the usual trace form. Our main result
(Theorem 10.1) gives an explicit set of generators and relations for the algebra W (χ).
One surprising consequence of our presentation is that in fact up to isomorphism the
algebras W (χ) only depend on the conjugacy class of e, i.e. the partition (p1, . . . , pn)
of N , not on the particular choice of the good grading for e.

The classification of good gradings for e is described in [EK, Theorem 4.2] in terms
of certain diagrams called pyramids. A consequence of this classification is that, in
type A, it is sufficient in order to define all the algebras W (χ) to restrict attention just
to even good gradings. More precisely, every good grading for e is split in the sense
that it is always possible to adjust the grading to obtain a new, even good grading
for e with the property that the subalgebra m defined from the new grading coincides
with the subalgebra m defined from the original grading for some particular choice of
Lagrangian subspace l. Hence the algebra W (χ) defined from the new grading is equal
to the algebra W (χ) defined from the original grading using this choice of l. (In the
language of [EK, §4], the pyramid defining such a new grading may be obtained from
the pyramid defining the original grading by shifting one place to the left all the boxes
whose first coordinates are of different parity to the first coordinates of the boxes on
the bottom row.)

So we may assume without loss of generality that the given good grading is even.
The even good gradings for e are classified up to conjugacy in [EK, Proposition 4.3]; see
also [L, Lemma 7.2]. Again we visualize the classification in terms of some pyramids
as explained in §7 below. We will explain the idea in this introduction just with one
example: the diagram

1
2 4

3
7
6

8

5
π =

is a pyramid for g = gl8 of height n = 3. Numbering the bricks 1, . . . , 8 as indicated,
the rows 1, . . . , 3 from top to bottom and the columns 1, . . . , 4 from left to right, we
write row(i) and col(i) for the row and column numbers of the ith brick in the pyramid,
respectively. Denoting the ij-matrix unit by ei,j , the nilpotent matrix e associated to
π is the matrix

e = e1,3 + e3,6 + e2,4 + e4,7 + e7,8
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defined by reading along the rows of the pyramid, and the even good grading associated
to π is defined by declaring that ei,j is of degree (col(j)−col(i)); actually, according to
this definition, e is of degree 1 not 2 since in the case of an even good grading we prefer
from now on to divide all degrees by 2. Moreover, the Jordan type (p1, . . . , pn) of e in
this example is (1, 3, 4) (“row lengths”) and the parabolic subalgebra p :=

⊕
j≥0 gj is

of standard Levi shape (2, 2, 3, 1) (“column heights”). ¿From the pyramid π we also
read off the level l := pn and a certain shift matrix σ = (si,j)1≤i,j≤n as explained in §7;
in our example,

l = 4, σ =

 0 0 1
2 0 1
2 0 0

 .

From now on we will denote the finite W -algebra W (χ) instead by W (π); recall it
may be defined in the even case as the subalgebra U(p)m of all twisted m-invariants
in U(p). Our main theorem (Theorem 10.1) asserts for any pyramid π that W (π)
is isomorphic to the shifted Yangian Yn,l(σ) of level l, namely, the quotient of the
shifted Yangian Yn(σ) by the two-sided ideal generated by elements {D(r)

1 }r>p1 . Here,
Yn(σ) denotes the algebra defined by generators {D(r)

i }1≤i≤n,r>0, {E(r)
i }1≤i<n,r>si,i+1

and {F (r)
i }1≤i<n,r>si+1,i subject to the relations (2.4)–(2.15) recorded below. In the

special case that p1 = · · · = pn, i.e. all the Jordan blocks of e are of the same size
l, the pyramid π is an n × l rectangle and the shift matrix σ is the zero matrix, our
presentation is a variation on Drinfeld’s presentation [D] for the Yangian Yn,l of level
l considered by Cherednik [C]. Hence in this case, W (χ) is a quotient of the Yangian
Yn associated to the Lie algebra gln, as was first noticed by Ragoucy and Sorba [RS].

The remainder of the article is organized as follows. In §2, we define the shifted
Yangian Yn(σ) and prove a PBW theorem for it. In §3, we introduce some more elab-
orate parabolic presentations for Yn(σ) following [BK1]. These are important because
they allow us in §4 to write down an explicit formula for the so-called baby comultipli-
cations. In §5, we introduce the canonical filtration of Yn(σ), which eventually turns
out to correspond to the Kazhdan filtration of W (χ). In §6, we prove a PBW theo-
rem for the finitely generated quotients Yn,l(σ) of Yn(σ). Then we turn our attention
back to the finite W -algebras W (χ), beginning in §7 by explaining the classification
of even good gradings in terms of pyramids. In §8, we recall the setup of [GG] in our
special case in some detail. The most important section of the article is §9, where
we write down explicit formulae for elements of U(p) which eventually turn out to
be precisely the generators D(r)

i , E(r)
i and F

(r)
i of W (χ) that we are after. The main

theorem is then proved by induction in §10, the key tool for the induction step being
the baby comultiplications. In §11 we discuss more general comultiplications. Finally,
§12 gives a much simpler and more direct proof of the main theorem in the special case
p1 = · · · = pn, using a different description of the generators of W (χ) in this special
case which is closely related to the Capelli determinant.

We finally note that the exposition in the rest of the article is pretty much self-
contained, apart from appealing to the results of [BK1] and the opening lemma of
[GG]. In a subsequent article [BK2], we will use the presentation for W (χ) obtained
here to study its highest weight representation theory.
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2. The shifted Yangian

Fix n ≥ 1 and a matrix σ = (si,j)1≤i,j≤n of non-negative integers (“shifts”) such
that

si,j + sj,k = si,k (2.1)
whenever |i− j|+ |j− k| = |i− k|. Note this means that s1,1 = · · · = sn,n = 0, and the
matrix σ is completely determined by the upper diagonal entries s1,2, s2,3, . . . , sn−1,n

and the lower diagonal entries s2,1, s3,2, . . . , sn,n−1. We also associate to σ the tuple
δ = (d1, . . . , dn−1) of non-negative integers (“differences”) where di := si,i+1 + si+1,i.
Note that d1 + · · ·+ dn−1 = s1,n + sn,1 (the “total difference”).

The shifted Yangian associated to the matrix σ is the algebra Yn(σ) over C defined
by generators

{D(r)
i }1≤i≤n,r>0,

{E(r)
i }1≤i<n,r>si,i+1 ,

{F (r)
i }1≤i<n,r>si+1,i

subject to certain relations. In order to write down these relations, let

Di(u) :=
∑
r≥0

D
(r)
i u−r ∈ Yn(σ)[[u−1]] (2.2)

where D(0)
i := 1, and then define some new elements D̃(r)

i of Yn(σ) from the equation

D̃i(u) =
∑
r≥0

D̃
(r)
i u−r := −Di(u)−1. (2.3)

For example, D̃(0)
i = −1, D̃(1)

i = D
(1)
i , D̃

(2)
i = D

(2)
i −D

(1)
i D

(1)
i , . . . . With this notation,

the relations are as follows.

[D(r)
i , D

(s)
j ] = 0, (2.4)

[E(r)
i , F

(s)
j ] = δi,j

r+s−1∑
t=0

D̃
(t)
i D

(r+s−1−t)
i+1 , (2.5)

[D(r)
i , E

(s)
j ] = (δi,j − δi,j+1)

r−1∑
t=0

D
(t)
i E

(r+s−1−t)
j , (2.6)

[D(r)
i , F

(s)
j ] = (δi,j+1 − δi,j)

r−1∑
t=0

F
(r+s−1−t)
j D

(t)
i , (2.7)
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[E(r)
i , E

(s)
i ] =

s−1∑
t=si,i+1+1

E
(t)
i E

(r+s−1−t)
i −

r−1∑
t=si,i+1+1

E
(t)
i E

(r+s−1−t)
i , (2.8)

[F (r)
i , F

(s)
i ] =

r−1∑
t=si+1,i+1

F
(r+s−1−t)
i F

(t)
i −

s−1∑
t=si+1,i+1

F
(r+s−1−t)
i F

(t)
i , (2.9)

[E(r)
i , E

(s+1)
i+1 ]− [E(r+1)

i , E
(s)
i+1] = −E(r)

i E
(s)
i+1, (2.10)

[F (r+1)
i , F

(s)
i+1]− [F (r)

i , F
(s+1)
i+1 ] = −F (s)

i+1F
(r)
i , (2.11)

[E(r)
i , E

(s)
j ] = 0 if |i− j| > 1, (2.12)

[F (r)
i , F

(s)
j ] = 0 if |i− j| > 1, (2.13)

[E(r)
i , [E(s)

i , E
(t)
j ]] + [E(s)

i , [E(r)
i , E

(t)
j ]] = 0 if |i− j| = 1, (2.14)

[F (r)
i , [F (s)

i , F
(t)
j ]] + [F (s)

i , [F (r)
i , F

(t)
j ]] = 0 if |i− j| = 1, (2.15)

for all admissible r, s, t, i, j. (For an example of what we mean by “admissible” here,
the relation (2.10) should be understood to hold for all i = 1, . . . , n− 2, r > si,i+1 and
s > si+1,i+2.)

If the matrix σ is the zero matrix, we denote Yn(σ) simply by Yn. In this special
case, the above presentation is a variation on Drinfeld’s presentation [D] for the usual
Yangian Y (gln) associated to the Lie algebra gln; see [BK1, Remark 5.12]. We will
prove in Corollary 2.2 below that the map sending the generators of Yn(σ) to the
elements with the same name in Yn is an injective algebra homomorphism. Given this
fact, the algebra Yn(σ) is canonically a subalgebra of the usual Yangian Yn. By the
relations, there is an anti-automorphism τ : Yn → Yn of order 2 defined by

τ(D(r)
i ) = D

(r)
i , τ(E(r)

i ) = F
(r)
i , τ(F (r)

i ) = E
(r)
i . (2.16)

This obviously interchanges the two subalgebras Yn(σ) and Yn(σt) of Yn, where σt

denotes the transpose of the matrix σ. Hence τ also induces an anti-isomorphism
τ : Yn(σ)→ Yn(σt).

Suppose next that σ̇ = (ṡi,j)1≤i,j≤n is another shift matrix satisfying (2.1), such
that ṡi,i+1 + ṡi+1,i = si,i+1 +si+1,i for all i = 1, . . . , n−1, i.e. the differences associated
to σ̇ are the same as for σ. A check of relations shows that there is a unique algebra
isomorphism ι : Yn(σ)→ Yn(σ̇) defined by

ι(D(r)
i ) = Ḋ

(r)
i , ι(E(r)

i ) = Ė
(r−si,i+1+ṡi,i+1)
i , ι(F (r)

i ) = Ḟ
(r−si+1,i+ṡi+1,i)
i . (2.17)

(Here and later on we denote the generators D(r)
i , E

(r)
i and F

(r)
i of Yn(σ̇) instead by

Ḋ
(r)
i , Ė

(r)
i and Ḟ

(r)
i to avoid potential confusion.) Hence the isomorphism type of the

algebra Yn(σ) only depends on the differences δ, rather than on the shift matrix σ itself.
However, the embedding of Yn(σ) into Yn from in the previous paragraph clearly does
depend on the particular choice of σ.

Let us now prove as promised that the canonical map Yn(σ) → Yn is injective.
Introduce the loop filtration L0Yn(σ) ⊆ L1Yn(σ) ⊆ · · · by declaring that the generators
D

(r)
i , E

(r)
i and F

(r)
i of Yn(σ) are of degree (r − 1), i.e. LdYn(σ) is the span of all
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monomials in the generators of total degree ≤ d. For 1 ≤ i < j ≤ n and r > si,j , define
elements E(r)

i,j ∈ Yn(σ) recursively by

E
(r)
i,i+1 := E

(r)
i , E

(r)
i,j := [E(r−sj−1,j)

i,j−1 , E
(sj−1,j+1)
j−1 ]. (2.18)

Similarly, for 1 ≤ i < j ≤ n and r > sj,i, define elements F (r)
i,j ∈ Yn(σ) by

F
(r)
i,i+1 := F

(r)
i , F

(r)
i,j := [F (sj,j−1+1)

j−1 , F
(r−sj,j−1)
i,j−1 ]. (2.19)

It is easy to see that E(r)
i,j and F (r)

i,j belong to Lr−1Yn(σ). For 1 ≤ i, j ≤ n and r ≥ si,j ,
define

ei,j;r :=


grL

r D
(r+1)
i if i = j,

grL
r E

(r+1)
i,j if i < j,

grL
r F

(r+1)
j,i if i > j,

(2.20)

all elements of the associated graded algebra grL Yn(σ). Let gln[t] denote the Lie algebra
gln ⊗ C[t] on basis {ei,jtr}1≤i,j≤n,r≥0, viewed as a graded Lie algebra so that ei,jtr is
of degree r. In view of the assumption (2.1), the vectors {ei,jtr}1≤i,j≤n,r≥si,j span
a subalgebra of gln[t] which we denote by gln[t](σ) (the “shifted loop algebra”). The
grading on gln[t](σ) induces a grading on the universal enveloping algebra U(gln[t](σ)).

Theorem 2.1. There is an isomorphism π : U(gln[t](σ))→ grL Yn(σ) of graded alge-
bras such that ei,jtr 7→ ei,j;r for each 1 ≤ i, j ≤ n and r ≥ si,j.

Proof. Using the relations like in the proof of [BK1, Lemma 5.8], one shows for all
1 ≤ h, i, j, k ≤ n, r ≥ si,j and s ≥ sh,k that

[ei,j;r, eh,k;s] = ei,k;r+sδh,j − δi,keh,j;r+s, (2.21)

equality in grL Yn(σ). Hence there is a well-defined surjection π : U(gln[t](σ)) �
grL Yn(σ) mapping ei,jtr ∈ gln[t](σ) to ei,j;r ∈ grL Yn(σ).

In the special case σ = 0, the PBW theorem for the usual Yangian Yn implies that
the ordered monomials in the elements {ei,j;r}1≤i,j≤n,r≥0 are linearly independent in
grL Yn; see the proof of [BK1, Lemma 5.10]. Hence π is an isomorphism in this case.

In general, the canonical map Yn(σ)→ Yn is a homomorphism of filtered algebras, so
induces a map grL Yn(σ)→ grL Yn which sends ei,j;r ∈ grL Yn(σ) to ei,j;r ∈ grL Yn (de-
spite the fact that it does not in general send E(r+1)

i,j , F
(r+1)
i,j ∈ Yn(σ) to E(r+1)

i,j , F
(r+1)
i,j ∈

Yn if j − i > 1). So the previous paragraph implies that the ordered monomials in the
elements {ei,j;r}1≤i,j≤n,r≥si,j are linearly independent in grL Yn(σ) too. Hence π is an
isomorphism in general. �

Corollary 2.2. The canonical map Yn(σ)→ Yn is injective.

Proof. We saw in the proof of Theorem 2.1 that the canonical map Yn(σ) → Yn is
filtered and the associated graded map grL Yn(σ)→ grL Yn is injective. �

The presentation of Yn(σ) is adapted to the natural triangular decomposition of this
algebra. Let Y(1n) denote the subalgebra of Yn(σ) generated by the D(r)

i ’s, let Y +
(1n)(σ)

denote the subalgebra of Yn(σ) generated by the E(r)
i ’s and let Y −(1n)(σ) denote the

subalgebra generated by the F (r)
i ’s, for all admissible i, r.
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Theorem 2.3. (i) The monomials in the elements {D(r)
i }1≤i≤n,r>0 taken in some

fixed order form a basis for Y(1n).

(ii) The monomials in the elements {E(r)
i,j }1≤i<j≤n,r>si,j taken in some fixed order

form a basis for Y +
(1n)(σ).

(iii) The monomials in the elements {F (r)
i,j }1≤i<j≤n,r>sj,i taken in some fixed order

form a basis for Y −(1n)(σ).
(iv) The monomials in the union of the elements listed in (i)–(iii) taken in some

fixed order form a basis for Yn(σ).

Proof. Part (iv) follows from Theorem 2.1 and the PBW theorem for U(gln[t](σ)). The
other parts are proved similarly, going back to (2.21). �

Corollary 2.4. The natural multiplication map Y −(1n)(σ) ⊗ Y(1n) ⊗ Y +
(1n)(σ) → Yn(σ)

is a vector space isomorphism.

Remark 2.5. Let us describe the center Z(Yn(σ)) of Yn(σ). Recalling the notation
(2.2), let

Cn(u) =
∑
r≥0

C(r)
n u−r := D1(u)D2(u− 1) · · ·Dn(u− n+ 1) ∈ Yn(σ)[[u−1]]. (2.22)

Then, the elements C(1)
n , C

(2)
n , . . . are algebraically independent and generate Z(Yn(σ)).

Indeed, exploiting the embedding Yn(σ) ↪→ Yn, it is known by [BK1, Theorem 7.2] that
the elements C(1)

n , C
(2)
n , . . . are algebraically independent and generate Z(Yn), so they

certainly belong to Z(Yn(σ)). The fact that Z(Yn(σ)) is no larger than Z(Yn) may be
proved by passing to the associated graded algebra grL Yn(σ) and using a variation on
the trick from the proof of [MNO, Theorem 2.13]. We will outline a different argument
in Remark 11.11 below.

3. Parabolic presentations

We are going to need various more elaborate presentations of the shifted Yangian
which are analogues of the parabolic presentations of [BK1]. In order to explain the
relationship between all these presentations, we begin with an elementary remark about
Gauss factorizations.

Let T = (Ti,j)1≤i,j≤n be an n × n matrix with entries in some ring such that the
submatrices (Ti,j)1≤i,j≤m are invertible for all m = 1, . . . , n. Fix also a tuple ν =
(ν1, . . . , νm) of positive integers summing to n, which we think of as the shape of the
standard Levi subgroup glν := glν1

⊕ · · · ⊕ glνm
of gln. Working with m × m block

matrices so that the ab-block is of size νa× νb, the matrix T possesses a unique Gauss
factorization T = νF νDνE where νD is a block diagonal matrix, νE is a block upper
unitriangular matrix, and νF is a block lower unitriangular matrix:

νD =


νD1 0 · · · 0
0 νD2 0
...

. . .
...

0 νDm−1 0
0 · · · 0 νDm

 ,
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νE =



Iν1
νE1 ∗ · · · ∗

0 Iν2
νE2

...
... Iν3

. . . ∗

0
. . . νEm−1

0 · · · 0 Iνm

 , νF =


Iν1 0 · · · 0
νF1 Iν2 0

∗ νF2 Iν3

...
...

. . . . . . 0
∗ · · · ∗ νFm−1 Iνm

 .

The diagonal blocks of νD define matrices νD1, . . . ,
νDm, the upper diagonal blocks

of νE define matrices νE1, . . . ,
νEm−1, and the lower diagonal blocks of νF define

matrices νF1, . . . ,
νFm−1. So νDa is a νa × νa matrix, νEa is a νa × νa+1 matrix,

and νFa is a νa+1 × νa matrix. Now consider what happens when we split a block
into two: suppose that νb = α + β for some 1 ≤ b ≤ m and α, β ≥ 1, and let
µ = (ν1, . . . , νb−1, α, β, νb+1, . . . , νm). The following lemma shows how to compute the
matrices µD1, . . . ,

µDm+1,
µE1, . . . ,

µEm and µF1, . . . ,
µFm just from knowledge of the

matrices νD1, . . . ,
νDm,

νE1, . . . ,
νEm−1 and νF1, . . . ,

νFm−1.

Lemma 3.1. In the above notation, define an α× α matrix A, an α× β matrix B, a
β × α matrix C and a β × β matrix D from the equation

νDb =
(
Iα 0
C Iβ

)(
A 0
0 D

)(
Iα B
0 Iβ

)
.

Then,
(i) µDa = νDa for a < b, µDb = A, µDb+1 = D, and µDc = νDc−1 for c > b+ 1;
(ii) µEa = νEa for a < b − 1, µEb−1 is the submatrix consisting of the first α

columns of νEb−1, µEb = B, µEb+1 is the submatrix consisting of the last β
rows of νEb, and µEc = νEc−1 for c > b+ 1;

(iii) µFa = νFa for a < b− 1, µFb−1 is the submatrix consisting of the first α rows
of νFb−1, µFb = C, µFb+1 is the submatrix consisting of the last β columns of
νFb, and µFc = νFc−1 for c > b+ 1;

Proof. Multiply matrices. �

Now let us briefly recall the parabolic presentations for the Yangian Yn from [BK1].
As in [MNO], the Yangian can be defined in terms of the RTT presentation as the
algebra over C defined by generators {T (r)

i,j }1≤i,j≤n,r>0 subject just to the relations

[T (r)
i,j , T

(s)
h,k] =

min(r,s)−1∑
t=0

(
T

(r+s−1−t)
i,k T

(t)
h,j − T

(t)
i,k T

(r+s−1−t)
h,j

)
(3.1)

for every 1 ≤ h, i, j, k ≤ n and r, s > 0, where T (0)
i,j := δi,j . Let Ti,j(u) :=

∑
r≥0 T

(r)
i,j u

−r

and let T (u) denote the n×n matrix (Ti,j(u))1≤i,j≤n. Given a shape ν = (ν1, . . . , νm),
consider the Gauss factorization T (u) = F (u)D(u)E(u) where D(u) is a block diagonal
matrix, E(u) is a block upper unitriangular matrix and F (u) is a block lower unitrian-
gular matrices, all block matrices being of shape ν like before. We will from now omit
any extra superscript ν since it should be clear from the context which shape ν we have
in mind. The diagonal blocks of D(u) define matrices D1(u), . . . , Dm(u), the upper
diagonal blocks of E(u) define matrices E1(u), . . . , Em−1(u), and the lower diagonal
blocks of F (u) define matrices F1(u), . . . , Fm−1(u). Thus Da(u) = (Da;i,j(u))1≤i,j≤νa
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is a νa × νa matrix, Ea(u) = (Ea;i,j(u))1≤i≤νa,1≤j≤νa+1 is a νa × νa+1 matrix, and
Fa(u) = (Fa;i,j(u))1≤i≤νa+1,1≤j≤νa is a νa+1 × νa matrix. Write

Da;i,j(u) =
∑
r≥0

D
(r)
a;i,ju

−r, Ea;i,j(u) =
∑
r>0

E
(r)
a;i,ju

−r, Fa;i,j(u) =
∑
r>0

F
(r)
a;i,ju

−r,

thus defining elements D(r)
a;i,j , E

(r)
a;i,j and F (r)

a;i,j of Yn, all dependent of course on the fixed
choice of ν. Now [BK1, Theorem A] shows that the elements

{D(r)
a;i,j}1≤a≤m,1≤i,j≤νa,r>0,

{E(r)
a;i,j}1≤a<m,1≤i≤νa,1≤j≤νa+1,r>0,

{F (r)
a;i,j}1≤a<m,1≤i≤νa+1,1≤j≤νa,r>0

generate Yn subject only to the relations (3.3)–(3.14) below (taking the shift matrix
there to be the zero matrix). For example, the presentation for Yn from §2 is the special
case ν = (1n), in which case we denote D(r)

i;1,1, E
(r)
i;1,1 and F (r)

i;1,1 simply by D(r)
i , E

(r)
i and

F
(r)
i respectively, while the RTT presentation from (3.1) is the special case ν = (n), in

which case D(r)
1;i,j = T

(r)
i,j .

We are going to adapt these parabolic presentations to the shifted Yangian Yn(σ).
Return to the setup of §2, assuming that σ = (si,j)1≤i,j≤n is a fixed shift matrix
with associated differences δ = (d1, . . . , dn−1). Suppose in addition that the shape
ν = (ν1, . . . , νm) is admissible for σ, meaning that di = 0 for all ν1 + · · ·+ νa−1 < i <
ν1 + · · ·+ νa and a = 1, . . . ,m. We will adopt the shorthand

sa,b(ν) := sν1+···+νa,ν1+···+νb
. (3.2)

The shifts (si,j)1≤i,j≤n can be recovered from the “relative” shifts (sa,b(ν))1≤a,b≤m given
the admissible shape ν.

Define a new algebra νYn(σ) over C, which will shortly be identified with Yn(σ) from
§2, by generators

{D(r)
a;i,j}1≤a≤m,1≤i,j≤νa,r>0,

{E(r)
a;i,j}1≤a<m,1≤i≤νa,1≤j≤νa+1,r>sa,a+1(ν),

{F (r)
a;i,j}1≤a<m,1≤i≤νa+1,1≤j≤νa,r>sa+1,a(ν)

subject to certain relations. To write down these relations, we must introduce some
further notation. Let D(0)

a;i,j := δi,j , Da;i,j(u) :=
∑

r≥0D
(r)
a;i,ju

−r and introduce the
matrix Da(u) := (Da;i,j(u))1≤i,j≤νa . Let D̃a(u) = (D̃a;i,j(u))1≤i,j≤νa denote the ma-
trix −Da(u)−1, and write D̃a;i,j(u) =

∑
r≥0 D̃

(r)
a;i,ju

−r, thus defining elements D̃(r)
a;i,j of

νYn(σ) for each a = 1, . . . ,m, 1 ≤ i, j ≤ νa and r ≥ 0. In particular, D̃(0)
a;i,j = −δi,j and
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D̃
(1)
a;i,j = D

(1)
a;i,j . Now the relations are:

[D(r)
a;i,j , D

(s)
b;h,k] = δa,b

min(r,s)−1∑
t=0

(
D

(r+s−1−t)
a;i,k D

(t)
a;h,j −D

(t)
a;i,kD

(r+s−1−t)
a;h,j

)
, (3.3)

[E(r)
a;i,j , F

(s)
b;h,k] = δa,b

r+s−1∑
t=0

D̃
(r+s−1−t)
a;i,k D

(t)
a+1;h,j , (3.4)

[D(r)
a;i,j , E

(s)
b;h,k] = δa,b

r−1∑
t=0

νa∑
g=1

D
(t)
a;i,gE

(r+s−1−t)
a;g,k δh,j − δa,b+1

r−1∑
t=0

D
(t)
b+1;i,kE

(r+s−1−t)
b;h,j , (3.5)

[D(r)
a;i,j , F

(s)
b;h,k] = δa,b+1

r−1∑
t=0

F
(r+s−1−t)
b;i,k D

(t)
b+1;h,j − δa,bδi,k

r−1∑
t=0

νa∑
g=1

F
(r+s−1−t)
a;h,g D

(t)
a;g,j , (3.6)

[E(r)
a;i,j , E

(s)
a;h,k] =

s−1∑
t=sa,a+1(ν)+1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j −

r−1∑
t=sa,a+1(ν)+1

E
(t)
a;i,kE

(r+s−1−t)
a;h,j , (3.7)

[F (r)
a;i,j , F

(s)
a;h,k] =

r−1∑
t=sa+1,a(ν)+1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j −

s−1∑
t=sa+1,a(ν)+1

F
(r+s−1−t)
a;i,k F

(t)
a;h,j , (3.8)

[E(r)
a;i,j , E

(s+1)
a+1;h,k]− [E(r+1)

a;i,j , E
(s)
a+1;h,k] = −

νa+1∑
g=1

E
(r)
a;i,gE

(s)
a+1;g,kδh,j , (3.9)

[F (r+1)
a;i,j , F

(s)
a+1;h,k]− [F (r)

a;i,j , F
(s+1)
a+1;h,k] = −δi,k

νa+1∑
g=1

F
(s)
a+1;h,gF

(r)
a;g,j , (3.10)

[E(r)
a;i,j , E

(s)
b;h,k] = 0 if b > a+ 1 or if b = a+ 1 and h 6= j, (3.11)

[F (r)
a;i,j , F

(s)
b;h,k] = 0 if b > a+ 1 or if b = a+ 1 and i 6= k, (3.12)

[E(r)
a;i,j , [E

(s)
a;h,k, E

(t)
b;f,g]] + [E(s)

a;i,j , [E
(r)
a;h,k, E

(t)
b;f,g]] = 0 if |a− b| = 1, (3.13)

[F (r)
a;i,j , [F

(s)
a;h,k, F

(t)
b;f,g]] + [F (s)

a;i,j , [F
(r)
a;h,k, F

(t)
b;f,g]] = 0 if |a− b| = 1, (3.14)

for all admissible a, b, f, g, h, i, j, k, r, s, t.
Observe right away that there is a canonical homomorphism νYn(σ)→ Yn mapping

the generators D(r)
a;i,j , E

(r)
a;i,j and F

(r)
a;i,j of νYn(σ) to the elements of Yn with the same

names (the ones we defined above in terms of Gauss factorizations). We are going to
prove that this canonical homomorphism is injective and that its image is independent
of the particular choice of the admissible shape ν. In particular this will identify νYn(σ)
with the algebra Yn(σ) from §2, since that is the special case ν = (1n) of the present
definition.

The proof that the canonical map νYn(σ) → Yn is injective is an extension of the
proof given in §2. For 1 ≤ a < b ≤ m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νb and r > sa,b(ν), we define
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elements E(r)
a,b;i,j inductively by

E
(r)
a,a+1;i,j := E

(r)
a;i,j , E

(r)
a,b;i,j := [E(r−sb−1,b(ν))

a,b−1;i,k , E
(sb−1,b(ν)+1)
b−1;k,j ] (3.15)

where 1 ≤ k ≤ νb−1. By the relations this definition is independent of the choice of
k; see for instance [BK1, (6.9)] for a similar argument. Similarly for 1 ≤ a < b ≤ m,
1 ≤ i ≤ νb, 1 ≤ j ≤ νa and r > sb,a(ν), we define elements F (r)

a,b;i,j by

F
(r)
a,a+1;i,j := F

(r)
a;i,j , F

(r)
a,b;i,j := [F (sb,b−1(ν)+1)

b−1;i,k , F
(r−sb,b−1(ν))
a,b−1;k,j ] (3.16)

where 1 ≤ k ≤ νb−1. Also let Yν denote the subalgebra of νYn(σ) generated by
the D(r)

a;i,j ’s, let Y +
ν (σ) denote the subalgebra generated by the E(r)

a;i,j ’s and let Y −ν (σ)

denote the subalgebra generated by the elements F (r)
a;i,j ’s, for all admissible a, i, j, r.

The following theorem generalizes Theorem 2.3.

Theorem 3.2. (i) The monomials in the elements {D(r)
a;i,j}a=1,...,m,1≤i,j≤νa,r>0

taken in some fixed order form a basis for Yν .
(ii) The monomials in the elements {E(r)

a,b;i,j}1≤a<b≤m,1≤i≤νa,1≤j≤νb,r>sa,b(ν) taken
in some fixed order form a basis for Y +

ν (σ).
(iii) The monomials in the elements {F (r)

a,b;i,j}1≤a<b≤m,1≤i≤νb,1≤j≤νa,r>sb,a(ν) taken
in some fixed order form a basis for Y −ν (σ).

(iv) The monomials in the union of the elements listed in (i)–(iii) taken in some
fixed order form a basis for νYn(σ).

Proof. Introduce the loop filtration L0
νYn(σ) ⊆ L1

νYn(σ) ⊆ · · · of νYn(σ) by declaring
that the generators D(r)

a;i,j , E
(r)
a;i,j and F

(r)
a;i,j are all of degree (r − 1). Define elements

{ei,j;r}1≤i,j≤n,r≥si,j of the associated graded algebra grL νYn(σ) from the equations

grL
r D

(r+1)
a;i,j = eν1+···+νa−1+i,ν1+···+νa−1+j;r, (3.17)

grL
r E

(r+1)
a,b;i,j = eν1+···+νa−1+i,ν1+···+νb−1+j;r, (3.18)

grL
r F

(r+1)
a,b;i,j = eν1+···+νb−1+i,ν1+···+νa−1+j;r. (3.19)

Following the proof of [BK1, Lemma 6.6], one checks that these elements satisfy
the relations (2.21). Hence, there is a well-defined surjective homomorphism π :
U(gln[t](σ)) � grL νYn(σ) mapping ei,jtr ∈ U(gln[t](σ)) to ei,j;r ∈ grL νYn(σ).

In the special case σ = 0, when we already know that νYn(σ) is the usual Yangian
Yn, one checks using Lemma 3.1 and induction on the length m of the shape ν that the
element ei,j;r defined here is equal to grL

r T
(r+1)
i,j . In particular ei,j;r coincides with the

element of grL
r Yn defined by (2.20). Hence like in the proof of Theorem 2.1, the PBW

theorem for the usual Yangian implies that the ordered monomials in the elements
{ei,j;r}1≤i,j≤n,r≥0 are linearly independent in grL Yn, and π is an isomorphism.

In general, the canonical map νYn(σ) → Yn is a homomorphism of filtered al-
gebras, so induces a map grL νYn(σ) → grL Yn which maps ei,j;r ∈ grL νYn(σ) to
ei,j;r ∈ grL Yn. So the previous paragraph implies that the ordered monomials in
the elements {ei,j;r}1≤i,j≤n,r≥si,j are linearly independent in grL νYn(σ) too. Hence π
is an isomorphism in general.

The theorem now follows like Theorem 2.3. �
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The following two corollaries generalize Corollaries 2.2 and 2.4.

Corollary 3.3. The canonical map νYn(σ)→ Yn is injective.

Corollary 3.4. Multiplication Y −ν (σ) × Yν × Y +
ν (σ) → νYn(σ) is a vector space iso-

morphism.

So now for each admissible shape ν, we have defined a subalgebra νYn(σ) of Yn. It
remains to see that these subalgebras coincide for different ν. Suppose νb = α + β
for some 1 ≤ b ≤ m and α, β ≥ 1, and let µ = (ν1, . . . , νb−1, α, β, νb+1, . . . , νm). Then
it suffices to show that νYn(σ) = µYn(σ) as subalgebras of Yn. Using Lemma 3.1,
one checks that µYn(σ) ⊆ νYn(σ). Now the equality µYn(σ) = νYn(σ) follows easily
because we have already seen in the proof of Theorem 3.2 that their associated graded
algebras are equal in grL Yn. We have now proved that the relations (3.3)–(3.14) give
presentations for the shifted Yangian Yn(σ) = νYn(σ) for each admissible shape ν.

Remark 3.5. As a first application of these parabolic presentations, one can introduce
analogues of parabolic subalgebras of Yn(σ): for an admissible shape ν, define Y ]

ν (σ) :=
YνY

+
ν (σ) and Y [

ν (σ) := Y −ν (σ)Yν . By the relations, these are indeed subalgebras
of Yn(σ). Moreover, there are obvious surjective homomorphisms Y ]

ν (σ) � Yν and
Y [

ν (σ) � Yν with kernels generated by all E(r)
a;i,j and all F (r)

a;i,j respectively.

Remark 3.6. In this remark, we describe the maps τ and ι from (2.16)–(2.17) in
terms of the parabolic generators. The anti-isomorphism τ satisfies

τ(D(r)
a;i,j) = D

(r)
a;j,i, τ(E(r)

a;i,j) = F
(r)
a;j,i, τ(F (r)

a;i,j) = E
(r)
a;j,i; (3.20)

cf. [BK1, (6.6)–(6.8)]. Also, in the notation of (2.17) and working with a fixed admis-
sible shape ν (for both σ and σ̇), the isomorphism ι satisfies

ι(D(r)
a;i,j) = Ḋ

(r)
a;i,j , ι(E(r)

a;i,j) = Ė
(r−sa,a+1(ν)+ṡa,a+1(ν))
a;i,j ,

ι(F (r)
a;i,j) = Ḟ

(r−sa+1,a(ν)+ṡa+1,a(ν))
a;i,j . (3.21)

To see this, note by the relations (3.3)–(3.14) that these formulae certainly give a well-
defined isomorphism ι : Yn(σ)→ Yn(σ̇). Now use Lemma 3.1 to check inductively that
this is the same map as in (2.17).

Remark 3.7. Finally we wish to write down a formula for the central elements Cn(u)
from (2.22) in terms of the parabolic generators. For this, we need to define the
determinant of an n × n matrix A = (ai,j) with entries in a non-commutative ring.
There are at least two sensible ways to do this, namely,

rdetA =
∑

w∈Sn

sgn(π)a1,w1 · · · an,wn, (3.22)

cdetA =
∑

w∈Sn

sgn(π)aw1,1 · · · awn,n, (3.23)

according to whether one keeps monomials in “row order” or in “column order”. In
the case of the Yangian Yn itself, it is well known (see e.g. [BK1, Theorem 8.6]) that
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Cn(u) can be expressed in terms of the T (r)
i,j ’s as the quantum determinant

Cn(u) = rdet


T1,1(u− n+ 1) T1,2(u− n+ 1) · · · T1,n(u− n+ 1)

...
...

. . .
...

Tn−1,1(u− 1) Tn−1,2(u− 1) · · · Tn−1,n(u− 1)
Tn,1(u) Tn,2(u) · · · Tn,n(u)

 (3.24)

= cdet


T1,1(u) T1,2(u− 1) · · · T1,n(u− n+ 1)

...
...

. . .
...

Tn−1,1(u) Tn−1,2(u− 1) · · · Tn−1,n(u− n+ 1)
Tn,1(u) Tn,2(u− 1) · · · Tn,n(u− n+ 1)

 . (3.25)

The following formula expressing Cn(u) in terms of parabolic generators of Yn(σ) for
an arbitrary admissible shape ν = (ν1, . . . , νm) is an immediate consequence:

Cn(u) = C1;ν1(u)C2;ν2(u− ν1) · · ·Cm,νm(u− ν1 − · · · − νm−1) (3.26)

where

Ca;νa(u) = rdet

 Da;1,1(u− νa + 1) · · · Da;1,νa(u− νa + 1)
...

. . .
...

Da;νa,1(u) · · · Da;νa,νa(u)

 (3.27)

= cdet

 Da;1,1(u) · · · Da;1,νa(u− νa + 1)
...

. . .
...

Da;νa,1(u) · · · Da;νa,νa(u− νa + 1)

 (3.28)

for each a = 1, . . . ,m.

4. Baby comultiplications

Now let us explain the real reason why the parabolic presentations of Yn(σ) from
§3 are so important. Fix a shift matrix σ = (si,j)1≤i,j≤n with associated differences
δ = (d1, . . . , dn−1). Recall a shape ν = (ν1, . . . , νm) is admissible if di = 0 for all
ν1 + · · · + νa−1 < i < ν1 + · · · + νa and a = 1, . . . ,m. Throughout the section, ν will
denote the minimal admissible shape for σ, that is, the admissible shape of smallest
possible length m. For example if δ = (5, 5, 0, 1, 0, 0, 0, 4) then ν = (1, 1, 2, 4, 1). We
will always work in terms of the parabolic presentation defined relative to this fixed
shape ν. For example in the case of the Yangian Yn itself, this is the RTT presentation
from (3.1).

Consider first the special case that d1 = · · · = dn−1 = 0, i.e. the case when Yn(σ) is
the usual Yangian Yn. It is well known that Yn is a Hopf algebra, with comultiplication
∆ : Yn → Yn ⊗ Yn which may be defined in terms of the RTT presentation by the
equation

∆(T (r)
i,j ) =

r∑
s=0

n∑
k=1

T
(s)
i,k ⊗ T

(r−s)
k,j . (4.1)

There is also the evaluation homomorphism κ1 : Yn → U(gln) defined by

κ1(T
(r)
i,j ) =

{
ei,j if r = 1,
0 if r > 1. (4.2)
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Let ∆R := (id⊗κ1)◦∆ and ∆L := (κ1⊗ id)◦∆, thus defining algebra homomorphisms

∆R : Yn → Yn ⊗ U(gln), T
(r)
i,j 7→ T

(r)
i,j ⊗ 1 +

n∑
k=1

T
(r−1)
i,k ⊗ ek,j , (4.3)

∆L : Yn → U(gln)⊗ Yn, T
(r)
i,j 7→ 1⊗ T (r)

i,j +
n∑

k=1

ei,k ⊗ T
(r−1)
k,j . (4.4)

The following theorem defines analogous “baby comultiplications” for the shifted Yan-
gians in general.

Theorem 4.1. If d1 = · · · = dn−1 = 0 then let t = n; otherwise, let t be the smallest
positive integer such that dn−t 6= 0. For 1 ≤ i, j ≤ t, set ẽi,j := ei,j+δi,j(n−t) ∈ U(glt).

(i) If either t = n or sn−t,n−t+1 6= 0, define σ̇ = (ṡi,j)1≤i,j≤n from

ṡi,j =
{
si,j − 1 if i ≤ n− t < j,
si,j otherwise. (4.5)

Then, there is a unique algebra homomorphism ∆R : Yn(σ)→ Yn(σ̇)⊗ U(glt)
such that

D
(r)
a;i,j 7→ Ḋ

(r)
a;i,j ⊗ 1 + δa,m

t∑
k=1

Ḋ
(r−1)
a;i,k ⊗ ẽk,j ,

E
(r)
a;i,j 7→ Ė

(r)
a;i,j ⊗ 1 + δa,m−1

t∑
k=1

Ė
(r−1)
a;i,k ⊗ ẽk,j ,

F
(r)
a;i,j 7→ Ḟ

(r)
a;i,j ⊗ 1,

for all admissible a, i, j, r.
(ii) If either t = n or sn−t+1,n−t 6= 0, define σ̇ = (ṡi,j)1≤i,j≤n from

ṡi,j =
{
si,j − 1 if j ≤ n− t < i,
si,j otherwise. (4.6)

Then, there is a unique algebra homomorphism ∆L : Yn(σ) → U(glt)⊗ Yn(σ̇)
such that

D
(r)
a;i,j 7→ 1⊗ Ḋ(r)

a;i,j + δa,m

t∑
k=1

ẽi,k ⊗ Ḋ
(r−1)
a;k,j ,

E
(r)
a;i,j 7→ 1⊗ Ė(r)

a;i,j ,

F
(r)
a;i,j 7→ 1⊗ Ḟ (r)

a;i,j + δa,m−1

t∑
k=1

ẽi,k ⊗ Ḟ
(r−1)
a;k,j ,

for all admissible a, i, j, r.
(Recall we are working in terms of the parabolic presentation of shape ν, where ν =
(ν1, . . . , νm) is the minimal admissible shape for σ; this is also an admissible shape for
σ̇.)

Proof. Check the relations (3.3)–(3.14) (to check the relations (3.13) and (3.14) one
needs to use (3.7), (3.8) and (3.9), (3.10) several times). �
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The next lemma explains how to compute the baby comultiplications on the higher
root elements E(r)

a,b;i,j and F (r)
a,b;i,j , still working in terms of the minimal admissible shape

ν for σ.

Lemma 4.2. (i) Under the hypotheses of Theorem 4.1(i), we have for 1 ≤ a <
b− 1 < m and all admissible i, j, r that

∆R(E(r)
a,b;i,j) =

{
Ė

(r)
a,b;i,j ⊗ 1 if b < m,

[Ė(r−sm−1,m(ν))
a,m−1;i,h , Ė

(sm−1,m(ν)+1)
m−1;h,j ]⊗ 1 +

∑t
k=1 Ė

(r−1)
a,m;i,k ⊗ ẽk,j if b = m,

∆R(F (r)
a,b;i,j) = Ḟ

(r)
a,b;i,j ⊗ 1,

for any 1 ≤ h ≤ νm−1.
(ii) Under the hypotheses of Theorem 4.1(ii), we have for 1 ≤ a < b− 1 < m and

all admissible i, j, r that

∆L(E
(r)
a,b;i,j) = 1⊗ Ė(r)

a,b;i,j ,

∆L(F
(r)
a,b;i,j) =

{
1⊗ Ḟ (r)

a,b;i,j if b < m,

1⊗ [Ḟ (sm,m−1(ν)+1)
m−1;i,h , Ḟ

(r−sm,m−1(ν))
a,m−1;h,j ] +

∑t
k=1 ẽi,k ⊗ Ḟ

(r−1)
a,m;k,j if b = m,

for any 1 ≤ h ≤ νm−1.

Proof. Let us just explain how to compute ∆R(E(r)
a,m;i,j) for 1 ≤ a < m − 1, since all

the other cases are similar. By definition, E(r)
a,m;i,j = [E(r−sm−1,m(ν))

a,m−1;i,h , E
(sm−1,m(ν)+1)
m−1;h,j ] for

any 1 ≤ h ≤ νm−1. Clearly ∆R(E(r−sm−1,m(ν))
a,m−1;i,h ) = Ė

(r−sm−1,m(ν))
a,m−1;i,h ⊗ 1. Hence,

∆R(E(r)
a,m;i,j) =

[
Ė

(r−sm−1,m(ν))
a,m−1;i,h ⊗ 1, Ė(sm−1,m(ν)+1)

m−1;h,j ⊗ 1 +
t∑

k=1

Ė
(sm−1,m(ν))
m−1;h,k ⊗ ẽk,j

]

=
[
Ė

(r−sm−1,m(ν))
a,m−1;i,h , Ė

(sm−1,m(ν)+1)
m−1;h,j

]
⊗ 1 +

t∑
k=1

Ė
(r−1)
a,m;i,k ⊗ ẽk,j ,

as claimed. �

Remark 4.3. In the notation of Theorem 4.1, the maps ∆R and ∆L are injective.
One can see this as follows. Let ε : U(glt)→ C be the homomorphism with ε(ẽi,j) = 0
for 1 ≤ i, j ≤ t. By definition, Yn(σ) and Yn(σ̇) are subalgebras of the Yangian with
Yn(σ) ⊆ Yn(σ̇). Now the point is that the compositions (id ⊗̄ε) ◦∆R and (ε⊗̄ id) ◦∆L

coincide (when defined) with the natural embedding Yn(σ) ↪→ Yn(σ̇).

5. The canonical filtration

In this section, we introduce another important filtration of the shifted Yangian.
It is easiest to start with the Yangian Yn itself defined by the RTT presentation as
in §3. The canonical filtration F0Yn ⊆ F1Yn ⊆ · · · of Yn is defined by declaring that
the generators T (r)

i,j are all of degree r, i.e. FdYn is the span of all monomials in these
generators of total degree ≤ d. It is obvious from the relations (3.1) that the associated
graded algebra grYn is commutative.

Suppose instead that we are given a shape ν = (ν1, . . . , νm). Using the explicit defi-
nitions from [BK1, (6.1)–(6.4)], one checks that the parabolic generators D(r)

a;i,j , E
(r)
a,b;i,j
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and F
(r)
a,b;i,j of Yn are linear combinations of monomials in the T (s)

i,j of total degree r

and conversely, if we define D(r)
a;i,j , E

(r)
a,b;i,j and F

(r)
a,b;i,j all to be of degree r, each T

(s)
i,j

is a linear combination of monomials in these elements of total degree s. Hence FdYn

can also be described as the span of all monomials in the elements D(r)
a;i,j , E

(r)
a,b;i,j and

F
(r)
a,b;i,j of total degree ≤ d. For 1 ≤ a, b ≤ m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νb and r > 0, define

e
(r)
a,b;i,j :=


grr D

(r)
a;i,j if a = b,

grr E
(r)
a,b;i,j if a < b,

grr F
(r)
b,a;i,j if a > b,

(5.1)

all elements of grr Yn. Of course, this notation depends implicitly on the fixed shape
ν. The commutativity of grYn together with Theorem 3.2(iv) imply:

Theorem 5.1. For any shape ν = (ν1, . . . , νm), grYn is the free commutative algebra
on generators {e(r)a,b;i,j}1≤a,b≤m,1≤i≤νa,1≤j≤νb,r>0.

Now consider the shifted Yangian. So let σ = (si,j)1≤i,j≤n be a shift matrix as in
§2. Viewing Yn(σ) as a subalgebra of Yn, introduce the canonical filtration F0Yn(σ) ⊆
F1Yn(σ) ⊆ · · · of Yn(σ) by defining FdYn(σ) := Yn(σ) ∩ FdYn. Thus, the inclusion of
Yn(σ) into Yn is filtered and the induced map grYn(σ) → grYn is injective. Hence,
grYn(σ) is identified with a subalgebra of the commutative algebra grYn. The following
theorem describes this subalgebra explicitly.

Theorem 5.2. For an admissible shape ν = (ν1, . . . , νm), grYn(σ) is the subalgebra of
grYn generated by the elements {e(r)a,b;i,j}1≤a,b≤m,1≤i≤νa,1≤j≤νb,r>sa,b(ν).

Proof. Note in view of the relations (3.9)–(3.10) that the element e(r)a,b;i,j of grYn(σ) is
identified with the element of the same name in grYn. Given this the theorem follows
directly from Theorems 5.1 and 3.2(iv). �

Remark 5.3. Theorem 5.2 means that, given an admissible shape ν, we can define
the canonical filtration on Yn(σ) intrinsically simply by declaring that the elements
D

(r)
a;i,j , E

(r)
a,b;i,j and F

(r)
a,b;i,j of Yn(σ) are all of degree r, i.e. FdYn(σ) is the span of all

monomials in these elements of total degree ≤ d. In particular, this definition is
independent of the particular choice of admissible shape ν.

Remark 5.4. The comultiplication ∆ : Yn → Yn ⊗ Yn is a filtered map with respect
to the canonical filtration, as follows immediately from (4.1). Similarly, the baby
comultiplications ∆R : Yn(σ)→ Yn(σ̇)⊗U(glt) and ∆L : Yn(σ)→ U(glt)⊗ Yn(σ̇) from
Theorem 4.1 are filtered maps whenever they are defined, providing we extend the
canonical filtration of Yn(σ̇) to Yn(σ̇)⊗U(glt) and U(glt)⊗Yn(σ̇) by declaring that the
matrix units ei,j ∈ glt are of degree 1. This follows from Theorem 4.1 and Lemma 4.2.
The argument explained in Remark 4.3 shows moreover that the associated graded
maps gr∆R and gr ∆L are injective.

6. Truncation

Continue with a fixed shift matrix σ = (si,j)1≤i,j≤n with associated differences δ =
(d1, . . . , dn−1). Fix also an integer l ≥ d1 + · · ·+ dn−1 = s1,n + sn,1 (the “level”), and
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for i = 1, . . . , n let
pi := l − di − di+1 − · · · − dn−1, (6.1)

thus defining a tuple (p1, . . . , pn) of integers with 0 ≤ p1 ≤ · · · ≤ pn = l. If ν =
(ν1, . . . , νm) is an admissible shape, we will also use the shorthand

pa(ν) := pν1+···+νa (6.2)

for each a = 1, . . . ,m; cf. (3.2). (A better way to keep track of all this data will be
explained in the next section.)

The shifted Yangian of level l, denoted Yn,l(σ), is defined to be the quotient of
Yn(σ) by the two-sided ideal generated by the elements {D(r)

1 }r>p1 . Alternatively, in
terms of the parabolic presentation relative to an admissible shape ν = (ν1, . . . , νm),
Yn,l(σ) is the quotient of Yn(σ) by the two-sided ideal generated by the elements
{D(r)

1;i,j}1≤i,j≤ν1,r>p1 . The equivalence of all these definitions is easy to see sinceD(r)
1;1,1 =

D
(r)
1 and all other D(r)

1;i,j for r > p1 and 1 ≤ i, j ≤ ν1 obviously lie in the two-sided

ideal generated by {D(r)
1;1,1}r>p1 in view of the relation (3.3). For example, in the case

that σ is the zero matrix, when we denote Yn,l(σ) simply by Yn,l, this algebra is the
quotient of Yn by the two-sided ideal generated by {T (r)

i,j | 1 ≤ i, j ≤ n, r > l}, which
is precisely the definition of the Yangian of level l from [C]. By convention, we also
write Y0,0 = Y0,0(σ) for the trivial algebra C.

In the hope that it is clear from context whether we are talking about Yn(σ) or
Yn,l(σ), we will abuse notation and use the same symbols D(r)

a;i,j , D̃
(r)
a;i,j , E

(r)
a,b;i,j and

F
(r)
a,b;i,j both for the generators of Yn(σ) and for their canonical images in the quotient

Yn,l(σ). Similarly we use the same notation C
(r)
n for the images in Yn,l(σ) of the

central elements of Yn(σ) from (2.22); clearly these are also central in Yn,l(σ). The anti-
isomorphism τ from (2.16) factors through the quotients to induce an anti-isomorphism

τ : Yn,l(σ)→ Yn,l(σt). (6.3)

Similarly, given another shift matrix σ̇ with the same differences as σ, the isomorphism
ι from (2.17) induces an isomorphism

ι : Yn,l(σ)→ Yn,l(σ̇). (6.4)

So the isomorphism type of the algebra Yn,l(σ) only depends on the tuple (p1, . . . , pn).
We will exploit the canonical filtration F0Yn,l(σ) ⊆ F1Yn,l(σ) ⊆ · · · of Yn,l(σ) in-

duced by the quotient map Yn(σ) � Yn,l(σ) and the canonical filtration of Yn(σ) from
§5. Recalling Remark 5.3, this may be defined directly given an admissible shape
ν = (ν1, . . . , νm) by declaring all the elements D(r)

a;i,j , E
(r)
a,b;i,j and F (r)

a,b;i,j of Yn,l(σ) to be
of degree r, and then FdYn,l(σ) is the span of all monomials in these elements of total
degree ≤ d. For 1 ≤ a, b ≤ m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νb and r > sa,b(ν), define elements
e
(r)
a,b;i,j of the associated graded algebra grYn,l(σ) by the formula (5.1). Since grYn,l(σ)

is a quotient of grYn(σ), Theorem 5.2 implies that it is commutative and is generated
by all {e(r)a,b;i,j}1≤a,b≤m,1≤i≤νa,1≤j≤νb,r>sa,b(ν).

Lemma 6.1. For any admissible shape ν = (ν1, . . . , νm), grYn,l(σ) is generated just
by the elements {e(r)a,b;i,j}1≤a,b≤m,1≤i≤νa,1≤j≤νb,sa,b(ν)<r≤sa,b(ν)+pmin(a,b)(ν).
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Proof. For 1 ≤ c ≤ m, let Ωc denote the set

{D(r)
a;i,j}1≤a≤c,1≤i,j≤νa,0<r≤pa(ν) ∪ {E

(r)
a,b;i,j}1≤a<b≤c,1≤i≤νa,1≤j≤νb,sa,b(ν)<r≤sa,b(ν)+pa(ν)

∪ {F (r)
a,b;i,j}1≤a<b≤c,1≤j≤νa,1≤i≤νb,sb,a(ν)<r≤sb,a(ν)+pa(ν),

and let Ω̂c denote

{D(r)
a;i,j}1≤a≤c,1≤i,j≤νa,r>0 ∪ {E(r)

a,b;i,j}1≤a<b≤c,1≤i≤νa,1≤j≤νb,r>sa,b(ν)

∪ {F (r)
a,b;i,j}1≤a<b≤c,1≤j≤νa,1≤i≤νb,r>sb,a(ν).

To prove the lemma, we show by induction on c = 1, . . . ,m that every element of Ω̂c of
degree r can be expressed as a linear combination of monomials in the elements of Ωc

of total degree r. The case c = 1 is clear, since D(r)
1;i,j = 0 for r > p1(ν) by definition.

Now take c > 1 and assume the result has been proved for all smaller c.
For 1 ≤ a < c− 1, we have by definition that E(r)

a,c;i,j = [E(r−sc−1,c(ν))
a,c−1;i,k , E

(sc−1,c(ν)+1)
c−1;k,j ]

for some 1 ≤ k ≤ νc−1. By induction, E(r−sc−1,c(ν))
a,c−1;i,k is a linear combination of mono-

mials in the elements of Ωc−1 of total degree (r − sc−1,c(ν)). By the relations, the
commutator of any such monomial with E(sc−1,c(ν)+1)

c−1;k,j is a linear combination of mono-

mials in the elements of Ωc of total degree r. Hence, E(r)
a,c;i,j is a linear combination of

monomials in the elements of Ωc of total degree r. Similarly, so is F (r)
a,c;i,j .

Next, we have by the relations that

E
(r)
c−1;i,j = [D(r−sc−1,c(ν))

c−1;i,i , E
(sc−1,c(ν)+1)
c−1;i,j ]−

r−sc−1,c(ν)−1∑
t=1

νc−1∑
h=1

D
(t)
c−1;i,hE

(r−t)
c−1;h,j . (6.5)

By induction, D(r−sc−1,c(ν))
c−1;i,i is a linear combination of monomials in the elements of

Ωc−1 of total degree (r − sc−1,c(ν)). Hence by the relations, the first term on the
right hand side of (6.5) is a linear combination of monomials in the elements of Ωc−1∪
{E(r)

a,c;i,j}1≤a<c,1≤i≤νa,1≤j≤νc,sa,c(ν)<r≤sa,c(ν)+pa(ν) of total degree r. Now using (6.5) and

induction on r, one deduces that each E(r)
c−1;i,j is a linear combination of monomials in

the elements of Ωc of total degree r. A similar argument using the relation

F
(r)
c−1;i,j = [F (sc,c−1(ν)+1)

c−1;i,j , D
(r−sc,c−1(ν))
c−1;j,j ]−

r−sc,c−1(ν)−1∑
t=1

νc−1∑
h=1

F
(r−t)
c−1;i,hD

(t)
c−1;h,j (6.6)

shows that each F (r)
c−1;i,j is a linear combination of monomials in the elements of Ωc of

total degree r, too.
Finally we must consider D(r)

c;i,j . Recall that pc(ν) = pc−1(ν) + sc−1,c(ν) + sc,c−1(ν).
By the relations, we have for 1 ≤ k ≤ νc−1 that

D
(r)
c;i,j =

r−1∑
t=0

D̃
(r−t)
c−1;k,kD

(t)
c;i,j − [E(r−sc,c−1(ν))

c−1;k,j , F
(sc,c−1(ν)+1)
c−1;i,k ]. (6.7)

By the previous paragraph, E(r−sc,c−1(ν))
c−1;k,j is a linear combination of monomials in the

elements from Ωc−1 ∪ {E(r)
a,c;i,j}1≤a<c,1≤i≤νa,1≤j≤νc,sa,c(ν)<r≤sa,c(ν)+pa(ν) of total degree
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(r− sc,c−1(ν)). Hence by the relations, the second term on the right hand side of (6.7)
is a linear combination of monomials in the elements of Ωc of total degree r. Now
using (6.7) and induction on r one deduces that each D

(r)
c;i,j is a linear combination of

monomials in the elements of Ωc of total degree r, to complete the induction step. �

Assume additionally for the next paragraph that the level l is > 0. If d1 = · · · =
dn−1 = 0, we let t := n; otherwise let t be the smallest positive integer such that dn−t 6=
0. If either t = n or sn−t,n−t+1 6= 0, it is easy to check that the baby comultiplication
∆R from Theorem 4.1(i) factors through the quotients to induce a map

∆R : Yn,l(σ)→ Yn,l−1(σ̇)⊗ U(glt), (6.8)

where σ̇ is as in (4.5). Similarly, if either t = n or sn−t+1,n−t 6= 0, the baby comulti-
plication ∆L from Theorem 4.1(ii) induces a map

∆L : Yn,l(σ)→ U(glt)⊗ Yn,l−1(σ̇), (6.9)

where σ̇ is as in (4.6). Recalling Remark 5.4, these maps ∆R and ∆L are filtered, so
induce homomorphisms

gr∆R : grYn,l(σ)→ gr(Yn,l−1(σ̇)⊗ U(glt)), (6.10)

gr∆L : grYn,l(σ)→ gr(U(glt)⊗ Yn,l−1(σ̇)) (6.11)

of graded algebras.

Theorem 6.2. For any admissible shape ν = (ν1, . . . , νm), grYn,l(σ) is the free com-
mutative algebra on generators {e(r)a,b;i,j}1≤a,b≤m,1≤i≤νa,1≤j≤νb,sa,b(ν)<r≤sa,b(ν)+pmin(a,b)(ν).

Moreover, the maps gr∆R and gr∆L from (6.10)–(6.11) are injective whenever they
are defined, hence so are the maps (6.8)–(6.9)

Proof. We proceed by induction on the level l, the case l = 0 being trivial. Now
suppose that l > 0 and that the first statement of the theorem has been proved for all
smaller l. In view of Lemma 6.1, it suffices to check the induction step in the special
case that ν = (ν1, . . . , νm) is the minimal admissible shape for σ. At least one of
the maps ∆R or ∆L is always defined. We will assume without loss of generality that
∆R is defined; the theorem in the other case can be deduced from this one using the
anti-isomorphism τ . Introduce the following elements of gr(Yn,l−1(σ̇)⊗ U(glt)):

ė
(r)
a,b;i,j :=


grr Ḋ

(r)
a;i,j ⊗ 1 if a = b,

grr Ė
(r)
a,b;i,j ⊗ 1 if a < b,

grr Ḟ
(r)
a,b;i,j ⊗ 1 if a > b.

Also let xi,j := gr1 1 ⊗ ei,j for 1 ≤ i, j ≤ t. By Theorem 4.1(i), Lemma 4.2(i) and
Lemma 6.1, there exist polynomials f (r)

a;i,j in all the variables ė(r)a,b;i,j such that gr∆R

maps

e
(r)
a,b;i,j 7→ ė

(r)
a,b;i,j (6.12)
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for 1 ≤ a ≤ m, 1 ≤ b < m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νb and sa,b(ν) < r ≤ sa,b(ν)+pmin(a,b)(ν),
and

e
(r)
a,m;i,j 7→

t∑
k=1

ė
(r−1)
a,m;i,kxk,j + f

(r)
a;i,j (6.13)

for 1 ≤ a ≤ m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νm and sa,m(ν) < r ≤ sa,m(ν) + pa(ν), where
ė
(0)
m,m;i,j := δi,j . By the induction hypothesis and the PBW theorem for U(glt), the

elements

{xi,j}1≤i,j≤t,

{ė(r)a,b;i,j}1≤a≤m,1≤b<m,1≤i≤νa,1≤j≤νb,sa,b(ν)<r≤sa,b(ν)+pmin(a,b)(ν),

{ė(r)a,m;i,j}1≤a≤m,1≤i≤νa,1≤j≤νm,sa,m(ν)+δa,m−1<r≤sa,m(ν)+pa(ν)−1

and are algebraically independent in gr(Yn,l−1(σ̇) ⊗ U(glt)). Using this and (6.12)–
(6.13), one verifies explicitly that the images of the generators

{e(r)a,b;i,j}1≤a,b≤m,1≤i≤νa,1≤j≤νb,sa,b(ν)<r≤sa,b(ν)+pmin(a,b)(ν)

of grYn,l(σ) from Lemma 6.1 under the map gr∆R are algebraically independent in
grYn,l−1(σ̇) ⊗ U(glt). Hence gr∆R is injective and these generators must already be
algebraically independent in grYn,l(σ). This completes the proof of the induction
step. �

Corollary 6.3. For any admissible shape ν = (ν1, . . . , νm), the monomials in the
elements

{D(r)
a;i,j}1≤a≤m,1≤i,j≤νa,0<r≤pa(ν),

{E(r)
a,b;i,j}1≤a<b≤m,1≤i≤νa,1≤j≤νb,sa,b(ν)<r≤sa,b(ν)+pa(ν),

{F (r)
a,b;i,j}1≤a<b≤m,1≤j≤νa,1≤i≤νb,sb,a(ν)<r≤sb,a(ν)+pa(ν)

taken in any fixed order form a basis for Yn,l(σ).

Remark 6.4. Obviously by their definition there is an inverse system

Yn,l(σ) � Yn,l+1(σ) � Yn,l+2(σ) � · · ·
Moreover, the maps are homomorphisms of filtered algebras with respect to the canon-
ical filtrations. Comparing the basis theorems proved in Corollary 6.3 and Theo-
rem 3.2(iv), it follows that Yn(σ) = lim←−Yn,l(σ) where the inverse limit is taken in the
category of filtered algebras. Hence we can view the shifted Yangian Yn(σ) as the
limiting case l→∞ of the shifted Yangians Yn,l(σ) of level l.

Remark 6.5. Corollary 6.3 implies in particular that the Yangian Yn,1 of level 1 may
be identified with the universal enveloping algebra U(gln) so that, for 1 ≤ i, j ≤ n,
T

(1)
i,j ∈ Yn,1 is identified with the matrix unit ei,j ∈ gln and T

(r)
i,j = 0 for r > 1.

Using (3.24)–(3.25), it is easy to describe the power series Cn(u) =
∑

r≥0C
(r)
n u−r ∈

Yn,1[[u−1]] explicitly under this identification; see also [MNO, Remark 2.11]: we have
that

u(u− 1) · · · (u− n+ 1)Cn(u) = Zn(u) (6.14)
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where

Zn(u) = rdet


e1,1 + u− n+ 1 · · · e1,n−1 e1,n

...
. . .

...
...

en−1,1 · · · en−1,n−1 + u− 1 en−1,n

en,1 · · · en,n−1 en,n + u

 (6.15)

= cdet


e1,1 + u e1,2 · · · e1,n

e2,1 e2,2 + u− 1 · · · e2,n
...

...
. . .

...
en,1 en,2 · · · en,n + u− n+ 1

 . (6.16)

This proves the well known fact that the coefficients Z(1)
n , . . . , Z

(n)
n of the series Zn(u) =∑n

r=0 Z
(r)
n un−r ∈ U(gln)[u] belong to Z(U(gln)); see also [CL, §2.2] where this is de-

duced from the classical Capelli identity or [HU, Appendix A.1] for a self-contained
proof. By considering the images of Z(1)

n , . . . , Z
(n)
n under the Harish-Chandra homo-

morphism, one shows moreover that Z(1)
n , . . . , Z

(n)
n are algebraically independent and

generate all of Z(U(gln)).

Remark 6.6. If p1 = 0, i.e. the level l is equal to the total difference d1 + · · ·+ dn−1,
then we can make n smaller as follows. Let ν = (ν1, . . . , νm) be an admissible shape for
σ. Define σ̇ to be the (n−ν1)×(n−ν1) shift matrix (si,j)ν1<i,j≤n. Note ν̇ := (ν2, . . . , νm)
is an admissible shape for σ̇. We claim that there is an isomorphism

Yn,l(σ) ∼−→ Yn−ν1,l(σ̇) (6.17)

mapping D(r)
1;i,j , E

(r)
1,b;i,j and F (r)

1,b;i,j to zero for 1 < b ≤ m, D(r)
a;i,j to Ḋ(r)

a−1;i,j for 1 < a ≤
m, and E(r)

a,b;i,j , F
(r)
a,b;i,j to Ė(r)

a−1,b−1;i,j , Ḟ
(r)
a−1,b−1;i,j respectively for 1 < a < b ≤ m. Here,

we are working in terms of parabolic generators with respect to the shape ν in Yn,l(σ)
and the shape ν̇ in Yn−ν1,l(σ̇). In particular, taking ν to be the minimal admissible
shape, this isomorphism allows us always to reduce to the situation that either n = 0
or p1 > 0. Note also using (3.26) that the map (6.17) sends the generating function
Cn(u) ∈ Yn,l(σ)[[u−1]] to Ċn−ν1(u− ν1) ∈ Yn−ν1,l(σ̇)[[u−1]].

To prove the claim, it is easier to construct the inverse map. Note first using the
relations (6.5)–(6.6) that D(r)

1;i,j = E
(r)
1,b;i,j = F

(r)
1,b;i,j = 0 in Yn,l(σ) for 1 < b ≤ m and

all admissible i, j, r. Hence by the relation (6.7) we have that D(r)
2;i,j = 0 for r > p2(ν)

and all i, j. Now there is obviously a homomorphism Yn−ν1(σ̇) → Yn(σ) such that
Ḋ

(r)
a;i,j 7→ D

(r)
a+1;i,j , Ė

(r)
a,b;i,j 7→ E

(r)
a+1,b+1;i,j and Ḟ (r)

a,b;i,j 7→ F
(r)
a+1,b+1;i,j . This factors through

the quotients to induce the desired map Yn−ν1,l(σ̇) → Yn,l(σ). Finally this map is an
isomorphism by Corollary 6.3.

7. Pyramids

In this section we introduce the combinatorics of pyramids. (In the more general
language of [EK, §4] the things we call pyramids here should be called even pyramids.)
Suppose to start with that we are given a tuple (q1, q2, . . . , ql) of positive integers for
some l ≥ 0. We associate a diagram π consisting of q1 bricks stacked in the first
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(leftmost) column, q2 bricks stacked in the second column, . . . , ql bricks stacked in the
lth (rightmost) column. For instance if l = 4 and (q1, q2, q3, q4) = (4, 2, 3, 3), then

4
3
2
1

6
5

9
8
7

12
11
10

π =

Call π a pyramid of level l and height max(q1, . . . , ql) if each row of the diagram consists
of a single connected horizontal strip. Equivalently, π is a pyramid if the sequence
(q1, q2, . . . , ql) of column heights is a unimodal sequence, i.e.

0 < q1 ≤ · · · ≤ qk, qk+1 ≥ · · · ≥ ql > 0 (7.1)

for some 0 ≤ k ≤ l. Of course, the above diagram is not a pyramid, since there is a
gap between the entries 2 and 7.

Given a diagram π (not necessarily a pyramid), we pick an integer n ≥ max(q1, . . . , ql)
and number the rows of the diagram 1, 2, . . . , n from top to bottom. Let pi denote the
number of bricks in the ith row, thus defining the tuple (p1, . . . , pn) of row lengths with

0 ≤ p1 ≤ · · · ≤ pn = l. (7.2)

Usually we have in mind that n should exactly equal max(q1, . . . , ql), so that either
n = 0 or p1 > 0, but it is sometimes useful to allow n to be larger (cf. Remark 6.6).
Fix also some numbering of the bricks of the diagram by 1, 2, . . . , N . Usually we have
in mind the numbering down columns from left to right as in the above example but
any bijective numbering will do. For i = 1, . . . , N , let row(i) and col(i) denote the row
and column numbers of the brick in which i appears, respectively.

Now let g denote the Lie algebra glN over C and introduce a Z-grading g =
⊕

j∈Z gj

of g by declaring that the ij-matrix unit ei,j is of degree (col(j)− col(i)). Let

p :=
⊕
j≥0

gj , h := g0, m :=
⊕
j<0

gj . (7.3)

Thus p is a parabolic subalgebra of g with Levi factor h ∼= glq1
⊕ · · · ⊕ glql

, and m is
the nilradical of the opposite parabolic to p with respect to h. Let P,H and M be the
corresponding closed subgroups of the algebraic group G := GLN over C. Also let

e :=
∑

1≤i,j≤N
row(i)=row(j)
col(i)=col(j)−1

ei,j . (7.4)

By a dimension calculation, one checks that e belongs to the unique dense orbit of
H on g1, regardless of whether the diagram π is a pyramid or not. Moreover, the
Jordan block sizes of the matrix e are precisely the lengths of the maximal connected
horizontal strips in the diagram π, hence e is of Jordan type (p1, . . . , pn) if and only if
the diagram π is a pyramid.

Now recall from [Ca, §5.2] that an element e of the nilradical of p is called a Richard-
son element for p if its orbit under the adjoint action of P is dense in the nilradical of
p; equivalently,

dim cg(e) = dim h. (7.5)
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By another dimension calculation (as observed originally by Kraft [Kr]) the Jordan
type of a Richardson element for p is given by the row lengths (p1, . . . , pn) of the
diagram π, again regardless of whether π is a pyramid or not. We say that p is a good
parabolic if g1 contains a Richardson element for p. Such an element e then clearly
belongs both to the dense orbit of P on the nilradical of p and to the dense orbit of H
on g1. Hence up to conjugacy, we may assume that e given by (7.4). Since its Jordan
type must also be (p1, . . . , pn), we obtain the following special case of [L, Lemma 7.2]:

Theorem 7.1. p is a good parabolic if and only if the diagram π is a pyramid.

Remark 7.2. In view of [EK, Theorem 2.1], this theorem implies that there is a
bijective map from pyramids to conjugacy classes of even good gradings of g = glN , as
defined in the introduction. The map sends a pyramid π to twice the grading defined
here, which is an even good grading for the nilpotent matrix e defined by (7.4).

To make the connection with the earlier sections, we point out that pyramids provide
an extremely convenient way to visualize the data needed to define the shifted Yangian
Yn,l(σ) of level l. Indeed, given a shift matrix σ = (si,j)1≤i,j≤n and a level l ≥ s1,n+sn,1,
we let δ = (d1, . . . , dn−1) be the associated differences and define (p1, . . . , pn) from
pi := l− di − · · · − dn−1 like in (6.1). Now draw a pyramid π with pi bricks on the ith
row indented sn,i columns from the left hand edge for each i = 1, . . . , n. Conversely,
given a pyramid π of height ≤ n, define a shift matrix σ = (si,j)1≤i,j≤n from the
equation

si,j =
{

#{c = 1, . . . , k | i > n− qc ≥ j} if i ≥ j,
#{c = k + 1, . . . , l | i ≤ n− qc < j} if i ≤ j, (7.6)

where (q1, . . . , ql) are the column heights and k is chosen as in (7.1). This definition
is independent of the choice of k only if the pyramid π is of height exactly n, in which
case si,j is simply the number of bricks the ith row is indented from the jth row at
the left edge of the diagram if i ≥ j, at the right edge of the diagram if i ≤ j. For
example,

l = 7, σ =


0 1 1 3
0 0 0 2
1 1 0 2
2 2 1 0

 ←→ n = 4, π =

Now we have a convenient notation to record the explicit description of the centralizer
cg(e) of the nilpotent element e associated to a pyramid π; see [SS, IV.1.6].

Lemma 7.3. Let π be a pyramid of height ≤ n with row lengths (p1, . . . , pn) and
associated shift matrix σ = (si,j)1≤i,j≤n, and let e be the nilpotent matrix defined by
(7.4). For 1 ≤ i, j ≤ n and r ≥ 0, let

c
(r)
i,j :=

∑
1≤h,k≤N

row(h)=i,row(k)=j
col(k)−col(h)+1=r

eh,k.

Then, the vectors {c(r)i,j }1≤i,j≤n,si,j<r≤si,j+pmin(i,j)
give a basis for cg(e).



SHIFTED YANGIANS AND FINITE W -ALGEBRAS 25

8. Finite W -algebras

Continue with g = glN and G = GLN acting on g by the adjoint action Ad. Fixing
a pyramid π with bricks numbered 1, . . . , N , we have the associated Z-grading on g
defined as in §7 so that ei,j is of degree (col(j) − col(i)). Also define p, h, m and
the nilpotent matrix e ∈ g1 according to (7.3)–(7.4). Define h ∈ g0 and f ∈ g−1 to
be the unique matrices so that (e, h, f) is an sl2-triple in g. Let m⊥ and p⊥ denote
the orthogonal complements of m and p with respect to the trace form (., .) on g,
respectively, i.e. m⊥ =

⊕
j≤0 gj and p⊥ =

⊕
j>0 gj .

Lemma 8.1. In the above notation,
(i) m⊥ = [m, e]⊕ cg(f);
(ii) p = [p⊥, f ]⊕ cg(e);
(iii) cg(f)⊥ = m⊕ [p⊥, f ].

Proof. Since e is a Richardson element for p, we know that dim cg(e) = dim h and
cg(e) ⊆ p. Hence the map m → [m, e], x 7→ [x, e] is a bijection. Similarly, dim cg(f) =
dim h and cg(f) ⊆ m⊥. Hence the map p⊥ → [p⊥, f ], y 7→ [y, f ] is a bijection. So

dim[m, e] + dim cg(f) = dim m + dim h = dim m⊥,

dim[p⊥, f ] + dim cg(e) = dim p⊥ + dim h = dim p.

Also by sl2 theory, [m, e] ∩ cg(f) = [p⊥, f ] ∩ cg(e) = 0. Parts (i) and (ii) follow. For
(iii), we have that

dim m + dim[p⊥, f ] = dim g− dim h = dim cg(f)⊥,

and clearly m ∩ [p⊥, f ] = 0, so we just have to check that m ⊆ cg(f)⊥ and that
[p⊥, f ] ⊆ cg(f)⊥. The former statement is true since cg(f) ⊆ m⊥. For the latter, note
for any x ∈ p⊥ and y ∈ cg(f) that ([x, f ], y) = (x, [f, y]) = 0 by the invariance of the
trace form. �

To recall the definition of the algebra W (π) from the introduction, let χ : m → C
denote the representation mapping x 7→ (x, e) for each x ∈ m. Let Iχ denote the kernel
of the corresponding algebra homomorphism U(m)→ C and prχ : U(g)→ U(p) be the
projection along the direct sum decomposition

U(g) = U(p)⊕ U(g)Iχ. (8.1)

For x ∈ m and y ∈ U(p), we set x · y := prχ([x, y]) = prχ(xy) − χ(x)y, to define
the twisted action of m on U(p). Then, the finite W -algebra W (π) associated to the
pyramid π denotes the space U(p)m of twisted m-invariants in U(p). Equivalently,

W (π) = {y ∈ U(p) | (x− χ(x))y ∈ U(g)Iχ for all x ∈ m}, (8.2)

from which it follows easily that W (π) is actually a subalgebra of U(p). For example,
in the special case that π consists of a single column, we obviously have that p = g,
m = 0 and e = 0, hence W (π) = U(glN ).

We need the Kazhdan filtration · · · ⊆ FdU(g) ⊆ Fd+1U(g) ⊆ · · · of U(g) defined by
declaring that the generator ei,j is of degree

deg(ei,j) := col(j)− col(i) + 1 (8.3)
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for each 1 ≤ i, j ≤ N , i.e. FdU(g) is spanned by all monomials ei1,j1 · · · eim,jm for m ≥ 0
and deg(ei1,j1) + · · · + deg(eim,jm) ≤ d. The adjoint action of g on U(g) is filtered in
the sense that [gj ,FdU(g)] ⊆ Fd+jU(g) for each j, d ∈ Z. Hence the associated graded
algebra grU(g) is naturally a graded g-module. Of course by the PBW theorem we can
identify grU(g) with the symmetric algebra S(g) with the usual g-action, but viewed
as a graded algebra via the Kazhdan grading also defined by (8.3).

There are induced Kazhdan filtrations of the subalgebras U(p) and W (π) defined
by setting FdU(p) := prχ(FdU(g)) and FdW (π) := W (π)∩FdU(p). This time we have
that FdU(p) = FdW (π) = 0 for all d < 0. The projection prχ : U(g)→ U(p) is filtered,
hence so is the twisted action of m on U(p), and gr prχ : grU(g)→ grU(p) is a graded
m-module homomorphism. If we identify grU(p) with S(p) graded via (8.3), then we
can describe the map gr prχ simply as the algebra homomorphism p : S(g) → S(p)
that acts as the identity on elements of p and sends x ∈ m to χ(x). This explains the
top left hand quadrant of the following commutative diagram:

grU(g) S(g) ∼−−−−→
α

C[g]

gr prχ

y p

y r

y
grU(p) S(p) ∼−−−−→

β
C[e+ m⊥] ←↩ C[e+ m⊥]M

gr i

x q

y s

y
grW (π) −−−−→

θ
S(cg(e))

∼−−−−→
γ

C[e+ cg(f)]

��↙∼

(8.4)

To make sense of the bottom left hand quadrant, let i : W (π)→ U(p) be the inclusion,
and let q : S(p) → S(cg(e)) be the algebra homomorphism induced by the projection
p → cg(e) along the direct sum decomposition from Lemma 8.1(ii). Note both [p⊥, f ]
and cg(e) are graded subspaces of g; in the latter case one way to see this is by
Lemma 7.3 since the basis element c(r)i,j there is clearly of degree r with respect to the
Kazhdan grading. Hence the map q is a graded map. Finally let θ : grW (π)→ S(cg(e))
be the composite q ◦ gr i.

Now we turn our attention to the right hand half of the diagram. Imitating [GG,
§2.1], let γ : C× → G be the group homomorphism defined by letting

γ(t) := diag(t− col(1), t− col(2), · · · , t− col(N)) ∈ GLN (8.5)

for each t ∈ C×. So Ad γ(t) acts on gj by the scalar tj for each t ∈ C× and j ∈ Z.
Introduce a linear action ρ of C× on the variety g by letting

ρ(t)(x) := t−1 Ad γ(t)(x) (8.6)

for each t ∈ C×, x ∈ g. Thus, ρ(t)(ei,j) = t− deg(ej,i)ei,j for each 1 ≤ i, j ≤ N . In
particular, ρ(t)(e) = e for every t ∈ C× and

lim
t→∞

ρ(t)(x) = 0 (8.7)

for all x ∈ m⊥. We get an induced action ρ̄ of C× on the coordinate algebra C[g] with

(ρ̄(t)(f))(x) = f(ρ(t−1)(x)) (8.8)

for each f ∈ C[g], x ∈ g. Using this, we define a grading on C[g] by declaring that
f ∈ C[g] is of degree j if ρ̄(t)(f) = tjf for each t ∈ C×. Since e is a ρ-fixed point, it is
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easy to see that each ρ(t) leaves both e+m⊥ and the Slodowy slice e+ cg(f) invariant.
So just like for C[g], we get induced actions ρ̄ of C× on the coordinate algebras C[e+m⊥]
and C[e + cg(f)] which we use to introduce a grading on these algebras. The natural
restriction maps r : C[g] � C[e+m⊥] and s : C[e+m⊥] � C[e+cg(f)] are ρ̄-equivariant,
hence are graded.

The trace form defines an isomorphism α : S(g)→ C[g] of graded algebras. It maps
the kernel of the homomorphism p : S(g)→ S(p) isomorphically onto the annihilator in
C[g] of the closed subvariety e+ m⊥. Hence α induces a graded algebra isomorphism
β : S(p) → C[e + m⊥]. Similarly by Lemma 8.1(ii),(iii), β maps the kernel of the
homomorphism q : S(p) → S(cg(e)) isomorphically onto the annihilator in C[e + m⊥]
of e+ cg(f), hence induces a graded algebra isomorphism γ : S(cg(e))→ C[e+ cg(f)].

To complete the picture, we need to introduce an action of the subgroup M of
G corresponding to the subalgebra m of g. The adjoint action of G on g induces
an action of G on C[g] by algebra automorphisms, such that the derived action of g
corresponds under the isomorphism α to the usual g-action on S(g). The subgroup M
of G leaves e+ m⊥ invariant, hence we get induced actions of M and m on C[e+ m⊥],
such that the action of m agrees under the isomorphism β with the twisted action of
m on S(p). In particular since S(p) is a graded m-module, it follows that the space
C[e + m⊥]m = C[e + m⊥]M of m-invariants/M -fixed points is a graded subalgebra of
C[e+m⊥]. One can see this directly by introducing an action ρ of C× on M × (e+m⊥)
defined by

ρ(t)(m,x) := (γ(t)mγ(t)−1, ρ(t)(x)) (8.9)
for all m ∈ M,x ∈ e + m⊥ and t ∈ C×. The following calculation checks that the
adjoint action ϕ : M × (e+ m⊥)→ e+ m⊥ is ρ-equivariant:

Ad(γ(t)mγ(t)−1)ρ(t)(x) = t−1 Ad γ(t) AdmAd γ(t)−1 Ad γ(t)(x)

= t−1 Ad γ(t) Adm(x) = ρ(t)(Adm(x)).

This now implies that the space of M -fixed points in C[e+m⊥] is invariant under each
ρ(t), hence is graded. Let us also note that

lim
t→∞

(γ(t)mγ(t)−1) = 1 (8.10)

for all m ∈M .
It just remains to prove that the composite of the inclusion C[e+m⊥]M ↪→ C[e+m⊥]

and the projection s : C[e+ m⊥] � C[e+ cg(f)] is an isomorphism. This follows from
the following key result, which is due originally to Kostant [K, Theorem 1.2], and
is proved in this generality in [L, Theorem 1.2] using Zariski’s Main Theorem. The
alternative argument sketched here is due to Gan and Ginzburg; see [GG, Lemma 2.1].

Theorem 8.2. The adjoint action ϕ : M × (e+ cg(f)) → e+ m⊥ is an isomorphism
of affine varieties.

Proof. We just verify the hypothesis needed to apply the general result from the proof
of [GG, Lemma 2.1]: An equivariant morphism ϕ : X1 → X2 of smooth affine C×-
varieties with contracting C×-actions which induces an isomorphism between the tan-
gent spaces at the C×-fixed points must be an isomorphism. We have already defined
actions ρ of C× on e + m⊥ (8.6) and on M × (e + cg(f)) (8.9) and checked that ϕ is
ρ-equivariant. By (8.7) and (8.10), we have that limt→∞ ρ(t)(m,x) = (1, e) for each
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(m,x) ∈ M × (e + cg(f)) and that limt→∞ ρ(t)(x) = e for each x ∈ e + m⊥. Hence
the C×-actions are both contracting. So finally we need to check that the differen-
tial dϕ(1,e) is an isomorphism between the tangent spaces T(1,e)(M × (e+ cg(f))) and
Te(e+ m⊥). But if we identify the tangent spaces with m⊕ cg(f) and m⊥ respectively,
then the differential is the map (x, y) 7→ [x, e] + y. Hence it is an isomorphism by
Lemma 8.1(i). �

The crucial thing that we can now read off from the diagram (8.4) is the following:

Corollary 8.3. The map θ : grW (π)→ S(cg(e)) is an injective graded algebra homo-
morphism.

Proof. Clearly gr i maps grW (π) injectively into the space of m-invariants in grU(p).
Hence, β ◦ gr i maps grW (π) into C[e+ m⊥]M . Hence s ◦ β ◦ gr i is injective. But this
is γ ◦ θ by the commmutativity of the diagram, hence θ is injective too. �

Remark 8.4. It is known by [L, Theorem 2.3] that the map θ is actually an iso-
morphism, hence grW (π) is isomorphic to the coordinate algebra C[e + cg(f)] of the
Slodowy slice as stated in the introduction. A quicker proof can also be given by fol-
lowing the arguments of [GG, §5]. However we do not need to use this fact yet, and
we will be able deduce it later on as a consequence of the main result of the article;
see Corollary 10.2.

Remark 8.5. The restriction of the map prχ : U(g) → U(p) to Z(U(g)) defines an
injective algebra homomorphism ψ : Z(U(g)) ↪→W (π) whose image is contained in the
center Z(W (π)). The fact that ψ is an algebra homomorphism with image contained
in Z(W (π)) is easiest to see using the definition of W (π) as the endomorphism algebra
EndU(g)(Qχ) given in the introduction, since in those terms ψ is just the representation
Z(U(g)) → EndC(Qχ) of Z(U(g)) on the module Qχ. The fact that ψ is injective is
proved in [P, 6.2] or [L, Proposition 2.6] by observing that the (injective) Harish-
Chandra homomorphism factors through the map ψ. In [BK2, §6] we show moreover
using some basic facts about the representation theory of W (π) (some of the proofs
of which depend on knowing the main result of the article below) that the image
of ψ is actually equal to Z(W (π)). Hence, ψ : Z(U(g)) → Z(W (π)) is actually an
isomorphism.

9. Invariants

In this section we define some remarkable elements of U(p), many of which will
eventually turn out to be m-invariant, i.e. to belong to the subalgebra W (π). Letting
(q1, . . . , ql) denote the column heights of our fixed pyramid π, pick an integer n ≥
max(q1, . . . , ql). Define ρ = (ρ1, . . . , ρN ) by setting

ρi := n− qcol(i) − qcol(i)+1 − · · · − ql. (9.1)

For 1 ≤ i, j ≤ N , define

ẽi,j := (−1)col(j)−col(i)(ei,j + δi,jρi), (9.2)

so
[ẽi,j , ẽh,k] = (ẽi,k − δi,kρi)δh,j − δi,k(ẽh,j − δh,jρj). (9.3)
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Let us also spell out the effect of the homorphism U(m)→ C induced by the character
χ: we have that

ẽi,j 7→
{
−1 if row(i) = row(j) and col(i) = col(j) + 1;
0 otherwise. (9.4)

For 1 ≤ i, j ≤ n and signs σ1, . . . , σn ∈ {±}, we let T (0)
i,j;σ1,...,σn

:= δi,jσi and for r ≥ 1
define

T
(r)
i,j;σ1,...,σn

:=
r∑

s=1

∑
i1,...,is
j1,...,js

σrow(i2) · · ·σrow(is)ẽi1,j1 · · · ẽis,js (9.5)

where the second sum is over all 1 ≤ i1, . . . , is, j1, . . . , js ≤ N such that
(1) deg(ei1,j1) + · · ·+ deg(eis,js) = r (recall (8.3));
(2) col(it) ≤ col(jt) for each t = 1, . . . , s;
(3) if σrow(jt) = + then col(jt) < col(it+1) for each t = 1, . . . , s− 1;
(4) if σrow(jt) = − then col(jt) ≥ col(it+1) for each t = 1, . . . , s− 1;
(5) row(i1) = i, row(js) = j;
(6) row(jt) = row(it+1) for each t = 1, . . . , s− 1.

Note the assumptions (1) and (2) imply that T (r)
i,j;σ1,...,σn

belongs to FrU(p). For x =

0, 1, . . . , n, let T (r)
i,j;x denote T (r)

i,j;σ1,...,σn
in the special case that σ1 = · · · = σx = −,

σx+1 = · · · = σn = +. Define

Ti,j;x(u) :=
∑
r≥0

T
(r)
i,j;xu

−r ∈ U(p)[[u−1]]. (9.6)

Since this is the most critical definition in the entire paper, let us give some simple
examples.

Example 9.1. For any 1 ≤ i, j ≤ n and x = 0, 1, . . . , n,

T
(1)
i,j;x =

∑
1≤h,k≤N

row(h)=i,row(k)=j
col(h)=col(k)

ẽh,k,

T
(2)
i,j;x =

∑
1≤h,k≤N

row(h)=i,row(k)=j
col(h)=col(k)−1

ẽh,k −
∑

1≤h1,h2,k1,k2≤N
row(h1)=i,row(k1)=row(h2)≤x,row(k2)=j

col(h1)=col(k1)≥col(h2)=col(k2),

ẽh1,k1 ẽh2,k2

+
∑

1≤h1,h2,k1,k2≤N
row(h1)=i,row(k1)=row(h2)>x,row(k2)=j

col(h1)=col(k1)<col(h2)=col(k2),

ẽh1,k1 ẽh2,k2 .

Lemma 9.2. Suppose 0 ≤ x < y ≤ n.
(i) If x < i ≤ y and y < j ≤ n then

Ti,j;x(u) =
y∑

k=x+1

Ti,k;x(u)Tk,j;y(u).
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(ii) If y < i ≤ n and x < j ≤ y then

Ti,j;x(u) =
y∑

k=x+1

Ti,k;y(u)Tk,j;x(u).

(iii) If y < i, j ≤ n then

Ti,j;x(u) = Ti,j;y(u) +
y∑

k,l=x+1

Ti,k;y(u)Tk,l;x(u)Tl,j;y(u).

(iv) If x < i, j ≤ y then
y∑

k=x+1

Ti,k;x(u)Tk,j;y(u) = −δi,j .

Proof. Let ξi,j := ẽi,ju
− deg(ei,j) for short.

(i) The right hand side of the formula in (i) is a sum of monomials of the form

±(ξi1,j1 · · · ξir,jr)(ξk1,l1 · · · ξks,ls), (9.7)

for various r ≥ 0, s ≥ 1, where ±ξi1,j1 · · · ξir,jr appears in Ti,k;x(u) and ±ξk1,l1 · · · ξks,ls

appears in Tk,j;y(u) for some x < k ≤ y. Let X be the sum of all such monomials for
which col(jr) < col(k1) if r > 0 and for which row(lt) /∈ {x+1, . . . , y} for all 1 ≤ t < s.
Let Y be the sum of all remaining monomials. Thus, the right hand side of the formula
in (i) is equal to X + Y . Now we proceed to show that X = Ti,j;x(u) and that Y = 0.

First consider X. Take a monomial of the form (9.7) appearing in X, so col(jr) <
col(k1) if r > 0 and row(lt) /∈ {x+1, . . . , y} for all 1 ≤ t < s. It is easy to see that this
monomial also appears in the expansion of Ti,j;x(u), with the same sign. Moreover,
the monomial (9.7) appears in X exactly once: otherwise we would be able to obtain
this monomial in the expansion of X in another way by splitting it either as

±(ξi1,j1 · · · ξir,jrξk1,l1 · · · ξkt,lt)(ξkt+1,lt+1 · · · ξks,ls)

for some 1 ≤ t < s so that, writing h = row(lt), ±ξi1,j1 · · · ξir,jrξk1,l1 · · · ξkt,lt appears
in Ti,h;x(u) and ±ξkt+1,lt+1 · · · ξks,ls appears in Th,j;y(u), or as

±(ξi1,j1 · · · ξiu−1,ju−1)(ξiu,ju · · · ξir,jrξk1,l1 · · · ξks,ls)

for some 1 ≤ u ≤ r so that, writing h = row(iu), ξi1,j1 · · · ξiu−1,ju−1 appears in Ti,h;x(u)
and ±ξiu,ju · · · ξir,jrξk1,l1 · · · ξks,ls appears in Th,j;y(u). The former case does not happen
since we have that h /∈ {x+ 1, . . . , y} by assumption. The latter case does not happen
since col(jr) < col(k1) contrary to the definition of the monomials arising in Th,j;y(u).
To complete the proof that X = Ti,j;x(u), we need to show that every monomial
±ξp1,q1 · · · ξpu,qu appearing in Ti,j;x(u) also appears in X. Take r ≥ 0 to be the maximal
index such that ±ξp1,q1 · · · ξpr,qr appears in Ti,k;x(u) for some x < k ≤ y; such an r
exists as for r = 0 the monomial 1 appears in Ti,i;x(u). It remains to observe that
col(qr) < col(pr+1) and that row(qt) /∈ {x + 1, . . . , y} for all r < t < u, for otherwise
r could be made bigger. In particular this means that ±ξpr+1,qr+1 · · · ξpu,qu appears in
Tk,j;y(u). Hence if we split our monomial as ±(ξp1,q1 · · · ξpr,qr)(ξpr+1,qr+1 · · · ξpu,qu), we
have something of the form (9.7) that appears in X.

Now consider Y . Take a monomial of the form (9.7) appearing in Y , i.e. either
r > 0 and col(jr) ≥ col(k1) or there is some 1 ≤ t < s such that x < row(lt) ≤ y. We
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show that this monomial appears exactly twice in the expansion of Y , with opposite
signs. There are two cases.

Suppose first that r > 0 and that col(jr) ≥ col(k1). Let t ≤ r be the maximal
index such that x < row(it) ≤ y; such a t exists since row(i1) = i and x < i ≤ y.
Let h := row(it). Then the monomial ±ξi1,j1 · · · ξit−1,jt−1 appears in Ti,h;x(u) and the
monomial ±ξit,jt · · · ξir,jrξk1,l1 · · · ξks,ls appears in Th,j;y(u). Moreover, using the facts
that col(jt−1) < col(it) if t > 1, col(jr) ≥ col(k1), and the maximality of the choice of
t, we see that

±(ξi1,j1 · · · ξir,jr)(ξk1,l1 · · · ξks,ls), ±(ξi1,j1 · · · ξit−1,jt−1)(ξit,jt , · · · , ξir,jrξk1,l1 · · · ξks,ls)

are the only ways to split the monomial (9.7) so the left hand term occurs in Ti,g;x(u)
and the right hand term appears in Tg,j;y(u) for some x < g ≤ y. It just remains to
check that the two have opposite signs.

Suppose instead that col(jr) < col(k1) if r > 0 and that x < row(lt) ≤ y for some
1 ≤ t < s. Choose the minimal such t and let h := row(lt). Then the monomial
±ξi1,j1 · · · ξir,jrξk1,l1 · · · ξkt,lt appears in Ti,h;x(u) and the monomial ±ξkt+1,lt+1 · · · ξks,ls

appears in Th,j;y(u). Moreover using the facts that col(jr) < col(k1) if r > 0, col(lt) ≥
col(kt+1), and the minimality of the choice of t, we have that

±(ξi1,j1 · · · ξir,jr)(ξk1,l1 · · · ξks,ls), ±(ξi1,j1 · · · ξir,jrξk1,l1 · · · ξkt,lt)(ξkt+1,lt+1 · · · ξks,ls)

are the only ways to split the monomial (9.7) so the first multiple occurs in Ti,g;x(u) and
the second multiple appears in Tg,j;y(u) for some x < g ≤ y. The two have opposite
signs.

(ii) Similar.
(iii) Using (ii), we can rewrite (iii) as

Ti,j;x(u)− Ti,j;y(u) =
y∑

k=x+1

Ti,k;x(u)Tk,j;y(u). (9.8)

The terms on the right hand side of (9.8) look like

±(ξi1,j1 · · · ξir,jr)(ξk1,l1 · · · ξks,ls), (9.9)

for various r, s ≥ 1, where ±ξi1,j1 . . . ξir,jr appears in Ti,k;x(u) and ±ξk1,l1 . . . ξks,ls

appears in Tk,j;y(u) for some x < k ≤ y. Let X be the sum of all such monomials for
which col(jr) < col(k1) and row(lt) /∈ {x + 1, . . . , y} for all 1 ≤ t < s. Let Y be the
sum of all such monomials for which col(jr) ≥ col(k1) and row(jt) /∈ {x+ 1, . . . , y} for
all 1 ≤ t < r. Let Z be the sum of all the remaining monomials, so the right hand side
of (9.8) is equal to X + Y + Z. We will show that X + Y = Ti,j;x(u) − Ti,j;y(u) and
that Z = 0.

So first consider X + Y . By definition, Ti,j;x(u) is a sum of monomials of the form
±ξp1,q1 · · · ξpu,qu . Let A denote the sum of all these monomials with the property that
x < row(qt) ≤ y for some 1 ≤ t < u. Let B be the sum of all the remaining monomials,
so Ti,j;x(u) = A + B. Similarly, Ti,j;y(u) is a sum of monomials ±ξp1,q1 · · · ξpu,qu . Let
C denote the sum of all the ones with the property that x < row(qt) ≤ y for some 1 ≤
t < u. Let D denote the sum of all the rest, so Ti,j;y(u) = C+D. Now one checks that
X = A, Y = −C and B = D. Hence X+Y = (A+B)− (C+D) = Ti,j;x(u)−Ti,j;y(u)
as claimed.
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It remains to show that Z = 0. Recall that Z is the sum of all monomials of the
form (9.9) such that either col(jr) < col(k1) and x < row(lt) ≤ y for some 1 ≤ t < s,
or col(jr) ≥ col(k1) and x < row(jt) ≤ y for some 1 ≤ t < r. In the former case,
choose the minimal index t ≥ 1 for which x < row(lt) ≤ y. Then

±(ξi1,j1 · · · ξir,jr)(ξk1,l1 · · · ξks,ls), ±(ξi1,j1 · · · ξir,jrξk1,l1 · · · ξkt,lt)(ξkt+1,lt+1 · · · ξks,ls)

are the only two ways to split the monomial (9.9) so that the left hand term appears in
Ti,g;x(u) and the right hand term appears in Tg,j;y(u) for some x < g ≤ y. Moreover,
they appear in the expansion of Z with opposite signs. The latter case is similar, but
one uses the maximal index t < r for which x < row(jt) ≤ y.

(iv) The left hand side of the formula in (iv) is a sum of monomials of the form

±(ξi1,j1 · · · ξir,jr)(ξk1,l1 · · · ξks,ls), (9.10)

for various r, s ≥ 0, where ±ξi1,j1 · · · ξir,jr appears in Ti,k;x(u) and ±ξk1,l1 · · · ξks,ls

appears in Tk,j;y(u) for some x < k ≤ y. Note that r = 0 is allowed only if i = k,
and s = 0 is allowed only if k = j. So if i = j we get a contribution −1 from the
r = s = 0 term, while if i 6= j then there is no r = s = 0 term. Now the formula in (iv)
will follow if we can show that whenever (r, s) 6= (0, 0), the monomial (9.10) appears
exactly twice on the left hand side with opposite signs. We consider two cases.

First, suppose that s > 0 and that col(jr) < col(k1) if r > 0. Let t ≥ 1 be
the minimal index such that x < row(lt) ≤ y; such a t exists as row(ls) = j and
x < j ≤ y. Let h := row(lt). Then ±ξi1,j1 . . . ξir,jrξk1,l1 . . . ξkt,lt appears in Ti,h;x(u),
and ±ξkt+1,lt+1 . . . ξks,ls appears in Th,j;y(u). Moreover, using the facts that col(lt) ≥
col(kt+1) if t < s, col(jr) < col(k1) if r > 0, and the minimality of the choice of t, we
see that

±(ξi1,j1 . . . ξir,jr)(ξk1,l1 . . . ξks,ls), ±(ξi1,j1 . . . ξir,jrξk1,l1 . . . ξkt,lt)(ξkt+1,lt+1 . . . ξks,ls)

are the only ways to split the monomial (9.10) so that the left term occurs in Ti,g;x(u)
and the right term occurs in Tg,j;y(u) for some x < g ≤ y. The two have opposite
signs.

For the second case, suppose either that s = 0, or that r, s > 0 and col(jr) ≥ col(k1).
Let t ≤ r be the maximal index such that x < row(it) ≤ y and argue in a similar
fashion. �

To explain the significance of this lemma, let T (u) := (Ti,j;0(u))1≤i,j≤n, an n × n
matrix with entries in U(p)[[u−1]]. Also let ν = (ν1, . . . , νm) be a fixed shape. Con-
sider the Gauss factorization T (u) = F (u)D(u)E(u) where D(u) is a block diago-
nal matrix, E(u) is a block upper unitriangular matrix, and F (u) is a block lower
unitriangular matrix, all block matrices being of shape ν. The diagonal blocks of
D(u) define matrices D1(u), . . . , Dm(u), the upper diagonal blocks of E(u) define ma-
trices E1(u), . . . , Em−1(u), and the lower diagonal matrices of F (u) define matrices
F1(u), . . . , Fm−1(u). Also let D̃a(u) := −Da(u)−1. Thus Da(u) = (Da;i,j(u))1≤i,j≤νa

and D̃a(u) = (D̃a;i,j(u))1≤i,j≤νa are νa×νa-matrices, Ea(u) = (Ea;i,j(u))1≤i≤νa,1≤j≤νa+1
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is a νa×νa+1-matrix, and Fa(u) = (Fa;i,j(u))1≤i≤νa+1,1≤j≤νa is a νa+1×νa-matrix. Write

Da;i,j(u) =
∑
r≥0

D
(r)
a;i,ju

−r, D̃a;i,j(u) =
∑
r≥0

D̃
(r)
a;i,ju

−r,

Ea;i,j(u) =
∑
r>0

E
(r)
a;i,ju

−r, Fa;i,j(u) =
∑
r>0

F
(r)
a;i,ju

−r,

thus defining elements D(r)
a;i,j , E

(r)
a;i,j and F

(r)
a;i,j of U(p), all dependent of course on the

fixed choice of ν. All this parallels the definition of the elements of Yn with the same
names in the paragraph following Lemma 3.1.

Theorem 9.3. With ν = (ν1, . . . , νm) fixed as above and all admissible a, i, j, we have
that

Da;i,j(u) = Tν1+···+νa−1+i,ν1+···+νa−1+j;ν1+···+νa−1(u),

D̃a;i,j(u) = Tν1+···+νa−1+i,ν1+···+νa−1+j;ν1+···+νa(u),

Ea;i,j(u) = Tν1+···+νa−1+i,ν1+···+νa+j;ν1+···+νa(u),

Fa;i,j(u) = Tν1+···+νa+i,ν1+···+νa−1+j;ν1+···+νa(u).

Proof. Note it suffices to prove the formulae for D,E and F , since the one for D̃ follows
from the one for D by Lemma 9.2(iv) taking x = ν1 + · · ·+ νa−1 and y = ν1 + · · ·+ νa.
Now we proceed by induction on m, the base case m = 1 being trivial. For the
induction step, suppose the theorem has been proved for the shape ν = (ν1, . . . , νm).
So, in terms of matrices, we have that

νDa(u) =
(
Tν1+···+νa−1+i,ν1+···+νa−1+j;ν1+···+νa−1(u)

)
1≤i,j≤νa

,

νEa(u) =
(
Tν1+···+νa−1+i,ν1+···+νa+j;ν1+···+νa(u)

)
1≤i≤νa,1≤j≤νa+1

,

νFa(u) =
(
Tν1+···+νa+i,ν1+···+νa−1+j;ν1+···+νa(u)

)
1≤i≤νa+1,1≤j≤νa

,

where we have added a superscript ν for clarity. Write νb = α+ β for some 1 ≤ b ≤ m
and α, β ≥ 1, and let µ = (ν1, . . . , νb−1, α, β, νb+1, . . . , νm). Define matrices A,B,C
and D by

A =
(
Tν1+···+νb−1+i,ν1+···+νb−1+j;ν1+···+νb−1

(u)
)
1≤i,j≤α

,

B =
(
Tν1+···+νb−1+i,ν1+···+νb−1+α+j;ν1+···+νb−1+α(u)

)
1≤i≤α,1≤j≤β

,

C =
(
Tν1+···+νb−1+α+i,ν1+···+νb−1+j;ν1+···+νb−1+α(u)

)
1≤i≤β,1≤j≤α

,

D =
(
Tν1+···+νb−1+α+i,ν1+···+νb−1+α+j;ν1+···+νb−1+α(u)

)
1≤i,j≤β

.

Then Lemma 9.2(i)–(iii) with x = ν1 + · · · + νb−1 and y = ν1 + · · · + νb−1 + α tell us
that

νDb(u) =
(

A AB
CA D + CAB

)
=
(
Iα 0
C Iβ

)(
A 0
0 D

)(
Iα B
0 Iβ

)
.
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Lemma 3.1 explains how to read off the matrices µDa(u), µEa(u) and µFa(u) from this
factorization to get that

µDa(u) =
(
Tµ1+···+µa−1+i,µ1+···+µa−1+j,µ1+···+µa−1(u)

)
1≤i,j≤µa

,

µEa(u) =
(
Tµ1+···+µa−1+i,µ1+···+µa+j,µ1+···+µa(u)

)
1≤i≤µa,1≤j≤µa+1

,

µFa(u) =
(
Tµ1+···+µa+i,µ1+···+µa−1+j,µ1+···+µa(u)

)
1≤i≤µa+1,1≤j≤µa

.

This completes the induction step. �

In the extreme case that ν = (1n), we write simply D(r)
i , D̃

(r)
i , E

(r)
i and F (r)

i for the
elements D(r)

i;1,1, D̃
(r)
i;1,1, E

(r)
i;1,1 and F (r)

i;1,1 of U(p), respectively.

Corollary 9.4. D(r)
i = T

(r)
i,i;i−1, D̃

(r)
i = T

(r)
i,i;i, E

(r)
i = T

(r)
i,i+1;i and F (r)

i = T
(r)
i+1,i;i.

10. Main theorem

Let π be a pyramid of level l with column heights (q1, . . . , ql). Pick an integer
n ≥ max(q1, . . . , ql) and read off from the pyramid π a shift matrix σ = (si,j)1≤i,j≤n

according to (7.6). Define the finite W -algebra W (π) = U(p)m viewed as a filtered
algebra via the Kazhdan filtration as in §8. Define the shifted Yangian Yn,l(σ) of level
l viewed as a filtered algebra via the canonical filtration as in §§2, 5 and 6. Suppose also
that ν = (ν1, . . . , νm) is an admissible shape for σ, and recall the notation sa,b(ν) and
pa(ν) from (3.2) and (6.2). We have the elements D(r)

a;i,j , D̃
(r)
a;i,j , E

(r)
a;i,j and F (r)

a;i,j of U(p)
defined as in §9 relative to this fixed shape; see Theorem 9.3 for the explicit formulae.
We also have the parabolic generators D(r)

a;i,j , D̃
(r)
a;i,j , E

(r)
a;i,j and F (r)

a;i,j of Yn,l(σ) as in §3.
The main result of the article is as follows.

Theorem 10.1. There is a unique isomorphism Yn,l(σ) ∼→ W (π) of filtered algebras
such that for any admissible shape ν = (ν1, . . . , νm) the generators

{D(r)
a;i,j}1≤a≤m,1≤i,j≤νa,r>0,

{E(r)
a;i,j}1≤a<m,1≤i≤νa,1≤j≤νa+1,r>sa,b(ν),

{F (r)
a;i,j}1≤a<m,1≤i≤νa+1,1≤j≤νa,r>sb,a(ν)

of Yn,l(σ) map to the elements of U(p) with the same names. In particular, these
elements of U(p) are m-invariants and they generate W (π).

The proof will take up most of the rest of the section. First however let us record a
couple of corollaries of the theorem.

Corollary 10.2. The map θ : grW (π)→ S(cg(e)) from (8.4) is an isomorphism.

Proof. Since we already know by Corollary 8.3 that the map θ is an injective, graded
homomorphism, it suffices given Theorem 10.1 to show that grYn,l(σ) and S(cg(e)) have
the same dimension in each degree. This follows from Theorem 6.2 and Lemma 7.3
(the element c(r)i,j there is of degree r with respect to the Kazhdan grading). �

For the next corollary, let π̇ be another pyramid with the same row lengths as π, i.e.
the nilpotent matrix ė defined from π̇ is conjugate to the nilpotent matrix e defined
from π. Let σ̇ = (ṡi,j)1≤i,j≤n be a shift matrix corresponding to the pyramid π̇. By
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Theorem 10.1, the formulae in §9 define generators Ḋ(r)
a;i,j , Ė

(r)
a;i,j and Ḟ (r)

a;i,j of W (π̇) for
each admissible shape ν.

Corollary 10.3. There is an algebra isomorphism ι : W (π) → W (π̇) defined on
parabolic generators with respect to an admissible shape ν by the formulae (3.21).

Proof. This follows from Theorem 10.1 and (6.4). �

So now we must prove Theorem 10.1. The first reduction is to observe that it suffices
to prove it in the special case that ν is the minimal admissible shape for σ. It then
follows for all other admissible shapes by Lemma 3.1 and induction on the length of
the shape. So we assume from now on that ν = (ν1, . . . , νm) is the minimal admissible
shape for σ, and let t := νm = min(q1, ql). We proceed to prove Theorem 10.1 by
induction on the level l.

Consider first the base case l = 1, i.e. π consists of a single column of height t.
Since the nilpotent element e from (7.4) is zero in this case, we have by definition
that W (π) = U(glt). Moreover, according to Theorem 9.3, we have that D(1)

m;i,j =

ẽi,j = ei,j + δi,j(n − t) for 1 ≤ i, j ≤ t, and all other elements D(r)
a;i,j , E

(r)
a;i,j and F

(r)
a;i,j

of W (π) are equal to zero. On the other hand, Remarks 6.6 and 6.5 imply that there
is an isomorphism Yn,1(σ) ∼→ Yt,1 = U(glt) such that D(1)

m,i,j 7→ ei,j , with all the other

parabolic D
(r)
a;i,j , E

(r)
a;i,j and F

(r)
a;i,j of Yn,1(σ) mapping to zero. Composing with the

automorphism ei,j 7→ ẽi,j of U(glt) gives the required isomorphism Yn,1(σ) ∼→W (π).
Assume from now on that l > 1 and that the theorem has been proved for all smaller

levels. The verification of the induction step splits into two cases corresponding to the
two possible baby comultiplications ∆R and ∆L that were defined in (6.8)–(6.9):
Case ∆R: either t = n or sn−t,n−t+1 6= 0;
Case ∆L: either t = n or sn−t+1,n−t 6= 0.
The argument in the two cases is quite similar. We will explain it in detail in case ∆R,
then briefly indicate the changes in case ∆L.

So assume that either t = n or sn−t,n−t+1 = sm−1,m(ν) 6= 0; in particular, q1 ≥ ql.
For notational convenience, assume that the numbering of the bricks of the pyramid
π is the standard numbering down columns from left to right. Let π̇ be the pyramid
obtained from π by removing the rightmost column, i.e. the bricks numbered (N −
t + 1), (N − t + 2), . . . , N , from the pyramid π. Let σ̇ = (ṡi,j)1≤i,j≤n be the shift
matrix corresponding to the pyramid π̇ defined by (4.5). Define ṗ, ṁ and ė in ġ =
glN−t according to (7.3)–(7.4) and let χ̇ : ṁ → C be the character x 7→ (x, ė). Let

Ḋ
(r)
a;i,j ,

˙̃
D

(r)

a;i,j , Ė
(r)
a;i,j and Ḟ

(r)
a;i,j denote the elements of U(ṗ) as defined in §9 relative to

the shape ν. By the induction hypothesis, Theorem 10.1 holds for π̇, so we know
already that the following elements of U(ṗ) are invariant under the twisted action of
ṁ, i.e. they belong to finite W -algebra W (π̇) = U(ṗ)ṁ:

(i) Ḋ(r)
a;i,j and ˙̃

D
(r)

a;i,j for 1 ≤ a ≤ m, 1 ≤ i, j ≤ νa and r > 0;

(ii) Ė(r)
a;i,j for 1 ≤ a < m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νa+1 and r > sa,a+1(ν)− δa,m−1;

(iii) Ḟ (r)
a;i,j for 1 ≤ a < m, 1 ≤ i ≤ νa+1, 1 ≤ j ≤ νa and r > sa+1,a(ν).

Recalling (9.2), we must work now with the non-standard embedding of U(ġ) into
U(g) under which the generators ẽi,j of U(ġ) defined from the pyramid π̇ map to the
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generators ẽi,j of U(g) defined from the pyramid π, for 1 ≤ i, j ≤ N − t. This also
embeds U(ṗ) into U(p) and ṁ into m. Moreover, recalling (9.4), the character χ̇ of ṁ
is the restriction of the character χ of m, hence the twisted action of ṁ on U(ṗ) is the
restriction of the twisted action of m on U(p). The following crucial lemma gives us
an inductive description of the elements D(r)

a;i,j , E
(r)
a;i,j and F (r)

a;i,j of U(p) in terms of the
elements (i)–(iii) of U(ṗ); this should be compared with Theorem 4.1(i).

Lemma 10.4. The following equations hold for r > 0, all admissible a, i, j and any
fixed 1 ≤ h ≤ t:

D
(r)
a;i,j = Ḋ

(r)
a;i,j + δa,m

(
t∑

k=1

Ḋ
(r−1)
a;i,k ẽN−t+k,N−t+j + [Ḋ(r−1)

a;i,h , ẽN−2t+h,N−t+j ]

)
, (10.1)

E
(r)
a;i,j = Ė

(r)
a;i,j + δa,m−1

(
t∑

k=1

Ė
(r−1)
a;i,k ẽN−t+k,N−t+j + [Ė(r−1)

a;i,h , ẽN−2t+h,N−t+j ]

)
, (10.2)

F
(r)
a;i,j = Ḟ

(r)
a;i,j , (10.3)

where for (10.2) we are assuming that r > 1 if a = m− 1.

Proof. This follows using Theorem 9.3 and the explicit form of the elements T (r)
i,j;x from

(9.5). �

In the next few lemmas we will use these inductive descriptions to show that the
elements D(r)

a;i,j , E
(r)
a;i,j and F (r)

a;i,j of U(p) are m-invariants for the appropriate r.

Lemma 10.5. The following elements of U(p) are invariant under the twisted action
of m:

(i) D(r)
a;i,j and D̃(r)

a;i,j for 1 ≤ a ≤ m− 1, 1 ≤ i, j ≤ νa and r > 0;

(ii) E(r)
a;i,j for 1 ≤ a < m− 1, 1 ≤ i ≤ νa, 1 ≤ j ≤ νa+1 and r > sa,a+1(ν);

(iii) F (r)
a;i,j for a = 1 ≤ a < m, 1 ≤ i ≤ νa+1, 1 ≤ j ≤ νa and r > sa+1,a(ν).

Proof. By Lemma 10.4 and the definitions of D̃(r)
a;i,j and ˙̃

D
(r)

a;i,j , all these elements of U(p)
coincide with the corresponding elements of U(ṗ). Hence by the induction hypothesis
we already know they are invariant under the twisted action of ṁ. It remains to show
that the elements are invariant under the twisted action of all ẽf,g with 1 ≤ g ≤
N − t < f ≤ N . By Theorem 9.3 and the explicit form of (9.5), all the elements we
are considering are linear combinations of monomials of the form ẽi1,j1 · · · ẽir,jr ∈ U(ṗ)
with 1 ≤ is ≤ N − t and 1 ≤ js ≤ N − 2t for all s = 1, . . . , r. Using just the
fact that χ(ef,g) = 0 for all 1 ≤ g ≤ N − 2t and N − t < f ≤ N , it is easy to
see that all such monomials are invariant under the twisted action of all ẽf,g with
1 ≤ g ≤ N − t < f ≤ N . �

Lemma 10.6. The following elements of U(p) are invariant under the twisted action
of ṁ:

(i) D(r)
m;i,j for 1 ≤ i, j ≤ νm and r > 0;

(ii) (assuming t < n) E(r)
m−1;i,j for 1 ≤ i ≤ νm−1, 1 ≤ j ≤ νm and r > sm−1,m(ν).
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Proof. (i) Take x ∈ ṁ. According to Lemma 10.4, we have that

D
(r)
m;i,j = Ḋ

(r)
m;i,j +

t∑
k=1

Ḋ
(r−1)
m;i,k ẽN−t+k,N−t+j + [Ḋ(r−1)

m;i,h , ẽN−2t+h,N−t+j ].

Noting that [x, ẽN−t+k,N−t+j ] = [x, ẽN−2t+h,N−t+j ] = 0 and using the induction hy-
pothesis, one deduces easily from this equation that prχ([x,D(r)

m;i,j ]) = 0 as required.
(ii) Similar. �

Lemma 10.7. The following elements of U(p) are invariant under the twisted action
of ẽf,g for all 1 ≤ g ≤ N − t < f ≤ N :

(i) D(1)
m;i,j for 1 ≤ i, j ≤ νm;

(ii) (assuming t < n and sm−1,m(ν) = 1) D(2)
m;i,j for 1 ≤ i, j ≤ νm;

(iii) (assuming t < n and sm−1,m(ν) = 1) E(2)
m−1;i,j for 1 ≤ i ≤ νm−1, 1 ≤ j ≤ νm.

Proof. Part (i) is easily checked directly using (9.3), (9.4) and the explicit formula for
D

(1)
m;i,j given by Theorem 9.3 and Example 9.1. The proofs of (ii) and (iii) are similar,

though the calculations are not so easy. �

Lemma 10.8. Suppose that t < n and sm−1,m(ν) = 1. Then, the following equations
hold in U(p) for r > 1, all admissible i, j and any fixed 1 ≤ g ≤ νm−1:

D
(r+1)
m;i,j = [F (2)

m−1;i,g, E
(r)
m−1;g,j ] +

r∑
s=0

D̃
(r+1−s)
m−1;g,gD

(s)
m;i,j , (10.4)

E
(r+1)
m−1;i,j = [D(2)

m−1;i,g, E
(r)
m−1;g,j ]−

νm−1∑
f=1

D
(1)
m−1;i,fE

(r)
m−1;f,j . (10.5)

Proof. We prove (10.5), the first equation being a similar trick. By the induction
hypothesis and the relation (3.5), we know for all r > 0 that

[Ḋ(2)
m−1;i,g, Ė

(r)
m−1;g,j ] = Ė

(r+1)
m−1;i,j +

νm−1∑
f=1

Ḋ
(1)
m−1;i,f Ė

(r)
m−1;f,j .

By Lemma 10.4, we have for r > 1 that

E
(r)
m−1;g,j = Ė

(r)
m−1;g,j +

t∑
k=1

Ė
(r−1)
m−1;g,kẽN−t+k,N−t+j + [Ė(r−1)

m−1;g,h, ẽN−2t+h,N−t+j ].

Obviously, [Ḋ(2)
m−1;i,g, ẽN−t+k,N−t+j ] = 0. Moreover, by Theorem 9.3 and the form

of (9.5), no monomial in the expansion of Ḋ(2)
m−1;i,g involves any matrix unit of the

form ẽ?,N−2t+h, hence [Ḋ(2)
m−1;i,g, ẽN−2t+h,N−t+j ] = 0 too. Now we can commute with
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Ḋ
(2)
m−1;i,g = D

(2)
m−1;i,g to deduce that

[D(2)
m−1;i,g, E

(r)
m−1;g,j ] = Ė

(r+1)
m−1;i,j +

νm−1∑
f=1

Ḋ
(1)
m−1;i,f Ė

(r)
m−1;f,j

+
t∑

k=1

Ė(r)
m−1;i,k +

νm−1∑
f=1

Ḋ
(1)
m−1;i,f Ė

(r−1)
m−1;f,k

 ẽN−t+k,N−t+j

+

Ė(r)
m−1;i,h +

νm−1∑
f=1

Ḋ
(1)
m−1;i,f Ė

(r−1)
m−1;f,h, ẽN−2t+h,N−t+j

 .
Finally rewrite the right hand side using Lemma 10.4 again to see that it equals
E

(r+1)
m−1;i,j +

∑νm−1

f=1 D
(1)
m−1;i,fE

(r)
m−1;f,j . �

Lemma 10.9. Suppose that t = n and l > 1 or that t < n and sm−1,m(ν) > 1. Then
the following elements of U(p) are invariant under the twisted action of ẽN−t+f,N−2t+g

for all 1 ≤ f, g ≤ t.
(i) D(r)

m;i,j for 1 ≤ i, j ≤ νm and r > 1;

(ii) (assuming t < n) E(r)
m−1;i,j for 1 ≤ i ≤ νm−1, 1 ≤ j ≤ νm and r > sm−1,m(ν).

Proof. (i) Let π̈ denote the pyramid obtained by removing the rightmost column from
the pyramid π̇, i.e. the bricks numbered (N − 2t+1), (N − 2t+2), . . . , (N − t). Define
p̈, m̈ and ë in g̈ = glN−2t according to (7.3)–(7.4), and embed U(g̈) into U(ġ) in exactly
the same (non-standard) way as we embedded U(ġ) into U(g). We will make use of the
elements D̈(r)

a;i,j of W (π̈). By Lemma 10.4 applied to π̇, the following equation holds
for r > 0, 1 ≤ i, j ≤ νm and any fixed 1 ≤ h ≤ t:

Ḋ
(r)
m;i,j = D̈

(r)
m;i,j +

t∑
c=1

D̈
(r−1)
m;i,c ẽN−2t+c,N−2t+j + [D̈(r−1)

m;i,h , ẽN−3t+h,N−2t+j ].

Substituting this into (10.1) and simplifying a little using (9.3) we deduce for r > 1
that D(r)

m;i,j = A+B + C +D + E + F +G+H where

A = D̈
(r)
m;i,j , E =

t∑
k,c=1

D̈
(r−2)
m;i,c ẽN−2t+c,N−2t+kẽN−t+k,N−t+j ,

B =
t∑

c=1

D̈
(r−1)
m;i,c ẽN−2t+c,N−2t+j , F =

t∑
k=1

[D̈(r−2)
m;i,h , ẽN−3t+h,N−2t+k]ẽN−t+k,N−t+j ,

C = [D̈(r−1)
m;i,h , ẽN−3t+h,N−2t+j ], G =

t∑
c=1

D̈
(r−2)
m;i,c ẽN−2t+c,N−t+j ,

D =
t∑

k=1

D̈
(r−1)
m;i,k ẽN−t+k,N−t+j , H = [D̈(r−2)

m;i,h , ẽN−3t+h,N−t+j ].

Now commute each of these elements in turn with x := ẽN−t+f,N−2t+g then apply prχ,
using (9.1), (9.3), (9.4) and the observation that x commutes with all elements of U(p̈),
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to deduce that

prχ([x,A]) = 0, prχ([x,C]) = 0,

prχ([x,B]) = −δf,jD̈
(r−1)
m;i,g prχ([x,D]) = δf,jD̈

(r−1)
m;i,g ,

prχ([x,E]) = tδf,jD̈
(r−2)
m;i,g − D̈

(r−2)
m;i,g ẽN−t+f,N−t+j + δf,j

t∑
c=1

D̈
(r−2)
m;i,c ẽN−2t+c,N−2t+g,

prχ([x, F ]) = δf,j [D̈
(r−2)
m;i,h , ẽN−3t+h,N−2t+g],

prχ([x,G]) = D̈
(r−2)
m;i,g ẽN−t+f,N−t+j − tδf,jD̈

(r−2)
m;i,g − δf,j

t∑
c=1

D̈
(r−2)
m;i,c ẽN−2t+c,N−2t+g,

prχ([x,H]) = −δf,j [D̈
(r−2)
m;i,h , ẽN−3t+h,N−2t+g].

These sum to zero, hence prχ([x,D(r)
m;i,j ]) = 0.

(ii) Similar. �

Lemma 10.10. The following elements of U(p) are invariant under the twisted action
of m:

(i) D(r)
a;i,j for 1 ≤ a ≤ m, 1 ≤ i, j ≤ νa and r > 0;

(ii) E(r)
a;i,j for 1 ≤ a < m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νa+1 and r > sa,a+1(ν);

(iii) F (r)
a;i,j for 1 ≤ a < m, 1 ≤ i ≤ νa+1, 1 ≤ j ≤ νa and r > sa+1,a(ν).

Proof. This is just a matter of assembling the pieces. Lemma 10.5 covers all the
elements except D(r)

m;i,j and (assuming t < n) E(r)
m−1;i,j . Since m is generated by ṁ and

the elements ẽf,g for all 1 ≤ f, g ≤ N with col(f) = l, col(g) = l − 1, Lemma 10.6
reduces the problem to showing that the elements D(r)

m;i,j for r > 0 and (assuming

t < n) E(r)
m−1;i,j for r > sm−1,m(ν) are invariant under all such ẽf,g. Suppose first that

t = n. Then the required invariance is checked in Lemma 10.7(i) and Lemma 10.9(i).
Now assume that t < n. If sm−1,m(ν) = 1, then the invariance of D(1)

m;i,j , D
(2)
m;i,j and

E
(2)
m−1;i,j is checked in Lemma 10.7. The invariance of all higher D(r)

m;i,j and E
(r)
m−1;i,j

then follows by Lemma 10.5, Lemma 10.8 and induction on r. Finally if sm−1,m(ν) > 1
then the invariance of D(1)

m;i,j is checked in Lemma 10.7(i), and the remaining elements
are covered by Lemma 10.9. �

Now we complete the proof of the induction step in case ∆R. By the induction
hypothesis, we can identify the shifted Yangian Yn,l−1(σ̇) with W (π̇) ⊆ U(ṗ), so that
the generators Ḋ(r)

a;i,j , Ė
(r)
a;i,j and Ḟ

(r)
a;i,j of Yn,l−1(σ̇) coincide with the elements of W (π̇)

with the same name. Theorem 6.2 then shows that there is an injective algebra homo-
morphism ∆R : Yn,l(σ) → U(ṗ) ⊗ U(glt). Observe moreover comparing Theorem 6.2
with Lemma 7.3 (like in the proof of Corollary 10.2) that for each d ≥ 0,

dim ∆R(FdYn,l(σ)) = dim FdYn,l(σ) = dim FdS(cg(e)), (10.6)

where FdS(cg(e)) denotes the sum of all the graded pieces of S(cg(e)) of degree ≤ d in
the Kazhdan grading. Define elements E(r)

a,b;i,j and F (r)
a,b;i,j of FrU(p) recursively by the
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formulae (3.15)–(3.16). Let Xd denote the subspace of U(p) spanned by all monomials
in

{D(r)
a;i,j}1≤a≤m,1≤i,j≤νa,0<r≤sa(ν),

{E(r)
a,b;i,j}1≤a<b≤m,1≤i≤νa,1≤j≤νb,sa,b(ν)<r≤sa,b(ν)+pa(ν),

{F (r)
a,b;i,j}1≤a<b≤m,1≤i≤νb,1≤j≤νa,sb,a(ν)<r≤sb,a(ν)+pa(ν)

taken in some fixed order and of total degree ≤ d. By Lemma 10.10, Xd is actually a
subspace of FdW (π). Define an algebra homomorphism ϕR : U(p)→ U(ṗ)⊗U(glt) by

ϕR(ẽi,j) =

 ẽi,j ⊗ 1 if col(i) ≤ col(j) ≤ l − 1,
0 if col(i) ≤ l − 1, l = col(j),
1⊗ ẽi−N+t,j−N+t if l = col(i) = col(j),

(10.7)

where for the rightmost tensor ẽi−N+t,j−N+t ∈ U(glt) denotes ei−N+t,j−N+t+δi,j(n−t)
like in Theorem 4.1. By Lemma 10.4, we have that

ϕR(D(r)
a;i,j) = Ḋ

(r)
a;i,j ⊗ 1 + δa,m

t∑
k=1

Ḋ
(r−1)
a;i,k ⊗ ẽk,j , (10.8)

ϕR(E(r)
a;i,j) = Ė

(r)
a;i,j ⊗ 1 + δa,m−1

t∑
k=1

Ė
(r−1)
a;i,k ⊗ ẽk,j , (10.9)

ϕR(F (r)
a;i,j) = Ḟ

(r)
a;i,j ⊗ 1. (10.10)

Comparing this with Theorem 4.1(i) and recalling the PBW basis for FdYn,l(σ) from
Theorem 6.2 and Corollary 6.3, we see that ϕR(Xd) = ∆R(FdYn,l(σ)). Combining this
with (10.6) and Corollary 8.3, we deduce that

dim FdS(cg(e)) = dimϕR(Xd) ≤ dimXd ≤ dim FdW (π) ≤ dim FdS(cg(e)).

Hence equality holds everywhere, so we get that Xd = FdW (π) for each d ≥ 0, and the
map ϕR : W (π) → U(ṗ) ⊗ U(glt) is injective with the same image as ∆R : Yn,l(σ) →
U(ṗ) ⊗ U(glt). In particular this shows that the elements listed in Theorem 10.1
generate W (π), and the map ϕ−1

R ◦ ∆R : Yn,l → W (π) is exactly the filtered algebra
isomorphism described in the statement of Theorem 10.1. This completes the proof of
the induction step in the case ∆R.

Finally we must sketch the proof of the induction step in the case ∆L. So assume
that either t = n or sn−t+1,n−t = sm,m−1(ν) 6= 0; in particular, q1 ≤ ql. This time
it is notationally convenient to number of the bricks of the pyramid π down columns
from right to left, not from left to right as before. For instance, the entries down the
first (leftmost) column of the pyramid are (N − t+ 1), (N − t+ 2), . . . , N in this new
numbering. Let π̇ be the pyramid obtained from π by removing this column from the
pyramid π. Let σ̇ = (ṡi,j)1≤i,j≤n be the shift matrix corresponding to the pyramid
π̇ defined by (4.6). Define ṗ, ṁ and ė in ġ = glN−t ⊂ g according to (7.3)–(7.4).
This time, it happens that the natural embedding of U(ġ) into U(g) induced by the
embedding of ġ into g already maps the elements ẽi,j of U(ġ) to the elements ẽi,j of U(g)
for 1 ≤ i, j ≤ N − t. The algebra W (π̇) = U(ṗ)ṁ is a subalgebra of U(ṗ) ⊂ U(p), ṁ is
a subalgebra of m, and the twisted action of ṁ on U(ṗ) is the restriction of the twisted

action of m on U(p). Let Ḋ(r)
a;i,j ,

˙̃
D

(r)

a;i,j , Ė
(r)
a;i,j and Ḟ (r)

a;i,j denote the elements of U(ṗ) as
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defined in §9 relative to the shape ν. The all-important analogue of Lemma 10.4 is as
follows.

Lemma 10.11. The following equations hold for r > 0, all admissible a, i, j and any
fixed 1 ≤ l ≤ t:

D
(r)
a;i,j = Ḋ

(r)
a;i,j + δa,m

(
t∑

k=1

ẽN−t+i,N−t+kḊ
(r−1)
a;k,j + [ẽN−t+i,N−2t+h, Ḋ

(r−1)
a;h,j ]

)
, (10.11)

E
(r)
a;i,j = Ė

(r)
a;i,j , (10.12)

F
(r)
a;i,j = Ḟ

(r)
a;i,j + δa,m−1

(
t∑

k=1

ẽN−t+i,N−t+kḞ
(r−1)
a;k,j + [ẽN−t+i,N−2t+h, Ḟ

(r−1)
a;h,j ]

)
,

(10.13)

where for (10.13) we are assuming that r > 1 if a = m− 1.

Combining this with the induction hypothesis and imitating the arguments in Lem-
mas 10.5–10.10 one can now check:

Lemma 10.12. The following elements of U(p) are invariant under the twisted action
of m:

(i) D(r)
a;i,j for 1 ≤ a ≤ m, 1 ≤ i, j ≤ νa and r > 0;

(ii) E(r)
a;i,j for 1 ≤ a < m, 1 ≤ i ≤ νa, 1 ≤ j ≤ νa+1 and r > sa,a+1(ν);

(iii) F (r)
a;i,j for 1 ≤ a < m, 1 ≤ i ≤ νa+1, 1 ≤ j ≤ νa and r > sa+1,a(ν).

Finally, define an algebra homomorphism ϕL : U(p)→ U(glt)⊗ U(ṗ) by

ϕL(ẽi,j) =

 ẽi−N+t,j−N+t ⊗ 1 if col(i) = col(j) = 1,
0 if col(i) = 1, 2 ≤ col(j),
1⊗ ẽi,j if 2 ≤ col(i) ≤ col(j),

(10.14)

where for the leftmost tensor ẽi−N+t,j−N+t ∈ U(glt) denotes ei−N+t,j−N+t + δi,j(n− t)
like in Theorem 4.1. By Lemma 10.11, we have that

ϕL(D
(r)
a;i,j) = 1⊗ Ḋ(r)

a;i,j + δa,m

t∑
k=1

ẽi,k ⊗ Ḋ
(r−1)
a;k,j , (10.15)

ϕL(E
(r)
a;i,j) = 1⊗ Ė(r)

a;i,j + δa,m−1

t∑
k=1

ẽi,k ⊗ Ė
(r−1)
a;k,j , (10.16)

ϕL(F
(r)
a;i,j) = 1⊗ Ḟ (r)

a;i,j . (10.17)

If we identify Yn,l−1(σ̇) with W (π̇) ⊆ U(ṗ) using the induction hypothesis, these are
the same as the images of the corresponding elements of Yn,l(σ) under the baby co-
multiplication ∆L from Theorem 4.1(ii). So now the proof of the induction step in the
case ∆L can be completed like before. Theorem 10.1 is proved.

11. Grown-up comultiplication

Fix a pyramid π of height ≤ n with column heights (q1, . . . , ql). Throughout the
section, we will work with the numbering of the bricks of π down columns from left to
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right. Define p, h, m and e from (7.3), and let W (π) := U(p)m be the corresponding
finite W -algebra. Suppose we are given l′, l′′ ≥ 0 with l′ + l′′ = l. Let π′ and π′′

denote the pyramids consisting just of the leftmost l′ and the rightmost l′′ columns
of π, respectively. We write π = π′ ⊗ π′′ whenever a pyramid is split in this way; for
example,

1 3 7 10 11
2 6 9

5 8
4

1 3 7
2 6

5
4

⊗= 3 4
2
1

1 ⊗ ⊗ ⊗ ⊗= 2
1

4
3
2
1

3
2
1

1

Let p′,m′, e′ and p′′,m′′, e′′ be defined from the pyramids π′ and π′′ inside the Lie
algebras g′ = glN ′ and g′′ = glN ′′ , respectively. So N = N ′ + N ′′. Let W (π′) =
U(p′)m′

and W (π′′) = U(p′′)m′′
. Recall also the elements ẽi,j of U(p), U(p′) and U(p′′)

defined by (9.2) but working from the pyramids π, π′ and π′′, respectively. Define a
homomorphism ∆l′,l′′ : U(p)→ U(p′)⊗ U(p′′) by declaring that

∆l′,l′′(ẽi,j) =

 ẽi,j ⊗ 1 if col(i) ≤ col(j) ≤ l′,
0 if col(i) ≤ l′, l′ + 1 ≤ col(j),
1⊗ ẽi−N ′,j−N ′ if l′ + 1 ≤ col(i) ≤ col(j),

(11.1)

for all ei,j ∈ p. This map is obviously filtered with respect to the Kazhdan filtrations.
The following lemma describes the effect of ∆l′,l′′ in terms of the elements T (r)

i,j;0 of
U(p), U(p′) and U(p′′) defined as in §9, but again working from the pyramids π, π′ and
π′′ respectively. This should be compared with (4.1).

Lemma 11.1. For 1 ≤ i, j ≤ n and r > 0, ∆l′,l′′(T
(r)
i,j;0) =

r∑
s=0

n∑
k=1

T
(s)
i,k;0 ⊗ T

(r−s)
k,j;0 .

Proof. Clear from (9.5). �

One should visualize the map ∆l′,l′′ as follows. The standard embedding of g′ ⊕ g′′

into g also embeds p′ ⊕ p′′ into p and m′ ⊕ m′′ into m. Then the map ∆l′,l′′ is just
induced by the obvious projection p � p′ ⊕ p′′ followed by a constant shift. The
character χ′ ⊕ χ′′ of m′ ⊕ m′′ defined by taking the trace form with e′ + e′′ is the
restriction of the character χ of m. So the map ∆l′,l′′ sends twisted m-invariants in
U(p) to twisted (m′⊕m′′)-invariants in U(p′)⊗U(p′′). This shows that the restriction
of ∆l′,l′′ defines an algebra homomorphism

∆l′,l′′ : W (π)→W (π′)⊗W (π′′), (11.2)

which is again a filtered map with respect to the Kazhdan filtrations. This defines
a comultiplication ∆l′,l′′ between the finite W -algebras which is coassociative in the
following sense:
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Lemma 11.2. If π = π′ ⊗ π′′ ⊗ π′′′ is a pyramid, where π′, π′′ and π′′′ are of levels
l′, l′′ and l′′′ respectively, then the following diagram commutes:

W (π′ ⊗ π′′ ⊗ π′′)
∆l′+l′′,l′′′−−−−−−→ W (π′ ⊗ π′′)⊗W (π′′′)

∆l′,l′′+l′′′

y y∆l′,l′′⊗1

W (π′)⊗W (π′′ ⊗ π′′′)
1⊗∆l′′,l′′′−−−−−−→ W (π′)⊗W (π′′)⊗W (π′′′)

Proof. Obvious from (11.1). �

Read off a shift matrix σ = (si,j)1≤i,j≤n from the pyramid π according to (7.6).
¿From now on we will identify the algebra W (π) with the shifted Yangian Yn,l(σ)
of level l using the isomorphism from Theorem 10.1. Let t := min(q1, ql). Suppose
first that the baby comultiplication ∆R : Yn,l(σ) → Yn,l−1(σ̇) ⊗ U(glt) from (6.8) is
defined, i.e. either t = n or sn−t,n−t+1 6= 0. The pyramid corresponding to the level
(l − 1) and the shift matrix σ̇ here (which is defined by (4.5)) is simply the pyramid
π′ obtained from π by removing the rightmost column. So, identifying Yn,l−1(σ̇) with
W (π′) according to Theorem 10.1 again, the map ∆R is therefore identified with a map
∆R : W (π)→W (π′)⊗U(glt), just like the map ∆l−1,1. Suppose instead that the baby
comultiplication ∆L : Yn,l(σ) → U(glt) ⊗ Yn,l−1(σ̇) from (6.9) is defined, i.e. either
t = n or sn−t+1,n−t 6= 0. This time, the pyramid corresponding to the level (l − 1)
and the shift matrix σ̇ (defined now by (4.6)) is the pyramid π′′ obtained from π by
removing the leftmost column. So ∆L is identified with a mapW (π)→ U(glt)⊗W (π′′),
just like the map ∆1,l−1.

Lemma 11.3. Whenever the baby comultiplications ∆R and ∆L are defined, they are
equal to ∆l−1,1 and ∆1,l−1, respectively.

Proof. This is obvious in the case l = 1, so assume that l > 1. Assume the map ∆R is
defined. Comparing (11.1) with (10.7), it is clear that the map ∆l−1,1 coincides with
the map ϕR defined in the proof of Theorem 10.1. Comparing (10.8)–(10.10) with
Theorem 4.1(i), the map ϕR coincides with ∆R under the identifications of W (π) with
Yn,l(σ) and W (π′) with Yn,l−1(σ̇). Hence, ∆l−1,1 = ∆R. The proof that ∆1,l−1 = ∆L

is similar, using (10.14), (10.15)–(10.17) and Theorem 4.1(ii). �

If we iterate the comultiplication (in any order by coassociativity) a total of (l− 1)
times to split the pyramid π into its individual columns, we obtain a homomorphism

µ : W (π)→ U(glq1
)⊗ · · · ⊗ U(glql

). (11.3)

Let us give a direct description of this map. The elements {e[r]i,j}1≤r≤l,1≤i,j≤qr defined

from e
[r]
i,j := eq1+···+qr−1+i,q1+···+qr−1+j form a basis for the Levi subalgebra h of p.

Identify U(h) with U(glq1
)⊗ · · · ⊗U(glql

) so that e[r]i,j is identified with 1⊗(r−1)⊗ ei,j ⊗
1⊗(l−r). The map (11.3) is then identified with a homomorphism

µ : W (π)→ U(h) (11.4)

which is a filtered map with respect to the Kazhdan filtration ofW (π) and the standard
filtration of F0U(h) ⊆ F1U(h) ⊆ · · · of U(h); we will write grU(h) for the associated
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graded algebra here. Let

η : U(h)→ U(h), e
[r]
i,j 7→ e

[r]
i,j + δi,j(qr+1 + · · ·+ ql). (11.5)

Let π : U(p) � U(h) be the algebra homomorphism induced by the natural projection
p � h. Then, it is easy to see from (11.1) that µ is precisely the restriction of the
map η ◦ π to W (π). By analogy with the language used in [BT], we call µ the Miura
transform; in [L] it is called the generalized Harish-Chandra homomorphism. The
following result is due to Lynch [L, Corollary 2.3.2].

Theorem 11.4. The map grµ : grW (π)→ grU(h) is injective, hence so is the Miura
transform µ : W (π)→ U(h) itself.

Proof. By Lemma 11.3 and the definition (11.3), we can factor µ as a composition of
(l − 1) maps of the form ∆R or ∆L. Now the theorem follows from the injectivity of
gr∆R and gr ∆L proved in Theorem 6.2. �

Corollary 11.5. The map gr∆l′,l′′ : grW (π)→ grW (π′)⊗W (π′′) is injective for any
l′ + l′′ = l. Hence so is the comultiplication ∆l′,l′′ : W (π)→W (π′)⊗W (π′′).

Proof. We can factor µ as a composition of ∆l′,l′′ followed by (l − 2) more maps. �

For the next lemma, we recall from Corollary 10.3 that if π and π̇ are two pyramids
with the same row lengths, then there is a canonical isomorphism ι : W (π) → W (π̇).
The following lemma shows that the comultiplication is compatible with these isomor-
phisms.

Lemma 11.6. Suppose that π = π′⊗π′′ and π̇ = π̇′⊗ π̇′′ are pyramids such that π̇′ and
π̇′′ have the same row lengths as π′ and π′′, respectively. Then the following diagram
commutes:

W (π)
∆l′,l′′−−−−→ W (π′)⊗W (π′′)

ι

y yι⊗ι

W (π̇)
∆l′,l′′−−−−→ W (π̇′)⊗W (π̇′′),

where π′ and π′′ are of levels l′ and l′′, respectively.

Proof. Proceed by induction on l = l′ + l′′. If either l′ = 0 or l′′ = 0, the statement of
the lemma is vacuous, so the base case l = 1 is trivial. Now suppose that l′, l′′ > 0,
so l > 1, and that the lemma has been proved for all smaller levels. Read off a shift
matrix σ from the pyramid π and identify W (π) with Yn,l(σ) as usual. At least one of
the baby comultiplications ∆R and ∆L from (6.8)–(6.9) is always defined; we explain
the proof of the induction step just in the case that ∆R is defined, the argument being
entirely similar in the other case. Also read off a shift matrix σ̇ from the pyramid π̇ and
identify W (π̇) with Yn,l(σ̇); we can ensure in doing this that the baby comultiplication
∆R is defined for Yn,l(σ̇) too.

Suppose first that l′′ = 1. Then by Lemma 11.3, ∆l′,l′′ is equal in either case to
the map ∆R, and the commutativity of the diagram is easy to check explicitly on the
generators of W (π), using (3.21) and Theorem 4.1(i).

Now suppose that l′′ > 1. Let ρ, ρ̇, ρ′ and ρ̇′ denote the pyramids obtained from
π, π̇, π′′ and π̇′′, respectively, by removing the rightmost column (which is of height ql
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in all cases). Consider the following cube

W (π′)⊗W (π′′) W (π′)⊗W (ρ′)⊗ U(glql
)

W (π) W (ρ)⊗ U(glql
)

W (π̇′)⊗W (π̇′′) W (π̇′)⊗W (ρ̇′)⊗ U(glql
)

W (π̇) W (ρ̇)⊗ U(glql
)

↗
��

↗
��

↗
��

↗
��

↓ ↓

→

→

↓ ↓

→

→

where the maps on the front and back faces are defined from the comultiplications, and
the remaining maps are isomorphisms built from ι. The front and back faces commute
by Lemma 11.2. The top and bottom faces commute by the special case considered in
the preceeding paragraph. The right hand face commutes by the induction hypothesis.
Since the comultiplication map W (π̇′)⊗W (π̇′′)→W (π̇′)⊗W (ρ̇′)⊗U(glql

) is injective
by Corollary 11.5, it therefore follows that the left face commutes too. This completes
the proof of the induction step. �

In the remainder of the section, we are going to lift the comultiplication to the shifted
Yangian Yn(σ) itself. First, we must explain one other basic operation on pyramids,
that of column removal. Let 1 ≤ i1 < · · · < il̇ ≤ l be some subset of the columns of the
pyramid π, and let π̇ be the pyramid with column heights (qi1 , . . . , qil̇). We can read
off shift matrices σ = (si,j)1≤i,j≤n and σ̇ = (ṡi,j)1≤i,j≤n from the pyramids π and π′

respectively in such a way as to ensure ṡi,j ≤ si,j for all 1 ≤ i, j ≤ n. Hence embedding
Yn(σ) and Yn(σ̇) into Yn in the canonical way, we have that Yn(σ) ⊆ Yn(σ̇). This
inclusion Yn(σ) ↪→ Yn(σ̇) factors through the quotients to induce a map

ζ : Yn,l(σ)→ Yn,l̇(σ̇). (11.6)

Equivalently, identifying Yn,l(σ) with W (π) and Yn,l̇(σ̇) with W (π̇) by Theorem 10.1,
this defines a homomorphism

ζ : W (π)→W (π̇) (11.7)

sending the generatorsD(r)
i , E

(r)
i and F (r)

i ofW (π) for all admissible i, r to the elements
Ḋ

(r)
i , Ė

(r)
i and Ḟ (r)

i of W (π̇), respectively.
In order to understand the relationship between this “column removal homomor-

phism” ζ and the comultiplication, we need another description of ζ. Let µ : W (π)→
U(h) and µ̇ : W (π̇) → U(ḣ) be the Miura transforms defined by (11.4). There is an
obvious projection ζ̂ : h � ḣ defined by

ζ̂(e[r]i,j) =

{
e
[s]
i,j if r = is for some s = 1, . . . , l̇,

0 otherwise.
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Lemma 11.7. With the above notation, the following diagram commutes

W (π)
µ−−−−→ U(h)

ζ

y yζ̂

W (π̇)
µ̇−−−−→ U(ḣ)

Proof. One checks explicitly from Corollary 9.4 and the definition (9.5) that ζ̂ maps
the elements µ(D(r)

i ), µ(E(r)
i ) and µ(F (r)

i ) to µ̇(Ḋ(r)
i ), µ̇(Ė(r)

i ) and µ̇(Ḟ (r)
i ). �

Corollary 11.8. Suppose that π = π′ ⊗ π′′ and π̇ = π̇′ ⊗ π̇′′, where π̇′ and π̇′′ are
obtained by removing columns from the pyramids π′ and π′′, respectively. Then, the
following diagram commutes

W (π)
∆l′,l′′−−−−→ W (π′)⊗W (π′′)

ζ

y yζ⊗ζ

W (π̇)
∆l̇′,l̇′′−−−−→ W (π̇′)⊗W (π̇′′)

where π′, π′′ are of widths l′, l′′ and π̇′, π̇′′ are of widths l̇′, l̇′′.

Proof. In view of Lemma 11.7 and the injectivity of the Miura transforms, this follows
from the commutativity of the following diagram:

U(h) ∼−−−−→ U(h′)⊗ U(h′′)

ζ̂

y yζ̂⊗ζ̂

U(ḣ) ∼−−−−→ U(ḣ′)⊗ U(ḣ′′)

where the horizontal maps are induced by the obvious isomorphisms h ∼= h′ ⊕ h′′ and
ḣ ∼= ḣ′ ⊕ ḣ′′. �

Now we can prove the main theorem of the section:

Theorem 11.9. Let σ be a shift matrix and write σ = σ′+σ′′ where σ′ is strictly lower
triangular and σ′′ is strictly upper triangular. Embedding Yn(σ), Yn(σ′) and Yn(σ′′) into
Yn in the standard way, the restriction of the comultiplication ∆ : Yn → Yn ⊗ Yn gives
a homomorphism

∆ : Yn(σ)→ Yn(σ′)⊗ Yn(σ′′).
Moreover, for l′ ≥ sn,1, l

′′ ≥ s1,n and l = l′+l′′, this map ∆ factors through the quotients
to define a homomorphism Yn,l(σ)→ Yn,l′(σ′)⊗Yn,l′′(σ′′) which, on identifying Yn,l(σ)
with W (π), Yn,l′(σ′) with W (π′) and Yn,l′′(σ′′) with W (π′′) as usual, is precisely the
comultiplication ∆l′,l′′ from (11.2).

Proof. Start from the map ∆l′,l′′ : Yn,l(σ) → Yn,l′(σ′) ⊗ Yn,l′′(σ′′) from (11.2). Recall
from Remark 6.4 how Yn(σ), Yn(σ′) and Yn(σ′′) are identified with the inverse limits
lim←−Yn,l(σ), lim←−Yn,l′(σ′) and lim←−Yn,l′′(σ′′), respectively. Corollary 11.8 is exactly what
is needed to ensure that the maps ∆l′,l′′ are stable as l′, l′′ → ∞. Hence there is an
induced homomorphism lim←−∆l′,l′′ : Yn(σ)→ Yn(σ′)⊗Yn(σ′′) lifting the maps ∆l′,l′′ for
all l′ ≥ sn,1, l

′′ ≥ s1,n. Now we just need to show that this map lim←−∆l′,l′′ agrees with
the restriction of the comultiplication ∆ on Yn.
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Let X be some generator D(r)
i , E

(r)
i or F (r)

i of Yn(σ) ⊆ Yn. Consider how one
computes ∆(X) in practice: first one expresses X as a linear combination of monomials
in the T (r)

i,j as explained in §3 (see also the explicit formulae [BK1, (5.2)–(5.4)]); then

one computes ∆(X) in terms of T (s)
h,k’s using the definition (4.1); finally one rewrites

all T (s)
h,k appearing in the resulting expression back in terms of the generators D(r)

i , E
(r)
i

and F
(r)
i . But in view of Lemma 11.1, exactly the same procedure may be used to

compute the effect of ∆l′,l′′ on the image of X in Yn,l(σ) for each l. The point is
that the formula expressing T (r)

i,j;0 in terms of the elements D(r)
i , E

(r)
i and F (r)

i of U(p)
explained in §9 is identical to the formula doing the same thing in Yn explained in §3.
It follows that ∆ = lim←−∆l′,l′′ . �

Remark 11.10. Using Theorem 11.9 and Lemma 11.6, one can express all of the
comultiplications ∆l′,l′′ : W (π) → W (π′) ⊗W (π′′) in terms of the comultiplication ∆
of Yn, as follows. Let π̇′ denote the right-justified pyramid with the same row lengths
as π′, and let π̇′′ denote the left-justified pyramid with the same row lengths as π′′. Let
π̇ := π̇′ ⊗ π̇′′. By Lemma 11.6, the comultiplication ∆l′,l′′ : W (π) → W (π′) ⊗W (π′′)
can be recovered from ∆l′,l′′ : W (π̇) → W (π̇′) ⊗ W (π̇′′) using the isomorphisms ι.
Finally ∆l′,l′′ : W (π̇) → W (π̇′) ⊗W (π̇′′) is one of the comultiplications described by
Theorem 11.9.

Remark 11.11. We can now complete our discussion of the center Z(W (π)). Let π be
a pyramid with row lengths (p1, . . . , pn) and column heights (q1, . . . , ql) as usual. Re-
call the definition of ZN (u) =

∑N
r=0 Z

(r)
N uN−r ∈ U(glN )[u] from (6.15)–(6.16). ¿From

Remark 8.5, there is an isomorphism ψ : Z(U(glN )) → Z(W (π)) (the proof of sur-
jectivity being deferred to [BK2]). Hence the elements ψ(Z(1)

N ), . . . , ψ(Z(N)
N ) are al-

gebraically independent and generate Z(W (π)). Using the rdet formulation of the
definition of ZN (u) and the description of the Miura transform µ as the compos-
ite η ◦ π given after (11.5), one can compute the image of ZN (u) under the map
µ ◦ ψ : Z(U(glN )) ↪→ U(glq1

)⊗ · · · ⊗ U(glqw
) explicitly:

µ ◦ ψ(ZN (u)) = Zq1(u)⊗ Zq2(u)⊗ · · · ⊗ Zql
(u). (11.8)

Now let σ be a shift matrix associated to π and identify W (π) = Yn,l(σ) according
to Theorem 10.1. Consider the power series Cn(u) ∈ Yn(σ)[[u−1]] from (2.22); let us
also write Cn(u) for the corresponding power series in the quotient W (π)[[u−1]]. It is
well known that the comultiplication ∆ : Yn → Yn⊗Yn maps Cn(u) to Cn(u)⊗Cn(u);
see e.g. [BK1, Lemma 8.1] or [NT, Proposition 1.11]. Applying Theorem 11.9 and
Remark 11.10, we deduce that the comultiplication ∆l′,l′′ : W (π) → W (π′) ⊗W (π′′)
from (11.2) also has the property that

∆l′,l′′(Cn(u)) = Cn(u)⊗ Cn(u), (11.9)

identifying W (π′) resp. W (π′′) with Yn,l′(σ′) resp. Yn,l′′(σ′′) for suitable shift matrices
σ′ resp. σ′′. Iterating (11.9) a total of (l − 1) times and using the definition (11.3) of
the Miura transform combined with (6.14) and Remarks 6.6 and 6.5, we deduce that

(u+ n− 1)p1(u+ n− 2)p2 · · ·upnµ(Cn(u)) = Zq1(u)⊗ Zq2(u)⊗ · · · ⊗ Zql
(u). (11.10)

Comparing with (11.8), we have proved the following identity written in W (π)[u]:

(u+ n− 1)p1(u+ n− 2)p2 · · ·upnCn(u) = ψ(ZN (u)). (11.11)
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Hence the elements C(1)
n , C

(2)
n , . . . of Yn,l(σ) must also generate Z(Yn,l(σ)). Since this

is true for all levels l, Remark 6.4 implies easily that the elements C(1)
n , C

(2)
n , . . . of

Yn(σ) itself generate Z(Yn(σ)), and the quotient map Yn(σ) � Yn,l(σ) maps Z(Yn(σ))
surjectively onto Z(Yn,l(σ)).

12. A special case

In this section, we give a much more direct proof of the main results of the article
in the special case that the nilpotent matrix e consists of n Jordan blocks all of the
same size l, i.e. the pyramid π is an n× l rectangle and N = nl. The main theorem in
this case was first noticed by Ragoucy and Sorba [RS]; see also [BR] which is closer to
the present exposition. We will identify g = glN with the tensor product gll ⊗ gln so
that the matrix unit el(r−1)+i,l(s−1)+j ∈ glN is identified with er,s ⊗ ei,j ∈ gll ⊗ gln for
1 ≤ r, s ≤ l, 1 ≤ i, j ≤ n. Numbering the bricks of the pyramid π down columns from
left to right as usual, the sl2-triple (e, h, f) introduced at the beginning of §8 is given
explicitly in this case by

e =
l−1∑
r=1

er,r+1 ⊗ In, h =
l∑

r=1

(l + 1− 2r)er,r ⊗ In, f =
l−1∑
r=1

r(l − r)er+1,r ⊗ In.

Let Mn denote the algebra of n × n matrices over C and let T (gll) denote the tensor
algebra on the vector space gll. Define an algebra homomorphism

T : T (gll)→Mn ⊗ U(glN ) (12.1)

sending a generator x ∈ gll to T (x) =
∑n

i,j=1 ei,j ⊗ (x ⊗ ei,j) ∈ Mn ⊗ U(glN ). Also
define maps

Ti,j : T (gll)→ U(glN ) (12.2)
for each 1 ≤ i, j ≤ n from the equation T (x) =

∑n
i,j=1 ei,j ⊗Ti,j(x), for any x ∈ T (gll).

Thus, thinking of T (x) as an n×n matrix with entries in U(glN ), Ti,j(x) is the ij-entry
of T (x). We have by definition that T (xy) = T (x)T (y) for any x, y ∈ T (gll), which
implies that

Ti,j(xy) =
n∑

k=1

Ti,k(x)Tk,j(y). (12.3)

In particular, Ti,j(1) = δi,j and

Ti,j(x1 ⊗ · · · ⊗ xr) =
∑

1≤i0,i1,...,ir≤n
i0=i,ir=j

(x1 ⊗ ei0,i1)(x2 ⊗ ei1,i2) · · · (xr ⊗ eir−1,ir) (12.4)

for arbitrary x1, . . . , xr ∈ gll. If u is an indeterminate, we will also write Ti,j for the
map obtained from Ti,j by extending scalars from C to C[u].

Lemma 12.1. For 1 ≤ h, i, j, k ≤ n and x, y1, . . . , yr ∈ gll,

[Ti,j(x), Th,k(y1 ⊗ · · · ⊗ yr)] =
r∑

s=1

Th,j(y1 ⊗ · · · ⊗ ys−1)Ti,k(xys ⊗ ys+1 ⊗ · · · ⊗ yr)

−
r∑

s=1

Th,j(y1 ⊗ · · · ⊗ ys−1 ⊗ ysx)Ti,k(ys+1 ⊗ · · · ⊗ yr),

where xys and ysx denote the usual products of matrices in Ml.
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Proof. Use (12.3) and induction on r. �

Define Ωl(u) to be the following l × l matrix with entries in T (gll)[u]:

e1,1 + u− (l − 1)n e1,2 e1,3 · · · e1,l

1 e2,2 + u− (l − 2)n
...

0
. . . el−2,l

... 1 el−1,l−1 + u− n el−1,l

0 · · · 0 1 el,l + u

 .

This matrix should be compared with (6.15). Recalling the definitions (3.22) and
(12.2), define

Ti,j(u) =
l∑

r=0

T
(r)
i,j u

l−r := Ti,j(rdetΩl(u)) (12.5)

for each i, j = 1, . . . , n. It is easy to see for r = 0, 1, . . . , l that T (r)
i,j is precisely the

element T (r)
i,j;0 of FrU(p) defined in (9.6). We also set T (r)

i,j := 0 for r > l. In the next
lemma, we check directly that these elements belong to the algebra W (π) = U(p)m

introduced in §8.

Lemma 12.2. For each 1 ≤ i, j ≤ n and r > 0, T (r)
i,j is invariant under the twisted

action of m.

Proof. Since m is generated by elements of the form er+1,r⊗ei,j , it suffices to show that
prχ([Ti,j(er+1,r), Th,k(rdetΩl(u))]) = 0 for every 1 ≤ h, i, j, k ≤ n and r = 1, . . . , l − 1.
Let us write Ω[r,s](u) for the submatrix of Ωl(u) consisting only of rows and columns
numbered r, . . . , s. We compute using Lemma 12.1 to get that

[Ti,j(er+1,r), Th,k(rdetΩl(u))] = Th,j(rdetΩ[1,r−1](u))×

Ti,k

rdet


er+1,r er+1,r+1 · · · er+1,l

1 er+1,r+1 + u− (l − r − 1)n · · · er+1,l
...

. . .
...

0 · · · 1 el,l + u




− Th,j

rdet


e1,1 + u− (l − 1)n · · · e1,r e1,r

1
. . .

...
... er,r + u− (l − r)n er,r
0 · · · 1 er+1,r




× Ti,k(rdetΩ[r+2,l](u)).

In order to apply prχ to the right hand side, we observe that for any 1 ≤ m ≤ n,

prχ (Ti,m (er+1,r (er+1,r+1 + u− (l − r − 1)n))) = Ti,m (er+1,r+1 + u− (l − r)n) .
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Hence, we get that

prχ([Ti,j(er+1,r), Th,k(rdetΩl(u))]) = Th,j(rdetΩ[1,r−1](u))×

Ti,k

rdet


1 er+1,r+1 · · · er+1,l

1 er+1,r+1 + u− (l − r)n · · · er+1,l
...

. . .
...

0 · · · 1 el,l + u




− Th,j

rdet


e1,1 + u− (l − 1)n · · · e1,r e1,r

1
. . .

...
... er,r + u− (l − r)n er,r
0 · · · 1 1




× Ti,k(rdetΩ[r+2,l](u)).

Making the obvious row and column operations gives that

rdet


1 er+1,r+1 · · · er+1,l

1 er+1,r+1 + u− (l − r)n · · · er+1,l
...

. . .
...

0 · · · 1 el,l + u


= (u− (l − r)n) rdet Ω[r+2,l](u),

rdet


e1,1 + u− (l − 1)n · · · e1,r e1,r

1
. . .

...
... er,r + u− (l − r)n er,r
0 · · · 1 1


= (u− (l − r)n) rdet Ω[1,r−1](u).

Now substituting these into the above formula for prχ ([Ti,j(er+1,r), Th,k(rdetΩl(u))])
shows that it is zero. �

Denoting the matrix unit er,r ⊗ ei,j instead by e[r]i,j , the subalgebra h ∼= gl⊕l
n of g has

basis {e[r]i,j}1≤r≤l,1≤i,j≤n. Let

η : U(h)→ U(h), e
[r]
i,j 7→ e

[r]
i,j + δi,j(l − r)n. (12.6)

Let π : U(p) � U(h) be the algebra homomorphism induced by the natural projection
p � h. The composite µ := η ◦ π is precisely the Miura transform from (11.4).

Lemma 12.3. For 1 ≤ i, j ≤ n and r > 0, the Miura transform µ maps the element
T

(r)
i,j of U(p) to the element∑

1≤s1<···<sr≤l

∑
1≤i0,··· ,ir≤n

i0=i,ir=j

e
[s1]
i0,i1

e
[s2]
i1,i2
· · · e[sr]

ir−1,ir
(12.7)

of U(h).
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Proof. Applying the map er,s 7→ δr,ser,r +(l− r)n to the matrix Ωl(u) gives a diagonal
matrix with determinant (u+ e1,1)(u+ e2,2) · · · (u+ er,r). The ul−r-coefficient of this is
the (non-commutative) elementary symmetric function

∑
1≤s1<···<sr≤l es1,s1 · · · esr,sr .

Now the lemma follows from (12.4). �

Finally let Yn,l denote the Yangian of level l. This may be defined as the algebra on
generators {T (r)

i,j }1≤i,j≤n,r>0 subject to the relations (3.1) and in addition T (r)
i,j = 0 for

all 1 ≤ i, j ≤ n and r > l. We will work now with the canonical filtration on Yn,l and
the Kazhdan filtration of W (π), as defined in sections 5 and 8 respectively. The main
theorem in our special case is as follows.

Theorem 12.4. There is an isomorphism Yn,l
∼→ W (π) of filtered algebras such that

the generators {T (r)
i,j }1≤i,j≤n,r>0 of Yn,l map to the elements of W (π) with the same

names. Moreover, the Miura transform µ : W (π) → U(h) is injective, and the map θ
from the diagram (8.4) is an isomorphism.

Proof. By the PBW theorem for Yn,l proved in [BK1, Theorem 3.1], the set of all
monomials in the elements {T (r)

i,j }1≤i,j≤n,1≤r≤l taken in some fixed order and of total
degree ≤ d form a basis for FdYn,l. Moreover, loc. cit. shows that there is an injective
algebra homomorphism κl : Yn,l ↪→ U(h) mapping T (r)

i,j ∈ Yn,l to precisely the element
(12.7). We also note from Lemma 7.3 that for each d ≥ 0,

dimκl(FdYn,l) = dim FdYn,l = dim FdS(cg(e)), (12.8)

where FdS(cg(e)) denotes the sum of all the graded pieces of S(cg(e)) of degree ≤ d
for the Kazhdan grading.

Let Xd denote the subspace of U(p) spanned by all monomials in the elements
{T (r)

i,j }1≤i,j≤n,0<r≤l taken in some fixed order and of total degree ≤ d. By Lemma 12.3
and the previous paragraph, µ(Xd) = κl(FdYn,l). Hence, since we know by Lemma 12.2
that Xd ⊆ FdW (π), we get by (12.8) and Corollary 8.3 that

dim FdS(cg(e)) = dimµ(Xd) ≤ dimXd ≤ dim FdW (π) ≤ dim FdS(cg(e)).

Hence equality holds everywhere, which means that Xd = FdW (π), the Miura trans-
form µ is injective with the same image as κl, and the map θ is an isomorphism.
Hence the composite µ−1 ◦ κl gives the required isomorphism Yn,l → W (π) of filtered
algebras. �
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