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1 Introduction

A group is usually input into a computer by specifying the group either using a
presentation or using a generating set of permutations or matrices. Here we will
emphasize the latter approach, referring to [Si3, Si4, Ser1] for details of the other
situations. Thus, the basic computational setting discussed here is as follows: a
group is given, specified as G = 〈X〉 in terms of some generating set X of its
elements, where X is an arbitrary subset of either Sn or GL(d, q) (a familiar example
is the group of Rubik’s cube). The goal is then to find properties of G efficiently,
such as |G|, the derived series, a composition series, Sylow subgroups, and so on.

When G is a group of permutations there is a very well-developed body of
literature and algorithms for studying its properties (see Section 2). The matrix
group situation is much more difficult, and is the focus of the remaining sections of
this brief survey. Sections 4 and 5 discuss the case of simple groups, and section 6
uses these to deal with general matrix groups. We will generally emphasize the
group-theoretic aspects of the subject, rather than ones involving implementation in
the computer systems GAP [GAP4] or Magma [BCP]. Thus, the word “efficiently”
used above will usually mean for us “in time polynomial in the input length of the
problem” rather than “works well in practice”.

One can ask for the relevance of such questions to finite group theory. Certainly
computers have been involved in the construction of sporadic simple groups, as well
as in the study of these and other simple groups. We will make a few comments
concerning the expected uses in GAP and Magma of the results presented here.
However, our point of view includes a slightly different aspect: the purely mathe-
matical questions raised by computational needs have led to new points of view and
new questions concerning familiar groups.

2 Permutation groups

We begin with a brief discussion of the case of permutation groups. Here, X is a set
of permutations of {1, 2, . . . , n}, and then the word “efficiently” will mean “in time
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polynomial in the input length |X|n log n of the problem” (|X|n log n is roughly
the number of keystrokes needed to input X into a computer). The problem is
that a small generating set X can specify a very large group G, so large that it is
absurd (both from the theoretical and practical points of view) to imagine listing
the elements of G.

The development of efficient computer algorithms for permutation groups was
begun by Sims [Si1, Si2]. If G[i] is the pointwise stabilizer of {1, . . . , i − 1}, then

G = G[1] ≥ G[2] ≥ · · · ≥ G[n] = 1(2.1)

where |G| =
∏n−1

1 |G[i]:G[i+1]| and |G[i]:G[i+1]| is the length of the orbit Oi of i
under G[i] and hence is at most n. Sims developed a data structure to find (gen-
erators for) all of these subgroups G[i] and orbits Oi simultaneously and efficiently.
This yielded |G| using only elementary group theory: it did not involve structural
properties of groups.

The ideas behind the point stabilizer chain construction can also be used for
finding many other properties of G, such as the derived series, solvability, and
nilpotence, in polynomial time. The application most important from an algorith-
mic point of view is a Membership Test: given h ∈ Sn, decide whether or not h ∈ G;
and if it is, obtain h from the generating sets of the G[i].

The above ideas have been implemented in GAP and Magma. A detailed de-
scription of point stabilizer constructions, and of many other permutation group
algorithms, can be found in [Ser2].

3 Matrix groups

We now turn to the case of a group G = 〈X〉 in which X is an arbitrary set
of invertible matrices over some finite field Fq. The questions remain the same:
efficiently find properties of G, such as |G|, solvability, a composition series, etc. If
X ⊂ GL(d, q) then the input length is |X|d2 log q (since log q bits are required to
write each of the d2 entries of a matrix)1. Once again a small generating set X can
specify a very large group G.

These problems seem to be very hard. The fundamental difference from the per-
mutation group setting is that there is no longer, in general, a decreasing sequence
of subgroups from G to 1 in which all successive indices are “tiny” (as was the case
in (2.1)), even with the very generous definition of “tiny” meaning “polynomial in
the input length”. However, under reasonable additional conditions, and allowing
probabilistic components to the algorithms, this has become an actively studied
area. Some of the results use the exact representation of G on F

d
q implicit in the

above description (such as eigenvalues, minimal polynomials and so on), but most
of those we survey below avoid trying to deal with the exact representation.

First we need to know that random elements can be found. According to an
amazing result of Babai [Ba2], in polynomial time, with high probability one can
find independent, nearly uniformly distributed2 random elements of G = 〈X〉 ≤

1Logs are always to the base 2.
2Meaning: for all g ∈ G, (1 − ε)/|G| ≤ Prob(x = g) ≤ (1 + ε)/|G| for some fixed ε ≤ 1/2.



GL(V ). This tour de force involves combinatorial methods but nothing about the
structure of G; note that |G| is never known here. The results presented in this
survey all involve probabilistic estimates, and it is straightforward to have these
estimates take the “nearly” part of these “nearly uniform” elements into account;
therefore it is convenient to make believe that we actually have uniformly distributed
random elements when discussing later results. In practice, a heuristic algorithm
from [CLMNO] is used for finding random group elements, and that method is
adequate for algorithms in which correctness of the output is ultimately verified (cf.
[Ba3]). The points of view in [Ba2] and [CLMNO] are merged in the recent paper
[Pak]. Moreover, a new algorithm for random element generation is described in
[Co].

A second important tool in almost all of the results below involves the order of
an element g ∈ GL(d, q). In general, we do not want to assume that we can find
|g|; for example, testing that an element has order qd − 1 seems to require at least
having the prime factorization of the rather large integer qd − 1 (however, compare
Theorem 4.3 below and the remarks following it). Nevertheless, it is possible to
determine qualitative properties of |g| without actually computing the order. There
are algorithms in [NeP1, NiP, KS2] that can be used to decide whether or not |g| is
divisible by some primitive prime divisor3 of pk − 1 for a given prime p and given
exponent k.

4 Nonconstructive recognition of simple groups

In the matrix group setting, the problem of recognizing simple groups began with
the following groundbreaking result:

Theorem 4.1 [NeP1] There is a randomized polynomial-time algorithm which,
when given 0 < ε < 1 and G = 〈X〉 ≤ GL(V ), outputs either “G definitely contains
SL(V )” or “G does not contain SL(V ), and the probability that the latter assertion
is incorrect, given that G does contain SL(V ), is less than ε. 4

Thus, the algorithm gives an answer guaranteed to be correct if it is “Yes”, but
there is a small probability that the answer “No” will be incorrect. Randomized
algorithms that may return an incorrect answer, where the probability of an incor-
rect output can be controlled by the user, are called Monte Carlo algorithms. A
special case of Monte Carlo algorithms is the class of Las Vegas algorithms: in this
case, an incorrect answer can be recognized, so we can achieve that the output is
always correct; however, the algorithm may report failure.

The proof of Theorem 4.1 relies heavily on CFSG5: the algorithm searches for
certain matrices in G that occur with high probability in SL(V ), and then uses
nonalgorithmic consequences of CFSG to determine the subgroups of GL(d, q) con-
taining such elements. This theorem was followed by others [NiP, CLG1] that

3This means that |g| is divisible by a prime divisor of pk−1 that does not divide pi−1 whenever
1 ≤ i < k. Such prime divisors exist for all but a very limited type of pairs p, k [Zs].

4In the future we will avoid ε and merely say that such an algorithm succeeds “with arbitrarily
high probability”.

5The classification of the finite simple groups.



decide, similarly, whether or not a given subgroup G = 〈X〉 ≤ GL(d, q) contains a
classical group defined on V as a normal subgroup.

These are nonconstructive recognition algorithms, outputting either “G contains
a normal classical group”, or “G probably does not contain any classical group of
d × d matrices as a normal subgroup”. They do not tell us how to “get” any
given elements of the classical group from the given generating set (e.g., elementary
matrices in the situation of the above theorem).

Of course, there is no reason to expect that a quasisimple subgroup G of GL(d, q)
appears in the most natural representation. Even if we have an irreducible repre-
sentation of SL(d, q) on some vector space V , the characteristic and dimension of
V may very well be quite different from those of the more familiar d-dimensional
representation. In order to handle arbitrary matrix groups, this possibility must
be taken into account; and when dealing with an unknown representation some of
the more standard tools of linear algebra (minimal and characteristic polynomials,
eigenvalues and eigenvectors) do not appear to be sufficiently helpful in identifying
composition factors of the group being studied.

In general, it would be especially nice to be able to recover the more natural
representations from the given “arbitrary” one; we will return to this in the next
section. For now, we note that the name of a simple factor can be determined under
suitable additional conditions (Theorems 4.2 and 4.3).

Theorem 4.2 [BKPS] There is a polynomial-time Monte Carlo algorithm which,
when given G = 〈X〉 ≤ GL(V ) such that G/Z(G) is isomorphic to a simple group
of Lie type of known characteristic p, finds the name of G/Z(G).

Note that the name gives at least one additional piece of information about
G, namely |G/Z(G)|. The proof of this theorem in [BKPS] handles all situations
except for distinguishing the pairs PSp(2m, q),Ω(2m + 1, q) with q odd and m ≥ 3,
where entirely different techniques were needed [AB]. Our proof is relatively simple
(using information already obtained while proving Theorem 4.3 below). We start
with a sample of independent (nearly) uniformly distributed random elements of
G. We then find the three largest integers v1 > v2 > v3 such that a member of the
list has order divisible by a primitive prime divisor of one of the integers pv − 1 for
v = v1, v2 or v3; our sample is chosen large enough so that, with high probability,
these are the three largest v such that |G| is divisible by a primitive prime divisor
of pv − 1. In a lot of cases, the triple {v1, v2, v3} determines the name of G. In the
remaining cases, we investigate the occurrence of element orders divisible by two
appropriately chosen primitive prime divisors. While this idea is simple enough, it
becomes more awkward and detailed if p is a Fermat or Mersenne prime and no such
primitive prime divisor greater than 2 occurs. Nevertheless, the algorithm is not
complicated, and has already been implemented in Magma by Malle and O’Brien.

While the assumption that p is known is a natural one (cf. Section 6), it would
be better to be able to avoid this. A result that preceded the previous theorem
attempts to do this:

Theorem 4.3 [KS3] There is a polynomial-time Monte Carlo algorithm which,
when given G = 〈X〉 ≤ GL(V ) such that G/Z(G) is isomorphic to a simple group



of Lie type of unknown characteristic and such that the order of any given element
of G can be computed, finds the name of G/Z(G).

The proof of this theorem rests on a nonalgorithmic property of groups G of Lie
type in characteristic p. Define a graph Γ(G) whose vertices are the prime powers
ra that occur as orders of elements of G, for all primes r �= p and integers a > 0.
Prime powers ra, sb are joined if and only if G has an element of order lcm(ra, sb)
(thus, every vertex of Γ(G) has a loop). We say that two vertices of Γ(G) are
equivalent if they have the same neighbors, and denote by ∆(G) the quotient graph
with respect to this equivalence relation, with vertex set V (∆(G)). We view ∆(G)
as a simple graph (i.e., without loops and multiple edges) and as a weighted graph:
the weight of v ∈ V (∆(G)) is the least common multiple of the prime powers in the
equivalence class v. This weighted graph usually determines G:

Theorem 4.4 [KS3] Let G and G∗ be finite simple groups of Lie type such that
∆(G) ∼= ∆(G∗). Then G ∼= G∗ with some specific exceptions.

These exceptions include, of course, the pairs PSp(2m, q),Ω(2m+1, q) for q odd
and m ≥ 3; additional exceptions are PSp(4, q),PSL(2, q2); PSp(6, q),PΩ+(8, q),
Ω(7, q); PSp(8, q),PΩ−(8, q); and PSL(3, 2), G2(2)′.

Since p is involved in the definition of ∆(G), how can the above theorem be used
to prove Theorem 4.3? This requires additional properties of G:

(i) [GL] If G has characteristic p and is defined over Fq, then the proportion of
elements of order divisible by p is at most 5/q. (We note that a lower bound
of 2/5q for this proportion was proved in [IKS], also motivated by uses in
Computational Group Theory.)

(ii) [KS3, Lü] If r, s �= p are primes such that G has an element of order divisible
by lcm(ra, sb), then the proportion of such elements is large (at least c/(Lie-
rank(G))3, for an absolute constant c).

Now the proof of Theorem 4.3 starts by testing all “small” primes p (“small”
means bounded from above by an explicit function of the input length) using
[KS1, KM] (cf. Theorem 5.3 and the remarks following it) in order to try to find the
characteristic of G. (Note that Theorem 4.2 does not quite apply: it is at least con-
ceivable that that theorem could output an answer even if p is not the characteristic
of G; and we do not know the probability that this strange possibility might occur.)
If this fails then we find a set of suitably many independent random elements of G,
and find their orders. This number is chosen so that, by (i), with high probability
none of these orders is divisible by p. This number is also chosen so that, by (ii),
for every pair ra, sb arising in the definition of Γ(G), with high probability one of
our elements has order divisible by lcm(ra, sb). Using this we determine ∆(G), and
then the name of G.

According to E. O’Brien, in actual computations with matrix groups G using
Magma it is standard to find exact orders of elements of G using extensive tables
of prime power factorizations of integers of the form pk − 1 for suitable p and k.
Therefore, we expect that there will be a version of the above theorem of more than
theoretical importance.



Theorem 4.4 leads to a question already alluded to that might make the theorem
even more useful in our computational setting. Consider a group H of Lie type over
a field of characteristic r �= p. Define a weighted graph ∆p(H) for H using the
same description as above but with p in place of the correct characteristic r (so
that, for example, r is one of the vertices of ∆p(H)). Then we conjecture that, if
∆p(H) ∼= ∆(G) for a group G of Lie type in characteristic p, then H ∼= G.

Once again we emphasize that the results in this section do not provide any
means of calculating with the given matrix group G using its more familiar repre-
sentations.

5 Constructive recognition of simple groups

As suggested in the preceding section, there is a need for constructive recognition
algorithms, which allow us to get from our generating set X to any given element of
G.6 These are of fundamental importance when simple groups are used to handle
general groups (see the next section).

In the situation of Theorem 4.1, constructive recognition means the following:

Theorem 5.1 [CLG2] There is a Las Vegas algorithm which, when given G = 〈X〉
such that SL(V ) ≤ G ≤ GL(V ), with arbitrarily high probability outputs a new
generating set X∗ (in terms of X) such that there is a polynomial-time procedure
that gets from X∗ to any given g ∈ G.

However, the algorithm in [CLG2] producing X∗ does not quite run in poly-
nomial time: there is a factor q in the timing, where V is a vector space over
Fq. The corresponding result has also been proved for all classical groups: given
G = 〈X〉 ≤ GL(d, q) having a normal classical subgroup C defined on V , algorithms
in [Ce, Bro1, Bro2] output, with high probability, a new generating set X∗ such that
there is a polynomial-time procedure that gets from X∗ to any given g ∈ G. The
version of this theorem in [Bro2] handles all symplectic, orthogonal and unitary
groups simultaneously in a more or less uniform manner.

It is not known how to get around the factor of q in the timing indicated above
without some other type of assumption. In [CoLG] a lovely idea was introduced to
avoid this factor: assume the availability of a way to handle Discrete Logarithms.
Given F

∗
q = 〈ρ〉 and α ∈ F

∗
q , the Discrete Log Problem asks for an exponent i such

that α = ρi. There are procedures for accomplishing this that are significantly
faster than the O(q) time approach that tests all integers with 0 ≤ i < q. Discrete
Logs led to the next

Theorem 5.2 [CoLG] There is a Las Vegas algorithm which, when given G = 〈X〉
such that SL(V ) ≤ G ≤ GL(V ) = GL(2, q), and also given a way to handle Discrete
Logs in F

∗
q , with arbitrarily high probability outputs a new generating set X∗ such

that there is a polynomial-time procedure that gets from X∗ to any given g ∈ G. The
6More precisely, such that we can find a straight-line program from X to any given g ∈ G: a

sequence g1, . . . , gk = g with each term either a member of X, the product of two previous terms
or the inverse of a previous term.



time requirement is a polynomial of the input length plus the time of polynomially
many calls to the Discrete Log subroutine.

This result has been extended in [LGO] to deal with arbitrary irreducible rep-
resentations of SL(2, q). This extension is fundamental for Theorems 5.5 and 6.1
below.

We next turn to arbitrary representations of classical groups. While we could
assume irreducibility, this does not seem to provide useful information about the
general situation.

Theorem 5.3 [KS2] There is a Las Vegas algorithm which, when given G = 〈X〉 ≤
GL(V ) with G = G′ and G/Z(G) isomorphic to some (unknown) classical simple
group of given characteristic, with arbitrarily high probability finds the classical group
C, and outputs a new generating set X∗ (in terms of X) together with an injective
map X∗ → C that extends to a constructive isomorphism Ψ:G/Z(G) → C.

This means that there is a polynomial-time procedure to get to any given g ∈ G
from X∗, and polynomial-time procedures which take any given g ∈ G or c ∈ C and
find (gZ(G))Ψ or cΨ−1; moreover, it means that if a set X∗ and map X∗ → C are
output then they are guaranteed to behave as just indicated.

Versions of this theorem are in [CFL], where it was first shown that this type
of result could be proved (in the case G ∼= PSL(d, 2)), and later in [Bra] when
G/Z(G) ∼= PSL(d, q) with d ≥ 4, q > 4. As in Theorem 5.1, the previous theorem
does not quite run in polynomial time: once again there is a factor of at least q in
the timing. The case of the exceptional groups of Lie type other than 2F4(q) (also
assuming a given characteristic) has been close to completion for a few years [KM];
once again the algorithm has an undesirable factor of q in its timing.

Remark 5.4 We stated Theorem 5.3 in its simplest form. It can be extended to
handle matrix groups G that have an almost simple classical factor group G/N of
given characteristic, provided that we can test membership in N . This extension will
play an important role in Section 6. So will the fact that there are similar extensions
for the exceptional groups [KM] and for the alternating groups [BLNPS]. These and
related results are discussed in [Ka2].

The characteristic assumption in the preceding theorem can be removed using
Theorem 4.3. When the characteristic is known, the idea behind the theorem is
to try to construct an element in a large conjugacy class, one of whose powers is a
(long) root element of G (but usually not a long root element of the underlying group
GL(V )!); with reasonably high probability7, an element of G has this property.
These root elements and their random conjugates are then used to generate larger
subgroups, eventually leading to a subgroup of rank one less than that of G (if G
does not already have rank 1).

Combining the Discrete Log results in Theorem 5.2 and its sequel [LGO] with
ideas from the proof of Theorem 5.3 and some new ideas (in [Bro2]) has led to
algorithms for many classical groups:

7But much less than 1/q, requiring many more that q selections to make it likely that an element
of the desired sort is obtained; this is a principal cause of the timing not being polynomial.



Theorem 5.5 [BK, Bro2] There is an algorithm which, when given G = 〈X〉 ≤
GL(V ) such that G/Z(G) ∼= C = PSL(d, q), PSp(2m, q) or PSU(d, q) and (q, |V |) �=
1, and also given a way to handle Discrete Logarithms in F

∗
q , with arbitrarily high

probability outputs a constructive isomorphism Ψ:G/Z(G) → C. The time require-
ment is a polynomial of the input length plus the time of polynomially many calls
to the Discrete Log subroutine.

The orthogonal groups present additional difficulties, but should be completed
in the near future. Analogous constructive isomorphisms for alternating groups are
in [BB1, BLNPS, BP]. There are only a bounded number of sporadic groups, so
these do not enter into our asymptotic timing questions.

The algorithms announced in Theorems 5.1–5.5 can also be used as Monte Carlo
algorithms to decide whether a given group G is such that G/Z(G) is simple of a
type indicated in these theorems. As in the case of nonconstructive recognition,
the correctness of a “Yes” answer can be verified, but the verification is much more
complicated than in the cases covered by Theorem 4.1 and its extensions. Namely,
we have to compute a generating set X∗∗ and a short presentation in terms of X∗∗,
and prove that G = 〈X∗∗〉 by expressing the original generators of G in terms
of X∗∗. A presentation for a quasisimple group G is called short if its length8 is
O(log2 |G|). Such short presentations are known for almost all simple groups:

Theorem 5.6 [BGKLP, Suz, HS] For all simple groups except, perhaps, 2G2(q),
there is a presentation of length O(logc |G|), where c = 2; in fact c = 1 for most G.

The proof in [BGKLP] uses simple tricks to adapt the usual Curtis-Steinberg-
Tits presentations for these groups when the rank is at least 2, while the cases
2B2(q) and PSU(3, q) require different ideas to modify the standard presentations
for these groups [Suz, HS]. Short presentations have the following nonalgorithmic
consequence needed in the proof of Theorem 6.1:

Theorem 5.7 [BGKLP] Every finite group G with no composition factor of the
form 2G2(q) has a presentation of length O(log3|G|).

The exponent 3 here is best possible.
Although the primary use of constructive recognition algorithms is in computa-

tions with matrix groups, they are useful for computing with permutation groups as
well. For example, all modern Sylow subgroup algorithms for permutation groups
reduce to the case of simple groups [Ka1, Mo, KLM, CCH]. For any given simple
permutation group one first determines an explicit isomorphism with a known sim-
ple group, and afterwards studies Sylow subgroups of the concrete simple groups.
Deterministic algorithms producing such isomorphisms are in [Ka1, KLM]. In the
matrix group setting, finding Sylow subgroups should not be difficult, but conjugat-
ing one to another may present some difficulties. Another application of construc-
tive recognition algorithms is the computation of maximal subgroups of permutation
groups [EH].

8The length of a presentation 〈X | R〉 is |X| +
∑

r∈R
lX(r).



6 General matrix groups

Given G = 〈X〉 ≤ GL(d, q), there are two basic approaches to exploring properties
of G. One of these is a geometric approach, led by Leedham-Green, and com-
monly called the “The computational matrix group project”. This approach uses
Aschbacher’s classification [Asch] of subgroups of GL(d, q). (It was first suggested
in [Pr] to use Aschbacher’s theorem as a guide in the design of what amounted to
nonconstructive algorithms for the study of matrix groups.) There are nine cate-
gories in this classification, and the goal is to find at least one category to which G
belongs. Eight of these categories describe geometric subgroups of GL(d, q), which
means that G preserves some structure associated with the action of G on the vector
space V = F

d
q . Moreover, in seven categories, the kernel N of the action on this

structure enables us to consider N and G/N acting in smaller dimension, or over
a smaller field, or as a permutation group on a small domain. For example, one
category consists of irreducible but imprimitive matrix groups. This means that
the dimension d can be written as a product d = ab, and there is a decomposition
V = V1⊕· · ·⊕Va into subspaces of dimension b such that G transitively permutes the
set {V1, . . . , Va}; the normal subgroup N is the kernel of this permutation action,
and G/N is a transitive permutation group of degree a.

If we can recognize the action of G on the appropriate structure then handling G
can be reduced to recursively handling both N and G/N . This reduction bottoms
out when a group is a classical group in its natural action (which is the eighth geo-
metric subgroup category of the Aschbacher classification), or G modulo the scalar
matrices is almost simple (the ninth category). These two cases are handled by the
constructive recognition algorithms for almost simple groups described in Section 5.
Note that, even if we have the images of generators of G under a homomorphism
ϕ defined by the action on some geometric structure where Im(ϕ) is almost simple,
usually constructive recognition of Im(ϕ) is needed in order to obtain generators
for Ker(ϕ).

As a result of extensive research summarized in [LG], there are practical algo-
rithms for recognizing most categories of the Aschbacher classification.

By contrast, the other approach, initiated by Babai and Beals [BB1], tries to
determine the abstract group-theoretic structure of G. Every finite group G has a
series of characteristic subgroups 1 ≤ O∞(G) ≤ Soc∗(G) ≤ Pker(G) ≤ G, where
O∞(G) is the largest solvable normal subgroup of G; Soc∗(G)/O∞(G) is the so-
cle of the factor group G/O∞(G), so that Soc∗(G)/O∞(G) is isomorphic to a
direct product T1 × · · · × Tk of nonabelian simple groups that are permuted by
conjugation in G; and Pker(G) is the kernel of this permutation action. Given
G = 〈X〉 ≤ GL(d, pe), Babai and Beals [BB2] construct subgroups H1, . . . , Hk such
that Hi/O∞(Hi) ∼= Ti. Having these Hi at hand, it is possible to construct the
permutation group G/Pker(G) ≤ Sk, which then can be handled by permutation
group methods.

The Babai–Beals algorithm is Monte Carlo, and runs in polynomial time in the
input length. Contrary to the geometric approach, it does not use the geometry
associated with the matrix group action of G. The fact that G ≤ GL(d, pe) is only
used when appealing to a simple consequence of [LS, FT]: if Ti is of Lie type in
characteristic different from p, then Ti has a permutation representation of degree



polynomial in d.
Combining the Babai–Beals method with constructive recognition algorithms

for simple groups, we obtain the following result.

Theorem 6.1 [KS4] Given G = 〈X〉 ≤ GL(d, pe), there is a Las Vegas algorithm
that computes the following.

(i) The order of G.

(ii) A series of subgroups 1 = N0 � N1 � · · · � Nm−1 � Nm = G, where Ni/Ni−1

is a nonabelian simple group or a cyclic group for all i.

(iii) A presentation of G.

(iv) Given any g ∈ GL(d, pe), the decision whether g ∈ G, and if g ∈ G, then a
straight-line program from X, reaching g.

The algorithm uses an oracle to compute discrete logarithms in fields of charac-
teristic p and size up to ped. In the case when all of those composition factors of
Lie type in characteristic p are constructively recognizable with a Discrete Log ora-
cle, the running time is a polynomial in the input length |X|d2e log p, plus the time
requirement of polynomially many calls to the Discrete Log oracle.

The current list of groups recognizable with a Discrete Log oracle is given in
Theorem 5.5.

In part (ii) of Theorem 6.1, we construct a series of subgroups that is “almost”
a composition series of G. However, some of the cyclic factor groups may not be
simple, since we do not assume that we can factor large integers. Using discrete logs
seems to be necessary, since already for 1 × 1 matrix groups G ≤ GL(1, q), finding
|G| amounts to solving a version of the discrete log problem in F

∗
q . Also, finding and

identifying the composition factors, or at least the nonabelian composition factors,
seems to be unavoidable, even if the goal is only to compute the order of the input
group.

The special case of Theorem 6.1, when the input group is solvable, was already
covered a decade ago by the following remarkable theorem of Luks:

Theorem 6.2 [Lu] Theorem 6.1 holds for solvable matrix groups. In fact, there is
a deterministic algorithm that computes the required output.

We sketch the proof of Theorem 6.1. Given G = 〈X〉 ≤ GL(d, pe), the algorithm
announced in Theorem 6.1 starts by appealing to the results of [BB2] to compute a
composition series for G/Pker(G), generators for Pker(G), and generators for some
subgroups Hi ≤ Pker(G), i = 1, 2, . . . , k, such that Hi/O∞(Hi) ∼= Ti for the simple
groups Ti involved in Soc∗(G)/O∞(G) ∼= T1 × · · · × Tk. Next, we use an extension
of Theorem 4.2 to find polynomially many possibilities for the name of the Ti.
Given any g ∈ Hi, we can test whether g ∈ O∞(Hi), by testing the solvability of
〈gHi〉. This implies that the primitive prime divisor computations necessary for the
algorithm in Theorem 4.2 can be carried out in Ti := Hi/O∞(Hi). If Ti is of Lie



type then its characteristic is either p or a prime less than d2 [LS, FT], so we have
only polynomially many possibilities for this name.

After that, we replace each Hi by its normal closure in Pker(G). This step
maintains the property that Hi/O∞(Hi) ∼= Ti, but also makes Hi invariant under
the conjugation action of Pker(G).

We now deal with the subgroups H1, . . . , Hk sequentially. The conjugation ac-
tion of Pker(G) on H1 also defines a homomorphism ϕ1: Pker(G) → Aut(T1). Using
again our ability to test membership in O∞(H1), if T1 is not of Lie-type in charac-
teristic p, or if T1 is defined in characteristic p but over a field of size q ≤ d2, then
the extension of Theorem 5.3, mentioned in Remark 5.4, can be used to construct
the kernel K1 := Ker(ϕ1) of this action.

The only remaining possibility is that T1 is of Lie type of characteristic p, and the
size q of the field of definition is greater than d2. In this case, the crucial observation
is that H1/O∞(H1) cannot act nontrivially on any elementary abelian section of
O∞(H1) that is not a p-group, since then we would have a cross-characteristic
representation of H1/O∞(H1) of degree not allowed by [LS, FT]. Hence the solvable
residual H∞

1 (the last term of the derived series of H1) is an extension of a p-group
by a simple group isomorphic to T1. Therefore, in an appropriate basis, which can
be found by the Meat-Axe [HR, IL, NeP2], the matrices for the elements of H∞

1

have the following form: 


I ∗ ∗
0 A ∗
0 0 ∗




The blocks in position (2, 2) of these matrices define T1 modulo scalars. Hence,
concentrating on these blocks, we can perform a constructive recognition with a
Discrete Log oracle (see Theorem 5.5). After that, as we outlined for the other
possibilities for the isomorphism type of T1, we obtain generators for K1.

The same procedure is repeated for the conjugation action of K1 on H2, con-
structing its kernel K2, and so on. Eventually the kernel Kk is a solvable group,
which is handled by Luks’s methods (see Theorem 6.2).

As the very last step of the algorithm, we construct a presentation for G. This
presentation verifies the correctness of the output.
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[KS3] W. M. Kantor and Á. Seress, Prime power graphs for groups of Lie type, J.
Algebra 247 (2002), 370–434.
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