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1. Introduction

In [Ja1], Gordon James described leading terms in decomposition matrices
and branching rules for representations of symmetric groups. To be more
precise, let F be a field of characteristic p and Sn be the symmetric group.
As in [Ja2], ≤ denotes the dominance order on partitions, Sλ is the Specht
module corresponding to a partition λ ` n, and Dµ is the irreducible FSn-
module corresponding to a p-regular partition µ ` n. For every partition
λ ` n, James defines its regularization λR, which is a p-regular partition of
n. Also, the shadow sh(µ) ` (n − 1) of a p-regular partition µ ` n is the
p-regular partition obtained by removing the shadow node from the Young
diagram of µ, that is, the leftmost node of the outer ladder of µ. The main
result of [Ja1] is now as follows.

Theorem 1.1. (James)

(i) For λ ` n, DλR
appears as a composition factor of Sλ with multi-

plicity 1, and for any other composition factor Dµ of Sλ we have
that µ > λR.

(ii) For a p-regular µ ` n, let the outer ladder of µ be of size m. Then
Dsh(µ) appears as a composition factor of the restriction Dµ↓Sn−1

with multiplicity m, and for any other composition factor Dν of
Dµ↓Sn−1

we have that ν > sh(µ).

The goal of this paper is to obtain a similar result for projective or spin
representations of symmetric groups. Let Tn be the (non-trivially) twisted
group algebra of Sn. Then spin representations of Sn are the same as repre-
sentations of Tn. In fact it is more convenient to work with Tn as a superal-
gebra and consider its supermodules instead of modules. For this reason in
the remainder of the article all modules will in fact be supermodules without
further comment. We refer the reader to [BK2], [K, Part II] for explanation
of these basic ideas.

A partition λ ` n is called p-strict if all its repeated parts are divisible by
p. For each p-strict partition λ ` n, we introduce in section 5 a notion of
Specht ‘module’ S(λ) for Tn; it is actually a virtual module. On the other
hand, the irreducible modules D(µ) for Tn are labelled by restricted p-strict
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partitions µ ` n, see [BK2]. In section 2 we define analogues of the ladders,
regularization λR, shadow sh(µ), and shadow node. Our main result is then
as follows.

Theorem 1.2.
(i) For any p-strict λ ` n, D(λR) appears as a composition factor of

S(λ) with multiplicity 1, and for any other composition factor D(µ)
of S(λ) we have that µ < λR.

(ii) For a restricted p-strict µ ` n, let the outer ladder of µ be of size m
and residue i. Then D(sh(µ)) appears as a composition factor of the
restriction D(µ)↓Tn−1

with multiplicity 2m if i 6= 0 and (n− hp′(λ))
is odd, and with multiplicity m otherwise. Moreover, for any other
composition factor D(ν) of D(µ)↓Tn−1

we have that ν < sh(µ).

Note that all >’s and <’s are interchanged in the two theorem above.
This has to do with the labelling we are using for irreducible Tn-modules;
the analogously labelled irreducible Sn-modules would be Dλ := Dλt ⊗ sgn.

Finally, we note that the identification of the two labellings of the irre-
ducible Tn-modules by the set RPp(n) from [BK2] and [BK1] is still lacking.
Here we work with the labelling of [BK2]. Theorem 1.2 is a step towards
the desired identification.

2. Ladders, Shadows and Regularization

We will use the same notation as in [BK1, BK2, K]. In particular we have:
p = 2` + 1;
Pp(n) is the set of p-strict partitions of n;
RPp(n) is the set of restricted p-strict partitions of n;
h(λ) is the number of non-zero parts of a partition λ;
hp′(λ) is the number of parts of a partition λ which are not divisible by p.
As usual, the Young diagram of a partition λ (identified with λ itself) can

be considered as a subset of the set Q := Z>0×Z>0 of nodes. If A = (i, j) is
a node, we say that A is in the row i and column j. If B = (i′, j′) is another
node, we say that A is to the left of B (or B is to the right of A) if j < j′.

We denote the n-tuple (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn, with 1 in the ith posi-
tion, by εi. We write αi for εi − εi+1, 1 ≤ i < n. For λ, µ ` n, we have that
λ ≥ µ in the dominance ordering if and only if λ−µ =

∑n−1
i=1 miαi for some

non-negative integers m1, . . . ,mn−1.
Let j ∈ Z>0 be a column number. It can be written uniquely in the form

j = mp + ` + 1± k, m, k ∈ Z, 0 ≤ k ≤ `.

The residue of j is then defined to be `−k, written res j = `−k. The residue
of A = (i, j), written res A, is defined to be res j. So res A ∈ {0, 1, . . . , `} for
any A, and the residue of a node depends only on its column. The residue
content cont(λ) of a p-strict partition λ means the tuple (c0, c1, . . . , c`) where
ci is the number of nodes of residue i in λ.
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Following [Ja1, LT], we define certain sets of nodes called ladders. Fix
any j ≥ 1. The jth ladder Lj is defined as follows. If res j 6= 0 then

Lj = {(i, j − (i− 1)p) | 1 ≤ i ≤ dj/pe} .

If res j = 0 then j = mp or mp + 1 for some m ∈ Z, and in this case we set

Lj = {(i,mp−(i−1)p) | 1 ≤ i ≤ m}∪{(i,mp+1−(i−1)p) | 1 ≤ i ≤ m+1}.
If L = Lj , we write simply res L for res j. Note that all nodes of L are of
residue res L, and that ladders of residue 0 are twice as wide as the others. A
k-element subset of a ladder is called complete if it consists of the k leftmost
nodes of the ladder. We say that the ladder L = Lj is the outer ladder for
λ if λ ∩L 6= ∅ but λ ∩Lj+1 = ∅. In this case, the rightmost node on λ ∩L
will be called the shadow node of λ. If λ is restricted (i.e. λ ∈ RPp(n)) and
A is the shadow node of λ then λ−A is also restricted. We will sometimes
write sh(λ) for λ−A.

Lemma 2.1. Let λ ∈ Pp(n). Then λ is restricted if and only if for every
ladder L, the intersection L ∩ λ is a complete subset of L.

Proof. If L ∩ λ is not complete, then there are nodes A = (i, j), and B =
(i − 1, j + x) on the ladder L such that A 6∈ λ and B ∈ λ. If x ≥ p this
implies that λi−1 − λi > p, i.e. λ is not restricted. Otherwise res L = 0,
A = (i, mp + 1), and B = (i− 1, (m + 1)p). In this case λi−1 − λi ≥ p, and
the equality holds only if p divides λi−1. So again λ is not restricted. The
argument can be easily reversed.

For every p-strict partition λ we define its regularization λR to be the set
of nodes such that for every ladder L, λR ∩L consists of the leftmost |λ∩L|
nodes on L. In other words, λR is obtained by shifting the nodes of λ along
the ladders to the left as far as they can go.

Example 2.2. If p = 5 and λ = (12, 5) then λR = (9, 6, 2):

λ = 0 1 2 1 0 0 1 2 1 0 0 1
0 1 2 1 0

, λR =
0 1 2 1 0 0 1 2 1
0 1 2 1 0 0
0 1

.

Proposition 2.3. Let λ ∈ Pp(n). Then λR ∈ RPp(n). Moreover λ = λR

if and only if λ is restricted.

Proof. In view of Lemma 2.1, all we need to check is that λR ∈ Pp(n),
which is left as an exercise.

3. P -functions

Let G be the algebraic supergroup Q(n), see [BK3]. If M is a (finite
dimensional) G-module, there is a notion of its formal character, see [B, §3]:

ch M =
∑

λ∈X(T )

(dim Mλ)xλ ∈ Z[x±1
1 , . . . , x±1

n ].
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We are only going to consider polynomial representations of G of degree n
in the sense of [BK3, §10]. For such modules, the formal character ch M is
a homogeneous symmetric polynomial of degree n in x1, . . . , xn.

Let Ch(n) ⊂ Z[x1, . . . , xn] be the Z-submodule spanned by all formal
characters ch M , where M is an arbitrary polynomial representation of G
of degree n. Then Ch(n) has a Z-basis given by the characters

Lλ := ch L(λ) (3.1)

of irreducible modules as λ runs through Pp(n), see [BK3, 10.4].
As in [B, §4], for any λ ∈ Pp(n) define a virtual module

E(λ) =
∑
i≥0

(−1)iH i(λ), (3.2)

and its formal character

Eλ =
∑
i≥0

(−1)ich H i(λ). (3.3)

Let λ ∈ Pp(n) and Pλ = Pλ(x1, . . . , xn) be the Schur’s P -function, ob-
tained by taking t = −1 in [M, III(2.2)]. Set

e(λ) :=
⌊

hp′(λ) + 1
2

⌋
, (3.4)

cf. [BK3, 6.4]. We use the following result proved in [B, 4.3, 6.3].

Theorem 3.1. Let λ ∈ Pp(n). Then Eλ = 2e(λ)Pλ. Moreover,

Eλ = Lλ +
∑

µ∈Pp(n)

cλµLµ,

with cλµ ∈ Z such that cλµ = 0 unless µ < λ and cont(λ) = cont(µ).

Corollary 3.2. {Eλ | λ ∈ Pp(n)} is a Z-basis of Ch(n).

Let f = f(x1, . . . , xn) ∈ Z[x±1
1 , . . . , x±1

n ]. Define

f↓ = (f↓)(x1, . . . , xn−1)

to be the xn-coefficient of f . It follows from (3.6) below that the restriction
of ↓ defines a map from Ch(n) to Ch(n− 1).

Definition 3.3. Let λ ∈ Pp(n). A node B = (i, j) ∈ λ is called branching
if λ−B is a partition (of n− 1), and either j = 1 or the part j − 1 appears
even number of times in λ.

It is easy to see that if λ ∈ Pp(n) and B ∈ λ is branching then λ− B ∈
Pp(n− 1). The following result is a special case of [M, III(5.5′),(5.14′)].

Proposition 3.4. Let λ ∈ Pp(n), and let B1, B2, . . . , Bk be the branching
nodes of λ. Then

Pλ↓ =
k∑

i=1

aiPλ−Bi
,
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where ai = 1 if h(λ−Bi) < h(λ), and ai = 2 otherwise.

Corollary 3.5. Let λ ∈ Pp(n), and let B1, B2, . . . , Bk be the branching
nodes of λ. Then

Eλ↓ =
k∑

i=1

ai2e(λ)−e(λ−Bi)Eλ−Bi
,

where ai = 1 if h(λ−Bi) < h(λ), and ai = 2 otherwise.

We now explain what the operation ↓ corresponds to at the level of irre-
ducible modules. Set

L(λ)j :=
⊕

{L(λ)µ | µ is a weight with µn = j}.

Then we have a decomposition

res Q(n)
Q(n−1)L(λ) =

⊕
j≥0

L(λ)j , (3.5)

Now,

Lλ↓ = ch L(λ)1. (3.6)

Let Ch(n)′ be the Z-submodule of Ch(n) spanned by {Lλ | λ ∈ RPp(n)},
and let

Ch(n) → Ch(n)′, f 7→ f ′

be the natural projection, i.e. the linear map such that for λ ∈ Pp(n) we
have L′λ = Lλ if λ is restricted, L′λ = 0 otherwise.

Lemma 3.6. Let f ∈ Ch(n). Then (f ′↓)′ = (f↓)′.

Proof. As all the maps are linear, it suffices to check the lemma for f = Lλ,
λ ∈ Pp(n). If λ is restricted, then Lλ = L′λ, and the result is clear. Assume
then that λ is not restricted. In this case L′λ = 0, so we have to check
that (Lλ↓)′ = 0 or that (ch L(λ)1)′ = 0, see (3.6). As λ is not restricted,
Steinberg’s tensor product theorem [BK3, 9.9] implies that

L(λ) = L(λ(0))⊗ L(λ(1))[1],

where λ = λ(0) + pλ(1), λ(0) is restricted, and µ = (µ1 ≥ · · · ≥ µn ≥ 0)
is a non-zero dominant weight for GL(n). As L(λ(1))[1]µ = 0 for any µ with
µn = 1, we have

L(λ)1 = L(λ(0))1 ⊗ L(λ(1))[1]
0 .

Therefore, no composition factor of the Q(n−1)-module L(λ)1 is restricted,
which proves that (ch L(λ)1)′ = 0.



6 JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV

4. Leading terms

We need three technical combinatorial lemmas to prove our main result.

Lemma 4.1. Let λ ∈ Pp(n) and A,B be nodes of λ such that λ−A, λ−B ∈
Pp(n − 1). Assume that A ∈ Li, B ∈ Lj, and the ladder Li is strictly to
the right of the ladder Lj. Then (λ−A)R > (λ−B)R.

Proof. We have (λ−A)R = λR−A′ and (λ−B)R = λR−B′, where A′ and
B′ are the rightmost nodes of λR ∩ Li and λR ∩ Lj , respectively. Let A′ be
in the row k and B′ be in the row l. We need to prove that k > l. Assume
this is not the case. Then, by Lemma 2.1, the lth row of λR contains a node
from the ladder Li. This node lies to the right of B′, which contradicts the
fact that λR −B′ is a partition.

Lemma 4.2. Let λ, µ ∈ RPp(n). If µ ≤ λ then sh(µ) ≤ sh(λ). Moreover
if cont(λ) = cont(µ) then µ 6= λ implies sh(µ) 6= sh(λ).

Proof. Let the shadow node A of λ be in row i and the shadow node B
of µ be in row j. We have to prove that µ − εj ≤ λ − εi. If i ≥ j, then
µ ≤ λ ≤ λ + εj − εi, whence µ − εj ≤ λ − εi, as required. Now let i < j.
Write µ = λ−

∑n−1
k=1 mkαk. Then µ− εj = λ− εi + (εi − εj)−

∑n−1
k=1 mkαk.

So, we see that µ− εj ≤ λ− εi, unless mr = 0 for some i ≤ r < j. It follows
that µr − µr+1 ≥ λr − λr+1 = p. As µ is restricted, we now deduce that
mk = 0 for all k > r. Similarly, mk = 0 for all i ≤ k < r. This shows that
µk = λk for all k > i, which contradicts the assumption that j > i.

Finally, if cont(λ) = cont(µ), suppose that λ 6= µ. We may assume
without loss of generality that i < j. Then, because λ is restricted and A is
its shadow node, λj + 1 = µj implies that res B 6= res A. So cont(λ− A) 6=
cont(µ−B), hence λ−A 6= µ−B.

Lemma 4.3. Let λ, µ ∈ RPp(n), cont(λ) = cont(µ), and B be the shadow
node of µ.

(i) If A is the shadow node of λ and res A = res B, then sh(µ) < sh(λ)
implies µ < λ.

(ii) Let L be the outer ladder for λ, L′ be a ladder strictly to the left of L,
and A be the rightmost node in λ ∩ L′. Assume that λ− A ∈ RPp(n− 1).
Then sh(µ) ≤ λ−A implies µ < λ.

Proof. First of all note that λ 6= µ. Indeed, in (i), λ = µ would imply
λ−A = µ−B, giving a contradiction. In (ii), in view of Lemma 4.1, λ = µ
implies µ−B > λ−A, giving a contradiction again.

Let A be in row i and B be in row j. We can write µ − εj = λ − εi −∑n−1
k=1 mkαk for non-negative coefficients mk ∈ Z. If j ≥ i, this implies that

µ ≤ λ, whence µ < λ as we have already noticed that λ 6= µ. So suppose
that i > j. Again, it suffices to show that µ ≤ λ. This is certainly the
case unless mr = 0 for some j ≤ r < i. As B is the shadow node of µ and
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λ− εi is restricted, it now follows that mk = 0 for all k ≥ r. In particular,
λi = µi + 1 and λk = µk for k > i. To complete the proof of (i), we now get
that res A 6= res B, a contradiction. To complete the proof of (ii), the fact
that λ is restricted implies that λi+1 = 0. So A must be on the outer ladder
of λ (using restrictedness of λ again), which is a contradiction.

Theorem 4.4. Let λ ∈ Pp(n), L be the outer ladder of λ, and m = |λ∩L|.
(i) If λ is restricted and A is the shadow node of λ, then

(Lλ ↓)′ = d(λ)Lλ−A +
∑

µ∈RPp(n−1)
µ<λ−A

bλ,µLµ

where d(λ) = m if res L = 0 and hp′(λ) is even, and d(λ) = 2m otherwise.
(ii) We have

E′
λ = LλR +

∑
µ∈RPp(n)

µ<λR

cλµLµ.

Proof. Let B1, . . . , Bk be the branching nodes of λ, and assume that Bi ∈ L
if and only if 1 ≤ i ≤ t (note t does not have to equal m if res L = 0). We
prove the theorem by induction on n, the induction base being clear. Assume
the theorem is correct for n− 1.

We prove (i) for n. Note that (λ − Bi)R = λ − A for 1 ≤ i ≤ t, and
(λ−Bi)R < (λ−A) for i > t, in view of Lemma 4.1. Now, using Corollary 3.5
and inductive hypothesis (part (ii)), one can deduce that Lλ−A appears
in (Eλ↓)′ exactly d(λ) times, and we have ν < λ − A for every other Lν

appearing in (Eλ↓)′.
On the other hand, by Theorem 3.1, we have that

Eλ = Lλ +
∑
µ<λ

cλµLµ,

where cλµ = 0, unless cont(µ) = cont(λ). So, by Lemma 3.6,

(Eλ↓)′ = (E′
λ↓)′ = (Lλ↓)′ +

∑
µ∈RPp(n)

µ<λ

cλµ(Lµ↓)′. (4.1)

Now, we apply induction on the dominance order on RPp(n). By induc-
tive hypothesis, we may assume that for any µ ∈ RPp(n) with µ < λ, one
has (Lµ↓)′ = d(µ)Lsh(µ) + (∗), where (∗) stands for a linear combination of
Lν with ν < sh(µ). Now it suffices to apply Lemma 4.2.

We prove (ii) for n. Let A be the shadow node for λR. Note that (λ −
Bi)R = λR−A for 1 ≤ i ≤ t, and (λ−Bi)R < λR−A in view of Lemma 4.1.
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So, by Lemma 3.6, Corollary 3.5 and inductive hypothesis, we have

(E′
λ↓)′ = (Eλ↓)′ =

k∑
i=1

ai2e(λ)−e(λ−Bi)E′
λ−Bi

=
t∑

i=1

ai2e(λ)−e(λ−Bi)LλR−A + (∗),

(4.2)

where (∗) stands for the terms Lν with ν < λ−A.
We now prove that

t∑
i=1

ai2e(λ)−e(λ−Bi) = d(λR). (4.3)

If res L 6= 0, then (4.3) is clear. Now let res L = 0. In this case the row
containing Bi (1 ≤ i ≤ t) might have one or two nodes from λ ∩ L. If it
has one, we say that Bi is of the first type, and if it has two, we say that
Bi is of the second type. Let C1, . . . , Cx and D1, . . . , Dy be the type one
and type two nodes among B1, . . . , Bt, respectively. We have x + y = t and
x + 2y = m. Note that hp′(λ−Dj) = hp′(λ)− 1, and

hp′(λ− Ci) =
{

hp′(λ) + 1 if Ci is not in the first column
hp′(λ)− 1 otherwise.

This implies (4.3) if we use hp′(λ) ≡ hp′(λR) (mod 2) [K, (22.9), (22.10)].
Now, (4.2), (4.3), part (i) (already proved for n), and Lemma 4.2 imply

that LλR appears in E′
λ exactly once. It remains to prove that µ < λR for

any other Lµ appearing in E′
λ. Take any such Lµ. Applying (4.2), part (i)

and Lemma 4.2 again, we deduce that sh(µ) < λR − A. If cont(sh(µ)) =
cont(λR − A) then µ < λR by Lemma 4.3(i). Otherwise, note by (4.2),
that Lsh(µ) must appear in some Eλ−Bi

for res Bi 6= res A. By inductive
hypothesis, sh(µ) ≤ λR − C, where C is the rightmost node of λR on the
ladder containing Bi, i.e. (λ−Bi)R = λR−C. As res Bi 6= res A, this ladder
is to the left of the outer ladder L. So µ < λR by Lemma 4.3(ii).

5. Translation to Tn-modules

Recall from [BK2, §10] (cf. also [BK3, §10]) the Schur functor M 7→
ξωM going from polynomial Q(n)-modules of degree n to modules over the
Sergeev algebra Yn. By [BK3, 10.2], we have ξωL(λ) = 0 if λ is not restricted,
and if λ is restricted then ξωL(λ) = M(λ), an irreducible Yn-module of the
same type as L(λ). Moreover,

{M(λ) | λ ∈ RPp(n)}
is a complete set of irreducible Yn-modules up to isomorphism.

Finally, there is an exact functor Gn from Yn-modules to Tn-modules, see
[K, 13.2] or [BK2, §3]. If n is even then Gn is an equivalence categories, in
particular GnM(λ) = D(λ), an irreducible Tn-module of the same type as
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M(λ). If n is odd and hp′(λ) is even, then GnM(λ) = D(λ), an irreducible
Tn-module of type Q. If n is odd and hp′(λ) is odd, then GnM(λ) = D(λ)⊕
D(λ), where D(λ) is an irreducible Tn-module of type M. Moreover,

{D(λ) | λ ∈ RPp(n)}
is a complete set of irreducible Tn-modules up to isomorphism.

For any λ ∈ Pp(n), we define the Specht ‘module’ to be the virtual module

S(λ) := Gn(ξωE(λ)),

obtained by the application of the Schur functor M 7→ ξωM followed by
the functor Gn to the virtual module E(λ) defined in (3.2). (One can also
interpret the Specht ‘module’ as a complex whose Euler characteristic is
S(λ) but we will not pursue this here.)

The discussion above, [K, (13.11),(13.15)] and Theorem 4.4 imply Theo-
rem 1.2.
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