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Abstract. Let F be an algebraically closed field of characteristic p > 0
and G be a quasi-simple group with G/Z(G) ∼= An. We describe the minimal
polynomials of elements of order p in irreducible representations of G over F .
If p = 2 we determine the minimal polynomials of elements of order 4 in 2-
modular irreducible representations of An, Sn, 3 ·A6, 3 ·S6, 3 ·A7, and 3 ·S7.

1 Introduction

Throughout the paper, F is an algebraically closed field of characteristic
p > 0 and all representations are F -representations unless otherwise stated.
Let An and Sn denote the alternating and symmetric groups on n letters. We
always assume that n ≥ 5. Let G be a quasi-simple group with G/Z(G) ∼=
An, and

π : G → An

be the natural projection. Thus G is one of the following groups: An, Ãn :=
2 · An, k · A6, or k · A7 for k = 3, 6.

Our goal is to determine the minimal polynomials of the elements g ∈ G of
order p in the irreducible representations of G. Minimal polynomials of such
elements are always of the form (x − 1)d for some d ≤ p, and we determine
all configurations where d < p.
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Theorem 1.1 Let G be a quasi-simple group with G/Z(G) ∼= An, g ∈ G \
Z(G) be an element of order p, and φ be a faithful irreducible representation
of G over F . Then the degree d of the minimal polynomial of φ(g) is less
than p if and only if one of the following happens:

(i) π(g) is a product of two 3-cycles, G = Ã6, p = 3, and φ is a basic spin
representations of dimension 2.

(ii) π(g) is a p-cycle and one of the following holds:

(a) G = Ap, and φ is the ‘natural’ representation of dimension p− 2;

(b) G = Ãn, p = 3 or 5, and φ is a basic spin representation;

(c) G = 3 · A7 or 6 · A7, p = 7, and dim φ = 6;

(d) G = Ã7, p = 7, and dim φ = 4;

(e) G = Ã5, p = 5, and dim φ = 4;

(f) G = 3 · A6 or 3 · A7, p = 5, and dim φ = 3.

Moreover, d = p−1 in the case (ii)(b) above, and d = dim φ in the remaining
exceptional cases.

In particular, we see that there are two ‘reasons’ for the minimal poly-
nomial of an element of order p to have degree less than p in an irreducible
representation of G. One is trivial—the dimension of our representation
might be less than p. The other is less obvious—p = 3 or 5 and the represen-
tation is a basic spin representation (these representations are known to be
a source of many counterexamples and are pretty well-understood). We note
that the degrees of the basic representations of Ãn in prime characteristic
may differ from those in zero charactristic, see Lemma 2.5 below.

In the proofs we only have to deal with the case p > 3, as the case p = 3
of Theorem 1.1 has recently been settled by Chermak [3].

Obviously, the case p = 2 is trivial for elements of order 2. However, a
version of the question for g ∈ G of order 4 is of essential interest. Of course,
when p = 2 we do not need to deal with two-fold coverings. However, the
case G = Sn does not automatically reduce to An as g may not belong to
An. So we consider Sn as well.
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Theorem 1.2 Let p = 2, n ≥ 5, G ∈ {An, Sn, 3 · A6, 3 · S6, 3 · A7, 3 · S7},
g ∈ G be an element of order 4, and φ be a faithful irreducible representation
of G over F . Then the degree d of the minimal polynomial of φ(g) is less
than 4 if and only if d = 3 and one of the following happens:

(a) g is of cycle type (4, 2), and either G ∼= 3 ·A6, dim φ = 3 or G ∼= 3 ·S6,
dim φ = 6;

(b) G ∼= A8
∼= SL(4, 2), g is of cycle type (4, 4), and φ is either the natural

representation of SL(4, 2), or its dual, or its exterior square.

(c) G ∼= S8, g is of cycle type (4, 4), and dim φ = 8 or 6.

2 Preliminaries

If M is a matrix, we denote by deg M the degree of the minimal polynomial of
M and by Jord M the Jordan normal form of M (defined up to the ordering
of Jordan blocks). The Jordan block of size k with eigenvalue 1 is denoted
by Jk. The symbol diag(a1, . . . ,ak) denotes the block-diagonal matrix with
square matrices a1, . . . ,ak along the diagonal.

If G is any group, we denote by 1G the trivial FG-module (or the corre-
sponding representation). If M is an FG-module (resp. φ : G → GL(M) is
a representation of G), and H < G is a subgroup, then M |H (resp. φ|H)
stands for the restriction of M (resp. φ) to H.

We record the following obvious fact.

Lemma 2.1 Let G be a finite group and g ∈ G. If ρ and φ are representa-
tions of G such that ρ is a subfactor of φ then deg ρ(g) ≤ deg φ(g).

Let m < n. Throughout the paper we will often consider Sm as a subgroup
of Sn, Ãm as a subgroup of Ãn, etc. Unless otherwise stated, the embeddings
are assumed to be natural, i.e. the subgroup acts on the first m letters.

Now, let G = An or Sn. We will refer to the non-trivial composition
factor of the natural n-dimensional permutation FG-module as the natural
irreducible module and denote it by En. Denote by εn the corresponding
representation. We have dim εn = n− 2 if p|n and dim εn = n− 1 otherwise.
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Lemma 2.2 Let G = Sn or An and g ∈ G be an element of order p. Then
the degree d of the minimal polynomial of εn(g) is p, unless n = p, in which
case d = p− 2.

Proof. An easy explicit calculation (see e.g. [8, Lemmas 2.1,2.2]).

Let 1−Sn
be the sign module over FSn, and set E−

n = En ⊗ 1−Sn
. Define

En := {1Sn , 1−Sn
, En, E

−
n }.

If λ is a p-regular partition, Dλ denotes the irreducible FSn-module corre-
sponding to λ, see [6] . The following is a useful inductive characterization
of the FSn-modules from En.

Proposition 2.3 Let n ≥ 6 and D be an irreducible FSn-module. Suppose
that all composition factors of the restriction D|Sn−1 belong to En−1. Then
D ∈ En, unless n = 6, p = 3 and D ∈ {D(4,2), D(22,12)}, or n = 6, p = 5 and
D ∈ {D(4,12), D(3,13)}.

Proof. By tensoring with 1−Sn
if necessary, we may assume that 1Sn−1 or En−1

occurs in the socle of D|Sn−1. Then it follows from [7, Theorem 0.5] that
either D ∈ En or D ∈ {D(n−2,2), D(n−2,12)}. However, by [7, Theorem 0.4(ii)],
D(n−2,2)|Sn−1 contains D(n−3,2) as a composition factor, and D(n−3,2) 6∈ En−1

unless n = 6 and p = 3. Similarly, D(n−2,12)|Sn−1 contains D(n−3,12) as a
composition factor and D(n−3,12) 6∈ En−1 unless n = 6 and p = 5.

Corollary 2.4 Let n ≥ 7, and V be an irreducible FAn-module such that all
composition factors of the restriction V |An−1 belong to {1An−1 , En−1}. Then
V ∈ {1An , En}.

Proof. Follows from Clifford theory and Proposition 2.3

Let S̃n denote a (non-trivial) two-fold central cover of Sn. Of course, Ãn

is a subgroup in S̃n of index 2. The group S̃n has (one or two) remarkable
complex representations called basic (spin) representations. These can be
characterized as its faithful complex representations of minimal degree and
constructed using Clifford algebras. A basic spin representation can also be
defined as an irreducible representation of S̃n whose character is labelled by
the partition (n) in the Schur’s parametrization of irreducible characters.
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The degree of a basic representation of S̃n is 2(n−1)/2 if n is odd, and 2(n−2)/2

if n is even. On restriction to Ãn, basic representations remain irreducible if
n is even and split as a direct sum of two non-equivalent irreducibles if n is
odd. In both cases the corresponding complex representations of Ãn are also
called basic.

Finally, for both S̃n and Ãn, every irreducible constituent of Brauer re-
duction of a basic representation modulo p is called a (modular) basic rep-
resentation. Dimensions of modular basic representations of S̃n have been
determined by Wales [11]. These are the same as for complex representa-
tions, unless p divides n, in which case they are twice as small. Moreover, in
[11, Table III], Wales provides a complete information concerning tensoring
basic modular representations with sign, from which the dimensions of basic
modular representations of Ãn also follow, at least for p > 2. If p = 2 one
can use Benson [1]. To summarize, we have:

Lemma 2.5 Let dn(p) be the dimension of a modular basic representation
of Ãn.

(i) Let p > 2 and p 6 |n. Then dn(p) = 2(n−3)/2 if n is odd, and 2(n−2)/2 if n
is even.

(ii) Let p > 2 and p|n. Then dn(p) = 2(n−3)/2 if n is odd, and 2(n−4)/2 if n
is even.

(iii) Let p = 2. Then dn(2) = 2(n−3)/2 if n is odd, 2(n−2)/2 if n ≡ 2(mod 4),
and 2(n−4)/2 if n ≡ 0(mod 4).

We cite another result of Wales for future reference:

Proposition 2.6 Let n > 5 and φ be a faithful irreducible representation of
Ãn. Then φ is basic if and only if all composition factors of φ|Ãn−1 are basic.

Proof. For S̃n a similar result is contained in the proof of [11, Theorem 8.1].
Then Clifford theory implies the result for Ãn.

Finally we record a lemma of G. Higman which is often used below.

Lemma 2.7 [2, Ch. IX, Theorem 1.10] Let G ⊂ GL(n, F ) be a finite sub-
group with abelian normal subgroup A of order coprime to p. Let g ∈ G be
an element of order pk such that gpk−1 6∈ CG(A). Then deg g = pk.
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3 Main Results

The following result of the second author provides us with an induction base
for future arguments:

Lemma 3.1 [12, Lemma 2.12] Let n < 2p, G be a quasi-simple group with
G/Z(G) ∼= An, g ∈ G be an element with gp ∈ Z(G). Suppose that φ is a
faithful irreducible representation of G such that deg φ(g) < p. Then one of
the following holds:

(i) Z(G) = 1, n = p, and φ = εn with dim φ = p− 2;

(ii) p = 3, G = Ã5, and dim φ = 2;

(iii) either p = 5, G ∼= Ã6, or p = 5, 7, G ∼= Ã7, and in the both cases
dim φ = 4;

(iv) p = 5, G = Ã8 or Ã9, and dim φ = 8;

(v) p = 5, G = Ã5, and dim φ = 2;

(vi) p = 5, G = Ã5, and dim φ = 4;

(vii) p = 5, G = 3 · A6 or 3 · A7, and dim φ = 3;

(viii) p = 7, G = 3 · A7 or 6 · A7, and dim φ = 6.

Moreover, in all the cases above, except (iv), the Jodan normal form of φ(g)
has a single block, and in case (iv) it has two blocks of size 4.

Remark. The representations φ appearing in (ii)-(v) are basic.

Lemma 3.2 Let G = An or Ãn, with n ≥ 2p > 6, and g ∈ G be an element
of order p. If p = 5, suppose additionally that π(g) is a 5-cycle. If p = 7
suppose additionally that either G = An or π(g) is a 7-cycle. If φ is a faithful
irreducible representation of G with deg φ(g) < p, then either G = An, n = p,
and φ = εn, or p = 5, G = Ãn, and φ is basic.
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Proof. We may assume that π(g) is a product of cycles of the form:

π(g) = (1, 2, . . . , p)(p + 1, . . . , 2p) · · · .

Recall that for m < n, Am is assumed to be embedded into An as acting on
the first m letters, unless otherwise stated. Define a subgroup H of G by
requiring that (1) H ⊃ Z(G); (2) π(H) ∼= A7 if p = 5; π(H) ∼= A8 if p = 7
and G = Ãn; π(H) ∼= Ap otherwise.

Set X = 〈g,H〉. Then we have H ∼= X/Op(X) and g = hg1, where h =
(1, 2, . . . , p) ∈ H and g1 ∈ Op(X). Let τ be a non-trivial composition factor
of φ|X. Then τ(Op(X)) = Id, so we can also consider τ as a representation
of H. We have τ(g) = τ(h). In view of Lemma 2.1, deg τ(g) < p.

If Z(G) = {1} then Z(H) = {1}, and so τ = εn, thanks Lemma 3.1. By
induction on n it follows from Corollary 2.4 that φ = εn. The result now
follows from Lemma 2.2.

Finally, let |Z(G)| = 2. By Lemma 3.1, p = 5 and τ is basic. So
Proposition 2.6 implies that φ is basic.

Lemma 3.3 Let G = Ãn or An, and g ∈ G be an element of order p > 3
such that π(g) has k non-trivial cycles. If deg φ(g) < p for some faithful
irreducible representation φ of G then k < 3.

Proof. Suppose k ≥ 3. We may assume that

π(g) = (1, 2, . . . , p)(p + 1, p + 2, . . . , 2p)(2p + 1, 2p + 2, . . . , 3p) . . . .

Let A be the elementary abelian 3-subgroup of An of order 3p generated by
the commuting 3-cycles (j, p + j, 2p + j) for 1 ≤ j ≤ p. If G = Ãn, let
B = π−1(A). If G = An, take B = A. In both cases B is abelian of order
prime to p, and g ∈ NG(B) \ CG(B). Now we apply Lemma 2.7.

Lemma 3.4 Let G = Ãn or An, and g ∈ G be an element of order p = 5
or 7. If deg φ(g) < p for some faithful irreducible representation φ of G, then
π(g) is a p-cycle.

Proof. In view of Lemma 3.3, we may assume that

π(g) = (1, 2, . . . , p)(p + 1, p + 2, . . . , 2p).
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Set hij = (i, i + p)(j, j + p) ∈ An for 1 ≤ i < j ≤ p. The subgroup H
generated by the hij is abelian of order 2p−1. If G = An, we may apply
Lemma 2.7, as g ∈ NG(H) \ CG(H). Now, let G = Ãn.

Assume first that p = 7. Observe that H can be considered as an
F2〈π(g)〉-module via conjugation, and 〈π(g)〉 is acyclic group of order p.
Then the dimension of H over F2 is 6, hence 〈π(g)〉 has an irreducible con-
stituent M on H of dimension 3. In other words, π(g) normalizes M , and
[π(g), M ] 6= 1. Let L = π−1(M). Then |L| = 16, hence it is not extraspecial.
Now it is easy to deduce, using conjugation with g, that L is abelian. As
g ∈ NG(L) \ CG(L), the result follows from Lemma 2.7.

Finally, let p = 5. Then g is contained in a group X isomorphic to the
central product of two copies of Ã5. Let τ be an irreducible constituent
of the restriction φ to X. Then τ = τ1 ⊗ τ2 where τ1 and τ2 are faithful
representations of the respective copies of Ã5. In view of Lemma 3.1 and [5,
Chapter VIII, Theorem 2.7], deg τ(g) ≥ 4, with the equality only if dim τ1 =
dim τ2 = 2. This means that every irreducible constituent of the restriction
of φ to the naturally embedded Ã5 is basic. By Proposition 2.6, φ is basic.
Then deg φ(g) = 5 by [8, Lemma 3.12].

Proof of Theorem 1.1. For p = 3, see Chermak [3], and for n < 2p,
see Lemma 3.1. Let p > 3 and n ≥ 2p. Then the ‘only-if’ part follows
from Lemmas 3.2–3.4. For the ‘if’ part, in the case Z(G) = 1, φ = εn see
Lemma 2.2. It remains to show that d := deg φ(g) = 4 for φ basic spin,
p = 5, and π(g) a 5-cycle. Restricting to a natural subgroup Ã7 containing
g and using Lemma 3.1, we see that d ≥ 4. On the other hand, for complex
representations of Ãn a theorem similar to Theorem 1.1 has been proved in
[13]. In particular, if g ∈ Ãn is a 5-cycle then deg β(g) = 4 for complex basic
spin representations β. As φ is a constituent of a reduction of β modulo 5,
we have d ≤ 4. 2

Now we prove Theorem 1.2. The result is contained in Lemmas 3.5–3.11.

Lemma 3.5 Theorem 1.2 is true for n = 5.

Proof. As An does not have elements of order 4 we may assume that G = S5.
Then G has two non-trivial irreducible representations, both of dimension 4,
see [6, Tables]. One of them is ε5, for which ε5 ⊕ 1S5 = π, where π is the
natural permutation representation of dimension 5. Clearly, Jord π(g) =
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diag(J4, J1), so Jord εn(g) = J4. Another irreducible representation of G
corresponds to the partition (3, 2), and so it is reducible on A5, thanks to [1]
or [9]. Therefore Jord φ(g2) = diag(J2, J2) whence Jord φ(g) = J4.

Lemma 3.6 Let n ≥ 5, G ∈ {An, Sn, 3 ·A6, 3 ·S6, 3 ·A7, 3 ·S7}, and g ∈ G
be an element of order 4 fixing at least one point of the natural permutation
set. Then deg φ(g) = 4 for any faithful irreducible representation φ of G.

Proof. We may assume that g transitively permutes 1, 2, 3, 4 and fixes 5.
Let H := Alt{1, 2, 3, 4, 5}, and Ĥ be the preimage of H in G. Set X :=
〈g, Ĥ〉. As H contains no element of order 4, the restriction homomorphism
h : X → Sym{1, 2, 3, 4, 5} ∼= S5 is surjective. Let K = ker h. Clearly, K is
central in X. As S5 has no non-split central extension with center of order 3,
we have X ∼= Z(G) × Y for some subgroup Y with g ∈ Y . Let τ be a
composition factor of φ|Y with dim τ > 1. Then τ(Y ) ∼= S5. By Lemma 3.5,
deg τ(g) = 4, hence deg φ(g) = 4 in view of Lemma 2.1.

Lemma 3.7 Theorem 1.2 is true for G = A6 and S6.

Proof. For g ∈ S6\A6 this follows from Lemma 3.6. So we may assume that
G = A6. We use [9]. Irreducible FG-modules of dimension 8 are projective.
So the Jordan form of g on each of these modules is diag(J4, J4). Other non-
trivial irreducible FG-modules are of dimension 4. As A6 ⊆ S6

∼= Sp(4, 2),
one of them is the natural Sp(4, 2)-module V restricted to A6. As the Jordan
form of a unipotent element of Sp(4, 2) does not have a block of size 3, the
theorem is true for the natural representation. The second FG-module of
dimension 4 is obtained from V by twisting with the outer automorphism σ
of S6 = Sp(4, 2). As A6 has only one conjugacy class of elements of order 4,
σ(g) is conjugate to g in A6, so Jord σ(g) = Jord g.

Lemma 3.8 Let n ≥ 6, G = An or Sn, and g ∈ G be an element of order
4 having a 2-cycle in its cycle type. Then deg φ(g) = 4 for any faithful
irreducible representation φ of G.

Proof. Clearly g normalizes a subgroup H ∼= A6 fixing n − 6 points such
that g has a 2- and 4-cycle on the remaining 6 points. Then g = g1g2 where
g1 ∈ H, g2 ∈ CG(H). Set X = 〈g,H〉 = 〈g2, H〉, and let τ be a non-trivial
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composition factor of φ|X. As X/O2(X) ∼= H, Lemma 3.7 gives deg τ(g) = 4.
So by Lemma 2.1, deg φ(g) = 4.

Lemma 3.9 Theorem 1.2 is true for n = 8.

Proof. In view of Lemmas 3.8 and 3.6, we may assume that the cycle type
of g is (4, 4) and G = A8

∼= SL(4, 2). Note that the group A8 has 2 conjugacy
classes of elements of order 4, corresponding to cycle types (4, 2) and (4, 4),
and only the first one meets the subgroup A6. The group SL(4, 2) has 2 con-
jugacy classes of elements of order 4, with Jordan forms J4 and diag(J3, J1),
and the second one does not meet Sp(4, 2). As A6

∼= Sp(4, 2)′, we conclude
that the class (4, 4) corresponds to the class diag(J3, J1). So g belongs to the
intermediate subgroup H ∼= SL(3, 2).

Let τ be an irreducible representation of H. Then τ is a restriction of a
rational representation of H̄, the algebraic group of type A2. The irreducible
representations of H̄ are labelled by their highest weights a1ω1 +a2ω2, where
a1, a2 are non-negative integers and ω1, ω2 are fundamental weights. It is well
known that τ is a restriction of one of the four irreducible representations of
H̄ labelled by 0, ω1, ω2, or ω1+ω2. The last one corresponds to the Steinberg
module, whose restriction to H is projective, and so all Jordan blocks of g
are of size 4. Two other representations are the natural and its dual. So the
Jordan form of g on both of them is diag(J3, J1). Finally, corresponding to
the zero highest weight we have the trivial representation.

Now, let λ = a1ω1 +a2ω2 +a3ω3 be the highest weight of φ. By a theorem
of Smith [10] (also proved independently by R. Dipper), the restriction φ|H
contains a direct summand τ with highest weight a1ω1+a2ω2. By the previous
paragraph, we may assume that at least one of a1, a2 is zero. By duality, the
same is true for a2, a3. So we are left with the cases λ ∈ {ω1, ω2, ω3, ω1 +ω3}.
The last one is the adjoint representation of G. Clearly, its restriction to
H contains a composition factor isomorphic to the adjoint representation of
H. As the last representation is projective, it is a direct summand. Hence
this case is ruled out. The cases λ = ω1, ω3 are obvious. Finally, the module
corresponding to λ = ω2 is the exterior square of the natural module. So
its restriction to H is a direct sum of the natural and dual natural modules,
hence the Jordan blocks of φ(g) are of size 3.
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Lemma 3.10 Let G = An or Sn, and g ∈ G be an element of order 4 con-
taining at least three 4-cycles. Then deg φ(g) = 4 for any faithful irreducible
representation φ of G.

Proof. We may assume that

g = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12) . . .

Set hj := (j, j + 4, j + 8) for j = 1, 2, 3, 4, and H := 〈h1, h2, h3, h4〉. Then H
is an abelian 3-group and g ∈ NG(H). Moreover, g2 6∈ CG(H), so the result
follows from Lemma 2.7.

Lemma 3.11 Theorem 1.2 is true for G = 3 · A6 and 3 · A7.

Proof. For G = 3 ·A7 see Lemma 3.6. Let G = 3 ·A6. Then dim φ = 3 or 9,
see [9]. In the former case deg φ(g) = 3, as deg φ(g) < 3 implies φ(g)2 = 1,
which is false. Let dim φ = 9. Observe that g2 normalizes a cyclic group 〈c〉
of order 5. Set X := 〈g2, c〉. As g2cg−2 = c−1 and the multiplicity of every
eigenvalue of φ(c) is 2 (see [9]), it follows that φ|X has four composition
factors of dimension 2 and one composition factor of dimension 1. Therefore
Jord g2 = diag(J2, J2, J2, J2, J1), whence Jord g = diag(J4, J4, J1).
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