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Isomorphisms of symplectic planes

William M. Kantor∗

(Communicated by T. Grundhöfer)

Abstract. Every nondesarguesian symplectic spread is also symplectic over its kernel. Any
equivalence of nondesarguesian symplectic spreads preserves the resulting symplectic structures
over the kernels.
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1 Introduction

A spreadof a 2n-dimensional vector spaceV is a setΣ of n-dimensional subspaces
such that each nonzero vector is in one and only one member ofΣ. A spread determines
an affine planeA(Σ), whose points are the vectors and whose lines are the translates
of the members ofΣ. A spreadΣ of V is calledsymplecticif there is a nondegenerate
alternating bilinear form( , ) onV such that eachX ∈ Σ is totally isotropic:(X, X) = 0.
ThenA(Σ) is called asymplectic plane. Finite symplectic planes have been studied, for
example, in [5, 2, 9, 6, 7, 8, 1, 4]; finite ones in characteristic 2 have properties not shared
by planes defined using arbitrary spreads.

ThekernelK(A(Σ)) of the spreadΣ or planeA(Σ) is the set of all additive endomor-
phismsg of V such thatXg ⊆ X for all X ∈ Σ. This is the largest skew fieldK over
whichV can be viewed as a vector spaceVK such thatΣ consists of subspaces. Note that
A(Σ) andΣ are nondesarguesian precisely whendimVK > 2.

Two spreads ofV are calledequivalentif there is an invertible semilinear transforma-
tion sending one to the other. Our goal is to study this notionin the case of symplectic
spreads.

Theorem 1. Let Σ1 and Σ2 be nondesarguesian symplectic spreads in aK-spaceV
equipped with a nondegenerate alternating bilinear form( , ). Assume thatg ∈ ΓL(V )
sendsΣ1 to Σ2.
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(i) ThenΣi is a symplectic spread of theKi-spaceV = VKi
, where the kernelKi of

Σi is commutative(i = 1, 2).
(ii) Let ( , )Ki

be a nondegenerate alternating bilinear form onVKi
with respect to

which Σi is symplectic. Theng sendsK1 to K2, VK1
to VK2

and preserves the
symplectic structure: (ug, vg)K2

= k2[(u, v)K1
]σ for somek2 ∈ K

∗
2, someσ ∈

Aut(K2), and allu, v ∈ V .

This theorem also holds trivially when the spreads are desarguesian and the kernels
are fields (cf. Section 4).

For the situation in (ii), in [5, Theorem 3.5] we asked whether there is someh ∈ K
∗
2

such thatgh−1 preserves the symplectic geometry over theoriginal field K. In general
we see no reason why this should occur, even whenV is finite, but it does hold under
suitable numerical assumptions:

Theorem 2. Let Σ1 andΣ2 be spreads in a finiteK-spaceV that are symplectic with
respect to the nondegenerate alternating bilinear form( , ). Assume thatg ∈ ΓL(V )
sendsΣ1 to Σ2. If K2 is the kernel ofΣ2, and if either|K| is even or[K2 : K] is odd,
theng = sk2 with k2 ∈ K

∗
2 and s ∈ ΓL(V ) satisfying(us, vs) = k(u, v)σ for some

k ∈ K∗, someσ ∈ Aut(K), and allu, v ∈ V .

Versions of the last theorem were proved in [5, Theorem 3.5] and [9], assuming that
|K| is even ordimV = 4, respectively. In practice, “usually”K2 = K, in which case
the theorem is a special case of Theorem 1.

The elementary proofs of the above results use the associated symplectic polarities.

2 Background

We refer to [3] for the standard background concerning spreads, translation planes and
their kernels. For example, any isomorphismA(Σ1) → A(Σ2) that sends0 to0 is induced
by a semilinear transformation sendingΣ1 to Σ2. We refer to [10] for background con-
cerning symplectic geometry. If( , ) is a nondegenerate alternating bilinear form onV ,
thenΓSp(V ) = {g ∈ ΓL(V ) | (ug, vg) = k(u, v)σ for somek ∈ K∗ andσ ∈ Aut(K),
and allu, v ∈ V } (cf. the statements of both of the above theorems). Associated with( , )
there is asymplectic polarityθ : W → W θ = {v ∈ V | (v, W ) = 0} of the projective
geometryPG(V ) of V , and the corresponding centralizerCPΓL(V )(θ) = PΓSp(V ) is
ΓSp(V ) modulo scalars.

3 Uniqueness

Before proving the theorems, we record a very simple observation (implicit in [5, Theo-
rem 3.5] and reappearing in Section 5):

Proposition 1. Suppose thatΣ is a spread in aK-spaceV , whereK is the kernel ofΣ.
ThenΣ is symplectic with respect to at most one symplectic polarity ofV .
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Proof. If Σ is symplectic with respect to the symplectic polaritiesθ andθ′, thenθ and
θ′ send each member ofΣ to itself. Hence, so doesθθ′. The collineationθθ′ of PG(V )
is induced by a semilinear transformation that fixes every member ofΣ and so is in the
kernelK. Thenθθ′ fixes every member ofPG(V ), and henceθθ′ = 1. 2

In general, ifK is the kernel ofΣ thenθ′ lies in the cosetθ(K∗/K∗).

4 Lifting symplectic structures

We will be viewing a vector spaceV over more than one skew field. As in the statement
of Theorem 1, if one of these skew fields is calledF , and we wish to emphasize that we
are viewingV as anF -space, we will writeVF instead ofV .

Theorem 3. LetΣ be a nondesarguesian symplectic spread of theK-spaceV , with ker-
nel K ⊇ K. ThenK is commutative, and there is a nondegenerate alternating bilinear
form ( , )K onVK such that

(i) Σ is a symplectic spread ofVK with respect to( , )K,
(ii) f(( , )K) is the given nondegenerate alternating bilinear form onV for some

nonzeroK-linear functionalf : K → K, and
(iii) ( , )K andf are uniquely determined up to multiplication by elements ofK

∗ and
K∗, respectively.

Proof. (i) Let G denote the group of all automorphisms and all anti-automorphisms of
PG(V ) that fix each member ofΣ. ThenG contains the given polarityθ and has a
normal subgroupK∗/K∗ consisting of the elements ofPΓL(V ) that induce the identity
onΣ. It follows thatθ permutes the set ofK-invariant subspaces ofV ; these are precisely
the subspaces ofVK. Consequently, by restrictingθ to the subspaces ofVK we obtain a
polarity θK of PG(VK). Clearly,Σ is still a spread ofVK, while each member ofΣ is
still sent to itself byθK. Each point ofPG(VK) lies in some member ofΣ and hence is
perpendicular to itself. Thus, since we are assuming thatdimVK > 2, by [10, p. 53]K is
commutative andθK is a symplectic polarity determined by a nondegenerate alternating
bilinear form( , )K onVK, as required.

(ii) If W is anyK-subspace thenWθK = Wθ. Hence, ifu, v ∈ V and(u, v)K = 0
then(u, v) = 0. For fixedu 6= 0 it follows thatfu((u, v)K) := (u, v) is a well-defined
mapfu : K → K, and hence is aK-linear functional. Similarly, any two such mapsfu

agree on eachv ∈ V . This implies (ii).
(iii) Each symplectic polarity arises from an alternating bilinear form that is uniquely

determined up to a scalar. 2

This result and Theorem 1 also hold in the desarguesian case if K is commutative.
WhenK is noncommutative, there is no symplectic structure possible onVK, but it is not
clear whether or not, in this case, a desarguesian spread canbe symplectic when viewed
over a subfield ofK; it is also not clear that this is even an interesting question.
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Proof of Theorem 1. Theorem 1(i) and Theorem 3(i) are the same. For Theorem 1(ii),
observe that the uniqueness part of Theorem 3(iii) implies that g must send the form
( , )K1

to ( , )K2
up to a scalar and a field automorphism (sinceg is semilinear but not

necessarily linear). 2

5 Proof of Theorem 2

Let θ be the symplectic polarity ofPG(V ) associated with( , ); it is the identity on both
Σ1 andΣ2. Thenθ andθg = g−1θg are symplectic polarities each of which is the identity
onΣ2. It follows thatθθg arises from an element ofΓL(V ) that is the identity onΣ2, and
hence lies inK2. Since(|K2| − 1)/(|K| − 1) is odd by hypothesis,θθg is an element of
PΓL(V ) of odd order. Thenθh̄ = θg for someh̄ in the dihedral group〈θ, θg〉, and hence
ḡh̄−1 commutes withθ, whereḡ is the element ofPΓL(V ) induced byg. Consequently,
ḡh̄−1 ∈ PΓSp(V ).

As in Proposition 1,̄h is induced by someh ∈ K
∗
2. Thus,g = skh with s ∈ ΓSp(V )

andk ∈ K∗, and thenkh ∈ Kh ⊆ K2. 2

Remarks. 1. WhenK1 = K2 = K the theorem states that(us, vs) = k(u, v)σ for
somek ∈ K∗, σ ∈ Aut(K) and allu, v ∈ V ; that is,g ∈ ΓSp(V ). The above argument
is simply thatθg = θ as in Proposition 1, and henceg ∈ ΓSp(V ). This is already
contained in Theorem 1(ii). For nondesarguesianΣ, this is exactly the case considered
in [9].

2. An immediate consequence of Theorem 2 is that, under the stated numerical hy-
potheses regarding the kernel,if Σ1 andΣ2 are equivalent then some element ofΓL(V )
sendsΣ1 to Σ2 while preserving the symplectic structure.

Kernels can be nontrivial [5] or difficult [7] to determine. When the characteristic is
2 there is no need to find the kernel in order to use the above consequence; and this was
the crucial use made of Theorem 2 in those references. However, it seems doubtful that
the preceding consequence holds (for finiteV ) without any numerical assumptions.

3. It is natural to ask: how does the above proof differ from the argument in [5,
Theorem 3.5]? Here we have used the fact thatθθg lies in the kernel of the spread as a
projectivetransformation ofV , which enabled some of the problems in the odd character-
istic case to disappear. This should have been noticed20 years ago. It wasn’t. Therefore,
only the characteristic2 case was handled at that time.
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