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| somor phisms of symplectic planes

William M. Kantor*
(Communicated by T. Grundhofer)

Abstract.  Every nondesarguesian symplectic spread is also symplegér its kernel. Any
equivalence of nondesarguesian symplectic spreads pesstive resulting symplectic structures
over the kernels.
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1 Introduction

A spreadof a 2n-dimensional vector spack is a setX of n-dimensional subspaces
such that each nonzero vector is in one and only one member Afspread determines
an affine plan&l(X), whose points are the vectors and whose lines are the ttasisla
of the members oE. A spreadX of V is calledsymplectidf there is a nondegenerate
alternating bilinear forng, ) onV such thateaclX’ € ¥ is totally isotropic:(X, X') = 0.
Then?l(X) is called asymplectic planeFinite symplectic planes have been studied, for
example,in|[5, 2,9, 6, 7, 8, 1, 4]; finite ones in characterizhave properties not shared
by planes defined using arbitrary spreads.

ThekernelK(2((X)) of the spread or plane(X) is the set of all additive endomor-
phismsg of V such thatXg C X for all X € X. This is the largest skew fielK over
which V' can be viewed as a vector spdge such that consists of subspaces. Note that
(X)) andX are nondesarguesian precisely whigm Vk > 2.

Two spreads of/ are callecequivalentf there is an invertible semilinear transforma-
tion sending one to the other. Our goal is to study this noitiotihe case of symplectic
spreads.

Theorem 1. Let ¥; and ¥, be nondesarguesian symplectic spreads ik @éspaceV
equipped with a nondegenerate alternating bilinear fdrm). Assume thay € T'L(V)
sendst; to Xs.
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(i) ThenX, is a symplectic spread of tH€;-spaceV = Vxk,, where the kerneK; of
¥, Is commutativéi = 1,2).

(i) Let(, )k, be a nondegenerate alternating bilinear form ®R, with respect to
which X, is symplectic. Theg sendsK; to K, Vk, to Vk, and preserves the
symplectic structure(ug, vg)x, = ko[(u,v)k,]” for somek, € K}, someo €
Aut(Ks), and allu,v € V.

This theorem also holds trivially when the spreads are dessian and the kernels
are fields (cf. Section 4).

For the situation in (i), in [5, Theorem 3.5] we asked whettere is somé < K3
such thaigh~! preserves the symplectic geometry over ¢higinal field K. In general
we see no reason why this should occur, even when finite, but it does hold under
suitable numerical assumptions:

Theorem 2. LetX; and X, be spreads in a finité(-spaceV that are symplectic with
respect to the nondegenerate alternating bilinear fgrm). Assume thay € T'L(V)
sendsX; to Xo. If K5 is the kernel o, and if either| K| is even orffK»: K] is odd,
theng = sky with k2 € K5 ands € T'L(V) satisfying(us,vs) = k(u,v)? for some
ke K*, somer € Aut(K), and allu,v € V.

Versions of the last theorem were proved in [5, Theorem 318][8], assuming that
|K|is even ordim V' = 4, respectively. In practice, “usualiyK, = K, in which case
the theorem is a special case of Theorem 1.

The elementary proofs of the above results use the associateplectic polarities.

2 Background

We refer to [3] for the standard background concerning stgeanslation planes and
their kernels. For example, any isomorphiift; ) — 2((3;) that send§ to 0 is induced
by a semilinear transformation sendihg to >,. We refer to [10] for background con-
cerning symplectic geometry. {f, ) is a nondegenerate alternating bilinear formion
thenI'Sp(V) = {g € TL(V) | (ug,vg) = k(u,v)” for somek € K* ando € Aut(K),
and allu, v € V'} (cf. the statements of both of the above theorems). Assatiaith( , )
there is asymplectic polarity): W — W = {v € V | (v, W) = 0} of the projective
geometryPG(V') of V, and the corresponding centraliZ€pry,y(6) = PI'Sp(V) is
I'Sp(V') modulo scalars.

3 Uniqueness

Before proving the theorems, we record a very simple observ@mplicit in [5, Theo-
rem 3.5] and reappearing in Section 5):

Proposition 1. Suppose thak is a spread in ak'-spacel’, whereK is the kernel of.
ThenX is symplectic with respect to at most one symplectic pglafit’.
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Proof. If X is symplectic with respect to the symplectic polaritteand¢’, thend and
0" send each member &f to itself. Hence, so doe®)’. The collineatior§d’ of PG(V')
is induced by a semilinear transformation that fixes everynber of X and so is in the
kernel K. Thendd’ fixes every member d?G(V'), and hencéd’ = 1. |

In general, ifK is the kernel of thend’ lies in the cosef(K* /K™*).

4 Lifting symplectic structures

We will be viewing a vector spacé over more than one skew field. As in the statement
of Theorem 1, if one of these skew fields is callédand we wish to emphasize that we
are viewingV’ as anF'-space, we will writd/ instead ofl/.

Theorem 3. LetY be a nondesarguesian symplectic spread offhepaceV/, with ker-
nelK O K. ThenK is commutative, and there is a nondegenerate alternatitigdair
form (', )k onVik such that

(i) X is a symplectic spread dfk with respecttq , )k,
(i) f((, )x) is the given nondegenerate alternating bilinear form énfor some
nonzeroK -linear functionalf: K — K, and
(i) (, )x and f are uniquely determined up to multiplication by element&éfand
K*, respectively.

Proof. (i) Let G denote the group of all automorphisms and all anti-autoimerps of
PG(V) that fix each member oE. ThenG contains the given polarity and has a
normal subgroufiK*/ K* consisting of the elements ®T'L(1) that induce the identity
onX. It follows thatd permutes the set d&-invariant subspaces &f; these are precisely
the subspaces dik. Consequently, by restrictingto the subspaces ¢fx we obtain a
polarity 6k of PG(Vk). Clearly,X is still a spread olk, while each member of is
still sent to itself bydk. Each point ofPG(Vk) lies in some member ot and hence is
perpendicular to itself. Thus, since we are assumingdhaf/kx > 2, by [10, p. 53]K is
commutative andyk is a symplectic polarity determined by a nondegeneratenatiag
bilinear form(, )k onVk, as required.

(i) If W is anyK-subspace theW 6k = W6. Hence, ifu,v € V and(u,v)x =0
then(u,v) = 0. For fixedu # 0 it follows that f,,((u, v)k) := (u,v) is a well-defined
map f,,: K — K, and hence is & -linear functional. Similarly, any two such mays
agree on each € V. This implies (ii).

(iii) Each symplectic polarity arises from an alternatirijnear form that is uniquely
determined up to a scalar. m]

This result and Theorem 1 also hold in the desarguesian t&§as commutative.
WhenK is noncommutative, there is no symplectic structure péessib Vi, but it is not
clear whether or not, in this case, a desarguesian spredaecgymplectic when viewed
over a subfield oK it is also not clear that this is even an interesting quastio
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Proof of Theorem 1. Theorem 1(i) and Theorem 3(i) are the same. For Theorem 1(ii)
observe that the uniqueness part of Theorem 3(iii) impled § must send the form
(, )k, to(, )k, up to a scalar and a field automorphism (sipde semilinear but not
necessarily linear). ]

5 Proof of Theorem 2

Let 0 be the symplectic polarity d?G (V") associated witf , ); it is the identity on both
Y1 andX,. Thend and§? = g~ '0g are symplectic polarities each of which is the identity
onX,. It follows thatd¢ arises from an element ®fL.(1) that is the identity ort,, and
hence lies ifK,. Since(|Kz| — 1)/(| K| — 1) is odd by hypothesigi¢? is an element of
PT'L(V) of odd order. Thed" = §9 for someh in the dihedral grougd, #9), and hence
gh~! commutes with9, whereg is the element oPTL(V') induced byg. Consequently,
gh—t € PT'Sp(V).

As in Proposition 1/ is induced by somé € K. Thus,g = skh with s € T'Sp(V)
andk € K*, and therkh € Kh C K. O

Remarks. 1. WhenK; = K, = K the theorem states théts, vs) = k(u,v)? for
somek € K*, o0 € Aut(K) and allu,v € V; thatis,g € I'Sp(V'). The above argument
is simply thatdY = 6 as in Proposition 1, and henge<€ I'Sp(V'). This is already
contained in Theorem 1(ii). For nondesarguesiarhis is exactly the case considered
in [9].

2. An immediate consequence of Theorem 2 is that, under #tedshumerical hy-
potheses regarding the kernél,>; andX, are equivalent then some elemenT'@f(1")
sends¥; to X5 while preserving the symplectic structure.

Kernels can be nontrivial [5] or difficult [7] to determine. W&n the characteristic is
2 there is no need to find the kernel in order to use the abovesqoience; and this was
the crucial use made of Theorem 2 in those references. Haowiegeems doubtful that
the preceding consequence holds (for finifewithout any numerical assumptions.

3. Itis natural to ask: how does the above proof differ frora #rgument in [5,
Theorem 3.5]? Here we have used the fact @i#dtlies in the kernel of the spread as a
projectivetransformation of/, which enabled some of the problems in the odd character-
istic case to disappear. This should have been nofiésetars ago. It wasn’t. Therefore,
only the characteristi2 case was handled at that time.
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