Minimal polynomials of elements of order pin p-modular projective representations of alternating groups

A.S. Kleshchev and A.E. Zalesski

October 29, 2002

Abstract. Let F be an algebraically closed field of characteristic p > 0and G be a quasi-simple group with $G/Z(G) \cong A_n$. We describe the minimal polynomials of elements of order p in irreducible representations of G over F. If p = 2 we determine the minimal polynomials of elements of order 4 in 2modular irreducible representations of A_n , S_n , $3 \cdot A_6$, $3 \cdot S_6$, $3 \cdot A_7$, and $3 \cdot S_7$.

1 Introduction

Throughout the paper, F is an algebraically closed field of characteristic p > 0 and all representations are F-representations unless otherwise stated. Let A_n and S_n denote the alternating and symmetric groups on n letters. We always assume that $n \ge 5$. Let G be a quasi-simple group with $G/Z(G) \cong A_n$, and

$$\pi: G \to A_n$$

be the natural projection. Thus G is one of the following groups: A_n , $\tilde{A}_n := 2 \cdot A_n$, $k \cdot A_6$, or $k \cdot A_7$ for k = 3, 6.

Our goal is to determine the minimal polynomials of the elements $g \in G$ of order p in the irreducible representations of G. Minimal polynomials of such elements are always of the form $(x - 1)^d$ for some $d \leq p$, and we determine all configurations where d < p. **Theorem 1.1** Let G be a quasi-simple group with $G/Z(G) \cong A_n$, $g \in G \setminus Z(G)$ be an element of order p, and ϕ be a faithful irreducible representation of G over F. Then the degree d of the minimal polynomial of $\phi(g)$ is less than p if and only if one of the following happens:

- (i) $\pi(g)$ is a product of two 3-cycles, $G = \tilde{A}_6$, p = 3, and ϕ is a basic spin representations of dimension 2.
- (ii) $\pi(g)$ is a p-cycle and one of the following holds:
 - (a) $G = A_p$, and ϕ is the 'natural' representation of dimension p 2;
 - (b) $G = \tilde{A}_n$, p = 3 or 5, and ϕ is a basic spin representation;
 - (c) $G = 3 \cdot A_7$ or $6 \cdot A_7$, p = 7, and dim $\phi = 6$;
 - (d) $G = \tilde{A}_7, p = 7, and \dim \phi = 4;$
 - (e) $G = \tilde{A}_5, p = 5, and \dim \phi = 4;$
 - (f) $G = 3 \cdot A_6 \text{ or } 3 \cdot A_7, p = 5, and \dim \phi = 3.$

Moreover, d = p-1 in the case (ii)(b) above, and $d = \dim \phi$ in the remaining exceptional cases.

In particular, we see that there are two 'reasons' for the minimal polynomial of an element of order p to have degree less than p in an irreducible representation of G. One is trivial—the dimension of our representation might be less than p. The other is less obvious—p = 3 or 5 and the representation is a basic spin representation (these representations are known to be a source of many counterexamples and are pretty well-understood). We note that the degrees of the basic representations of \tilde{A}_n in prime characteristic may differ from those in zero charactristic, see Lemma 2.5 below.

In the proofs we only have to deal with the case p > 3, as the case p = 3 of Theorem 1.1 has recently been settled by Chermak [3].

Obviously, the case p = 2 is trivial for elements of order 2. However, a version of the question for $g \in G$ of order 4 is of essential interest. Of course, when p = 2 we do not need to deal with two-fold coverings. However, the case $G = S_n$ does not automatically reduce to A_n as g may not belong to A_n . So we consider S_n as well.

Theorem 1.2 Let p = 2, $n \ge 5$, $G \in \{A_n, S_n, 3 \cdot A_6, 3 \cdot S_6, 3 \cdot A_7, 3 \cdot S_7\}$, $g \in G$ be an element of order 4, and ϕ be a faithful irreducible representation of G over F. Then the degree d of the minimal polynomial of $\phi(g)$ is less than 4 if and only if d = 3 and one of the following happens:

- (a) g is of cycle type (4,2), and either $G \cong 3 \cdot A_6$, dim $\phi = 3$ or $G \cong 3 \cdot S_6$, dim $\phi = 6$;
- (b) $G \cong A_8 \cong SL(4,2)$, g is of cycle type (4,4), and ϕ is either the natural representation of SL(4,2), or its dual, or its exterior square.
- (c) $G \cong S_8$, g is of cycle type (4,4), and dim $\phi = 8$ or 6.

2 Preliminaries

If M is a matrix, we denote by deg M the degree of the minimal polynomial of M and by Jord M the Jordan normal form of M (defined up to the ordering of Jordan blocks). The Jordan block of size k with eigenvalue 1 is denoted by J_k . The symbol diag (a_1, \ldots, a_k) denotes the block-diagonal matrix with square matrices a_1, \ldots, a_k along the diagonal.

If G is any group, we denote by 1_G the trivial FG-module (or the corresponding representation). If M is an FG-module (resp. $\phi : G \to GL(M)$ is a representation of G), and H < G is a subgroup, then M|H (resp. $\phi|H$) stands for the restriction of M (resp. ϕ) to H.

We record the following obvious fact.

Lemma 2.1 Let G be a finite group and $g \in G$. If ρ and ϕ are representations of G such that ρ is a subfactor of ϕ then deg $\rho(g) \leq \deg \phi(g)$.

Let m < n. Throughout the paper we will often consider S_m as a subgroup of S_n , \tilde{A}_m as a subgroup of \tilde{A}_n , etc. Unless otherwise stated, the embeddings are assumed to be *natural*, i.e. the subgroup acts on the *first* m letters.

Now, let $G = A_n$ or S_n . We will refer to the non-trivial composition factor of the natural *n*-dimensional permutation *FG*-module as the *natural irreducible module* and denote it by E_n . Denote by ε_n the corresponding representation. We have dim $\varepsilon_n = n - 2$ if p|n and dim $\varepsilon_n = n - 1$ otherwise. **Lemma 2.2** Let $G = S_n$ or A_n and $g \in G$ be an element of order p. Then the degree d of the minimal polynomial of $\varepsilon_n(g)$ is p, unless n = p, in which case d = p - 2.

Proof. An easy explicit calculation (see e.g. [8, Lemmas 2.1, 2.2]). \Box

Let $1_{S_n}^-$ be the sign module over FS_n , and set $E_n^- = E_n \otimes 1_{S_n}^-$. Define

$$\mathcal{E}_n := \{1_{S_n}, 1_{S_n}^-, E_n, E_n^-\}.$$

If λ is a *p*-regular partition, D^{λ} denotes the irreducible FS_n -module corresponding to λ , see [6]. The following is a useful inductive characterization of the FS_n -modules from \mathcal{E}_n .

Proposition 2.3 Let $n \ge 6$ and D be an irreducible FS_n -module. Suppose that all composition factors of the restriction $D|S_{n-1}$ belong to \mathcal{E}_{n-1} . Then $D \in \mathcal{E}_n$, unless n = 6, p = 3 and $D \in \{D^{(4,2)}, D^{(2^2,1^2)}\}$, or n = 6, p = 5 and $D \in \{D^{(4,1^2)}, D^{(3,1^3)}\}$.

Proof. By tensoring with $1_{S_n}^-$ if necessary, we may assume that $1_{S_{n-1}}$ or E_{n-1} occurs in the socle of $D|S_{n-1}$. Then it follows from [7, Theorem 0.5] that either $D \in \mathcal{E}_n$ or $D \in \{D^{(n-2,2)}, D^{(n-2,1^2)}\}$. However, by [7, Theorem 0.4(ii)], $D^{(n-2,2)}|S_{n-1}$ contains $D^{(n-3,2)}$ as a composition factor, and $D^{(n-3,2)} \notin \mathcal{E}_{n-1}$ unless n = 6 and p = 3. Similarly, $D^{(n-2,1^2)}|S_{n-1}$ contains $D^{(n-3,1^2)}$ as a composition factor and $D^{(n-3,1^2)} \notin \mathcal{E}_{n-1}$ unless n = 6 and p = 5. \Box

Corollary 2.4 Let $n \ge 7$, and V be an irreducible FA_n -module such that all composition factors of the restriction $V|A_{n-1}$ belong to $\{1_{A_{n-1}}, E_{n-1}\}$. Then $V \in \{1_{A_n}, E_n\}$.

Proof. Follows from Clifford theory and Proposition 2.3 \Box

Let \tilde{S}_n denote a (non-trivial) two-fold central cover of S_n . Of course, \tilde{A}_n is a subgroup in \tilde{S}_n of index 2. The group \tilde{S}_n has (one or two) remarkable complex representations called *basic (spin) representations*. These can be characterized as its faithful complex representations of minimal degree and constructed using Clifford algebras. A basic spin representation can also be defined as an irreducible representation of \tilde{S}_n whose character is labelled by the partition (n) in the Schur's parametrization of irreducible characters.

The degree of a basic representation of \tilde{S}_n is $2^{(n-1)/2}$ if n is odd, and $2^{(n-2)/2}$ if n is even. On restriction to \tilde{A}_n , basic representations remain irreducible if n is even and split as a direct sum of two non-equivalent irreducibles if n is odd. In both cases the corresponding complex representations of \tilde{A}_n are also called *basic*.

Finally, for both \tilde{S}_n and \tilde{A}_n , every irreducible constituent of Brauer reduction of a basic representation modulo p is called a (modular) basic representation. Dimensions of modular basic representations of \tilde{S}_n have been determined by Wales [11]. These are the same as for complex representations, unless p divides n, in which case they are twice as small. Moreover, in [11, Table III], Wales provides a complete information concerning tensoring basic modular representations with sign, from which the dimensions of basic modular representations of \tilde{A}_n also follow, at least for p > 2. If p = 2 one can use Benson [1]. To summarize, we have:

Lemma 2.5 Let $d_n(p)$ be the dimension of a modular basic representation of \tilde{A}_n .

- (i) Let p > 2 and $p \not\mid n$. Then $d_n(p) = 2^{(n-3)/2}$ if n is odd, and $2^{(n-2)/2}$ if n is even.
- (ii) Let p > 2 and p|n. Then $d_n(p) = 2^{(n-3)/2}$ if n is odd, and $2^{(n-4)/2}$ if n is even.
- (iii) Let p = 2. Then $d_n(2) = 2^{(n-3)/2}$ if n is odd, $2^{(n-2)/2}$ if $n \equiv 2 \pmod{4}$, and $2^{(n-4)/2}$ if $n \equiv 0 \pmod{4}$.

We cite another result of Wales for future reference:

Proposition 2.6 Let n > 5 and ϕ be a faithful irreducible representation of \tilde{A}_n . Then ϕ is basic if and only if all composition factors of $\phi|\tilde{A}_{n-1}$ are basic.

Proof. For \tilde{S}_n a similar result is contained in the proof of [11, Theorem 8.1]. Then Clifford theory implies the result for \tilde{A}_n . \Box

Finally we record a lemma of G. Higman which is often used below.

Lemma 2.7 [2, Ch. IX, Theorem 1.10] Let $G \subset GL(n, F)$ be a finite subgroup with abelian normal subgroup A of order coprime to p. Let $g \in G$ be an element of order p^k such that $g^{p^{k-1}} \notin C_G(A)$. Then deg $g = p^k$.

3 Main Results

The following result of the second author provides us with an induction base for future arguments:

Lemma 3.1 [12, Lemma 2.12] Let n < 2p, G be a quasi-simple group with $G/Z(G) \cong A_n$, $g \in G$ be an element with $g^p \in Z(G)$. Suppose that ϕ is a faithful irreducible representation of G such that deg $\phi(g) < p$. Then one of the following holds:

- (i) Z(G) = 1, n = p, and $\phi = \varepsilon_n$ with dim $\phi = p 2$;
- (ii) $p = 3, G = \tilde{A}_5$, and dim $\phi = 2$;
- (iii) either p = 5, $G \cong \tilde{A}_6$, or p = 5, 7, $G \cong \tilde{A}_7$, and in the both cases $\dim \phi = 4$;
- (iv) p = 5, $G = \tilde{A}_8$ or \tilde{A}_9 , and dim $\phi = 8$;
- (v) p = 5, $G = \tilde{A}_5$, and dim $\phi = 2$;
- (vi) p = 5, $G = \tilde{A}_5$, and dim $\phi = 4$;
- (vii) $p = 5, G = 3 \cdot A_6 \text{ or } 3 \cdot A_7, \text{ and } \dim \phi = 3;$
- (viii) $p = 7, G = 3 \cdot A_7 \text{ or } 6 \cdot A_7, \text{ and } \dim \phi = 6.$

Moreover, in all the cases above, except (iv), the Jodan normal form of $\phi(g)$ has a single block, and in case (iv) it has two blocks of size 4.

Remark. The representations ϕ appearing in (ii)-(v) are basic.

Lemma 3.2 Let $G = A_n$ or \tilde{A}_n , with $n \ge 2p > 6$, and $g \in G$ be an element of order p. If p = 5, suppose additionally that $\pi(g)$ is a 5-cycle. If p = 7suppose additionally that either $G = A_n$ or $\pi(g)$ is a 7-cycle. If ϕ is a faithful irreducible representation of G with deg $\phi(g) < p$, then either $G = A_n$, n = p, and $\phi = \varepsilon_n$, or p = 5, $G = \tilde{A}_n$, and ϕ is basic. *Proof.* We may assume that $\pi(g)$ is a product of cycles of the form:

$$\pi(g) = (1, 2, \dots, p)(p+1, \dots, 2p) \cdots$$

Recall that for m < n, A_m is assumed to be embedded into A_n as acting on the first *m* letters, unless otherwise stated. Define a subgroup *H* of *G* by requiring that (1) $H \supset Z(G)$; (2) $\pi(H) \cong A_7$ if p = 5; $\pi(H) \cong A_8$ if p = 7and $G = \tilde{A}_n$; $\pi(H) \cong A_p$ otherwise.

Set $X = \langle g, H \rangle$. Then we have $H \cong X/O_p(X)$ and $g = hg_1$, where $h = (1, 2, \ldots, p) \in H$ and $g_1 \in O_p(X)$. Let τ be a non-trivial composition factor of $\phi | X$. Then $\tau(O_p(X)) = \text{Id}$, so we can also consider τ as a representation of H. We have $\tau(g) = \tau(h)$. In view of Lemma 2.1, $\deg \tau(g) < p$.

If $Z(G) = \{1\}$ then $Z(H) = \{1\}$, and so $\tau = \varepsilon_n$, thanks Lemma 3.1. By induction on *n* it follows from Corollary 2.4 that $\phi = \varepsilon_n$. The result now follows from Lemma 2.2.

Finally, let |Z(G)| = 2. By Lemma 3.1, p = 5 and τ is basic. So Proposition 2.6 implies that ϕ is basic. \Box

Lemma 3.3 Let $G = A_n$ or A_n , and $g \in G$ be an element of order p > 3such that $\pi(g)$ has k non-trivial cycles. If $\deg \phi(g) < p$ for some faithful irreducible representation ϕ of G then k < 3.

Proof. Suppose $k \geq 3$. We may assume that

 $\pi(g) = (1, 2, \dots, p)(p+1, p+2, \dots, 2p)(2p+1, 2p+2, \dots, 3p)\dots$

Let A be the elementary abelian 3-subgroup of A_n of order 3^p generated by the commuting 3-cycles (j, p + j, 2p + j) for $1 \leq j \leq p$. If $G = \tilde{A}_n$, let $B = \pi^{-1}(A)$. If $G = A_n$, take B = A. In both cases B is abelian of order prime to p, and $g \in N_G(B) \setminus C_G(B)$. Now we apply Lemma 2.7. \Box

Lemma 3.4 Let $G = A_n$ or A_n , and $g \in G$ be an element of order p = 5 or 7. If deg $\phi(g) < p$ for some faithful irreducible representation ϕ of G, then $\pi(g)$ is a p-cycle.

Proof. In view of Lemma 3.3, we may assume that

$$\pi(g) = (1, 2, \dots, p)(p+1, p+2, \dots, 2p).$$

Set $h_{ij} = (i, i + p)(j, j + p) \in A_n$ for $1 \leq i < j \leq p$. The subgroup H generated by the h_{ij} is abelian of order 2^{p-1} . If $G = A_n$, we may apply Lemma 2.7, as $g \in N_G(H) \setminus C_G(H)$. Now, let $G = \tilde{A}_n$.

Assume first that p = 7. Observe that H can be considered as an $\mathbf{F}_2\langle \pi(g) \rangle$ -module via conjugation, and $\langle \pi(g) \rangle$ is acyclic group of order p. Then the dimension of H over \mathbf{F}_2 is 6, hence $\langle \pi(g) \rangle$ has an irreducible constituent M on H of dimension 3. In other words, $\pi(g)$ normalizes M, and $[\pi(g), M] \neq 1$. Let $L = \pi^{-1}(M)$. Then |L| = 16, hence it is not extraspecial. Now it is easy to deduce, using conjugation with g, that L is abelian. As $g \in N_G(L) \setminus C_G(L)$, the result follows from Lemma 2.7.

Finally, let p = 5. Then g is contained in a group X isomorphic to the central product of two copies of \tilde{A}_5 . Let τ be an irreducible constituent of the restriction ϕ to X. Then $\tau = \tau_1 \otimes \tau_2$ where τ_1 and τ_2 are faithful representations of the respective copies of \tilde{A}_5 . In view of Lemma 3.1 and [5, Chapter VIII, Theorem 2.7], deg $\tau(g) \geq 4$, with the equality only if dim $\tau_1 = \dim \tau_2 = 2$. This means that every irreducible constituent of the restriction of ϕ to the naturally embedded \tilde{A}_5 is basic. By Proposition 2.6, ϕ is basic. Then deg $\phi(g) = 5$ by [8, Lemma 3.12]. \Box

Proof of Theorem 1.1. For p = 3, see Chermak [3], and for n < 2p, see Lemma 3.1. Let p > 3 and $n \ge 2p$. Then the 'only-if' part follows from Lemmas 3.2–3.4. For the 'if' part, in the case Z(G) = 1, $\phi = \varepsilon_n$ see Lemma 2.2. It remains to show that $d := \deg \phi(g) = 4$ for ϕ basic spin, p = 5, and $\pi(g)$ a 5-cycle. Restricting to a natural subgroup \tilde{A}_7 containing g and using Lemma 3.1, we see that $d \ge 4$. On the other hand, for complex representations of \tilde{A}_n a theorem similar to Theorem 1.1 has been proved in [13]. In particular, if $g \in \tilde{A}_n$ is a 5-cycle then $\deg \beta(g) = 4$ for complex basic spin representations β . As ϕ is a constituent of a reduction of β modulo 5, we have $d \le 4$. \Box

Now we prove Theorem 1.2. The result is contained in Lemmas 3.5–3.11.

Lemma 3.5 Theorem 1.2 is true for n = 5.

Proof. As A_n does not have elements of order 4 we may assume that $G = S_5$. Then G has two non-trivial irreducible representations, both of dimension 4, see [6, Tables]. One of them is ε_5 , for which $\varepsilon_5 \oplus 1_{S_5} = \pi$, where π is the natural permutation representation of dimension 5. Clearly, Jord $\pi(g) =$ diag (J_4, J_1) , so Jord $\varepsilon_n(g) = J_4$. Another irreducible representation of G corresponds to the partition (3, 2), and so it is reducible on A_5 , thanks to [1] or [9]. Therefore Jord $\phi(g^2) = \text{diag}(J_2, J_2)$ whence Jord $\phi(g) = J_4$. \Box

Lemma 3.6 Let $n \ge 5$, $G \in \{A_n, S_n, 3 \cdot A_6, 3 \cdot S_6, 3 \cdot A_7, 3 \cdot S_7\}$, and $g \in G$ be an element of order 4 fixing at least one point of the natural permutation set. Then deg $\phi(g) = 4$ for any faithful irreducible representation ϕ of G.

Proof. We may assume that g transitively permutes 1, 2, 3, 4 and fixes 5. Let $H := \operatorname{Alt}\{1, 2, 3, 4, 5\}$, and \hat{H} be the preimage of H in G. Set $X := \langle g, \hat{H} \rangle$. As H contains no element of order 4, the restriction homomorphism $h: X \to \operatorname{Sym}\{1, 2, 3, 4, 5\} \cong S_5$ is surjective. Let $K = \ker h$. Clearly, K is central in X. As S_5 has no non-split central extension with center of order 3, we have $X \cong Z(G) \times Y$ for some subgroup Y with $g \in Y$. Let τ be a composition factor of $\phi | Y$ with dim $\tau > 1$. Then $\tau(Y) \cong S_5$. By Lemma 3.5, deg $\tau(g) = 4$, hence deg $\phi(g) = 4$ in view of Lemma 2.1. \Box

Lemma 3.7 Theorem 1.2 is true for $G = A_6$ and S_6 .

Proof. For $g \in S_6 \setminus A_6$ this follows from Lemma 3.6. So we may assume that $G = A_6$. We use [9]. Irreducible FG-modules of dimension 8 are projective. So the Jordan form of g on each of these modules is diag (J_4, J_4) . Other non-trivial irreducible FG-modules are of dimension 4. As $A_6 \subseteq S_6 \cong Sp(4, 2)$, one of them is the natural Sp(4, 2)-module V restricted to A_6 . As the Jordan form of a unipotent element of Sp(4, 2) does not have a block of size 3, the theorem is true for the natural representation. The second FG-module of dimension 4 is obtained from V by twisting with the outer automorphism σ of $S_6 = Sp(4, 2)$. As A_6 has only one conjugacy class of elements of order 4, $\sigma(g)$ is conjugate to g in A_6 , so Jord $\sigma(g) = \text{Jord } g$. \Box

Lemma 3.8 Let $n \ge 6$, $G = A_n$ or S_n , and $g \in G$ be an element of order 4 having a 2-cycle in its cycle type. Then $\deg \phi(g) = 4$ for any faithful irreducible representation ϕ of G.

Proof. Clearly g normalizes a subgroup $H \cong A_6$ fixing n - 6 points such that g has a 2- and 4-cycle on the remaining 6 points. Then $g = g_1g_2$ where $g_1 \in H$, $g_2 \in C_G(H)$. Set $X = \langle g, H \rangle = \langle g_2, H \rangle$, and let τ be a non-trivial

composition factor of $\phi|X$. As $X/O_2(X) \cong H$, Lemma 3.7 gives deg $\tau(g) = 4$. So by Lemma 2.1, deg $\phi(g) = 4$. \Box

Lemma 3.9 Theorem 1.2 is true for n = 8.

Proof. In view of Lemmas 3.8 and 3.6, we may assume that the cycle type of g is (4, 4) and $G = A_8 \cong SL(4, 2)$. Note that the group A_8 has 2 conjugacy classes of elements of order 4, corresponding to cycle types (4, 2) and (4, 4), and only the first one meets the subgroup A_6 . The group SL(4, 2) has 2 conjugacy classes of elements of order 4, with Jordan forms J_4 and diag (J_3, J_1) , and the second one does not meet Sp(4, 2). As $A_6 \cong Sp(4, 2)'$, we conclude that the class (4, 4) corresponds to the class diag (J_3, J_1) . So g belongs to the intermediate subgroup $H \cong SL(3, 2)$.

Let τ be an irreducible representation of H. Then τ is a restriction of a rational representation of \overline{H} , the algebraic group of type A_2 . The irreducible representations of \overline{H} are labelled by their highest weights $a_1\omega_1 + a_2\omega_2$, where a_1, a_2 are non-negative integers and ω_1, ω_2 are fundamental weights. It is well known that τ is a restriction of one of the four irreducible representations of \overline{H} labelled by 0, ω_1, ω_2 , or $\omega_1 + \omega_2$. The last one corresponds to the Steinberg module, whose restriction to H is projective, and so all Jordan blocks of gare of size 4. Two other representations are the natural and its dual. So the Jordan form of g on both of them is diag (J_3, J_1) . Finally, corresponding to the zero highest weight we have the trivial representation.

Now, let $\lambda = a_1\omega_1 + a_2\omega_2 + a_3\omega_3$ be the highest weight of ϕ . By a theorem of Smith [10] (also proved independently by R. Dipper), the restriction $\phi|H$ contains a direct summand τ with highest weight $a_1\omega_1 + a_2\omega_2$. By the previous paragraph, we may assume that at least one of a_1, a_2 is zero. By duality, the same is true for a_2, a_3 . So we are left with the cases $\lambda \in \{\omega_1, \omega_2, \omega_3, \omega_1 + \omega_3\}$. The last one is the adjoint representation of G. Clearly, its restriction to H contains a composition factor isomorphic to the adjoint representation of H. As the last representation is projective, it is a direct summand. Hence this case is ruled out. The cases $\lambda = \omega_1, \omega_3$ are obvious. Finally, the module corresponding to $\lambda = \omega_2$ is the exterior square of the natural module. So its restriction to H is a direct sum of the natural and dual natural modules, hence the Jordan blocks of $\phi(g)$ are of size 3. \Box **Lemma 3.10** Let $G = A_n$ or S_n , and $g \in G$ be an element of order 4 containing at least three 4-cycles. Then deg $\phi(g) = 4$ for any faithful irreducible representation ϕ of G.

Proof. We may assume that

$$g = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12) \dots$$

Set $h_j := (j, j + 4, j + 8)$ for j = 1, 2, 3, 4, and $H := \langle h_1, h_2, h_3, h_4 \rangle$. Then H is an abelian 3-group and $g \in N_G(H)$. Moreover, $g^2 \notin C_G(H)$, so the result follows from Lemma 2.7. \Box

Lemma 3.11 Theorem 1.2 is true for $G = 3 \cdot A_6$ and $3 \cdot A_7$.

Proof. For $G = 3 \cdot A_7$ see Lemma 3.6. Let $G = 3 \cdot A_6$. Then dim $\phi = 3$ or 9, see [9]. In the former case deg $\phi(g) = 3$, as deg $\phi(g) < 3$ implies $\phi(g)^2 = 1$, which is false. Let dim $\phi = 9$. Observe that g^2 normalizes a cyclic group $\langle c \rangle$ of order 5. Set $X := \langle g^2, c \rangle$. As $g^2 c g^{-2} = c^{-1}$ and the multiplicity of every eigenvalue of $\phi(c)$ is 2 (see [9]), it follows that $\phi | X$ has four composition factors of dimension 2 and one composition factor of dimension 1. Therefore Jord $g^2 = \text{diag}(J_2, J_2, J_2, J_2, J_1)$, whence Jord $g = \text{diag}(J_4, J_4, J_1)$. \Box

References

- D. Benson, Spin modules for symmetric groups, J. London Math. Soc. (2) 38 (1988), 250–262.
- [2] B. Huppert and N. Blackburn, *Finite groups II*, Springer-Verlag, Berlin, 1982.
- [3] A. Chermak, Quadratic pairs, *Preprint*, 2001.
- [4] Ch. Curtis and I. Reiner, *Representation theory of finite groups and associative algebras*, John Wiley & Sons, New York-London, 1962.
- [5] W. Feit, *The representation theory of finite groups*, North-Holland, Amsterdam, 1982.

- [6] G. D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics, Vol. 682, Springer-Verlag, Berlin-New York, 1978.
- [7] A.S. Kleshchev, Branching rules for modular representations of symmetric groups, II, J. reine angew. Math. 459(1995), 163–212.
- [8] A.S. Kondratiev and A.E. Zalesski, Linear groups of degree at most 27 over residue rings modulo p^k , J. Algebra **240** (2001), 120–142.
- [9] C. Jansen, K. Lux, R. A. Parker and R. A. Wilson, An Atlas of Brauer characters, Clarendon Press, Oxford, 1995.
- [10] S.D. Smith, Irreducible modules and parabolic subgroups. J. Algebra 75 (1982), 286–289.
- [11] D. Wales, Some projective representations of S_n , J. Algebra **61**(1979), 37–57.
- [12] A.E. Zalesskiĭ, Minimal polynomials and eigenvalues of *p*-elements in representations of groups with a cyclic Sylow *p*-subgroup, *J. London Math. Soc. (2)* **59**(1999), 845–866.
- [13] A.E. Zalesskiĭ, The eigenvalues of matrices of projective complex representations of alternating groups, *Vestsi Akad. Navuk Belarusi*, ser. Fiz.-Mat-Inform., (1996), no.3, 41–43 (in Russian).

Department of Mathematics, University of Oregon, Eugene OR 97403, USA

e-mail: klesh@math.uoregon.edu

School of Mathematics, University of East Anglia, Norwich NR4 7TJ, England

e-mail: a.zalesskii@uea.ac.uk