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Department of Mathematics, Unï ersity of Oregon, Eugene, Oregon 97403

Eugene M. Luks†

Department of Computer and Information Sciences, Unï ersity of Oregon,
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Sylow subgroups are fundamental in the design of asymptotically efficient
group-theoretic algorithms, just as they have been in the study of the structure of

Ž .finite groups. We present efficient parallel NC algorithms for finding and conju-
gating Sylow subgroups of permutation groups, as well as for related problems.
Polynomial-time solutions to these problems were obtained more than a dozen
years ago, exploiting a well-developed polynomial-time library. We replace some of
those highly sequential procedures with ones that work through a polylog-length
normal series that is a by-product of NC membership-testing. As in previous
investigations, we reduce to the base case of simple groups, and handle this by a
case-by-case analysis that depends heavily upon the classification of finite simple
groups. Q 1999 Academic Press

1. INTRODUCTION

In computational applications, groups are frequently specified and stored
via generators in a permutation action. This tends to be a very terse
description, since any permutation group on n letters can be generated by
Ž .O n elements while its order can be exponential in n. Thus, assuming the

polynomial-time standard as a measure of efficiency, it is not trivial even
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to show that one can efficiently test membership in a group given only by
generators. Nevertheless, an ingenious method for this problem, first

w x w xproposed by Sims in the 1960s Si , was shown in FHL to be in polynomial
time. This led to the more substantive issue of whether polynomial time
suffices for computation of detailed information about the structure of the
group. Considerable subsequent effort has resulted in extensive polyno-

Ž w x w xmial-time machinery for such investigations cf. KL1 and Lu5 for
.surveys . Much of this machinery relies upon finding composition series

w x w xLu4 and Sylow subgroups Ka1, Ka2, Ka3 . The computational need for
these ‘‘building blocks’’ is analogous to their critical role within group
theory.

The attempt to parallelize the permutation-group machinery has intro-
duced new and profound difficulties. Since the established polynomial-time

Ž w x.machinery utilizes inherently sequential procedures cf. BL , novel ap-
proaches are required. A start in this direction appears in a series of

w xpapers MC, LM, Lu2, BLS1 . In particular, membership testing was finally
shown to be in the class NC. Even for this rudimentary problem, the
parallel method differs markedly from the traditional sequential proce-
dures. While Sims’s method does not require, or reveal, any of the group
structure, the intricate divide-and-conquer of the NC approach makes the
construction of a composition series a basic ingredient. The dependence
on structural group theory includes essential citations of the monumental

Ž w x.classification of all finite simple groups surveyed, for example, in Gor2
for the timing analysis; by contrast, polynomial-time membership testing
had been elementary.

w xAlthough the machinery of BLS1 already provides knowledge of the
group at hand, it does not include some of the most useful structural

w xinformation. In particular, BLS1 cited one of the leading open questions
to be the parallelizability of the key problem of finding Sylow subgroups.
The sequential solution to this problem was already unique in its heavy use
of recent group-theoretic results: although the problem has an elementary
formulation, the mathematical underpinnings of the polynomial-time solu-
tion include detailed use of the classification of all finite simple groups.
In fact, the classification has, so far, been essential even for a polynomial-
time solution to the problem of finding elements of order p for a prime

< < < w xp G Ka1 .
In this paper, we show that the Sylow problems have NC solutions as

well. We prove:

THEOREM 1.1. Gï en a permutation group G and a prime p, there are NC
solutions to the following problems:

Ž .i Find a Sylow p-subgroup of G.
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Ž .ii Gï en two Sylow p-subgroups P , P of G, find g g G such that1 2
P g s P .1 2

Ž .iii Gï en any p-subgroup of G, find a Sylow p-subgroup of G contain-
ing it.

Ž . Ž .iv Gï en a Sylow p-subgroup P of G, find its normalizer N P .G

wThe sequential solutions to these problems were developed in Ka1, Ka2,
xKa3 . However, there are very significant differences in the structure of

parallel algorithms for permutation groups. Most sequential permutation-
group algorithms exploit a sequence of subgroups, G G G G G G ??? G0 1
G s 1. For example, membership testing uses pointwise stabilizers andm

w xreduces membership testing for G to that for G Si ; the polynomial-i iq1
w xtime Sylow algorithms in Ka1, Ka2, Ka3 used, in addition, a composition

Ž .series for G. However, these series can have length V n , and therefore
can be too long for step-by-step NC computation. The parallelization of

w xmembership testing also uses a series, but of a different sort. In Lu2 and
w xBLS1 it was shown that one could construct, and effectively use, a normal
series whose length is polylogarithmic in n. The quotients of successive
members of the series are semisimple: direct products of simple groups. In
the base case of simple groups, the parallelization parallels the sequential
procedures.

Most of our Sylow procedures work down a normal series, G s G 2 G0 1
2 G ??? , as just indicated. The solution to the problem at hand for GrG2 i
utilizes a solution for GrG . Such recursive use of the normal seriesiy1
requires that we study not just permutation groups, but also quotient
groups of permutation groups. This is analogous to the situation for

w xsequential computation: it was demonstrated in KL1 that one sometimes
has to consider general quotients GrK of permutation groups even to
resolve the case K s 1.

wAnother aspect of the procedure seems worth highlighting. As in Ka2,
x w xKa3 and KL1 , we are, in effect, manipulating induced permutation

representations in which the new permutation domains are themselves too
large to enumerate. One example occurs in the consideration of the

Ž .transitive action of a permutation group G on its possibly exponential-size
Ž g y1 .collection PP of Sylow p-subgroups where g g G maps P ¬ P s g Pg ;

given two ‘‘points’’ P , P g PP, we need to find some g g G such that1 2
g Ž . Ž .P s P ; parts ii and iv of the theorem allows us to find all such g. The1 2

w xresults in KL1 make it clear that, within algorithmic investigations, this
ability to conjugate and find normalizers Sylow subgroups is as important
as finding them.

We have not introduced any randomized methods into this paper
Ž w x.compare Mo, KS ; nor have we dealt with further algorithmic conse-
quences of the results obtained here. Some such consequences will be
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w xdealt with in a later paper KL2 . These include the ability to work with
w xquotient groups of permutation groups, in the spirit of KL1 .

The basic outline of this work follows the polynomial-time version in
w x w xKa1, Ka2, Ka3 . Some of our results were obtained in Ma2 by following
those references more closely than here: we diverge in various ways,
making the overall algorithm shorter and, we hope, clearer. We emphasize
that the issue herein is NC computation, so we freely trade efficiency for
exposition. In particular, we make no attempt either to optimize worst-case
time bounds or to describe efficient implementations. Nevertheless, we
note that the need to parallelize has forced streamlining of previous Sylow

w xalgorithms Ka2, Ka3 , making the present work of more than theoretical
w xinterest. Versions of our algorithms have already been used in Mo ,

suggesting that planned sequential implementations will be very efficient.

O¨er̈ iew of the Paper

Section 2 introduces group-theoretic and NC background. Section 3
provides some new or unpublished tools that are of use in contexts beyond
the present needs. In Section 4 we present the solvable case of the
theorem, generalized so as to include Hall subgroups in addition to Sylow
subgroups. This is used in Section 5 to provide the critical reduction of the
general case to that of simple groups. Up through this point the group
theory can be considered elementary and the reader who accepts the
results for simple groups can follow the main algorithms without recourse
to the case-by-case details to follow. Only Sections 6 and 7 require detailed
knowledge of the structure of finite simple groups. Section 6 constructs the
‘‘natural actions’’ of these groups and translates the classical group prob-
lems to linear algebra. Section 7 solves the Sylow problems for simple
groups.

Table of Problem Names

Because of the large number of named problems and cross-references
thereto, the reader may find it convenient to refer back to the following
table for the location of problem specifications.

Section 2.2 Section 4
ORBIT HALLFIND
BLOCKS HALLEMBED
MEMBERSHIP HALLNORM
CONSTRUCTIVE MEMBERSHIP HALLCONJ
ORDER HALLFRATTINI
NORMAL CLOSURE
DERIVED SERIES
POINT STABILIZER
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Section 3.1 Section 5.1
PRESENTATION SYLFIND SIMPLE

SYLNORM SIMPLE
Section 3.2 SYLCONJ SIMPLE
LIFT SYLEMBED SIMPLE
INTERSECTION SYLNORMALIZED1 SIMPLE
FACTOR SYLNORMALIZED2 SIMPLE
SOLVE

Section 5.2
Section 3.3 SYLFIND SS
COMPLEMENT SYLNORM SS
EMBED SYLCONJ SS
EXTRACT NORMALIZER SYLEMBED SIMPLE

SYLNORMALIZED1 SS
Section 3.4 SYLNORMALIZED2 SS
DECOMPOSITION FRATTINI SS
INVARIANT COMPLEMENT

Section 5.3
Section 3.5 SYLFIND
TRANSVERSAL SYLEMBED

SYLNORM
Section 3.6 SYLCONJ
SERIES FRATTINI

2. BACKGROUND

This section briefly introduces background: some group-theoretic pre-
liminaries and some of the many known group-theoretic problems for
which NC solutions are known.

2.1. Group-Theoretic Preliminaries

We recall some standard group-theoretic notions. Others will be re-
viewed later when they are needed.

Ž . XThe center and derived subgroup of G are denoted Z G and G ,
w x y1 y1respectively. The commutator of elements a, b g G is a, b s a b ab.

g y1 T � t <For any subsets S, T : G and g g G, write S s g Sg and S s S t g
4 ² :T . The subgroup generated by S : G is denoted S ; the normal closure

² G: Ž .of S is then S . If A F G denoting subgroup containment , then the
Ž . � < g 4normalizer of A is N A s g g G A s A and the centralizer of A isG

Ž . � < 4C A s g g G ag s ga, ;a g A . More generally, if K 1 G and A F G,G }
Ž . Ž .then N AKrK and C AKrK denote the subgroups of G contain-G G



SYLOW SUBGROUPS IN PARALLEL 137

Ž . Ž . Ž .ing K such that N AKrK rK s N AKrK and C AKrK rK sG G r K G
Ž . Ž .C AKrK , respectively. If A F G, a right trans̈ ersal for A in G is aG r K

complete set of right coset representatives.
We will be concerned with various types of strictly decreasing series

G s L ) L ) ??? ) L s 1 of subgroups of G. Such a series is a com-0 1 s
position series if each L is normal in the preceding and s is maximali
subject to this condition; then each composition factor L rL of G is aiy1 i
simple group. We introduce another type of series in Section 3.6. This will
be a normal series in which all the quotients L rL are semisimple,iy1 i
where a semisimple group is one that is the direct product of simple
groups.

A permutation group is always assumed to be specified by a set of
² :generating permutations: G s S , where S is a subset of the symmetric

Ž . Ž .group Sym s Sym V on an n-set V. The point stabilizer of v g V isn
� < g 4 G � g < 4G s g g G v s v ; the orbit of v is v s v g g G , and G isv

G Ž . � < g 4transitï e if v s V. Let G denote the set stabilizer g g G D s D ofD

ŽD : V this is standard geometric notation, more suitable to our needs
w x. Dthan the notion in Wi ; the permutation group it induces on D is G . AD

block for a transitive group G is a nonempty subset D of V such that
D g l D s B or D for all g g G. Then G induces a transitive permutation

S � g < 4group G on the corresponding block system S s D g g G . The trivial
blocks are V and singletons; G is primitï e on V if these are the only
blocks. Standard methodology, both for algorithmic and mathematical
purposes, is to reduce questions about general permutation groups first to
transitive groups and then to primitive groups.

If G is a group and M is any subgroup, then GrM denotes the set of
right cosets, equipped with the usual action of G.

2.2. Permutation-Group Problems in NC

We assume familiarity with the complexity class NC. The reader may
Ž constant .view this as the class of problems solvable in polylog s log n time

using a polynomial number of processors. For more formal characteriza-
w xtions as well as a survey of problems in the class, see, for example, KR .

We list some of the NC permutation-group machinery that we use most
frequently. Other problems in NC will be cited as they are needed. Groups
are assumed to have been given via generators.

w xThe following two problems were observed to be in NC in Mc .

Problem. ORBIT
Input: G F Sym .n
Output: The orbits of G.
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Problem. BLOCKS
Input: G F Sym ; G transitï e.n
Output: A nontrï ial block system for G, if one exists; otherwise, a report

that G is primitï e.

ORBIT uses a parallel transitive-closure algorithm. BLOCKS uses orbits
on pairs to find a block system, specifically: consider the orbits of the pair
� 4a , b as the edges in a graph, then the connected component containing
a is the unique smallest block containing a and b.

We use two immediate extensions of the BLOCKS procedure. On
occasion, we need to find a primitive action of G; for this we find blocks in
any nontrivial orbit and repeat the process for the induced action on the

Ž .blocks log n times at most until a primitive action is obtained. Note that
this gives blocks that are each maximal with respect to inclusion. We also
need to obtain nontrivial blocks that are minimal; for this, we need only
consider in parallel all pairs a , b as above and select the smallest block so
obtained.

Underlying most group-theoretic computation is the ability to test mem-
bership.

Problem. MEMBERSHIP
Input: G F Sym ; g g Sym .n n
Output: Whether or not g is in G.

MEMBERSHIP is often used implicitly. For example, we may assume
that the list of generators for any constructed group is kept ‘‘small’’ by
testing in parallel whether each element is in the group generated by its
predecessors and, if so, removing it.

w xA principal announcement in BLS1 is that MEMBERSHIP is in NC.
Still, a simple guarantee that g g G does not suffice for many applica-
tions. We need a proof of membership in the form of a construction of g

² :from the generators of G. If g g G s S , then g is, of course, a word in
S. However, we cannot expect to exhibit such a word for it may require
exponential length. For sequential computation, one can construct a poly-

Ž w x.nomial-length straight-line program from S to g see FHL , that is, a
sequence of elements h , h , . . . , h s g, such that, for all i, either h g S1 2 m i
or h s h h for some j - i, k - i, or h s hy1 for some j - i. Fori j k i j
parallel computation, we can allow simultaneous construction of a polyno-
mial number of products or inverses in each round, but that alone does not
guarantee a polylog bound on the number of rounds. Instead we observe
that we have the additional capability of computing hr for h g Sym andn

Ž .r s O n! : in parallel in each cycle of h, this is carried out by reducing r
Ž w x.modulo the cycle length see Mc . Thus, for S : Sym , g g Sym , wen n

define an NC program from S to g to be a sequence S s A , A , A , . . . , A0 1 2 m
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Ž c .such that m s O log n , each A : Sym is of polynomial size, g g A ,i n m
and for all i and all h g A , either h g A A for some j - i, k - i, ori j k

" r Ž . Žh g A for some j - i and r s O n! . One can also use a circuit modelj
w xKR to describe NC programs but we find the preceding more convenient

.for our discussions.
w xThe results of BLS1 are actually built around an NC procedure for

Problem. CONSTRUCTIVE MEMBERSHIP
² :Input: G s S F Sym ; g g Sym .n n

Output: Whether or not g is in G and, if it is, an NC program from S to g.

As in sequential methods, the membership test ultimately produces a
chain of subgroups G s G G G G ??? G G s 1 along with coset repre-1 2 t

Ž < <sentatives for G mod G for each i the indices G : G are polynomi-i iq1 i iq1
w x.ally bounded but the chain is not the point-stabilizer chain utilized in Si .

w x < <Thus, it is pointed out in BLS1 that we can compute G , which is the
< <product of the indices G : G .i iq1

Problem. ORDER
Input: G F Sym ; g g Sym .n n

< <Output: G .

Remark. We will need a still stronger by-product of the procedures of
w xBLS1 . The preceding chain G s G G G G ??? G G s 1 is actually1 2 t
produced as a refinement of a polylog-length normal series G s N 2 N1 2}

Ž2 ??? 2 N s 1 wherein NrN is semisimple for 1 F i - r a carefulr i iq1} }
w x Ž 2 ..reading of BLS1 shows r s O log n . We will discuss this at greater

length in Section 3.6.

The terms N of the normal series are constructed using a normali
w xclosure algorithm, which is generalized in BLS1 to an NC procedure for

Problem. NORMAL CLOSURE
Input: H F G F Sym .n

² G:Output: H , the normal closure of H in G.

This leads easily to an NC solution to the next problem.

Problem. DERIVED SERIES
Ž .Input: G F Sym V .

Output: The derï ed series G, GX, GY, . . . .

w xOne of the more difficult results in BLS1 is the computation of
arbitrary pointwise stabilizers of sets. However, in this paper, we need only
an elementary special case, namely the stabilizer of a single point in the
domain. This is obtained, as in sequential computation, via Schreier

Ž w x.generators see, for example, Si, Lu5 .
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Problem. POINT STABILIZER
Ž .Input: G F Sym V ; v g V.

� < g 4Output: G s g g G v s v , and a trans̈ ersal for G in G.v v

3. TOOLS

We describe some consequences of the basic machinery quoted in the
preceding section. Some of these use known techniques, though they may
not have been observed in the context of NC computation.

3.1. Presentations

ŽPresentations are fundamental in many algorithmic situations see, for
w x.example, BLS1, Lu4, CNW . Here we recall the required algorithmic

setting, and slightly extend a known observation. The resulting algorithm
will be critical in the next two sections.

Ž .Let FF X denote the free group on a set X. Given a map f : X ª G
into a group G, there is a unique extension of f to a homomorphism f :
Ž .FF X ª G.

ŽLet H 1 G. A constructï e presentation of G mod H or, if H s 1, a
}

. Ž .constructï e presentation of G is a 4-tuple P s X, f, c , RR in which

X is a set; f : X ª G; c : G ª FF X ; RR ; FF XŽ . Ž .

such that

y1 y1 FFŽ X .ˆ ˆ ² :g fc g g H , ;g g G and f H s RR .Ž . Ž .Ž .

For computational purposes, it is assumed that P is input or output by

Ž . Ž .i Specifying f X and RR, and
Ž . Ž .ii Giving a procedure for determining c g for any g g G.

w xThe following is observed in Lu4, Sect. 4.2 :

Ž .LEMMA 3.1. Let X, f, c , RR be a constructï e presentation for G mod
H. Then

Ž . ² < :i X RR is a generator]relator presentation of the group GrH, with
Ž . ² F Ž X .:mutually in¨erse isomorphisms F X r RR l GrH naturally induced by

f̂ and c .
ˆ GŽ . ² Ž .: ² Ž . : ² :ii If G s f X then H s f RR . More generally, if G s S

ˆ ˆ y1 G²Ž Ž . � Ž Ž .. < 4. :then H s f RR j s fc s s g S .
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Problem. PRESENTATION
Input: N 2 G F Sym .n}

Output: A constructï e presentation for G mod N.

PROPOSITION 3.2. PRESENTATION is in NC.

w x ŽProof. The case N s 1 is proved in BLS2 the idea was already
w x. w ximplicit in BLS1 . We review just the construction. As noted in BLS1 ,

one can construct a chain of subgroups G s G G ??? G G s 1 along1 mq1
with transversals C for G mod G , 1 F i F m, such that, for any g g G,i i iq1

Žthe factorization g s c ??? c with c g C is obtainable in NC. As notedm 1 i i
in Section 1, in general, this subgroup chain is not Sims’s traditional

w x .point-stabilizer chain Si . We may assume 1 g C , for all i. Let S si
m Ž � 4. < <D C _ 1 . Let X be a set of cardinality S and fix an injection f:is1 i

Ž . Ž . Ž . y1Ž .X ª G with f X s S. Let c : G ª FF X satisfy c g s f c ???m
y1Ž . Žf c for any given g s c ??? c with c g C for 1 F i F m we take1 m 1 i i
y1Ž . . � y1 y1 Ž Ž . Ž .. < 4f 1 to be 1 . Finally, set RR s y x c f x f y x, y g X .

² : ŽFor general N s T , start with a constructive presentation X, f, c ,
. Ž � Ž . < 4.RR of G. Then X, f, c , RR j c t t g T is a constructive presentation

for G mod N.

Remark. For many applications, including those herein, it is not neces-
Ž .sary to have the words in RR or c G expressible as polynomial-length

Ž .strings in X ; NC programs Section 2.2 from X would suffice. However,
w x Ž .the presentations resulting from BLS2 produce words of length O n .

3.2. In¨erse Images, Sol̈ ing Equations

In this section we consider groups that are permutation groups, not
Žnecessarily all with the same permutation domain though it would not be

.difficult to translate to that case . Of course, when quotient groups appear
they are specified as quotients of two permutation groups on the same
domain.

Problem. LIFT
Input: Groups G, H, K with K 1 H; a homomorphism r : G ª HrK ;

}

h g H.
� < Ž . 4Output: g g G r g g Kh .

We assume that r is specified via a map r : S ª H, where S is a0
Ž . Ž . Ž .generating set of G, so r s s K r s for s g S. From this, r g , for any0

given g g G, may be determined in NC, by copying an NC program
Ž . Ž .Section 2.2 from S through g to an NC program from r S through
Ž .r g .
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LEMMA 3.3. LIFT is in NC.

Ž .Proof. Given any t g H, we can find one g g G such that r g s Kt,
if such a g exists, as follows: CONSTRUCTIVE MEMBERSHIP yields

Ž . Žan NC program from r S j K to t if the membership test fails then0
Ž .. Ž .Kt f r G . The same program, substituting s g S for r s and 1 for0

k g K, leads to a suitable g.
�Consider the special case h s 1: the case of finding the kernel g g

< Ž . 4 ² Ž . : Ž Ž . .G r g g K . Let L s r S , K note that Grker r ( LrK . Using0
Ž� 4 .PRESENTATION, find a constructive presentation x , . . . , x , f, c , RR1 m

Ž .of L mod K. In parallel, for 1 F i F m, find g g G such that r g si i
Ž . Ž . X XŽ .Kf x using the preceding paragraph . Define f : X ª G by f x s g ,i i i

X Ž .and specify a map c : G ª FF X as follows: given any g g G, determine
Ž . XŽ . Ž . Žsome t g H such that r g s Kt and set c g s c t it is immaterial

. Ž�which coset representative t is chosen by this procedure . Then x , . . . ,1
4 X X . Ž .x , f , c , RR is a constructive presentation for G mod ker r . By Lemmam
Ž . Ž .3.1 ii , ker r is computable via NORMAL CLOSURE.

y1Ž . Ž .To find r Kh for general h, find one g g G satisfying r g s Kh.
y1Ž . Ž .Then r Kh s ker r g.

Ž .Remarks. i LIFT is applied in this paper in several ways. The first
usage is implicit in much of the polynomial-time and NC literature. It is
often the case that we deal with some induced representation of G F Symn
on some other domain D. Elements constructed in the latter need to be
pulled back to Sym . In practical computations, even if the element orn
subgroup is to be constructed in a straight-line or NC program from the
images of elements of G, it may have been convenient to restrict attention
to D without keeping track of discardable intermediate operations in
Sym . Also, many constructions made with D may be the result of then

Žstructure of D itself e.g., if G acts on D as a classical group in a ‘‘natural
.action’’; see Section 6 , in which case lifting as before is the only option.

The second important usage occurs in the course of solving systems of
equations as will be indicated below. Yet another easy application appears
in INTERSECTION.

Ž .ii The specific problem of finding kernels of induced permutation
Ž .actions i.e., of homomorphisms into some Sym was already addressed inm

w x w xLu2 and BLS1 . What has been added here is the observation that the
method extends to homomorphisms into quotient groups. For some of our
needs, the quotients HrK are abelian; in that special case, it is also
possible, even in NC, to represent HrK as a permutation group.

w xIn BLS1 it was pointed out that NC contains the problem of intersect-
ing groups when one normalizes the other. The following is a slight
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generalization and could also be obtained by an extension of the method
w xof BLS1 .

Problem. INTERSECTION
Input: Groups H, N such that H normalizes N; a permutation x.
Output: N l Hx.

LEMMA 3.4. INTERSECTION is in NC.

Proof. Note that N l Hx is either empty or a coset of N l H. First
test nonemptiness by verifying whether or not x g HN. If it is then

� < Ž . y14N l Hx s h g H r h s Nx x is computable by LIFT, where r : H ª
HNrN is induced by the natural homomorphism.

This version of INTERSECTION has an important application:

Problem. FACTOR
Input: Subgroups H and K of G such that G s HK 2 K ; g g G.

}

Output: k g K, h g H with g s hk.

COROLLARY 3.5. FACTOR is in NC.
y1Proof. Find k g K l Hg and let h s k g.

Ž . rWe now turn to another application of LIFT. Fix g s g , . . . , g g G .1 r
Ž . Ž .For any word w s w x, y s w x , . . . , x , y , . . . , y in the free group1 r 1 s

Ž . Ž . � 4FF x , . . . , x , y , . . . , y on an r q s -set x , . . . , x , y , . . . , y , define F :1 r 1 s 1 r 1 s w
Gs ª G by

y1 sF h s w g, 1 w g, h for h g G ,Ž . Ž . Ž .w

Ž . swhere 1 s 1, . . . , 1 g G .

LEMMA 3.6. Let K F M be normal subgroups of G with MrK abelian and
Žlet g denote the image of g g G in GrK. Then, for any w g FF x , . . . , x , y ,1 r 1

.. . . , y , the map gï en bys

m ¬ F m s F m KŽ . Ž .w w

is a homomorphism from M s into MrK.

< s Ž .Proof. That F maps into M follows from the congruence w g, 1 'Mw
Ž . Ž . s < sw g, m mod M for m g M . We show that F induces a homomor-Mw

< < < <phism into MrK by induction on the length w of w. For w s 1: if
"1 "1 Žw s x then F is the trivial map, while if w s y then F m , . . . ,i w i w 1

. "1m s m . For the inductive step, we observe that w s u¨ impliess i
¨ Žg, 1. sF m s F m F m whenever m g M .Ž . Ž . Ž .w u ¨
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The lemma is the key to an algorithm for

Problem. SOLVE
Input: G F Sym ; normal subgroups K F M of G with MrK abelian;n

r Ž .g g G ; words w , . . . , w g FF x , . . . , x , y , . . . , y .1 q 1 r 1 s
� s < Ž . 4Output: m g M w g, m g K, 1 F i F q .i

Equivalently, we seek to ‘‘solve’’ the system of congruences

w g, m ' 1 mod K , 1 F i F q.Ž . Ž .i

PROPOSITION 3.7. SOLVE is in NC.

Ž .Proof. If, for any i, w g, 1 f M, then the required set is empty.i
Ž . Ž . Ž .y1Ž .Otherwise, note that w g, m g K iff F m ' w g, 1 mod K . Thus,i w ii

Ž .we seek the inverse image of w g, 1 , . . . , w g, 1 under the homomor-Ž . Ž .1 q
s Ž .qphism from M to MrK given by

m ¬ F m , . . . , F m .Ž . Ž .ž /w w1 q

To interpret this problem as an instance of LIFT, we may consider M s in
its natural action on the disjoint union of s copies of the permutation

qdomain for M; similarly, M acts on q copies.

Ž .Remarks. i As indicated in the proof, the desired output is the inverse
image of an element under a homomorphism and is, therefore, a coset of
the kernel. In describing the output, the kernel is, of course, specified by
generators which, in this case, are s-tuples of permutations.

Ž .ii In our applications in Section 3.3 the words w will be explicitlyi
available. However, it would suffice to specify them via NC programs from

Ž .the free generators x , . . . , y , since it is essential only that F m be1 s w i

NC-computable for any given m.
Ž . Žiii When MrK is semisimple in particular, when it is elementary

.abelian , SOLVE has a natural interpretation in terms of linear algebra.

3.3. Complements

In this section we deal with three problems that are encountered
enroute, respectively, to SYLFIND, SYLEMBED, and SYLNORM. They
seem of independent interest. Once again, we will be dealing with sub-
groups of Sym .n

For M 1 G, a complement of M in G is a subgroup H F G such that
}

G s HM and H l M s 1.
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Problem. COMPLEMENT
Input: Normal subgroups K F M of G with MrK abelian.
Output: A complement HrK to MrK in GrK, or the assertion that no

such complement exists.

PROPOSITION 3.8. COMPLEMENT is in NC.

²Proof. Use PRESENTATION to find a constructive presentation X
� 4 : Ž .s x , . . . , x , f, c , RR for G mod M recall that f is a map X ª G . If1 s

² Ž .a complement HrK exists then it is generated mod K by f x m , . . . ,1 1
Ž . : Ž . s Ž Ž .f x m for some m , . . . , m g M , and the s-tuple f x m , . . . ,s s 1 s 1 1
Ž . .f x m must satisfy the relations in RR. Thus, use SOLVE to determines s

Ž . swhether any m , . . . , m g M satisfies1 s

w f x m , . . . , f x m ' 1 mod K , ;w x , . . . , x g RRŽ . Ž . Ž . Ž .Ž .1 1 s s 1 s

Ž Ž Ž . Ž .. swhere SOLVE is called with g s w x , . . . , w x g G and the words1 s
Ž . Ž . .w x y , . . . , x y for w x , . . . , x g RR ; and, if so, find one and set1 1 s s 1 s

² Ž . Ž . :H [ f x m , . . . , f x m , K .1 1 s s

w xThe preceding should be compared with CNW, pp. 60]61 .

Problem. EMBED
Input: Normal subgroups K F M of G with MrK abelian; K F H F G

such that H M s H G; K F L F G.
� < u4Output: u g M L F H .

Note that, if L F H u for some u g G, then M contains such an
element u. As the following proof indicates, the desired output set is either
empty or is a coset of a subgroup of M.

PROPOSITION 3.9. EMBED is in NC.
M G Ž .Proof. Note that the statement H s H means that G s M N H .G

ŽThen G 2 HM and G 2 H l M since MrK is abelian, it normalizes
} }

Ž . .H l M rK .
If L g HM then we output ‘‘B.’’

² :We suppose L s T F HM. Use FACTOR in parallel for each t g T
Ž . Ž . Ž . Ž .to express t s h t m t , with h t g H, m t g M. If u g M then

Ž .y1 uy1 hŽ t . y1 Ž .h t t s u u m t g M, and hence

y1 y1u ut g H m h t t g H l M .Ž .

Since MrK is abelian, MrH l M is abelian. Hence, we can use SOLVE
to find all u g M satisfying the system

y1 y1h t utu ' 1 mod H l M , ; t g T ,Ž . Ž .
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Žif any such u exist the value of the parameter ‘‘K ’’ in SOLVE is the
� 4present H l M; with T s t , . . . , t , the other parameters in the call to1 q

Ž .SOLVE can be specified as follows: r s 2 q, s s 1, w x , . . . , x , y si 1 r
y1 y1 Ž Ž . Ž ...x yx y for 1 F i F q, g s t , . . . , t , h t , . . . , h t .iqq i 1 q 1 q

Remark. As the proof indicates, one can weaken the input hypothesis
‘‘MrK is abelian’’ to ‘‘H l M 1 G with MrH l M abelian.’’

}

Problem. EXTRACT NORMALIZER
Input: Normal subgroups K F M of G with MrK abelian; K F H F G

such that H M s H G.
Ž .Output: N H .G

PROPOSITION 3.10. EXTRACT NORMALIZER is in NC.

� < Ž .4 ŽProof. For any s g G, C s u g M su g N H is nonempty be-s G
Ž .. Ž .cause G s M N H and is, therefore, a left coset of N H . For theG M
Ž . Ž . ² : Ž .same reason, N H rN H ( GrM, so if G s S then N H isG M G
Ž .generated by N H and the elements sc with one c g C for eachM s s s

Ž . ² < :s g S. Thus, N H s sC s g S .G s
� < s u4y1Since C s u g M H F H , these sets may be found in parallel fors

sall s g S by applying EMBED with L s H .

Remark. Once again, one can replace the hypothesis ‘‘MrK abelian’’
by the weaker ‘‘H l M 1 G with MrH l M abelian.’’

}

3.4. G-In¨ariant Decompositions

Let V be a vector space over a field K, and assume that V is equipped
Ž . Ž . Ž . Ž .with a ‘‘form’’ , : V = V ª K such that au q b¨ , w s a u, w q b ¨ , w

Ž . Ž .and u, ¨ s 0 « ¨ , u s 0 for all a, b g K, u, ¨ g V. The examples we
have in mind are symmetric, skew-symmetric, hermitian, and identically

Ž .zero forms. We call ¨ , w g V orthogonal if ¨ , w s 0; this is a symmetric
H � <Ž .relation on V. For any nonempty subset A of V, A s ¨ g V ¨ , w s 0,

4;w g A is a subspace.
Ž .Let G F GL V . A collection VV of nonzero subspaces of V will be

Ž .called a G -respectful decomposition if

V s W , 1Ž .[
WgVV

VV is G-stable, 2Ž .
;W , W , W g VV : W , W / 0 and W , W / 0 « W s W .Ž . Ž .1 2 3 1 2 1 3 2 3

3Ž .
Thus, each member of VV is not orthogonal to at most one other member
of VV . If UU and VV are respectful decompositions of V, we write VV $ UU if,
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for all W g UU, there is some W X g VV such that W F W X. A respectful
decomposition VV is called maximal if there is no respectful decomposition
UU / VV such that VV $ UU.

A linear transformation g : V ª V is said to be orthogonality preser̈ ing
Ž . Ž g g .if ;¨ , w g V, w, ¨ s 0 m ¨ , w s 0. If a subspace A is invariant

under a group of orthogonality-preserving transformations, then so is AH .
In applications of the results of this section we can treat V as a vector

space over the prime field, and let ‘‘G’’ include the multiplicative group of
the current field as well as the group we really have in mind. This
observation means that we can replace considerations of groups of semilin-
ear transformations by considerations of groups of linear transformations,
merely by slight extensions of the acting groups.

Problem. DECOMPOSITION
Ž .Input: V, a polynomial-size ¨ector space with a ‘‘ form’’ , ; G -

Ž .GL V , a completely reducible group of orthogonality-preser̈ ing
transformations of V.

Output: A maximal G-respectful decomposition VV of V.

Our algorithm for DECOMPOSITION requires a procedure for finding
invariant subspaces complementary to invariant subspaces. Since this sub-
problem does not require the assumption of a polynomial-size vector
space, we extract this subresult and deal with it in a more general setting.

w xWe use the fact that solving a system of linear equations is in NC by Mu .

Problem. INVARIANT COMPLEMENT
Input: A set S of linear transformations of a ¨ector space V; an S-

in¨ariant subspace W F V.
Output: An S-in¨ariant subspace U F V such that V s U [ W, or the

fact that there is no such subspace.

LEMMA 3.11. INVARIANT COMPLEMENT is in NC.

Proof. We may assume that W is a proper subspace of V. Find any
ˆ ˆcomplementary subspace U to W, i.e., V s U [ W. For example, follow the

standard procedure of adjoining a basis of V to the end of a basis of W
and then discarding any vector that is in the span of its predecessors, these

ˆtests being performed in parallel for all vectors in the sequence; take U to
be the span of the remaining vectors that are not in W.

ˆŽ .The transformations in S act on the vector space Hom U, W via
s s s ˆ ˆ sŽ . Ž . Ž . � Ž . <f y s f u y f u for s g S, u g U. Find F s f g Hom U, W f s 0,

4 Ž .;s g S this involves solving a homogeneous system of linear equations .
If F s 0 then no invariant complement to W exists. Otherwise, take

ˆ� Ž . < 40 / f g F and then U s u q f u u g U is an invariant complement to
W.
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Remark. In the setting appearing later in Sections 6 and 7, V has
polynomial size. In that case, a simple brute-force strategy can be used: for

² G:each ¨ g V y W test whether W l ¨ s 0, and if so replace W by
² G:W [ ¨ and iterate.

PROPOSITION 3.12. DECOMPOSITION is in NC.

Proof. Test in NC whether G acts irreducibly on V by checking, in
² G:parallel for all 0 / u g V, that u s V.

1. We assume first that G acts irreducibly on V. In this case, if
Ž0 / ¨ g V and T is a right transversal for G in G found using¨

. ² T : Ž T GPOINT STABILIZER then ¨ s V for ¨ s ¨ spans a G-invariant
.subspace ; in particular, if WW is a respectful decomposition of V and

¨ g W g WW , then WW s W T, otherwise the proper subset W T would span
Ž .V, contradicting irreducibility and the directness in 1 .

Ž .For any 0 / ¨ g V we can find in NC the unique maximal respectful
Ž . Ž .decomposition WW ¨ such that ¨ g W for some W g WW ¨ as follows:

² : Ž .Initially, set W [ ¨ . We describe tests for each of the conditions 1 ,
Ž . Ž . T � t1 tm4 Ž .2 , and 3 on W s W , . . . , W t g T , 1 F i F m . In each test,i
failure leads to a proper increase of W that maintains the invariant: for
any respectful decomposition UU of V with some member containing ¨ , W F U
for some U g UU. If that happens, we restart the testing with the increased

< <W. Since each such increase at least doubles W , the procedure is in NC.

Ž . m ti < < m < <Testing 1 . The sum Ý W is direct iff W s V . If this conditionis1
< < k <² t i < : <fails, we find the minimum k such that W / W 1 F i F k , i.e., the

k t i < < ky1 < <minimum k such that Ý W is not direct. Since W F V , k sis1
Ž < <. Ž . t iO log V and so we can enumerate all k-tuples w , . . . , w , with w g W ,1 k i

1 F i F k. Fix one such k-tuple for w q ??? qw s 0 with w / 0, the1 k k
existence of which is guaranteed by the choice of k. If U g UU, where UU is
a respectful decomposition, and U contains any one of the subspaces W ti,
for which w / 0, then it must contain them all: by the directness ofi
[ U, the sum of those w contained in any one U must be 0 but, byiU g UU

the choice of k, any collection of nonzero terms whose sum is 0 must
X ²Ž t i. tk

y1
< :include w . It follows that W s W w / 0 is contained in anyk i

element of any respectful decomposition that contains W. Thus, we set
W [ W X.

Ž . ² :Testing 2 . Suppose G s S . In parallel for all s g S, 1 F k F m, we
test whether W tk s g W T, since W T is G-stable iff all these membership
tests succeed. If any fails, fix one pair k, s for which W tk s f W T. Since the
sum W t1 q ??? qW tm q W tk s is not direct, by enumerating all sums, we
find w q ??? qw q w s 0, with w g W ti, 1 F i F m and 0 / w g1 m t s i t sk k
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tk s Ž .W . With the same reasoning as in the directness test in 1 , we set
² � t iŽ tk s.y1

< 4:W [ W, W w / 0 .i

Ž . Ž t i t j. Ž t i tk .Testing 3 . Suppose ' i, j, k: j / k, W , W / 0, W , W / 0
Ž .these tests having been performed in parallel for all i, j, k . If W F U g UU,

Ž t i t j. Ž t i tk .for any respectful decomposition UU, then U , U / 0 and U , U / 0
and so U tj s U tk. This means W tj and W tk are in the same element of UU

Ž . tk ty1
jfor any such UU and therefore the same is true for W and W . Thus,

we set W [ W q W tk ty1
j .

Ž . TOnce W has passed these three tests, we set WW ¨ [ W .
Ž .Having computed WW ¨ in parallel for all 0 / ¨ g V, we output a

� Ž . < 4collection of maximum size from WW ¨ 0 / ¨ g V .

II. Assume now that G does not act irreducibly. We make the follow-
ing general observation.

Ž . Ž .a Suppose we have found in some NC computation a proper
Ž .decomposition V s V [ V wherein each V is G-invariant and V , V s1 2 i 1 2

0. In such case, we can recursively, and in parallel, compute maximal
respectful decompositions for V and V , the union of these being a1 2
maximal respectful decomposition for V. For the timing, we observe that
< < < < < <V F V r2 so that the depth of such a recursion does not exceed log V .i

Ž . Ž H. Ž .Note that, for any subspace W F V, dim W q dim W G dim V .
Hence, if W is a proper G-invariant subspace for which W l W Hs 0, we
may apply the above to the decomposition V s W [ W H .

Find a G-irreducible subspace W F V by taking any minimal element in
�² G: < 4 H Žu 0 / u g V . Find W for example, by testing, in parallel, all

.elements ¨ g V for orthogonality to all elements of W . Since W is
irreducible, W l W H is 0 or W.

H Ž .If W l W s 0, use a .
We may assume W F W H . If W Hs V, use INVARIANT COMPLE-

Ž . ŽMENT to express V s W [ Z and apply a to this decomposition. The
existence of the complement Z is guaranteed by the complete reducibility

.of G.
We may assume W F W H- V. Use INVARIANT COMPLEMENT to

H Ž . Ž . Ž H.express V s W [U. It follows that dim U s dim V y dim W F
Ž . H Hdim W . Also W l U s 0, otherwise W l U s W since W is irre-

ducible, contradicting U l W Hs 0.
Ž . Ž .We claim that U is G-irreducible and dim U s dim W . For, suppose, to

Ž .the contrary, that 0 / U F U where U is G-invariant and dim U -0 0 0
Ž . H Ž H Ž .dim W . Then W l U / 0 for W l U s 0 would imply dim V G0 0
Ž . Ž H. Ž . Ž . Ž . Ž ..dim W q dim U G dim W q dim V y dim U ) dim V . Since W0 0

is irreducible, W l U Hs W, contradicting U l W Hs 0.0
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H Ž . HIf U l U s 0, use a . Hence, we may assume U F U .
We now have U l W Hs 0, W l U Hs 0, W F W H , and U F U H . It

Ž . Ž .H Ž .follows that W [ U l W [ U s 0. If W [ U - V use a . Hence, we
may now assume that W [ U s V.

Ž . � 4Find by case I a maximal respectful decomposition WW s W of W.i ig I
² < :HFor i g I, let U [ U l W j / i .i j

� 4We claim that UU s U is a maximal respectful decomposition of U. Iti ig I
Ž . Ž .is clear that 2 and 3 hold. That U s [ U follows from the identifica-iig I

U U Ž .Ž .tion f : U ( W , where W is the dual space of W, given by f u w s
Ž . Ž H .u, w , for u g U, ¨ g W that f is injective follows from U l W s 0 .

U � U < Ž .Namely, W s [ W implies W s [ F , where F s f g W f wi i i iig I ig I
4 Ž .s 0 , and clearly F s f U . To see that UU is maximal, we use similari i

X � X4 X ² X < :Harguments: if UU $ UU s U then, letting W s W l U k / j , wej jg J j i
� X4would have WW $ W .j jg J

Ž .Finally, since W , U / 0 only if i s j, WW j UU is a maximal respectfulj i
decomposition of V s W [ U.

3.5. Small-Index Subgroups

It is often necessary to be able to pass from one permutation represen-
tation to a new one. Standard occurrences of this arise from the action on
the k-sets of the permutation domain or on a block system. We also need
to be able to construct the representation on the cosets of a subgroup of
small index that is given only by generators. For this purpose, it suffices to

w xhave a right transversal. The following problem was cited in BLS1 as an
open question for NC computation.

Problem. TRANSVERSAL
< < Ž c.Input: H - G F Sym with G : H s O n for some constant c.n

Output: A right trans̈ ersal for H in G.

Remark. A complete NC solution to TRANSVERSAL will appear in
w xKL2 . In the present paper, we will cite only the special case in which

< < Ž .log G is of polylog size see Section 6.2 .

< < Ž cX log n.PROPOSITION 3.13. TRANSVERSAL is in NC if G s O n for
some constant cX.

Proof. Let v be any point not fixed by G. Find G and H . Usev v

POINT STABILIZER to find a transversal C for G in G. Recursively,v

find a transversal CX for H in G . In parallel, consider all pairs ofv v

elements in CXC, and use MEMBERSHIP to discard all but one element
in each coset of H. The remaining elements form a transversal for H in G.

Clearly, G s HCXC, so that CXC contains a transversal of H in G. For
< < < < < <the timing, since G F G r2 the depth of the recursion is at most log G .v
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3.6. Good Series

w xA central component of the methods in BLS1 is the construction of a
polylog-length normal series in a given group G, along with ‘‘manageable’’
representations of the successive quotients. For example, CONSTRUC-
TIVE MEMBERSHIP ‘‘sifts’’ through these representations. Our algo-

w xrithms rely on a modification of the series in BLS1 .
Let K F N be normal subgroups of G F Sym and let p be prime. An

good p-G-series from N to K is a series of G-normal subgroups

GG : N s L 2 L 2 ??? 2 L s K0 1 r} } }

Ž .of polylog-length l GG s r such that, for each i, L rL is either abelianiy1 i
or a direct product of nonabelian simple groups, and, in the latter case, the
orders of the simple groups are either all divisible by p or all prime to p.
For our applications, we need not only the subgroups L in such a series,i
but also a faithful permutation representation of each nonabelian simple
factor TrL of L rL , i.e., a homomorphism p : T ª Sym , for some q,i iy1 i q

Ž .with ker p s L . In referring to constructions of good p-G-series, wei
always assume these ingredients to be included.

With this understanding, we require an NC procedure for

Problem. SERIES
Input: Normal subgroups K F N of G; prime p.
Output: A good p-G-series from N to K.

LEMMA 3.14. SERIES is in NC.

Proof. We first consider the case K s 1, N s G. The main construc-
w xtion of BLS1 produces a series

G s M 2 M 2 ??? 2 M s 1,0 1 r} } }

Ž 2 .with r s O log n and semisimple quotients M rM , each either abelianiy1 i
or a direct product of nonabelian simple groups. Furthermore, in the
nonabelian case, the construction includes a permutation representation of
the simple factors. Thus, it fails to be a good p-G-series from G to 1 only
in the lack of separation of levels according to p-divisibility of simple
group orders. Modification to satisfy this requirement involves the possible
insertion of an intermediate group for each nonabelian M rM : insertiy1 i

˘ X² <between M and M the group M s T TrM is a simple p -factor ofiy1 i i i
:M rM . The augmented series is p-G-good. Thus, the simple factors ofiy1 i

M̆ rM are a subset of those of M rM and we retain their permutationi i iy1 i
˘ ˘ ˘representations. The simple factors of M rM are of the form TM rMiy1 i i i

where TrM is a factor of M rM . To obtain a permutation representa-i iy1 i
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˘ ˘ ˘tion of TM rM , we determine the image of x g TM as follows: usei i i
y1 ˘FACTOR to find t g T such that xt g M , and then take the image of ti

under the given homomorphism T ª Sym .q
To construct a good p-G-series from N to K for general K and N, we

start with a good p-G-series from G to 1, G s M 2 M 2 ??? 2 M s 1.0 1 r} } }
Ž . Ž .For 0 F i F r, find L [ M l N K using INTERSECTION . Theni i

N s L 2 L 2 ??? 2 L s K is a good p-G-series from N to K. For, the0 1 r} } }

natural map L rL ª M rM is an isomorphism with a normal sub-iy1 i iy1 i
group of M rM . Thus, if L rL is nonabelian then it is the directiy1 i iy1 i
product of simple groups, all or none of which have order divisible by p;

�Ž .hence, it is the direct product of the nontrivial groups in T l N Kr
< 4L TrM is a simple factor of M rM . A permutation representation ofi i iy1 i

Ž . ŽT l N KrL is obtained as before by using FACTOR and the restrictioni
.to T l N of a known homomorphism T ª Sym .q

Remark. When no confusion can occur we just use the expressions
good G-series or good series. This is the case, for example, when NrK is
solvable and hence the prime p is irrelevant. Note that, in this situation,

Žone can employ the derived series constructible in NC by NORMAL
w x. X YCLOSURE; see BLS1 N 2 N 2 N 2 ??? to construct a good G-series

} } }

N 2 N XK 2 NYK 2 ??? 2 K from N to K.
} } } }

Remark. On occasion, we will construct new good series from old ones.

1. If M is the next-to-last term in a good series GG from N to K,
� 4then GG y K is a good series from N to M.

2. If GG is a good p-G-series from N to L and GG
X is a good

p-G-series from L to K, then GG j GG
X is a good p-G-series from N to K.

3. If D normalizes M and GG is a good DM-series from DM to M,
� < 4use INTERSECTION to construct the good D-series D l H H g GG

from D to D l M. The permutation representations of the nonabelian
quotients are then obtained as in the proof of Lemma 3.14.

Since we view a good series as a set of groups, these produce good
series.

4. SOLVABLE GROUPS

This section includes the NC algorithms for Sylow subgroups of solvable
groups. We will need these algorithms not only for permutation groups,
but also for solvable quotients of permutation groups. Since the algorithms

w xfor handling Hall subgroups Gor1, p. 231 are not significantly more
complicated than those for Sylow subgroups, we will only present the more
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general algorithms. However, a reader might wish to replace ‘‘Hall’’ by
� 4‘‘Sylow’’ and p by p when reading this section, keeping in mind that we

are focusing here on the solvable case.
Throughout this section, fix a set p of primes. As usual, p X denotes the

complement of p in the set of all primes. Let G F Sym . We will shown
that the following problems are in NC.

Problem. HALLFIND
Input: K 1 G F Sym with GrK sol̈ able.n}

Output: A subgroup P G K of G such that PrK is a Hall p-subgroup of
GrK.

Problem. HALLEMBED
Input: K 1 G F Sym with GrK sol̈ able; a p-subgroup RrK and an}

Hall p-subgroup PrK of GrK.
Output: g g G with R F P g.

Problem. HALLNORM
Input: K 1 G F Sym with GrK sol̈ able; a Hall p-subgroup PrK ofn}

GrK.
Ž .Output: A subgroup N G K of G such that NrK s N PrK .G

Direct applications of HALLEMBED will put the following two prob-
lems in NC.

Problem. HALLCONJ
Input: K 1 G F Sym with GrK sol̈ able; Hall p-subgroups RrK andn}

PrK of GrK.
Output: g g G with R s P g.

Problem. HALLFRATTINI
Input: G F Sym ; normal subgroups K F M of G with MrK sol̈ able; an

Hall p-subgroup PrK of MrK.
Output: A subgroup D 2 P of G such that G s DM.

}

For the main procedures, it is convenient to assume that the input
Žalready includes a good series GG from G to K the construction of good

.series is in NC by SERIES .
Ž .The following procedure solves HALLFIND. Notation: m n, p s

? n r p @ Ž ² mŽn, p .: XŁ p thus, for x g Sym , x is the Hall p -subgroup ofpgp n
² : mŽn, p . .x , where x can be found in NC, as noted in Section 2.2 .

Ž . Ž .procedure hallfind GG ) GG is a good series from G to K )
begin

Ž .if l GG s 0 then output G
Ž Ž . .else ) l GG G 1 )
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² :M s T ¤ the next-to-last term of GG;
Ž � 4.H ¤ hallfind GG y K ;

Ž .) HrM is a Sylow p-subgroup of GrM )
in parallel for all t g T

r ¤ t mŽn, p .;t
²� < 4 :L ¤ r t g T , K ;t

Ž .) L 1 G )
}

use COMPLEMENT to find a complement PrK to LrK in HrK ;
output P

end.

PROPOSITION 4.1. HALLFIND is in NC.

Proof. Since MrK is abelian, LrK is its Hall p X-subgroup. Hence, any
Hall p-subgroup of HrK is a complement to LrK in HrK. Thus,
COMPLEMENT is applicable.

The timing is clear since the recursive call involves a shorter good series.

The following procedure solves HALLEMBED.

Ž . Ž .procedure hallembed GG; R; P ) GG is a good series from G to K )
begin

Ž .if l GG s 0 then output 1
Ž Ž . .else ) l GG G 1 )

M ¤ the next-to-last term of GG;
Ž � 4 .g ¤ hallembed GG y K ; RM; PM ;

Ž g .) R F P M )
Ž g . xuse EMBED to find x g M such that R F P ;

output gx
end.

PROPOSITION 4.2. HALLEMBED is in NC.

Proof. To see that EMBED is applicable, note that P grK is a Hall
g Ž g . x gp-subgroup of P MrK. Hence, R F P for some x g P M and clearly

such an x exists in M.
The timing is clear since the recursive call involves a shorter good series.

COROLLARY 4.3. HALLCONJ is in NC.

Proof. This is a special case of HALLEMBED.

COROLLARY 4.4. HALLFRATTINI is in NC.

² :Proof. Let G s S . In parallel, for each s g S use HALLCONJ to
s m sŽ . ²� < 4 :find m g M such that P s P. Set D s sm s g S , P .s s
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The following procedure solves HALLNORM.

Ž . Ž .procedure hallnorm GG; P ) GG is a good series from G to K )
begin

Ž .if l GG s 0 then output GG;
Ž Ž . .else ) l GG G 1 )

M ¤ the next-to-last term of GG;
Ž � 4 .L ¤ hallnorm GG y K ; PM ;

Ž Ž . Ž . .) L s N PMrM G N PrK )G G
Ž .use EXTRACT NORMALIZER to find R s N PrK ;L

Ž L PM M .) P s P s P )
output R

end.

PROPOSITION 4.5. HALLNORM is in NC.

Ž . Ž .Proof. We have N PrK s N PrK . EXTRACT NORMALIZERG L

applies since P L s P M by the conjugacy of Hall p-subgroups of PM and
of L.

The timing is clear since the recursive call involves a shorter series.

5. REDUCTIONS TO SIMPLE GROUPS

In this section we present NC algorithms for the Sylow problems stated
in Section 1, assuming that related problems for simple groups have NC
solutions. Section 5.1 states these simple group problems; Section 5.2
extends these to problems for nonabelian semisimple groups, which, in
turn, are key ingredients in the solutions in Section 5.3 to the general
Sylow problems.

Throughout this section we fix a prime p. Unless otherwise indicated,
groups are contained in Sym .n

5.1. Simple Group Problems

NC algorithms for the following problems will be given later, in Section
7. The order of the problems in the following list is the same as that of
their solutions in that section.

Problem. SYLFIND SIMPLE
< < <Input: A nonabelian simple group G such that p G .

Output: A Sylow p-subgroup of G.
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Problem. SYLNORM SIMPLE
< < <Input: A nonabelian simple group G such that p G ; a Sylow p-sub-

group P of G.
Ž .Output: N P .G

Problem. SYLCONJ SIMPLE
< < <Input: A nonabelian simple group G such that p G ; Sylow p-subgroups

P , P of G.1 2
Output: g g G such that P g s P .1 2

Remark. Note that we did not explicitly include the simple group case
Ž .of SYLEMBED see Section 5.3 , which is incorporated into SYLNOR-

MALIZED2 SIMPLE below.

The following two problems hypothesize a set of automorphisms of a
² : Ž .group G s S . We may assume that u g Aut G is specified by indicat-

Ž . Ž .ing u s for s g S; an NC program Section 2.2 from S to g can be used
Ž .to determine u g for any g g G. In our application of the result, the

action of u on G will arise naturally, e.g., by conjugation within a
supergroup.

Problem. SYLNORMALIZED1 SIMPLE
< < Ž .Input: A nonabelian simple group G such that p ¦ G ; U : Aut G

² :with U a p-group.
Output: A Sylow 2-subgroup of G normalized by U.

Problem. SYLNORMALIZED2 SIMPLE
< < < Ž .Input: A nonabelian simple group G such that p G ; U : Aut G with

² :U a p-group.
Output: A Sylow p-subgroup of G normalized by U.

5.2. Extensions to Semisimple Group Problems

Our objective in this section is essentially to replace by ‘‘semisimple’’ the
Ž‘‘simple’’ assumption in the problems of Section 5.1 for SYLNORMAL-

IZED1 and SYLNORMALIZED2, we give a more precise formulation of
.the setting where they are needed . In the application to our main results,

the semisimple groups arise as quotients of successive terms in a good
series; thus, we assume that we have available the factorization of a
semisimple quotient GrK into a product of simple groups and a faithful
permutation representation of each simple factor. In any case, the meth-

w xods of BLS1 would provide these pieces in NC for any semisimple
quotient of permutation groups.
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We deal with the following problems.

Problem. SYLFIND SS
< < <Input: K 1 G with GrK nonabelian semisimple such that p GrK .

}

Output: A Sylow p-subgroup of GrK.

Problem. SYLNORM SS
< < <Input: K 1 G with GrK nonabelian semisimple such that p GrK ; a

}

Sylow p-subgroup PrK of GrK.
Ž .Output: N PrK .G

Problem. SYLCONJ SS
< < <Input: K 1 G with GrK nonabelian semisimple such that p GrK ;

}

Sylow p-subgroups P rK, P rK of GrK.1 2
Output: g g G such that P g s P .1 2

Problem. SYLNORMALIZED1 SS
Input: K 1 G and K 1 R, with GrK nonabelian semisimple and nor-

} }
< <malized by R, RrK a p-group and p ¦ GrK .

Output: A Sylow 2-subgroup of GrK normalized by R.

Problem. SYLNORMALIZED2 SS
Input: K 1 G and K 1 R, with GrK nonabelian semisimple and nor-

} }
< < <malized by R, RrK a p-group and p GrK .

Output: A Sylow p-subgroup of GrK normalized by R.

PROPOSITION 5.1. The abo¨e fï e problems are in NC.

Proof. We may assume we have GrK s T rK = ??? = T rK and we1 m
Ž .have faithful permutation representations p : T rK ª Sym D .i i i

For SYLFIND SS, we apply SYLFIND SIMPLE in parallel to find
² : Ž . ² y1Ž . <Sylow p-subgroups P s S of p T rK . We may take P [ p S 1 Fi i i i i

:i F m , computing the inverse images via LIFT.
Ž . ² y1Ž Ž Ž ... < :For SYLNORM SS, N PrK s p N p P 1 F i F m , us-G i p ŽG. ii

Ž Ž ..ing SYLNORM SIMPLE to compute N p P and then using LIFT.p ŽG. ii

For SYLCONJ SS, use SYLCONJ SIMPLE in parallel for all i to find
Ž . Ž .hi Ž .h g p T rK such that p P s p P and then, by use of LIFT,i i i i 1 i 2

Ž . gt g T such that p t K s h . Take g [ t t ??? t . Then P s P .i i i i i 1 2 m 1 2
We describe an NC procedure for SYLNORMALIZED2 SS. SYL-

Ž .NORMALIZED1 SS is solved similarly replacing p by 2 . The elements
� < 4of R permute the factors T rK 1 F i F m of GrK inducing a permuta-i

� 4 � 4tion representation of R on 1, 2, . . . , m . Let i , . . . , i be a set of1 s
representatives of the orbits of R in this action. Denoting by R thei
stabilizer in R of i, 1 F i F m, in parallel for each i , 1 F k F s:k
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² :Use POINT STABILIZER to find R s U ;i ik k

find a Sylow p-subgroup P of T rK normalized by Ri i ik k k

by applying SYLNORMALIZED1 SIMPLE to the action of U oni k

T rK ;i k

in parallel for each j g i R:k
find r g R such that i r j s j;j k
Ž .) so P is a Sylow p-subgroup of T rK normalized by R ) .j j j

² < :Then P 1 F i F m is a Sylow p-subgroup of GrK normalized by R.i

That the following is in NC follows from SYLCONJ SS as in the
solution of HALLFRATTINI using HALLCONJ.

Problem. FRATTINI SS
Input: Normal subgroups K - M of G with MrK semisimple; a Sylow

p-subgroup QrK of MrK.
Output: D F G with D 2 Q and G s DM.

}

5.3. Solutions to the Main Problems

We can reduce the main problems to the simple case. To be precise,
given NC procedures for the problems in Section 5.2, we show that the
following are also in NC.

Problem. SYLFIND
Input: K 1 G.

}

Output: A subgroup P G K such that PrK is a Sylow p-subgroup of
GrK.

Problem. SYLEMBED
Input: K 1 G; subgroups P G K, R G K such that RrK is a p-subgroup

}

and PrK is a Sylow p-subgroup of GrK.
Output: g g G such that R F P g.

Problem. SYLNORM
Input: K 1 G; a subgroup P G K such that PrK is a Sylow p-subgroup

}

of GrK.
Ž .Output: N P .G

The next two procedures follow, in sequence, from SYLEMBED exactly
as for the HALL analogues in Section 4.

Problem. SYLCONJ
Input: K 1 G; subgroups P G K, R G K such that RrK and PrK are

}

Sylow p-subgroups of GrK.
Output: g g G such that R s P g.
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Problem. FRATTINI
Input: Normal subgroups K - M of G; a Sylow p-subgroup QrK of

MrK.
Output: D F G with D 2 Q and G s DM.

}

As in Section 4, we start the main procedures with the assumption that
Žthe input already includes a good series GG from G to K the construction of

.GG is in NC by SERIES . In particular, this simplifies the timing arguments.
Ž̂ .Associated with a good series GG is a triple l GG of nonnegative integers

Ž Ž . Ž . Ž ..l GG , l GG , l GG , representing, respectively, the number of nonabelianp NA
levels with factors divisible by p, the number of nonabelian levels, and the
number of levels. The collection of such triples is totally ordered by
left-to-right lexicographic ordering. A key to critical timings is the fact that

ˆrecursive calls involve series with decreased l, where the number of triples
ˆ 6Ž . Ž .preceding l GG is O log n .

The following procedure solves SYLFIND.

Ž . Ž ² : .procedure sylfind GG ) GG is a good series from G s S to K )
begin

Ž .if l GG s 0 then output K
Ž Ž . .else ) l GG G 1 )

M ¤ the next-to-last term of GG;
if MrK is abelian then

Ž � 4.H ¤ sylfind GG y K ;
Ž .) HrM is a Sylow p-subgroup of GrM )

use HALLFIND to find a Sylow p-subgroup P of HrK ;
output P
Ž .else ) MrK is nonabelian semisimple )

if MrK is a pX-group then
use SYLFIND SS to find a Sylow 2-subgroup QrK of MrK

Ž .use FRATTINI SS to find D F N Q such that G s DMG

else
use SYLFIND SS to find a Sylow p-subgroup QrK of MrK;
use FRATTINI SS to find D 2 Q such that G s DM;

}

� 4use INTERSECTION to construct D l J for J g GG y K
thereby forming a good series GG

X from D to D l M;
use SERIES to find a D-invariant good series GG

Y from D l M to
K ;

Ž X Y .output sylfind GG j GG

end.
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PROPOSITION 5.2. SYLFIND is in NC.

Proof. We deal first with the correctness of sylfind.
For MrK abelian, we find a subgroup H that contains a Sylow p-sub-

group of G. HALLFIND applies since HrM is a p-group and so HrK is
solvable.

For MrK nonabelian semisimple, we need to observe that the group D
passed in the recursive calls still contains a Sylow p-subgroup of G. If
MrK is a pX-group, we express G s DM and so DKrK contains a Sylow

< < <p-subgroup of GrK. If p MrK , then DrK contains a Sylow p-subgroup
of GrK since DrD l M and the isomorphic group DMrM s GrM have
the same size Sylow p-subgroups, as do D l M, Q, and M.

For the timing, we need only check that the recursive call involves good
ˆseries with lesser l.

Ž � 4. Ž . Ž � 4. Ž .If MrK is abelian then l GG y K s l GG , l GG y K s l GG ,p p NA NA
Ž � 4. Ž .and l GG y K - l GG .

If MrK is nonabelian then the factors in the series GG
X are isomorphic

� 4 Yto those of GG y K , so we need only compare the levels of GG with one
� 4 X Ž Y .level MrK of the series M, K . If MrK is a p -group, then l GG sp

Ž� 4. Ž� 4. Ž Y .l M, K s 0. However, l M, K s 1, while l GG s 0 sincep NA NA
Ž .DK l M rK normalizes a Sylow 2-subgroup in MrK and is therefore

< < < Ž� 4. Ž Y .solvable. If p MrK then l M, K s 1 but l GG s 0 since the Sylowp p
Ž .p-subgroup, QrK, of D l M rK is normal.

The following procedure solves SYLEMBED.

Ž .procedure sylembed GG; R; P
Ž ² : .) GG is a good series from G s S to K )

begin
Ž .if l GG s 0 then output 1
Ž Ž . .else ) l GG G 1 )

M ¤ the next-to-last term of GG;
if MrK is abelian then

Ž � 4 .g ¤ sylembed GG y K ; RM; PM ;
use HALLEMBED to find h g P gM such that R F P g h;
output gh
Ž .else ) MrK is nonabelian semisimple )

if MrK is a pX-group then
use SYLNORMALIZED1 SS to find

a Sylow 2-subgroup QrK of MrK normalized by RrK ;
use SYLNORMALIZED1 SS to find

a Sylow 2-subgroup Q rK of MrK normalized by PrK;1
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else
use SYLNORMALIZED2 SS to find

a Sylow p-subgroup QrK of MrK normalized by RrK ;
use SYLNORMALIZED2 SS to find

a Sylow p-subgroup Q rK of MrK normalized by PrK;1
use SYLCONJ SS to find m g M so that Qm s Q;1
use FRATTINI SS to find D 2 Q such that G s DM;

}
² m:D ¤ D, R, P ;

� 4use INTERSECTION to construct D l H for H g GG y K ,
thereby forming a good series GG

X from D to D l M;
use SERIES to find a D-invariant good series GG

Y from D l M to
K ;

Ž X Y m.h ¤ sylembed GG j GG ; R; P ;
output mh

end.

PROPOSITION 5.3. SYLEMBED is in NC.

Proof. We deal first with the correctness of sylembed.
If MrK is abelian then P gM is solvable so that HALLEMBED can be

used to find h.
In the nonabelian MrK case, the group D contains R and P m and

therefore will contain some h for which R F P m h.
For the timing, we check that the recursive calls involve series with

ˆlesser l.
Ž � 4. Ž . Ž � 4. Ž .If MrK is abelian, then l GG y K F l GG , l GG y K s l GG ,p p NA NA

Ž � 4. Ž .and l GG y K - l GG .
Ž .If MrK is nonabelian, note first that Dr D l M ( DMrM s GrM,

so the levels for GG
X coincide with those for GG from G to M. If GG denotesM

ˆ Y ˆŽ . Ž .the part of GG from M to K, we need to show that l GG - l GG . If MrKM
X Ž .is a p -group, D l M rK normalizes its Sylow 2-subgroup QrK and

Ž Y . Ž . Ž Y .hence is solvable; in this case l GG s 0 F l GG while l GG s 0 -p p M NA
<Ž . < < Ž .l GG . If p MrK , D l M rK normalizes its Sylow p-subgroup QrK,NA M

Ž . X Ž Y .so the nonabelian levels of D l M rK are p -groups; in this case l GGp
Ž .s 0 - l GG .p M

This yields the following consequences exactly as Corollaries 4.3 and 4.4
follow from Proposition 4.2.

COROLLARY 5.4. SYLCONJ is in NC.

COROLLARY 5.5. FRATTINI is in NC.

We now turn to SYLNORM, starting with the following special situation
w xwe find to be independently interesting: in KL2 we generalize this to the

Ž < < < <.case PrK , MrK s 1.
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Problem. SYLNORM1
Input: K 1 M and K 1 P, M normalized by P, PrK a p-group and

MrK a pX-group.
Ž .Output: Find N P .M

Ž . Ž . Ž .Remark. Note that N P s C PrK . Namely, since N P rK andM M M
ŽPrK normalize one another and have trivial intersection since their

.orders are relatively prime , they centralize one another.

The following procedure solves SYLNORM1.

Ž .procedure sylnorm1 K ; M; P
begin

< < <in parallel for all primes q MrK
˘use SYLFIND to find a Sylow q-subgroup Q rK of MrK;q

˘use FRATTINI to express PM s D M where D 2 Q ;q q q}

˘use SYLFIND to find a Sylow p-subgroup PrK of D rK ;q
˘guse SYLCONJ to find g g PM such that P s P;

˘gQ ¤ Q ;j q
Ž .) Q rK is a Sylow q-subgroup of MrK normalized by PrK )q

Ž .use HALLNORM to find N P ;P Qq
Ž .) PQ rK is solvable )q

Ž .use INTERSECTION to find C s Q l N P ;q q P Qq
² < < <:output C q prime dividing MrKq

end.

PROPOSITION 5.6. SYLNORM1 is in NC.

w xProof. By Gor1, p. 224 , any P-invariant q-subgroup of MrK is
contained in a P-invariant Sylow q-subgroup of MrK and any two P-in-
variant Sylow q-subgroups of MrK are conjugate by an element of

Ž .C PrK . It follows that Q rK contains a Sylow q-subgroup ofMr K q
Ž . Ž .C PrK s N PrK ; hence, C rK is that Sylow q-subgroup. TheMr K Mr K q

correctness of the procedure follows immediately.
The timing is clear since the cited problems are all in NC.

The following procedure follows SYLNORM.

Ž . Ž .procedure sylnorm GG; P ) GG is a good series from G to K )
begin

Ž .if l GG s 0 then output K
Ž Ž . .else ) l GG ) 1 )

M ¤ the next-to-last term of GG;
if MrK is abelian then

Ž � 4 .L ¤ sylnorm GG y K ; PM ;
Ž Ž . Ž . .) L s N PM G N P )G G
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Ž .use EXTRACT NORMALIZER to find R s N PrK ;L
Ž L PM M .) P s P s P )

output R
< < <else if MrK is nonabelian and p MrK then

use INTERSECTION to find Q s P l M;
Ž .) PrK is a Sylow p-subgroup of MrK )

˘ ˘use FRATTINI to express G s DM where D normalizes Q;
Ž .use SYLNORM SS to find N Q ;M

˘ Ž .D ¤ DN Q ;M
Ž Ž . Ž . .) so D s N Q G N P ) ;G G

� 4use INTERSECTION to construct D l H for H g GG y K ,
thereby forming a good series GG

X from D to D l M;
use SERIES to find a D-invariant good series GG

Y from D l M to
K ;

Ž X Y .output sylnorm GG j GG ; P
Ž X .else ) MrK is a p -group )

Ž � 4 .L ¤ sylnorm GG y K , PM ;
Ž .use FRATTINI to express L s D PM , where D 2 P;

}
Ž .use SYLNORM1 to find N P ;M

Ž .output DN PM
end.

PROPOSITION 5.7. SYLNORM is in NC.

Proof. We deal first with the correctness of sylnorm.
Ž .In the case where MrK is abelian, we find L s N PMrM GG

Ž . L PM MN PrK . Since PM 1 L, P s P s P by the conjugacy of SylowG }

subgroups. Hence EXTRACT NORMALIZER is applicable.
< < <In the case where MrK is nonabelian and p MrK , since G s DM,

Ž . Ž . Ž . Ž .we have N P F N Q s D. Hence, N P s N P .G G G D
In the case where MrK is a pX-group, FRATTINI applies to find D

Ž . Ž . Ž .since PM 1 L. Then N P s N P s DN P .G L M}

For the timing, observe that the recursive calls when MrK is abelian or
a pX-group simply involve truncated series.

< < <If MrK is nonabelian with p MrK then we observe that the levels in
X � 4 Ž .the series GG are isomorphic to those of GG y K since G s DM , so we

need only compare the levels of GG
Y with the one level MrK of the series

� 4 Ž� 4. Ž Y .M, K . We have l M, K s 1, but l GG s 0 since the Sylow p-sub-p p
Ž .group, QrK, of D l M rK is normal.

The following is a simple extension of SYLNORM; stronger results of
w xthis sort are in KL2 .
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COROLLARY 5.8. There is an NC solution to the following problem: gï en
proper normal subgroups K F L of the permutation group G and a Sylow

Ž .p-subgroup PrK of LrK, find N P .G

Proof. Use FRATTINI to find D 2 P such that G s DL. Use SYL-
}

Ž . Ž .NORM to find N P . Output DN P .L L

6. NATURAL ACTIONS OF SIMPLE GROUPS

In this section and the next we will describe algorithms for simple
groups that are required in the previous section.

6.1. Simple Groups

According to the classification of finite simple groups, any nonabelian
simple group G is one of the following: an alternating group, a classical
group, an exceptional group of Lie type, or one of 26 sporadic groups. We
can ignore the latter small number of examples. As we will see in Theorem
6.1, exceptional groups of Lie type are too small to create any difficulties
Ž . Žcf. Section 7.2 . Alternating groups are, of course, familiar cf. Section

.7.3.2 . Therefore, we will spend most of the remainder of this paper
studying classical groups.

wWe will freely use properties of classical groups that can be found in Di,
xTa, As . We will not, however, provide complete details concerning these

groups: that would require a book-length exposition.
A classical group is defined on a finite vector space V over a field K.

Ž .The most familiar example is PSL V , the group of all linear transforma-
tions of V of determinant 1, modulo scalar transformations. We have
separated this case in Section 6.4, since it is simpler and easier to
understand. The reader may wish to first read the remainder of this

Ž .section, as well as Section 7, when G s PSL V .
The remaining classical groups are defined using a quadratic, bilinear,

Ž .or hermitian form on V: if Isom V denotes the group of all isometries of
Ž .Xthe form, then, in general, the relevant group is PIsom V , its commutator

subgroup modulo scalars. We will introduce further notation when needed.
For now, we recall that a quadratic form on V is a map f : V ª K such that
Ž . 2 Ž . Ž . Ž .f a ¨ s a f ¨ for all a g K, ¨ g V, and such that u, ¨ [ f u q ¨ y
Ž . Ž . Ž . wf u y f ¨ , u, ¨ g V, defines a nonsingular bilinear form , on V Di,

x Ž .Ta, As . If the characteristic is odd, then , can be recovered from f , but
this is not the case in characteristic 2. For the definitions of alternating

w xand hermitian forms, see Di, Ta, As .
For a quadratic, alternating, or hermitian form, if we ignore small-di-

Ž .X Ž . Ž . Ž .mensional anomalies then Isom V is V V an orthogonal group , Sp V
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Ž . Ž . Ž .a symplectic group , or SU V a unitary group , respectively. Here and
Ž .elsewhere we will omit the form from the admittedly ambiguous notation

Ž . Ž .Isom V . In the case G ( PSL V we will occasionally view V as equipped
Ž . Ž . Ž .with the 0 form, in which case Isom V s GL V . The group PSL V , and
Ž .X Ž . Ž . Ž .its projectï e subgroups G s PIsom V s PSL V , PV V , PSp V , or

Ž .PSU V , do not act on V itself: they act on the set of all subspaces of V,
Ž .and, in particular, on the set V of all points 1-spaces of V, and we will

focus on this action. If some small-dimensional cases are again ignored,
then G is a simple group acting primitively on the point orbit of size
relatively prime to the characteristic of V.

Consider any simple group G. Whereas we will start with one permuta-
tion action of G, we will need another one: a more ‘‘natural’’ action on
another set. When G is isomorphic to an alternating group A , thisr
‘‘natural permutation representation’’ is that of G on an r-set; when G is
isomorphic to a classical group, this permutation representation is on V.
Section 6.2 discusses the reconstruction of this better permutation repre-
sentation. Sections 6.3]6.5 continue with algorithms concerning classical
groups; alternating groups are, as one would expect, much easier to deal
with.

wThe following is crucial for the present paper, as well as for Ka1, Ka2,
xKa3, Ma2, Mo :

Ž .THEOREM 6.1. If G is a simple primitï e subgroup of Sym V with
< < < < 8 Ž .G G V , then G and V are as follows up to a permutation isomorphism :

Ž .I G ( Alt for some r, and V is the set of all k-sets of ther
underlying r-set for some k;

Ž .II G ( Alt for some r, and V is the set of partitions of ther
underlying r-set into blocks of size k for some k; or

Ž .III G is a classical group, and V is an orbit of subspaces of an
underlying ¨ector space.

w Ž .xThis is proved in Ka1, 6.1 . A stronger result of the same sort,
< < < < 5 w Ž .xassuming G G V , is proved in KP, 2.2 . We have retained the weaker
< < < < 8 wcondition G G V in order to more easily match up with Ka1, Ka2,

x Ž .Ka3 , as well as to ensure that dim V is large enough to avoid some
tedious cases that would require separate treatment.

The proofs depend on the fact that all sufficiently large subgroups of
simple groups have been determined, which, in turn, rests heavily on the
classification and properties of finite simple groups. Some care must be

Ž . Ž .taken in III : a symplectic group Sp 2m, q and q even should be viewed
Ž . Ž .as an orthogonal group V 2m q 1, q ( Sp 2m, q in order to obtain all

orbits referred to in the result; however, we will not have to deal explicitly
Ž .with this situation. Also note that, when the group is G ( PSL d, q , there
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are again two ‘‘underlying’’ vector spaces, dual to one another but equally
Ž .good from the standpoint of III .

6.2. Finding a Vector Space

From an algorithmic perspective, it is necessary to pass from the
Ž . Ž .permutation representations in Theorem 6.1 I ] III to even better ones:

THEOREM 6.2. There is an NC algorithm which, when gï en a simple
Ž . < < < < 8primitï e subgroup G of Sym V with G G V , finds one of the following:

Ž . Ž .i A set J and an action of G on J as Alt J ; or
Ž .ii A ¨ector space V o¨er a field K, and an action of G on the set

J s V of all 1-spaces of V, such that one of the following holds:
Ž . Ž .a G ( PSL V , or
Ž .b There is a nonsingular quadratic, alternating, or hermitian form

Ž .Xon V such that G ( PIsom V , in which case such a form is found.

Ž .Ž . Ž .For the forms implicit in ii b , see Lemma 6.11 i . While we will not
need information concerning the procedures used in the proof of this
theorem, we present an overview of that proof.

NC algorithms for Theorem 6.2 proceed in three stages:

Ž . Ž .a Construct a set J on which G acts either as Alt J or, when0 0
G is a classical group, such that J can be identified with a suitable orbit0
of 1-spaces of an underlying vector space.

Ž .b When G is classical, reconstruct the set J consisting of all
1-spaces of the aforementioned vector space, together with the action of G
on J.

Ž .g Reconstruct the vector space V from its set J of 1-spaces, as
Ž .Ž .well as the form in ii b .

Ž . wThe following NC algorithm for a is essentially the one given in Ka1,
x Ž .p. 493 ; its correctness is proved for the alternating groups, PSL V , and

wthe remaining classical groups, respectively, in Ka2, pp. 494]496, 496]497,
x504]505 .

Ž .procedure natural G
Ž Ž . < < < < 8 .) G F Sym V is simple, primitive, and G G V )

begin
let v s V;
in parallel for all c g V

find G ;�v , c 4

find all proper subgroups N of G of which G is a maximal�v , c 4
subgroup;
Ž �² : < 4) These are the minimal elements in G , t t g T ,�v , c 4

.where T is a TRANSVERSAL for G in G. )�v , c 4
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Ž . � 4 � 4AA c ¤ G j all such N ;V �v , c 4
Ž .in parallel for all N g AA cV

find all I such that N - I - G;
Ž Ž . Ž .) Each member of AA c is contained in O 1 subgroups of G,V

so we can find the minimal such I as above,
.and recursively find all J such that I - J - G. )

Ž .U � Ž .4 � 4AA c ¤ AA c j all such I ;V V

Ž . � Ž .U4BB G, V ¤ all maximal subgroups of G in D AA c ;c V

Ž .in parallel for for all M g BB G, V
Ž .find BB G, GrM ;

Ž) As above. A TRANSVERSAL for M in G can be found
.and therefore an action of G on GrM. )

� Ž . < Ž .4BB ¤ D BB G, GrM M g BB G, V ;
in parallel for all M g BB

< <find G: M ;
find the three smallest such indices b - b - b , and L g BB with0 1 2 i

< <G: L s b ;i i
if b ) 4b r3 then1 0

L ¤ L0
ŽŽ .d .y1else if d b rb y 1 is a power of 3 for d s "1 then1 0

L ¤ Lmax�0, d 4
� 4else if b is odd and b is even for i g 0, 1 theni 1yi

L ¤ Li
else

L ¤ L ;2
output a TRANSVERSAL for L in G and thereby the action of G on
GrL

end.

Remarks. The transversals in the preceding procedure do not actually
require the method given in Proposition 3.13, since one is finding transver-
sals for intermediate groups B in C, given A F B F C F D, wherein a
transversal for A in D is known or easily knowable.

The indices b , b , b are handled here in a manner designed to correct0 1 2
w x w xan arithmetic error in Ka2, 10.1 ; cf. KL1, p. 175 . It is clear that the

Ž . Ž .preceding algorithm is in NC. While it dealt with cases I ] III simultane-
ously, there are other ways to handle individual cases. This is especially
true for the alternating groups, since this is the most concrete of the cases.
From a ‘‘practical’’ point of view, the previous algorithm is too space

wconsuming, and this provided motivation for alternative approaches in KP,
xKa4, KS, Mo .

Ž .The following is a direct parallelization of the procedure for b in
w xKa1, pp. 505]506 .
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Ž .procedure allpoints G
Ž Ž . Ž . .) G F Sym J with G and J as in natural G )0 0

begin
if G is 2-transitive on J then0

J ¤ J0
output J

else let j g J ;0
find G using POINT STABILIZER;j

� 4use ORBIT to find the G -orbit on J y j of length a power of aj 0
prime p;

< <let q be the largest power of p dividing J y 1;0
find GX using DERIVED SERIES;j

find D [ GrGX using TRANSVERSAL;j

Ž < X < < < .) G rG - q - J )j j 0
let a g D;
in parallel for all b , g , d g D

find G and G using POINT STABILIZER;ab gd

² :test whether G / G , G / G , and G - G , G - G usinga a b g gd a b a b gd

ORDER;
if so then

² :M ¤ G , G ;ab gb

find a TRANSVERSAL T for H in G;
² :while ' t g T : M - M, t - G

Ž .) tests are carried out in parallel )
² :replace M by such a M, t ;

Ž) M is now the unique maximal subgroup of G containing
² : .G , G )ab gd

� < < 3 < <4J ¤ all such M with G: M - q J ;0
output J

end.

The set J ‘‘is’’ the set of all 1-spaces of ‘‘the’’ vector space. If G is
Ž . UPSL d, q then we may have to relabel V as V. If G is symplectic then J

is just J , while for orthogonal and unitary groups J is J together with0 0
one or two additional conjugacy classes of subgroups. We note that all of

< < < < 8 Ž .this presumes the input requirement G G V of natural G .

Ž . w xRemark. The procedure for allpoints G in KP is much more efficient
Ž .than the preceding one: it only deals with sets of size O n . However, it is

also quite a big longer and makes much more significant use of
TRANSVERSAL.

Ž .Stage g can be viewed as classical projective geometry: starting with
the ‘‘geometry’’ of J, it is required to ‘‘coordinatize’’ J using a vector
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space V: construct an explicit G-invariant bijection V ª J. Once again,
wNC algorithms are presented in the previous references. The one in Ka2,

x w x Ž w x.Ma2, pp. 371]373 is classical projective geometry based on VY cf. KP .
w xForms are found in Ka2, p. 375 .

wOther NC algorithms for all parts of Theorem 6.2 are given in Ka1,
x w x Ž .Ka2, KP, Ma2, Mo , as well as in BLS1 for i . While some of these

papers do not refer to NC at all, the algorithms given in Theorem 6.2 are
readily seen to be in NC. Namely, these algorithms use tools available in
NC, in view of our Section 3, making it easy for a polynomial-time reader
to change perspective minutely in order to become an NC reader. Note

Ž log 2 n.that classical groups have order O n , so all subgroup chains involved
in the procedures have polylog length and hence recursive calls involving

Ž .proper subgroups have polylog depth cf. Lemma 6.3 .
w xMuch more than Theorem 6.2 is obtained in Ka1, KP, Ma2 ; this is

summarized in the next sections. More recently, other approaches to parts
w x w xof Theorem 6.2 have been given in Ka4 and KS .

6.3. Classical Groups: Preliminaries

The results stated in Sections 6.3]6.5 all refer to problems for which NC
solutions exist and, in general, are presented. In this section we merely

w xdescribe problems for which NC solutions are given in Ka1, KP, Ma2 .
These all deal with ‘‘elementary’’ aspects of managing vectors and forms.

< < < < 8The hypotheses of Theorem 6.2 are always presupposed, so that G G V .
Since J will be identified with the set V of all 1-spaces of V, we do not
merely have a basis available: we can compute and use a list of all vectors

Ž .of V. For randomized versions of parts of Sections 6 and 7 in which not
w xall vectors can be listed, see Mo, KS .

< < < < 8 Ž wSince G G V , it is not hard to check the following compare Ka1,
Ž .x.6.1iii :

Ž . Ž . Ž .LEMMA 6.3. dim V s O log n and dim V ) 8.

Ž .This will allow recursion to depth dim V when needed in Sections 6
and 7. Now we turn to problems already known to be in NC. In this section
we will only mention procedures for elementary linear algebra. These are
especially easy in the present context: in effect, we have a list of all vectors

Ž . Ž .of our small vector space V compare Section 3.4 . Perpendicularity of
sets of vectors is defined in the obvious manner.

LEMMA 6.4. Gï en any subset S of J or V, there is an NC algorithm for
² : Hfinding the subspace S it spans, as well as the subspace S of all ¨ectors

Ž .perpendicular to S if G \ PSL V .
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LEMMA 6.5. The following are in NC.

Ž .i Gï en a subspace W of V and linearly independent ¨ectors e , . . . , e1 i
in W, find a basis e , . . . , e of W containing them.1 k

Ž .ii Gï en another basis f , . . . , f of W, find the linear transformation1 k
of W, i.e., the permutation of W it induces, such that e ¬ f for i s 1, . . . , k.i i

Ž . Ž .iii For any basis e , . . . , e of V and for any g g PGL V , find1 d
Ž . Ž . Ž .a g GL V and s g Aut K such that the semilinear transformationi j
Ý c e ¬ Ý csa e acts on J as g does.i i i i j i i j j

Ž . Ž .iv Find the group GL V of all nonsingular linear transformations
of V.

Ž .Of course, i is an easy application of Lemma 6.4; special bases will be
Ž .found later in Lemma 6.11. Note that it is straightforward to find Aut K

in NC. Namely, we know the characteristic p, and the map a ¬ a p

Ž .generates Aut K .

LEMMA 6.6. There is an NC algorithm for finding a group GU of linear
transformations of V such that GUX s GU and such that the actions on J of
GU and G coincide.

Whereas G did not actually act on V, GU does. The latter group is
Ž . Ž . Ž . Ž . Ž .SL V if G is PSL V , Sp V if G is a symplectic group PSp V , SU V if

Ž . Ž .G is a unitary group PSU V , or V V if G is an orthogonal group
Ž .PV V . Thus, Lemma 6.6 will allow us to focus on a group that is ‘‘almost’’

the same as G but easier to compute using linear algebra.

Ž .6.4. Classical Groups: PSL V

We now turn to NC algorithms going more deeply into the structure of
w xsubgroups and subspaces Ka1, Ma2 . Subspaces will always be nonzero

unless the context suggests otherwise. We start with the simplest case:
Ž . Ž .G s PSL V . Recall that q is the size of the field K in Theorem 6.2 ii .

LEMMA 6.7. Gï en a basis e , . . . , e of a subspace W of V, there is an NC1 k
algorithm for finding the stabilizer in G of the sequence of subspaces
² :e , . . . , e , i s 1, . . . , k.1 i

Proof. For 0 F j F k, let G denote the stabilizer of the sequencej
² : Ž .e , . . . , e , i s 1, . . . , j. By Lemma 6.3, k s O log n , so it suffices to1 i
show how to compute G given G . For this, using Lemma 6.4, we firstjq1 j

² :G j ² :determine e , . . . , e , e , by determining the subspaces e , . . . , e , e1 j jq1 1 j
G i Ž .in parallel for all e g e using ORBIT and discarding duplicates. In thejq1

Ž .action of G on the small resulting collection, G is the POINTj jq1
² :STABILIZER of e , . . . , e , e .1 j jq1
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Remark. Lemma 6.7 strongly depends upon our ability to list the full
orbit of a vector. Given an action of a permutation group G on an
arbitrary vector space, the problem of determining the indicated stabilizer
is not known even to be in polynomial time. A polynomial-time algorithm

w xfor sol̈ able G follows from results of Lu4 .

LEMMA 6.8. Let W be a subspace of V. The following are in NC.

Ž . X Ž .i Gï en elements t, t g GL W that are irreducible on W and ha¨e
Ž . ² : g ² X:the same order, find g g GL W with t s t .

Ž . Ž . < <ii Find t g GL W of order W y 1.
Ž . Ž . Ž . < <iii If t g GL W is irreducible, find the field K t of size W it spans

Ž .as a K-algebra of linear transformations, and find the sol̈ able groups
Ž . Ž² :. Ž² :. < < Ž .C t , N t , and N t of order - W dim W .GL ŽW . GLŽW . SLŽW .

Ž . Ž . Ž . � 4Proof. For i , find k [ dim W using Lemma 6.5 i , fix u g W y 0 ,
Ž .and use Lemma 6.5 ii to test in parallel, for all ¨ g W and all distinct

powers tX j, whether the linear transformation defined by ut i ¬ ¨ Ž t j. i
, i s

0, . . . , k y 1, conjugates t to tX j.
Ž . Ž .For ii , fix a basis of W, form all companion matrices, use Lemma 6.5 ii

Ž .to view the corresponding linear transformations in GL W as permuta-
tions, and find one of the desired order.

Ž . w x Ž . � 4In iii , by Schur’s Lemma Gor1, p. 76 both C t j 0 and theGL ŽW .
Ž . Ž . � 4 Ž . Ž .desired span K t are fields, and C t j 0 = K t . Since K t isGL ŽW .

< Ž . < < < Ž . � 4 Ž .irreducible, K t s W , and hence C t j 0 s K t . Finding theGL ŽW .
Ž . Ž . Ž² :.span K t is straightforward. For the last part of iii , note that N tGL ŽW .

Ž .is generated by the multiplicative group of K t together with the linear
transformation defined by ut i ¬ ut i q

, i s 0, . . . , k y 1, obtained using
Ž . < Ž² :. < Ž < < . Ž .Lemma 6.5 ii ; then N t s W y 1 dim W , also proving theGL ŽW .

Ž² :. Ž² :. Ž .order assertion. Finally, N t s N t l SL W can be foundSLŽW . GLŽW .

using INTERSECTION.

LEMMA 6.9. The following are in NC.

Ž . X Ž .i Gï en a subspace W, find its set stabilizers G and GL V .W W

Ž . Uii Gï en subspaces W , W of the same dimension, find g g G such1 2
that W g s W .1 2

Ž . Ž .Proof. i Use Lemma 6.5 i to find a basis e , . . . , e of V such that1 d
e , . . . , e is a basis of W. Use Lemma 6.7 to find the stabilizer J in GU of1 k

² : Ž .the sequence of subspaces e , . . . , e , i s 1, . . . , k. Use Lemma 6.5 ii to1 i
find the linear transformation g of V defined by e ¬ e , i s 1, . . . , k,i kq1yi

² :fixing all other basis vectors. Then it is easy to check that J, g s
Ž . U U Ž .GL V , and G s G l GL V is obtained using INTERSECTION.W W W
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Ž .ii Use Lemma 6.5 to find an ordered basis B of V starting with ai
basis of W , as well as the linear transformation defined by sending B toi 1
B .2

Note that we could not use POINT STABILIZER or ORBIT here: in
general, W GU

does not have polynomial size.

LEMMA 6.10. The following are in NC.

Ž .i Gï en a decomposition V s V [ ??? [ V , find its set stabilizers1 s
Ž .G and GL V .�V , . . . , V 4 �V , . . . , V 41 s 1 s

Ž . Ž .ii Gï en two decompositions in i for which some element of G
sends the first to the second, find such an element.

Ž . � 4 Giii Gï en a subspace V , find a maximal-size family V , . . . , V : V1 1 m 1
² :such that V , . . . , V s V [ ??? [ V .1 m 1 m

Ž .All parts again use bases in a straightforward manner cf. Lemma 6.14 .

Ž .6.5. Classical Groups: Isom V

Ž .Ž .We now turn to groups preserving forms, as in Theorem 6.2 ii b . Thus,
throughout the remainder of this section, we assume that V is equipped

Ž .with a nonsingular quadratic form f ha¨ing associated bilinear form , , or a
Ž .nonsingular alternating or hermitian form , . A vector ¨ is called isotropic

Ž .if ¨ , ¨ s 0; if V is an orthogonal space then ¨ is called singular if
Ž .f ¨ s 0; the two notions coincide for orthogonal spaces of odd character-

istic, but not for ones of characteristic 2. In the orthogonal case we will
only consider singular vectors, never isotropic ones when the characteristic
is 2, even though this leads to an overuse of phrases such as ‘‘isotropic or
singular.’’ A subspace is called totally isotropic or totally singular if all of its
vectors are. A subspace W is called nonsingular if either W l W Hs 0 or
V is an orthogonal space of characteristic 2 and W is a 1-space such that
Ž .f W / 0. Totally isotropic, totally singular, and nonsingular subspaces are

the main ones we will need to deal with: e¨ery subspace W whose set
Ž .stabilizer Isom V acts irreducibly on W is one of these. A subspace W isW

anisotropic if it contains no nonzero isotropic or singular vectors; then
Ž . Ž .dim W F 1 except when V is orthogonal, in which case dim W can be 2.

If V , . . . , V are pairwise perpendicular nonsingular subspaces such that1 i
² : ² :V , . . . , V s V [ ??? [ V , then we write V , . . . , V s V H ??? H V .1 i 1 i 1 i 1 i

Ž . ŽIn particular, if W is a nonsingular subspace and W, W / 0 where the
latter automatically holds except when V is an orthogonal space of

Ž . . Hcharacteristic 2 and dim W s 1 , then V s W H W .
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We now continue with problems having NC solutions.

LEMMA 6.11. The following are in NC.

Ž .i Find a basis e , . . . , e , f , . . . , f , u , . . . , u of V such that each1 m 1 m 1 s
Ž . Ž . Ž .e and f is isotropic or singular, e , f s d for all i, j, e , u s f , u s 0i i i j i j i l i l

² : Ž .for all i, l, and u , . . . , u is anisotropic so s F 2 .1 s

Ž . Ž .ii Find Isom V .
Ž . U Ž .iii Find the stabilizers in G, G and Isom V of the sequence of

² :subspaces e , . . . , e , i s 1, . . . , m.1 i

Ž .Terminology. We will call a basis in Lemma 6.11 i a standard basis
Ž .there is no standard terminology for this purpose ; the integer m is
uniquely determined by V, and is called the Witt index of V.

Proof. To find a standard basis, pick any nonzero isotropic or singular
vector e in V, use Lemma 6.4 to pick an isotropic or singular vector1

H Ž . ² :Hf f e with e , f s 1 and to find e , f , and iterate. Eventually, an1 1 1 1 1 1
anisotropic subspace remains, of dimension F 2, and a basis is easily

Ž . Ž . Ž² :.found e.g., by brute force . For ii , use brute force to find Isom e , f ,1 1
Ž . ² :Hand extend it to a subgroup of Isom V inducing 1 on e , f ; then1 1

Ž . ² U Ž² :.: Ž .Isom V s G , Isom e , f . Part iii is handled exactly as in Lemma1 1
6.7. These procedures are in NC, in view of Lemma 6.3.

More generally, but exactly as in Lemma 6.11:

LEMMA 6.11X. The following are in NC.

Ž .i Gï en a nonsingular subspace W of V and gï en a sequence
e , . . . , e of linearly independent ¨ectors spanning a totally isotropic or totally1 k
singular subspace of W, find a standard basis for W that starts with e , . . . , e .1 k

Ž . U Ž .ii Find the stabilizers in G, G and Isom V of the sequence of
² :subspaces e , . . . , e , i s 1, . . . , k.1 i

LEMMA 6.12. Gï en two standard bases e , . . . , e , f , . . . , f , u , . . . , u1 m 1 m 1 s
and eX , . . . , eX , f X, . . . , f X , uX , . . . , uX , there are NC algorithms for finding an1 m 1 m 1 s

Ž . X Xelement of Isom V sending e to e and f to f for each i and for findingi i i i
U Žsuch an element in G if one exists there is one except possibly when V is an

.orthogonal space of dimension 2m .
Y Y ² X X :Proof. Test in parallel all sequences u , . . . , u g u , . . . , u in order1 s 1 s

to decide whether the linear transformation e ¬ eX , f ¬ f X, u ¬ uY, fori i i i j j
Ž . Ž Ž .. < < 2all i, j, is in Isom V cf. Lemma 6.5 ii ; there are at most K sequences,

and they are tested using the form. At least one of the resulting transfor-
U U qŽ . Ž w xmations lies in G , except when G s V 2m, q see Di, Ta, As for

discussions of this exceptional behavior of these particular orthogonal
Ž ..groups; also see Proposition 7.6 ii .
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Note that, in general, there is no isometry sending u ¬ uX for thej j
original vectors uX .j

LEMMA 6.13. Gï en a subspace W that is either totally isotropic, totally
singular, or nonsingular, the following are in NC.

Ž . Ž . U Ži Find the set stabilizers Isom V and G in particular, findW W
Ž ..Isom V ; and
Ž . X X XGU

ii Gï en a subspace W , decide whether or not W g W , and, if it
is, then find g g GU such that W g s W X.

Remark. We cannot use POINT STABILIZER or ORBIT here: in
general W GU

does not have polynomial size.

Ž . XProof. i If W is totally isotropic or totally singular, use Lemma 6.11
to find a standard basis e , . . . , e , f , . . . , f , u , . . . , u of V starting with1 m 1 m 1 s

Ž .a basis e , . . . , e of W, and to find the stabilizer J in Isom V of the1 k
² :sequence of subspaces e , . . . , e , i s 1, . . . , k. Let g be the linear1 i

transformation defined by e ¬ e , f ¬ f , for i s 1, . . . , k, andi kq1yi i kq1yi
Ž Ž ..fixing all other basis vectors cf. Lemma 6.5 ii . Then it is easy to check

² : Ž . U U Ž .that J, g s Isom V , so G s G l Isom V can be obtained usingW W W
INTERSECTION.

If W is a nonsingular 1-space in an orthogonal vector space V of
Ž . Ucharacteristic 2, then Isom V and G are obtained as point stabilizersW W

in the actions on J s V.
Ž . HIf W is nonsingular and W, W / 0, use Lemma 6.4 to find W ; here,

V s W H W H . Use Lemma 6.11X to find a standard basis e , . . . , e , f ,1 k 1
XŽ .. . . , f , u , . . . , u of W. As in Lemma 6.11 ii , find the stabilizer J ink 1 s

Ž . ² : ²Isom V of the sequence of subspaces e , . . . , e for i s 1, . . . , k, e ,1 i 1
: Ž . ² :. . . , e , u , . . . , u recall that s F 2 , e , . . . , e , u , . . . , u , f , . . . , f fork 1 s 1 k 1 s j k

² :j s k, . . . , 2, e , . . . , e , u , . . . , u , f , . . . , f s W. Let g be the linear1 k 1 s 1 k
transformation defined by e ¬ f ¬ "e for all i and fixing all u , wherei i i j

Ž .the sign is chosen so that g g Isom W ; extend g to all of V by requiring
that it induces the identity on W H . Then it is easy to check that
² : Ž . U U Ž .J, g s Isom V . Once again, G s G l Isom V can be obtainedW W W
using INTERSECTION.

Ž .ii If W is totally isotropic or totally singular, we may assume that
W X is totally isotropic or totally singular of the same dimension as W. Find
standard bases for V starting with bases for W and W X, using Lemma 6.11X.
Now use Lemma 6.12 to obtain the desired element of GU if there is one.

Ž .Next assume that W is nonsingular. If dim W s 1 we can use ORBIT
Ž .for the action of G on J, so suppose that dim W ) 1 and hence

V s W H V H . Use the approach in Lemmas 6.11X and 6.12 to try to find
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ordered standard bases B and BX of W and W X such that the order-pre-
serving map B ª BX arises from an isometry W ª W X; if the approach in
those lemma fails then W and W X are not isometric and hence certainly

X GU w x XW f W . By Witt’s Lemma Di, Ta, As , if W and W are isometric then
so are W H and W X H . Again using standard bases as in Lemmas 6.11X and

H X H Ž .6.12, find an isometry W ª W cf. Lemma 6.4 . Together these
isometries yield an isometry h of V sending W to W X.

U Ž .Use INTERSECTION to find G l Isom V h. If this is empty thenW
UX GW f W ; if it contains an element g then output g.

LEMMA 6.14. The following are in NC.

Ž . Ui Find a representatï e of each G -orbit of totally isotropic or totally
singular subspaces of V.

Ž . Uii Find a representatï e of each G -orbit of nonsingular subspaces of
V.

Ž . Ž . Ž .iii For a gï en W in ii such that W, W / 0, find a maximal-size
� 4 GU ² :family W , . . . , W of members of W such that W , . . . , W s W H ???1 k 1 k 1

Ž . UH W , and find its set stabilizers Isom V and G .k �W , . . . , W 4 �W , . . . , W 41 k 1 k

Ž . Ž . GU

iv Gï en two families in iii arising from the same orbit W , find an
element of GU sending one to the other if there is one.

Ž . Ž . UProof. i and ii Representatives of all G -orbits of totally isotropic or
Ž . Utotally singular subspaces appear in Lemma 6.11 iii , except when G s

qŽ .V 2m, q , in which case there is a unique further orbit, represented by
² : w x Ž Ž ..e , . . . , e , f Ta, As cf. Proposition 7.6 ii .1 my1 m

ORBIT, applied to the action of G on J, produces representatives in
the case of 1-spaces.

This leaves the case of nonsingular subspaces W of dimension l ) 1. For
w xeach l there are at most two orbits of such subspaces of V Di, Ta, As . If

² : Žl s 2k is even, then one orbit contains e , . . . , e , f , . . . , f in the1 k 1 k
Ž ..notation of Lemma 6.11 i . If l s 2k q 1 is odd and V is unitary, then

² :there is just one orbit, and a representative is e , . . . , e , f , . . . , f , u for1 k 1 k 1
² :Ha nonsingular u g e , . . . , e , f , . . . , f . If V is an orthogonal space,1 1 k 1 k

then one of the following occurs.

v l s 2k is even, and every nonsingular l-space of V is in the
U ² : ²G -orbit containing e , . . . , e , f , . . . , f or e , . . . , e , f , . . . , f ,1 k 1 k 1 ky1 1 ky1

: ² : ²u , u , where u , u is an anisotropic 2-space lying in e , . . . , e , f ,1 2 1 2 1 ky1 1
:H. . . , f ; such a 2-space can be found using Lemma 6.4 and bruteky1

force;
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v ² :l s 2k q 1 and q are both odd, and W s e , . . . , e , f , . . . , f , u1 k 1 k 1
² :Hfor a nonsingular u g e , . . . , e , f , . . . , f ; the isometry type of W is1 1 k 1 k

Ž . U 2 U U 2determined by the element u , u K of the group K rK ( Z ; u1 1 2 1
can be found using Lemma 6.4 and brute force.

Ž . H Ž .iii Let W s W. Use Lemma 6.4 to find W . As in Lemma 6.13 ii1 1
test whether W H contains some W g W G. Iterate in order to find a1 2 1

Ž .family of the desired sort compare DECOMPOSITION .
� 4Let W , . . . , W be such a family. Then V s W H ??? H W , where1 k 1 kq1
² :H Ž .W s W , . . . , W . Find Isom V for 1 F i F k q 1, using Lemmakq1 1 k Wi

Ž .6.13 i .
g i Ž .For i s 2, . . . , k in parallel, we have W s W with g g Isom V ; usei 1 i

g to define an isometry gX of V that agrees with g on W , with gy1 on W ,i i i 1 i i
Ž .and induces the identity on all other W . Then Isom V isj �W , . . . , W 41 k

generated by these transformations gX together with all of the groupsi
Ž . U UIsom V , 1 F i F k q 1. As usual, G is determined as G lW �W , . . . , W 4i 1 k
Ž .Isom V .�W , . . . , W 41 k

Ž . � 4 � X X4iv Let W , . . . , W and W , . . . , W be two such families. Let1 k 1 k
V s W H ??? H W and V s W X H ??? H W X , as above. By Witt’s1 kq1 1 kq1

w x XLemma Di, Ta, As , W and W are isometric. Exactly as in Lemmakq1 kq1
Ž . X6.13 ii , find an isometry h of V taking W to W for all i, and find andi i

U Ž .output an element g of G l Isom V h if one exists.�W , . . . , W 41 k

1 Ž .LEMMA 6.15. Gï en a nonsingular subspace W of Witt index dim W ,2

there are NC algorithms for finding totally isotropic or totally singular sub-
spaces E, F, such that W s E [ F, and for finding the set stabilizers

Ž . U � 4Isom V and G of any such pair E, F .�E, F 4 �E, F 4

XŽ .Proof. For the first part, use Lemma 6.11 i to find a standard basis
² : ² :e , . . . , e , f , . . . , f of W, and let E s e , . . . , e and F s f , . . . , f .1 k 1 k 1 k 1 k

In the second part, for each nonsingular k = k matrix A, form its inverse
yt yt Žtranspose A }except that A is used in the unitary case where the

‘‘overbar’’ denotes the involutory automorphism of K and is applied to
.each entry of A . With respect to our basis of W, the isometry of W

A OA OŽ . Ž .produced by the matrix or is an isometry. Let h be theyt y tO A O A

O IŽ .isometry of W defined by the matrix , where d is y1 if V isd I O

symplectic and 1 otherwise. As usual, we obtain isometries of V by
H Ž H.inducing 1 on W . Also, use Lemma 6.13 to find Isom W , and extend

Ž .this to a subgroup of Isom V by inducing 1 on W. It is easy to check that
Ž .the isometries of V just constructed generate Isom V . Finally, find�E, F 4

U U Ž . ŽG s G l Isom V using INTERSECTION. N.B.}We could�E, F 4 �E, F 4
Ž ..also have used stabilizers of sequences of subspaces as in Lemma 6.13 i ,
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but we will need the matrix point of view in the algorithm for Lemma
Ž . .6.17 i .

< <Notation 6.16. Let q s K if G is symplectic or orthogonal, and let
2 < <q s K if G is unitary.

LEMMA 6.17. Suppose that a nonsingular subspace W of V is gï en. Then
the following are in NC.

Ž .i Gï en totally isotropic or totally singular spaces E and F such that
Ž . < <W s E [ F, find t g Isom W of order E y 1 fixing E and F, and find the

Ž . Ž² :..sol̈ able groups C t and N t .IsomŽW . IsomŽW .

Ž . Ž . X Ž .ii Gï en E, F as in i and gï en t, t g Isom W irreducible on E,
Ž . ² : g ² X:fixing F, and ha¨ing the same order, find g g Isom W such that t s t .

Ž . X Ž .iii Gï en t, t g Isom W irreducible on W and ha¨ing the same
Ž . ² : g ² X:order, find g g Isom W such that t s t , and find the sol̈ able groups

Ž . Ž² :.C t and N t .IsomŽW . IsomŽW .

'Ž . Ž . < <iv Gï en that Isom W contains an element of order W q 1, find
one.

Ž .Proof. i As in Lemma 6.15, find a basis of W consisting of a basis of
Ž .E and the dual basis of F with respect to , . Let g act on E as in

Ž .Lemma 6.8 ii , find its matrix A with respect to the basis of E, and extend
A O A OŽ . Ž .g to act on W by using or as in the proof of Lemma 6.15.yt y tO A O A
t < <The matrices A and A both generate fields of E matrices. Find an

yt j Žinteger j such that A and A have the same minimal polynomial testing
< < . Ž . y1 yt jall 1 F j - E in parallel . Find M g GL E such that M AM s A .

O M O MŽ² : Ž² :. Ž . Ž .Then N t is generated by N t and or yty tIsomŽW . IsomŽW . E, F M Od M O

B OŽ . Žfor d in the preceding lemma, where generating matrices orytO B

B OŽ .. Ž² :.in N t are obtained from the generators B ofyt IsomŽW . E, FO B

Ž² :. Ž .N A found in Lemma 6.8 iii .GL ŽE .

Ž . Ž .ii This is an immediate consequence of Lemma 6.8 i : if A is the
A O A OŽ . Ž Ž .conjugating matrix obtained there then use g s or in theyt y tO A O A

.unitary case with respect to our dual bases of E and F.

Ž . Ž .iii The first part is handled exactly as in the proof of Lemma 6.8 i ,
but including a check of whether each of the linear transformations tested

Ž² :.there is an isometry of our form. For the second part, find N t asGL ŽW .
Ž .in Lemma 6.8 iii , enumerate its elements, and check in parallel to find

those that are isometries of W.
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Ž .iv This is harder. First we need a list of the groups in question: the
Ž . Ž .only groups Isom W containing an element irreducible on W are Sp 2 l, q

yŽ . Ž . Žor V 2 l, q , or SU l, q with l odd. This can be checked using, for
w x w x .example, the order formulas in Gor1 ; cf. Ka1, Ka2, Ka3 .

Ž .Consider any one of these cases. Find any element t of GL W as in
Ž . ² : � 4 < < 2 lLemma 6.8 ii . Then L s t j 0 is a field of size W s q ; as usual,

let ‘‘overbar’’ denote its involutory automorphism. Find l g L with l s
Ž e. Ž f .yl / 0. Let Tr denote the trace map GF q ª GF q betweene, f

< <subfields of L. Identify K with the subfield of L of order K . Define
forms on the K-space L as follows, for all a, b g L:

XŽ . Ž .a, b s Tr lab if V is symplectic.2 l, 1
XŽ . Ž .a, b s Tr ab if V is unitary, and2 l, 2

XŽ . Ž .f a s Tr aa if V is orthogonal; the associated bilinear form isl, 1
XŽ . Ž . Ž .a, b s Tr ab q ab s Tr ab .l, 1 2 l, 1

ŽOf course, it is only necessary to define any of these forms using a basis of
.L. Then L, equipped with this form, is isometric to the subspace W in

Ž .iv . The transformation r : x ¬ ax is an isometry whenever a g L and
laa s 1. Choose a of order q q 1.

XŽ .As in Lemma 6.11 i , find a standard basis of L with respect to the
preceding form. Use it to find an isometry g : L ª W exactly as was done
in the proof of Lemma 6.12. Then gy1 rg is an isometry of W behaving as

Ž .required in iv .

7. SIMPLE GROUP ALGORITHMS

We continue the discussion in Section 6 by presenting algorithms for the
problems in Section 5.1. Throughout this section, let G denote an alternat-
ing group or a simple classical group. We always assume that G arose from

< < < < 8an ‘‘original’’ set V. If G - V then brute force will be used. If
< < < < 8G G V , we assume that the set J in Theorem 6.2 has already been
found, as has the underlying vector space V and form in the cases of
classical groups.

Each algorithm will be split into three pieces: the brute-force case
Ž . Ž .Section 7.2 , the alternating group case Section 7.3 , and the classical

Ž .group case Sections 7.4]7.6 . Of course, the latter is the only one
requiring effort. Moreover, if G is a classical group, our task is signifi-

Ž .cantly easier when its characteristic is p cf. Propositions 7.6 and 7.9 .
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7.1. Statement of Results

We begin by stating the results to be proved later in the section. The
following Propositions 7.x are handled for alternating groups in Section 7.3
and for classical groups in Sections 7.4]7.6. In Section 7.6 the first three of
them are renamed Propositions 7.xX within the vector space setting.

PROPOSITION 7.1. SYLFIND SIMPLE is in NC.

Proof. Use ORBIT and BLOCKS to reduce to the case in which G is
< < < < 8 Ž .primitive. If G - V use brute force Section 7.2 . Use Theorem 6.2

Xtogether with Section 7.3.2 and Propositions 7.9 and 7.1 .

PROPOSITION 7.2. SYLNORM SIMPLE is in NC.

Proof. Use ORBIT and BLOCKS to reduce to the case in which G is
< < < < 8 Ž .primitive. If G - V use brute force Section 7.2 . Use Theorem 6.2

Xtogether with Section 7.3.2 and Propositions 7.9 and 7.2 .

PROPOSITION 7.3. SYLCONJ SIMPLE is in NC.

Proof. Use ORBIT and BLOCKS to reduce to the case in which G is
< < < < 8 Ž .primitive. If G - V use brute force Section 7.2 . Use Theorem 6.2

Xtogether with Section 7.3.2 and Propositions 7.9 and 7.3 .

PROPOSITION 7.4. SYLNORMALIZED1 SIMPLE is in NC.

Proof. Use ORBIT and BLOCKS to reduce to the case in which G is
< < < < 8 Ž .primitive. If G - V use brute force Section 7.2 . Use Theorem 6.2

Xtogether with Section 7.3.2 and Propositions 7.9 and 7.4 .

PROPOSITION 7.5. SYLNORMALIZED2 SIMPLE is in NC.

Proof. Use ORBIT and BLOCKS to reduce to the case in which G is
< < < < 8 Ž .primitive. If G - V use brute force Section 7.2 . Next use Theorem

6.2 together with Section 7.3.2 and Proposition 7.9. The proof is completed
at the end of Section 7.6

7.2. Tiny Groups

Ž c.In this section we deal with tiny groups, i.e., groups of order O n with
c fixed. We show that the basic problems of Section 5.1 are then amenable
to straightforward ‘‘brute-force’’ solutions in NC.

We note first that, given generators S for a tiny group G, the elements
of G can be listed in NC. For this, we start with the collection A s S and

� < 4repeat until stable: A ¤ A j ab a, b g A . After m iterations, A con-
tains the elements in G that are expressible as words in S of length F 2 m.

< <Hence, at most log G iterations are required.2
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Remark. Note that the preceding is just a special case of the ‘‘transi-
tive-closure’’ method used for ORBITS.

SYLNORM and SYLCONJ for tiny groups. Normalizers and conjugating
elements, if any exist, can be found for any subgroups. Namely, for H F G,

Ž . gN G is found by testing in parallel for all g g G whether H s H, theH
test being performed by conjugating all h g H by g in parallel. For
H , H F G, test in parallel for all g g G whether H g s H .1 2 1 2

SYLFIND for tiny groups. Initialize P ¤ 1. While there is some g g
Ž . ² :N P y P of p-power order, P ¤ P, g for one such g. As eachG

< < < <iteration of the loop at least doubles P , at most log G iterations are2
required.

SYLNORMALIZED1 AND SYLNORMALIZED2 for tiny groups. For
Ž .these problems U : Aut G , and we seek a Sylow q-subgroup normalized

by U. Since G is tiny, we can list all Sylow q-subgroups of G: conjugate
one such group by all g g G in parallel. We then test in parallel all these
groups for normalization by R: apply, in parallel, all u g U.

7.3. Alternating Groups

In this section we deal with an alternating group Alt , and we assumer
Ž .that we have constructed its natural action Theorem 6.2 on r points.

We will focus first on NC procedures for the full symmetric group Sym ;r
Ž .NC procedures for Alt follow easily in Section 7.3.2 .r

7.3.1. Symr

Within the natural representation of Sym , we begin by providingr
explicit descriptions of Sylow subgroups and their normalizers. Parallel
Sylow procedures for these groups are then straightforward.

Case 1: r s pm. We are guided by a standard, elegant recursive de-
Ž . mscription of a Sylow p-subgroup P m of Sym in terms of wreathp

w x Ž . Ž . Ž .products Hup : P 1 is generated by a p-cycle; for m G 2, P m s P 1 X
Ž .P m y 1 . However, with the goal of explicit procedures for the Sylow

Ž .problems, we give an explicit description of P m .

Ž .m Ž . mSYLFIND. For m G 0, let D s GF p so that Sym D ( Sym .m m p
Ž . Ž .Given P m y 1 F Sym D , we employ the natural identificationmy 1

Ž . Ž .D f D = GF p to construct P m . There is a monomorphismm my1
Ž . Ž . Ž . Ž .m: P m y 1 ¨ Sym D sending g ¬ g, 1 for g g P m y 1 . Also,m
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Ž . ² < :Sym D contains an elementary abelian p-group H s h d g Dm my1 d my1
p my 1 Ž X . Ž .of order p , where, for all d , s g D = GF p ,my 1

d X , s q 1 if d X s d ,Ž .hX dd , s sŽ . X½ d , s otherwiseŽ .

Ž . Ž . ² Ž . mH is the ‘‘base’’ of the wreath product . Then P m [ P my1 ,my 1
: Ž . m.H s H i P m y 1 is a Sylow p-subgroup as required.my 1 my1

Of course, in practice one can easily write generators for this group in a
direct, nonrecursive manner. We have chosen the preceding description in

Ž .order to more succinctly deal with the normalizer of P m :

Ž .U Ž .SYLNORM. The multiplicative action of GF p on GF p naturally
Ž .U m Ž .minduces a faithful, coordinatewise action of GF p on GF p s D .m

Ž . Ž .The induced subgroup of Sym D normalizes P m , and, together withm
Ž . Ž Ž .. ŽP m itself, generates N P m . Different descriptions of this nor-SymŽD .mw xmalizer are given in CL, Ka1, DS . It is easy to check that the descriptions

.produce groups of the same order.

Ž .SYLEMBED, SYLCONJ. Suppose we are given a p-group Q F Sym C
< < mwhere C s p G p. We use the orbitrimprimitivity structure of Q to

Ž . y1recursively construct a bijection f : C ª D such that Q F fP m f , asm
follows. In parallel, in each nontrivial orbit of Q find a block system
whose blocks have size p; also break the set of fixed points of Q into
subsets of size p. Denote the collection of all these p-sets by C. Let

CQ [ Q be the induced permutation group on C. Recursively, construct a
y1Ž .bijection f : C ª D such that Q F fP m y 1 f . In parallel, for eachmy 1

cŽ .p-set c g C define a bijection k : c ª GF p as follows: if the group Qc c

< c <induced on c is 1, then k is any bijection; if Q s p, choose any a g cc c
g Ž g s.kcand g g Q such that a / a , and define k by a s s for 0 F s - p.c c ˜y1 f f kcŽ . Ž .Then Q F fP m f if f : C ª D is defined by b s v , b form

b g c g C.

Case 2. Arbitrary r.

< < Ž .SYLFIND. Write V s r s d ??? d d in the base p, where 0 F dm 1 0 p i

- p for all i. Take any disjoint decomposition V s D D C0 F iF m 1F jF d i ji

< < i Ž .where C s p . For each i, j, let Q be a Sylow p-subgroup of Sym C .i j i j i j
Then the direct product P s Ł Ł Q acts naturally on V as0 F iF m 1F jF d i ji

Ž .a Sylow p-subgroup of Sym V .

SYLEMBED, SYLCONJ. Now suppose that we are given a p-subgroup
Ž .R F Sym V . We will carry out the preceding construction in order to

obtain R F P, by choosing the C to be R-invariant and then constructingi j
Q containing RCi j using Case 1. Namely, we find the orbits of R and sorti j
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them by size in nondecreasing order, say F , F , . . . , F . For 0 F k F t,1 2 t
k < <compute r s Ý C in parallel, setk js1 j

i iC [ F j y 1 p q d ??? d F r - jp q d ??? dŽ . Ž . Ž .� 4D p pi j k iy1 0 k iy1 0

Ž .which is, indeed, R-invariant and obtain the desired P as before.
Ž .If R is itself a Sylow p-subgroup of Sym V , then the C are the orbitsi j

Ci j Ž .of R, and R s Q is a Sylow p-subgroup of Sym C . Use SYLCONJi j i j

Ž i.in Case 1 to construct bijections f : C ª D s GF p inducing isomor-i j i j i
˘Ž . Ž .phisms Q ( P i . Given a second Sylow p-subgroup, R, of Sym V ,i j

˘ ˘ ˘similarly construct its orbits C and additional bijections f : C ª D .i j i j i j i
g ˘ y̆1Ž .Then R s R, where g g Sym V is defined to be f f on C .i j i j i j

Ž .SYLNORM. Again suppose that R is a Sylow p-subgroup of Sym V ,
� 4 � 4 � 4 Ž .and obtain Q , C , f as before. We construct N R as follows.i j i j i j SymŽV .

Ž .For each i, j in parallel, construct N s N Q using Case 1. Thei j SymŽC . i ji j

direct product N [ Ł Ł N acts naturally on V, normalizing0 F iF m 1F jF d i ji
Ž .R. For each i and each j, k with 0 F j - k F d , define g g Sym V toi i jk

be f fy1 on C , f fy1 on C , and 1 on the remainder of V. Theni j i k i j i k i j ik

Ž . ² � < 4:N R s N, g 0 F i F m, 0 F j - k F d .SymŽV . i jk i

Ž .Remark. A useful visualization of P m is obtained by lifting the action
on D to automorphisms of a complete p-ary tree T of height m withm m

Ž .leaves D . Note first, by the preceding construction, P m acts naturallym
on D , for 0 - i - m, via projection on the first i coordinates. The nodesi

m Ž .of T are D D . The root of T is the singleton set D . For anym is0 i m 0
� 4 Ž .internal node d g D , 0 F i - m, the set of children of d is d = GF pi

Ž . � 4: D . Thus, the set of leaves, B , descendent from d g D is d =iq1 d i
Ž .my i � < 4GF p . For any i, 0 F i F m, B d g D is a block system for thed i

Ž . Ž .action of P m on D these are the only blocks systems for this action .m
Ž Ž ..In fact, these are block systems even for the action of N P m . ThatSym mp

Ž Ž ..is, N P m acts on T via automorphisms. One can characterizeSym mmp
Ž . Ž .P m F Aut T as the subgroup of elements that induce and preservem

Ž .cyclic orderings of the children at any node. That is, for g g Aut T ,m
Ž . Ž . Ž . g Ž X .g g P m iff for any d g D , i - m, and s g GF p , d , s s d , ti
Ž . g Ž X .implies d , s q 1 s d , t q 1 .

7.3.2. Altr

We will need some elementary facts concerning alternating groups.
Consider a prime p F r and a Sylow p-subgroup Q of Sym . If p is oddr

Ž . Ž .then Q is also a Sylow subgroup of Alt , and N Q s N Q l Alt .r Alt Sym rr r

If r is a power of 2 and r / 4, then Q is the unique Sylow p-subgroup of
Sym containing the Sylow p-subgroup Q l Alt of Alt .r r r
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i i Ž .Write r s Ý a p in the base p; let r s a p . Then N Q si i i i Sym r

Ž . Ž .P N Q l Sym , where N Q l Sym is the wreath product ofi Sym r Sym rr i r ii i

Ž . Ž . Ž .iN Q l Sym with Sym . Moreover, N Q l Alt s N Q lSym p a Sym r Symip i r r

Ž Ž .Alt except when p s 2 and r s 4 or 5 in the latter cases N Q l Altr Sym rr

Ž . . Ž .is Sym while N Q s Q . Note that Sym s Alt ? N Q l Alt by4 Sym r r Sym rr r
Ž .the Frattini argument, so that N Q l Alt contains elements outsideSym rr

of Alt .r

SYLFIND and SYLEMBED. In order to embed a p-subgroup P of Alt r
into a Sylow p-subgroup of Alt , embed P in a Sylow p-subgroup of Symr r
and use INTERSECTION.

SYLNORM. As indicated previously, if r ) 5 the normalizer in Alt of ar
Sylow p-subgroup of Alt is obtained via INTERSECTION from ther
normalizer in Sym of a Sylow p-subgroup of Sym .r r

SYLCONJ. If P , P are Sylow p-subgroups of Alt , embed P in a Sylow1 2 r i
p-subgroup Q of Sym , find h g Sym conjugating Q to Q , findi r r 1 2

Ž . Ž .N Q , and output either g s h or g s hk with k g N Q ySym 2 Sym 2r r
Ž . ŽN Q , depending on which of these elements is in Alt . Note that atAlt 2 rr

Ž .least one of the generators of N Q is found in the preceding sectionSym 2r
.is not in Alt .r

SYLNORMALIZED1 and SYLNORMALIZED2. These require informa-
Ž .tion concerning Aut Alt for r G 5. If r / 6 then Alt has a uniquer r

w xconjugacy class of proper subgroups of index F r Wi, p. 42 , and hence
Ž . Ž Ž .Aut Alt is just Sym . In the exceptional case, Alt ( PSL 2, 9 andr r 6
Ž . Ž . . Ž .Aut Alt ( PGL 2, 9 . We are given U : Aut G , and we seek a Sylow6

subgroup normalized by U; we may assume that r / 6. In SYLNORMAL-
IZED1 U is 1 and hence normalizes every Sylow p-subgroup of G. In

< < < < 8SYLNORMALIZED2, if G - V use Section 7.2. Otherwise use Theo-
² :rem 6.2 to find the r-set J on which U G induces Alt or Sym , embedr r

² :U in a Sylow p-subgroup of that group and intersect with Alt .r

7.4. Descriptions of Sylow Subgroups of Classical Groups

Before proving the propositions in Section 7.1, we will describe the
behavior of Sylow subgroups of classical groups. In every instance it
suffices to replace all considerations of G by the corresponding ones for
the group GU of linear transformations found in Lemma 6.6 such that

U Ž U . w xG rZ G s G. See We, CF, Ka2, Ka3 for the descriptions in Proposi-
Ž .tion 7.6 and Theorem 7.7. Recall that q was defined in 6.16 . Let q0

denote the characteristic of K.
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PROPOSITION 7.6. Each Sylow q -subgroup P of GU fixes a sequence of0
Ž .subspaces appearing in Lemma 6.7 or Lemma 6.11 iii :

Ž . ² :i e , . . . , e , i s 1, . . . , d y 1, for a basis e , . . . , e , when G is1 i 1 d
Ž . ² :PSL V ; or e , . . . , e , k s 1, . . . , m, where m is the Witt index of V and1 k

e , . . . , e , f , . . . , f , u , . . . , u is a standard basis.1 m 1 m 1 s

Ž .ii Such a sequence is uniquely determined by P unless V is an
orthogonal space of dimension 2m, in which case there is exactly one other
such sequence, which then has the form

² : ² :e , . . . , e , i s 1, . . . , m y 1, e , . . . , e , f ;1 i 1 my1 m

U Ž .these two sequences are in different G -orbits but in the same Isom V -orbit.
² :In this case, P fixes a unique fixed sequence e , . . . , e , k s 1, . . . , m y 1,1 k

consisting of totally singular subspaces.
Ž . U Ž .iii The stabilizer in G of a sequence in i is a sol̈ able group ha¨ing

a unique Sylow q -subgroup.0

Ž . Ž . Ž .iv There are NC-algorithms for finding a sequence in i and ii , as
Ž . Uwell as its stabilizers in Isom V and G .

Ž . Ž . Ž .Proof. i ] ii are easy to check, and iv follows from Lemmas 6.7 and
Ž .6.11 iii .

< <THEOREM 7.7. Let p / q be a prime dï iding G . Let P be a Sylow0
U Ž .p-subgroup of either G or Isom V . Then there is a decomposition V s V1

Ž U Ž ..H ??? H V read ‘‘[’’ for ‘‘H ’’ if G s SL V such that the following alls
hold.

Ž . � 4a P acts on D [ V , . . . , V .1 s

Ž . Ž . Ž .b If the space C P of fixed ¨ectors P is nonzero, then C P is oneV V
Ž .of the V , say V ; if C P s 0 write V s 0.i c V c

Ž .c One of the following holds:
Ž .c1 If p / 2 then, for each V / V , the set stabilizer P induces ai c Vi

cyclic group on V , and eitheri

Ž .c1.1 P is irreducible on V , orV ii

Ž . U Ž .c1.2 G / SL V and P splits V into the direct sum of twoi
totally isotropic or totally singular P -irreducible subspaces of dimensionVi1 Ž .dim V .i2

Ž . Ž .c2 If p s 2 then dim V F 2 for each i.i

Ž . Ž .d D can and always will be ordered so that each V / V lies ini c
V GU

s V IsomŽV ., except perhaps when p s 2 and G is orthogonal or unitary,1 1
in which case V s 0 and D y V GU

can consist of one or two 1-spaces.c 1
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Ž . Ž . Ue The set stabilizers Isom V and G induce the symmetric group onD D

the set of members of V GU

lying in D, while fixing all remaining members of1
D.

Ž . IsomŽV .f The orbit V of subspaces is characterized by the following1
conditions:

Ž .V is nonsingular if G is not PSL V ;1

<Ž . < Ž . <if p s 2 then dim V s 2 and 8 Isom V ; and1 1

<Ž . < Ž . <if p / 2 then dim V is minimal for V : V subject to p Isom V .1 1 1

w xThere are remarks in Ka2, Ma2 providing a number-theoretic method
for determining the isometry type of V . However we will sidestep that,1

Ž . Ž .opting instead for the cruder approach indicated in f : use Lemmas 6.9 i ,
Ž . Ž . U6.13 i , and 6.14 ii to find representatï es of all G -orbits of nonsingular

subspaces of V, find the set stabilizer in GU of each such subspace, and then
test their orders for dï isibility by p.

The set D is uniquely determined by P. This is a consequence of the
characterization of D we are about to give in Proposition 7.8. First we need
some notation. If GU and P are as in Theorem 7.7, and if W is any
minimal P-invariant subspace of V, write

< < < � 4P W [ C P P is maximal for ¨ g W y 0 ,Ž . Ž .� 4V ¨ ¨

2 <² : ² :P W [ X , Y X , Y g P W and X , Y contains more�Ž . Ž .

than two members of P W ,4Ž .
1 < < < � 4P W [ C P P is maximal or next-to-maximal for ¨ g W y 0 ,Ž . Ž .� 4V ¨ ¨

12 < 1² : ² :P W [ X , Y X , Y g P W and X , Y contains more�Ž . Ž .

than two members of P1 W .4Ž .

w x Ž .PROPOSITION 7.8 Ka3 . Assume that dim V ) 8. Then one of the
following holds:

Ž . � Ž .4i p / 2 or G is symplectic, and D y C P consists of all of theV
Ž .sets P W as W ranges o¨er all minimal nonsingular P-in¨ariant subspaces of

Ž .V not contained in C P ; orV

Ž .ii p s 2, G is not symplectic, and D consists of all of the 1-spaces
fixed by P together with all of the following sets as W ranges o¨er all minimal
nonsingular P-in¨ariant subspaces V of dimension ) 1:

Ž . 12 Ž . Ž . Ž . Ž .iia P W if G is either PSL d, q , q ' 1 mod 4 , or PSU d, q ,
Ž .q ' 3 mod 4 ,
Ž . 2Ž .iib P W otherwise.
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Remark. Evidently, Proposition 7.8 provides a simple way to find D,
given P. However, DECOMPOSITION will do that in some sense ‘‘better’’;
it can also be used for any p-subgroup of G, whereas the description in

wProposition 7.8 is very specifically aimed at Sylow subgroups. Ka1, Ka2,
xKa3 contain other complicated and unpleasant approaches that deal with

this general case. Note that, in view of the uniqueness of D implied by
Proposition 7.8, D is in¨ariant under the normalizer of P.

7.5. The case p s q0

We can now continue with the proof of Theorem 1.1 for the classical
groups. At this point we have constructed the underlying vector space V
and its set J of 1-spaces, together with an action of G on J and a

U Ž .preimage G of G inside SL V . All results in Sections 6.3]6.5 can be
used.

In this section we handle the easy case: when p is the characteristic q0
of the underlying field K, all required algorithms are straightforward using

Ž . Ž .the fixed sequences in Proposition 7.6 i and ii .

PROPOSITION 7.9. There are NC algorithms for SYLFIND SIMPLE,
SYLNORM SIMPLE, SYLCONJ SIMPLE, SYLNORMALIZED1 SIM-
PLE, and SYLNORMALIZED2 SIMPLE if G is a simple primitï e sub-

Ž . < < < < 8group of Sym V such that G G V , G is isomorphic to a classical group,
and p is the characteristic of G.

Ž .Proof. SYLFIND, SYLNORM. Use Proposition 7.6 iv to find a se-
Ž .quence behaving as in Proposition 7.6 i , together with its stabilizer B in

G. Then B is solvable and has a unique Sylow p-subgroup P. Use
Ž .HALLFIND SOLVABLE to find P. Moreover, B s N P .G

Ž .SYLCONJ SIMPLE. Use Proposition 7.6 iv to find sequences of sub-
Ž . Ž .spaces fixed by P and P , and use Lemma 6.9 ii or 6.13 ii to find g g G1 2

Žsending a sequence for P to one for P in the special case indicated in1 2
Ž . .Proposition 7.6 ii ignore the last terms of the two sequences . Then

P g s P .1 2

SYLNORMALIZED1 SIMPLE. Since the characteristic of G divides
< <G we have U s 1, so U normalizes every Sylow subgroup of G.

² :SYLNORMALIZED2 SIMPLE. If R s U acts on J, find a sequence
Ž .of R-invariant subspaces as in Proposition 7.6 iv , and the stabilizer B of

Ž .this sequence in PGL V . Then B is solvable, and R normalizes the Sylow
p-subgroup of B.

Ž .Suppose that R does not arise from a subgroup of GL V . The only
Ž .classical group G for which this can occur is PSL V , and then p s 2.

Ž Ž .N.B.}Recall that dim V ) 8 by Lemma 6.3, thereby avoiding some
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small-dimensional classical groups having outer automorphisms that do
. U Unot act on J. Here, R acts on J j J , where J ‘‘is’’ the set of

hyperplanes of V; the action of G on JU can be found using elementary
linear algebra. Since R normalizes a Sylow p-subgroup of G it fixes a

Ž .sequence of subspaces behaving as in Proposition 7.6 i . In particular, R
Ž .fixes some pair x, H consisting of a point x and a hyperplane H

Ž .containing x. Use ORBIT to find such a pair x, H . Then R acts on the
set of subspaces of Hrx, and we can iterate in order to find a sequence in

Ž .Proposition 7.6 i fixed by R. Then R normalizes the Sylow p-subgroup of
Ž .the stabilizer in PSL V of that sequence.

7.6. The Case p / q0

Throughout the remainder of this section we assume that p is not the
characteristic of K. It is convenient to modify parts of Section 7.1 so as to
deal with linear groups, as follows.

PROPOSITION 7.1X. There is an NC algorithm for finding Sylow p-subgroups
Ž . Uof Isom V and G .

PROPOSITION 7.2X. There is an NC algorithm which, when gï en a Sylow
U Ž . Ž .Up-subgroup P of G , finds N P and N P .IsomŽV . G

PROPOSITION 7.3X. There is an NC algorithm which, when gï en Sylow
p-subgroups P , P of GU , finds g g GU such that P g s P .1 2 1 2

We will continually use the decomposition in Theorem 7.7. Recall that,
Ž . Ž .if G is PSL V , ‘‘[’’ should be read in place of ‘‘H ’’ and ‘‘GL V ’’ in

Ž .place of ‘‘Isom V .’’
Each time we will find the following:

� 4 Ž .a decomposition D s V , . . . , V , using Theorem 7.7 f or¡ 1 s
ŽProposition 7.8 depending on whether we are finding a

.Sylow subgroup P or already have one together with
Ž . Ž .Lemma 6.10 iii or 6.14 iii ,~ Ž . Ž .its set stabilizer H s Isom V , using Lemma 6.10 i oraŽ . D

Ž .6.14 iii , and
Ž .its pointwise stabilizer L s P L in Isom V , with L si i i

Ž . Ž .Isom V trivial on each V / V , using Lemma 6.9 i ori j i¢ Ž .6.13 i .

Additional aspects of D, H, and L will be needed from Theorem 7.7:
Ž H . Ž .HrL ( Sym V ; the subspace V s C P , which is appended to D even1 c V

if it is 0; and the fact that all dim V F 2 if p s 2, in which case all L arei i
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tiny. We will use the following straightforward algorithmic properties of L:

LEMMA 7.10. For all L and p, the following problems are in NC:

Ž . Ž .i SYLFIND Find a Sylow p-subgroup Q of L;
Ž . Ž . Uii SYLCONJ Gï en two Sylow p-subgroups Q and Q of L, find

l g L with Ql s QU ;
Ž . Ž .iii FRATTINI Gï en L F S F H, find D 2 Q with S s DL; and

}

Ž . Ž . Ž .iv SYLNORM Find N Q .L

Proof. If p G 2, then each L has a cyclic Sylow p-subgroup Q , whichi i
Ž . Ž . Ž .is found using either Lemma 6.8 ii or 6.17 i and iv , and then let

Ž . Ž . Ž .Q s P Q . Moreover, N Q s P N Q , where N Q is found in eitheri i L i L i L ii i
Ž . Ž . Ž .Lemma 6.8 iii or 6.17 i and iii ; and Sylow subgroups of L are conju-i

Ž . Ž . Ž .gated in either Lemma 6.8 i or 6.17 ii and iii . If p s 2, each L is tiny,i
so Section 7.2 can be used.

Ž . Ž . Ž . Ž .This proves i , ii , and iv , while iii is deduced precisely as in the
proof of Corollary 4.4.

X Ž . Ž .Proof of Proposition 7.1 . Start with a . Use Lemma 7.10 i to find a
Sylow p-subgroup Q of L. Use Section 7.3.1 to find a Sylow p-subgroup

Ž H . Ž .TrL of HrL, where HrL ( Sym V by Theorem 7.7 e .1
Ž .Use Lemma 7.10 iii to find D 2 Q such that T s DL. We focus on D,

}
Ž .which contains a Sylow p-subgroup of Isom V .

Ž .If p s 2 let D s D. If p ) 2 let D denote the subgroup of Isom V0 0
² H : Hthat agrees with D on V s V and induces 1 on V . Then D0 1 0 0

Ž . Ž .contains a Sylow p-subgroup of Isom V , D l L 2 Q and D r D l L0 0 0}
Ž . Ž . Ž .is a p-group. By Theorem 7.7 c and either Lemma 6.8 iii or 6.17 i and

Ž .iii , if p ) 2 then D l L is solvable; the same is true if p s 2 since Q is0
a normal Sylow 2-subgroup of D l L. Use HALLFIND to find a Sylow0

Ž .p-subgroup P of D , and hence of Isom V . Output P and the Sylow0
U U Ž .p-subgroup G l P of G obtained using INTERSECTION .

X Ž .Proof of Proposition 7.2 . Start with a . Use INTERSECTION to find
Q s P l L and, for each V g D, the group Q F L agreeing with Q on Vi i i i

Ž .while inducing the identity on all other V . Find N Q using Lemmaj L
Ž .7.10 iv .

Ž .We construct T s N Q using a Frattini argument, as follows. ForH
H Ž g i.hieach V g V let g g H send V to V . Find h g L with Q s Q : ifi 1 i 1 i i i 1 i

Ž . Ž . Ž .p ) 2 use either Lemma 6.8 i or 6.17 i and iii , and if p s 2 use brute
Ž . Xforce Section 7.2 . Let g be the isometry of V that acts as g h on V , asi i i 1

Ž .y1g h on V , and induces the identity on every other member of D. Leti i i
Ž . XT be the group generated by N Q and all of these elements g . ThenL i

Ž . D D Ž H . Ž .T 2 Q, T l L s N Q , and T s H is Sym V , so that T s N Q .L 1 H}
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Ž .Since N P acts on D by Proposition 7.8, it lies in H, normalizes Q,IsomŽV .
and hence lies in T.

Ž . Ž H .Since Tr T l L ( TLrL s HrL ( Sym V , we can use Section 7.3.11
Ž . Ž Ž . Ž .. Ž .to find Mr T l L s N P T l L r T l L . Then N P FT rŽT l L. IsomŽV .

Ž .M. View the respective restrictions P , M , and T of P, M, and N Q s0 0 0 L
² H : HT l L to V s V as isometry groups of V inducing 1 on V . Then0 1 0

Ž . Ž . Ž . Ž . Ž H.H HN P s N P = N P , where N P s Isom V ifIsomŽV . M 0 IsomŽV . IsomŽV . 00 0 0
Ž H. Ž .Hp ) 2 while Isom V is tiny if p s 2, in which case N P can be0 IsomŽV .0

found by brute force.
Ž . Ž .Since M 2 P T l L we have M 2 P T . By Theorem 7.7 c and either0 0 0} }

Ž . Ž . Ž .Lemma 6.8 iii or 6.17 i and iii , T is solvable if p ) 2; the same is true0
if p s 2. Thus, P T is solvable. Apply HALLFRATTINI to 1 F P T 1 M0 0 0 0 0}

Ž .in order to find D 2 P such that M s D ? P T ; then N P s0 0 0 0 M 0} 0
Ž . Ž . Ž .DN P . Use HALLNORM to find N P , let N s DN PP T 0 P T 0 P T 00 0 0 0 0 0UŽ . Ž . Ž .UHN P , and output N s N P and G l N s N P .IsomŽV . IsomŽV . G0

Proof of Proposition 7.3X. Use Proposition 7.8 or DECOMPOSITION to
find the decomposition D of V in Theorem 7.7 arising from P . Usej j

Ž . Ž . U fLemma 6.10 ii or 6.14 iv to find an element of f g G with D s D . Let1 2
Ž .D s D and P s P , and proceed with a .2 2

Ž H .Since HrL ( Sym V , we can use Section 7.3.1 to find h g H such1
Ž f .h Ž H .that P and P induce the same Sylow p-subgroup of Sym V . Let1 2 1

P s P f h, so P L s P L.3 1 3 2
Find P l L for j s 2, 3; let P be the subgroup of L it induces on V .j ji i i

Ž . Ž .Then R s P P P is a Sylow p-subgroup of Isom V . Use Lemmaj i ji j

Ž . Ž . l7.10 ii to find l g L such that R l L s R l L.3 2
Now R and Rl agree on D and contain R l L as a normal subgroup.2 3 2

² l :Then T s R , R is a p-group on D and T 2 R l L, while T is 1 on3 2 2}
Ž . Ž . Ž . Ž .V . By Theorem 7.7 c and either Lemma 6.8 iii or 6.17 i and iii ,c

Ž . Ž .N P P l C V is solvable if p / 2; solvability is clear if p s 2.L i ji L c
Ž .Consequently, T 2 T l L with Tr T l L a p-group and T l L solvable.

}
Ž . t Ž f h l. t Ž UUse HALLCONJ to find t g T with R s R . Then P s G l3 2 1

. t UR s G l R s P .3 2 2
By Sylow’s Theorem, P g s P for some g g GU , so fhltgy1 g1 2

Ž . XN P . Use Proposition 7.2 and INTERSECTION to find such anIsomŽV . 1
U Ž .element g in G l N P fhlt. Output g.IsomŽV . 1

Proof of Proposition 7.4. This result is a special case of the following
slightly more general one, which has essentially the same proof but will be

w xneeded in KL2 .

PROPOSITION 7.4X. The following problem is in NC: gï en a nonabelian
Ž . Ž .simple group G F Sym D and a subset U of Aut G generating a group
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Ž < < < <.R / 1 such that R , G s 1, find a Sylow 2-subgroup of G normalized
by U.

Proof. As in Section 7.1, reduce to the case in which G is a classical
group; note that G is not isomorphic to any alternating group A sincek

<< Ž . < < < Ž .Aut A : A A cf. Section 7.3.1 . Use Theorem 6.2 to find a vectork k k
space V underlying G.

Ž < < < Ž . <.We have R , Isom V s 1. Then R is an odd order group of outer
automorphisms of G obtained by extending a group of automorphisms of

Ž < <the field K to V. If R is a prime power, just apply Sylow’s Theorem to
wGR; in the general case apply the Schur]Zassenhaus Theorem Gor1, p.

x w x .221 to GR; or see BGL, 1.3 .
In particular, R acts on the set of 1-spaces of V. As usual, it now

suffices to change perspective and consider GU instead of G, together with
U Ž . Ž < U <a subgroup R of GL V inducing R and satisfying the condition R ,

< U <.G s 1.
First we consider the case where G has characteristic 2. There is a

Ž .unique odd-size G-orbit of pairs x, W consisting of a 1-space x and a
Ž H Ž ..hyperplane W of V containing it here W s x if G is not PSL V . There

Ž . U Ž < U <is such a pair x, W fixed by R this is clear if R is a prime power; the
general case follows easily from the Schur]Zassenhaus theorem since
Ž < U < < U <. .R , G s 1 . Use elementary linear algebra to find the set of hyper-

Ž .planes of V, and then use ORBIT to find such a fixed pair x, W . Iterate
this for Wrx in order to obtain an RU-invariant sequence as in Proposition

Ž . Ž . U7.6 i ; find its stabilizer using Proposition 7.6 iv . Then R normalizes the
Ž Ž ..Sylow 2-subgroup of that stabilizer cf. Proposition 7.6 iii .

From now on we may assume that G does not have characteristic 2.
Then a Sylow 2-subgroup of GU is described in Theorem 7.7. When RU

Ž . Ž .acts on the Isom V -orbit of 2-spaces behaving as in Theorem 7.7 f , it
Ž .fixes some V in this orbit once again by the Schur]Zassenhaus theorem ;1

U Ž . H Žfind such a fixed V using ORBIT. If G is not SL V , iterate for V cf.1 1
.Lemma 6.3 in order to obtain a decomposition V s V H ??? H V as in1 s

U U Ž .Theorem 7.7 each of whose members is R -invariant. If G s SL V use
DECOMPOSITION to find an RU-invariant complement to V in V, and1
once again iterate.

Ž . Ž . Ž .Proceed with a . Since dim V F 2, by brute force Section 7.2 fori
each V g D we can find a Sylow 2-subgroup Q of L normalized by RU.i i i
Then Q s P Q is an RU-invariant Sylow 2-subgroup of L.i i

Since RU acts on the symmetric group HrL it centralizes it. Use Section
7.3.1 to find a Sylow 2-subgroup ErL of HrL. Then RU normalizes E and

U U Ž .E contains a Sylow 2-subgroup of G . Since R E 2 L, by Lemma 7.10 iii
}

we can find D 2 Q such that RUE s DL. Then D contains a Sylow
}
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U ² U:2-subgroup of G . Replace D by the group D, R that also normalizes
Q.

U Ž . UNow note that D is solvable: D s R D l H where R has odd order
Ž . Ž . Ž . Ž .and is, in fact, cyclic , D l H r D l L ( D l H LrL is the normal-
izer of a Sylow 2-subgroup of a symmetric group and hence is a 2-group
Ž .cf. Section 7.3.1 , and the subgroup D l L of the normalizer in L of a
Sylow 2-subgroup T of L also is solvable. Use HALLFIND, HALLNORM,

Ž .and HALLCONJ to find a Sylow 2-subgroup S of D, then N S , then aD
Ž . UHall subgroup of N S conjugate in D to the Hall subgroup R of D,D

U d Ž .and finally d g D such that R F N S . Use INTERSECTION to findDy1U dG l S , and output this group.

Remark. SYLNORMALIZED1 SIMPLE is used in SYLEMBED1,
Ž .where we needed to know that N T is solvable when T is a suitableG

Sylow subgroup of the simple group G. That is true for a Sylow 2-subgroup
w xT by FT . An alternative, and perhaps slightly simpler approach when G

is a simple classical group, would have been to find and use a Sylow
Ž .q -subgroup Q of G, since once again N Q is solvable by Proposition0 0 G 0

7.6.

Remark. An alternative approach to Proposition 7.4 imitates Case 1 of
the proof of Lemma 7.11. Namely, since RU can be identified with a group

X Ž U .of field automorphisms, V s C R is a dim V-dimensional vector spaceV
over the fixed field K X of RU , naturally equipped with a K X-form. More-

U Ž X.over, R centralizes Isom V , and hence centralizes a Sylow 2-subgroup
Ž X. Xof Isom V . This determines a decomposition of V behaving as in

Theorem 7.7. Each member of the decomposition spans a subspace of V,
and these latter subspaces yield a decomposition D of V also behaving as
in Theorem 7.7. Now proceed as in the proof of SYLCONJ SS in Section
5.2 in order to obtain an R-invariant Sylow 2-subgroup of G .D

We now turn to Proposition 7.5, the hardest result in Section 7.

Ž .LEMMA 7.11. Proposition 7.5 holds if R arises from a subgroup of GL V .

Proof. As before, by INTERSECTION this reduces to the following
Ž .problem: find a Sylow p-subgroup of Isom V R containing a gï en p-sub-

Ž Ž ..group R of N Isom V .G LŽV .
² Ž .:Let W s C R . Then W is a nonsingular subspace of V if the formV

H Ž .on V is nonzero, in which case R also acts on W ; in the case of SL V
H Žlet W denote any R-invariant complement to W found using COMPLE-
.MENT .

< < Ž . < w xCase 1: p ) 2 and p Isom W . By BGL, Lemma 1.3 R induces a
Ž . X Ž .group of field automorphisms of Isom W , so W s C R is a dim W-V

X Ž w X x < <.dimensional vector space over a subfield K of K where K : K s R ,
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and some nonzero scalar multiple of the form on W can be written as a
K X-valued form on W X of the same type and Witt index as the original one
on W. Test all scalar multiples of the form on W for this property.

Ž X. Ž .This embeds Isom W as a subgroup of Isom W centralizing R; we
Ž X. Ž . Hextend Isom W to a subgroup of Isom V inducing 1 on W . Note that

< X << Ž . < < Ž . < Ž < Ž . <p Isom W since p Isom W . Namely, Isom W is the product of a
power of the characteristic with integers of the form q k " 1, possibly

< Ž X. <together with a factor 2. The same statement is true for Isom W , using
Ž 1r < R <.kintegers q " 1 for the same signs and same k since p is odd. If

k k < 1r < R < k< < Ž . < <Ž . < <p q " 1 with q " 1 Isom W , then p q " 1 since R is odd,
1r < R < k < XŽ . < Ž . < .where q " 1 Isom W .

X Ž X.Use Proposition 7.1 to find a Sylow p-subgroup P of Isom W , and
² :replace R by the p-group R, P .

< Ž . <Thus, we may now assume that, if p is odd, then p ¦ Isom W .
Before continuing we need some additional notation. Use DECOMPO-

Ž .USITION to find a GF q R-invariant decomposition V s W H ??? H W1 s
� 4with the following properties: if W / 0 then W / W g D s W , . . . , W ;1 1 s

� 4 Ž .Uand each R-orbit Q on D y W comprises a minimal GF q R-respectful
² : Ž < < .decomposition of Q since R is a p-group this means that Q is 1 or p .

Use POINT STABILIZER to find, for each i, the stabilizer R of W ini i
the action of R on D. Eventually we will enlarge R and deduce that D
behaves as in Theorem 7.7. We will only need to consider those W g D yi
� 4W .

Case 2: p ) 2. Suppose first that there is just one orbit Q. If p ¦
< Ž . <Isom W then R induces on W a group of field automorphisms as in1 1 1

< < w Ž .xCase 1, while RrR s p and R , R l Isom W s 1, so that R is1 1 1
abelian. Here we proceed as in Case 1 in order to obtain a Sylow
p-subgroup P of a smaller classical group centralized by R and contain-1 1

Ž . ² :ing R l Isom V . Replace R by the p-group R, P . Thus, we may1
< < Ž . <assume that p Isom W . Recursively find a Sylow p-subgroup P of1 1

Ž . ² :Isom W normalized by R , and again replace R by R, P .1 1 1
If there is more than one orbit Q, then for each Q use the preceding

Ž² :.paragraph to obtain a Sylow p-subgroup P of Isom Q normalized byQ

R. Replace R by the group generated by R and all of these groups P .Q

ŽNow each Q behaves as in Theorem 7.7, and hence so does D cf.
Ž ..Theorem 7.7 f .

Thus, we may now assume that D behaves exactly as in Theorem 7.7.
Ž .Proceed with a for D. Clearly, HR contains a Sylow p-subgroup of

Ž .Isom V R, and we must embed R into such a Sylow subgroup. We already
know that Q s R l L is a Sylow p-subgroup of L.

We found a Sylow p-subgroup P of H in Proposition 7.1X. Find g g H
² D gD: Ž Ž . .such that R , P is a p-group using Theorem 7.7 e and Section 7.3.1 .

Ž . Ž g . l ² g l:Use Lemma 7.10 ii to find l g L with P l L s Q. Then R, P 2 Q.
}
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² g l: Ž .Let T denote the subgroup of H coinciding with R, P l Isom V on0
² H : HV s W and inducing 1 on V . Let T s T R.0 1 0 0

Ž .Here T 2 T l L 2 Q, where Tr T l L is a p-group and T l L F
} }

Ž . Ž . Ž . Ž .N P l L . By Lemma 6.8 iii or 6.17 iii , N P l L is solvable, andL T
² g l t:hence so is T. Use HALLEMBED to find t g T such that R, P is a

p-group, and output this subgroup.

Ž . GCase 3: p s 2. Find the Isom V -orbit Q s V of 2-spaces behaving1
Ž . Ž .as described in Theorem 7.7 d and f . Test all V g Q in parallel in order1

² R: Žto find one such that V has the form V H ??? H V . Find V H ??? H1 1 k 1
.H Ž .V , or an R-invariant complement to V H ??? H V if G is PSL Vk 1 k

Ž .using COMPLEMENT . This produces a decomposition V s V H ??? H1
Ž .V behaving as in Theorem 7.7. Proceed with a , and conclude as in thes

last three paragraphs of Case 2.

Proof of Proposition 7.5. It remains only to consider the case in which
Ž .R does not arise from a subgroup of GL V . The only group G for which

Ž . Ž Ž .this can occur is PSL V , and then p s 2. N.B.}Recall that dim V ) 8
by Lemma 6.3, thereby avoiding some small-dimensional classical groups

.also having outer automorphisms that do not act on J.
Equip W s V [ V U with the nonsingular symmetric bilinear form de-

Ž . Ufined by ¨ q f , ¨ q f s ¨ f q ¨ f for ¨ , ¨ g V, f , f g V . Then1 1 2 2 1 2 2 1 1 2 1 2
Ž Ž .. Ž .Aut GL V acts on W and preserves this form. Use Lemma 6.5 ii to find

a 2-group RU of semilinear transformations of W that induces the sub-
Ž .group R of PGL W and preserves this form.

Use DECOMPOSITION to find an RU-invariant decomposition V [
U U U Ž . Ž U .V s U [ ??? [ U [ W [ ??? [ W with each dim U s dim W F 2,1 s 1 s i i

U U Ž U .U : V, W : V , and U , W / 0 if and only if i / j; by the uniquenessi i k j
implied by Proposition 7.8, such a decomposition exists since R lies in a

Ž .Sylow 2-subgroup of Aut G .
U U � 4Let V s U [ W , 1 F i F s. Then R acts on D s V , . . . , V .i i i 1 s

We wish to alter the subspaces V so that at most one of them hasi
dimension 2. If there are two RU-invariant subspaces in D of dimension 2,
replace them by their sum. Consider a nontrivial RU-orbit Q of subspaces
in D of dimension 2. Let r g RU be such that r Q is an involution in
Ž U Q. rZ R , and replace each V g Q by V q V . These modifications of Di i i

leave us with an RU-invariant decomposition D of V [ V * whose intersec-
tions with V behave as in Theorem 7.7.

Ž . Ž . Ž . Ž U .Now proceed as in a , with L - GL V inducing GL U ( GL Wi i i
U Ž U .D Ž H . Ž Ž ..on V . Then R H acts on D, and R H s Sym V by Theorem 7.7 e .i 1

For all i, use POINT STABILIZER to find the stabilizer RU of L in RU ,i i
and use brute force to find a Sylow 2-subgroup of L normalized by RU.i i
Now proceed exactly as in the SYLNORMALIZER2 SS part of the proof
of Proposition 5.1 in order to obtain a Sylow 2-subgroup Q of L normal-
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ized by RU. Replace RU by QRU , and conclude as in the last three
paragraphs of Case 2 of Lemma 7.11.

The algorithm for Proposition 7.5 should be compared to the one
w xpresented in Ka3, pp. 558]561 .
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