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ABSTRACT

A classification is given of primitive K0-categorical structures which are smoothly approximated by
a chain of finite homogeneous substructures. The proof uses the classification of finite simple groups
and some representation theory. The main theorems give information about a class of structures more
general than the X0-categorical, co-stable structures examined by Cherlin, Harrington, and Lachlan.

1. Introduction

This paper consists of a classification of a class of N0-categorical structures. In [7,
8, 16, 17] various families of N0-categorical structures which are nice model-
theoretically were examined. Here, we use group-theoretic methods to describe a
more general class of structures. In particular, this sheds light on the automorph-
ism groups of Xo-categorical, o)-stable structures.

All structures in this paper will have countable (which for us includes finite)
domains, and will have finitary relations and possibly functions and constants
from some first order language. A structure is said to be relational if its language
has only relations. The automorphism group of a structure is the group of all
permutations of its domain which preserve its relations and functions and fix the
constants. A first order theory is said to be K0-categorical if it has a countable
model and all its countable models are isomorphic. By a theorem due to
Ryll-Nardzewski [20] and independently to Engeler and Svenonius, the following
are equivalent for a structure M with domain M and automorphism group Aut M:

(i) M is No-categorical;
(ii) Aut M has finitely many orbits on Mk for all k e N\{0}.

An K0-categorical relational structure M is said to be homogeneous if, whenever
A, B are finite subsets of M and <(>: A—*B is an isomorphism, there is <j> e Aut M
extending <j>. It is well-known that an K0-categorical relational structure M is
homogeneous if and only if, modulo Th(M), every formula with parameters in M
is equivalent to a quantifier-free formula. We say that M is a transitive structure if
A u t ^ is transitive on M, and that M is a primitive structure if KvXM is a
primitive permutation group. If M is K0-

categorical, then it is primitive if and only
if there is no non-trivial equivalence relation on M definable by a parameter-free
formula. For other model-theoretic notions, such as stability and co -stability, we
refer to [6].

In [7, 8,16,17] the following classes are examined: in [8] and [16], the class %t
of those No-categorical structures which are stable and homogeneous over a finite
relational language; in [17], the class 2> of those N0-categorical, a>-stable
structures in which the coordinatising strictly minimal sets are indiscernible; and
in [7], the class % of all K0-categorical, to-stable structures. The containments
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#f c 2 c % hold (with c being used in its strict sense). Here we consider the class
5̂  of K0-categorical, smoothly approximable structures (the term 'smoothly
approximate' will be defined later). It follows from Corollary 7.4 of [7] that
^ c ^ (see also Corollary 5.5 below). In this paper we classify the primitive
structures in £f, some of which do not lie in % (see Proposition 5.8 below). We
also obtain a coordinatisation theorem for transitive structures in Sf, analogous to
Theorem 4.1 of [7]. Our main results are stated in Theorems 1.1 and 1.2 below.

Let L be a fixed relational language, and let M, Jf be L-structures having, as
always in this paper, domains M and N respectively. Following [7], we say that Jf
is a finite homogeneous substructure of M (written / c ^ ^ ) if the following
condition holds:

(I) M is Xo-categorical, Jf is a finite substructure of M, and if a, beNr for
some r > 0 then a, b lie in the same Aut ^-orbit if and only if they lie in the same
(Aut M)N-ovbit (where (Aut M)N is the setwise stabilizer of N in Aut M).

This is equivalent to the following definition, which is that given in [7].

(II) Let M be X0-categorical and Jf a finite substructure of M. Let M* be the
expansion of M to the canonical language L*, and let Jf* be the {/-substructure
of M* with domain N. Then Jf is a homogeneous substructure of M if, whenever
d, b eNr for some r > 0, then a, 5 lie in the same Aut M*-orbit if and only if they
lie in the same Aut Jf*-orbit.

To see the equivalence of (I) and (II), note that the group induced on N* by
(Aut M)N is equal to Aut Jf*.

Note that if A £hOm A £hOm ^2, then MQ chom M^.
Next, we shall say that an L-structure M is smoothly approximated if the

following hold:

(i) M is Ko-categorical with cbuntably infinite domain;
(ii) there is a chain 4 £ A E . . . of finite substructures of M with M =

U {-^i- i < w} and M( £hOm -^ f°r aH * < w-
Note that if M is smoothly approximated by a chain {^,: i<co} then

A Shom-̂ 7 f°r aH *</• An essential point in our work is that, as shown in §4
(in Claims 1 and 2 of the proof of Theorem 1.2), the Mi will have large
automorphism groups, so can be examined group-theoretically.

We prove two theorems describing infinite, primitive, smoothly approximated
structures. The first gives an implicit description, and is analogous to the
Coordinatisation Theorem of [7]. The second gives an explicit group-theoretic
description.

An X0-categorical structure M with full automorphism group G will be called
classical if one of (a), (b), (c) or (d) below holds.

(a) The group G is the full symmetric group in its natural action of countably
infinite degree.

(b) We have one of:
(i)
(ii)
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(iv)
Here q is a prime power, and G has its natural action on the set of 1-spaces of its
natural associated vector space (in the presence of a form, the action is on an
orbit of 1-spaces). In the unitary case, the associated vector space is defined over
GF(#2). In the orthogonal case (as in (d) (iv) below), only one kind of orthogonal
geometry arises (see Point 1 at the end of § 2). Note that PrO(X0, q) is defined to
be the full automorphism group of PO(X0, ^). It includes a diagonal automorph-
ism of order (2, q — 1) which, when q is odd, is induced by a matrix multiplying
the form by a non-square.

(c) Let V be an infinite-dimensional vector space over a field GF(q) of
characteristic 2, having a non-singular orthogonal geometry given by a quadratic
form Q{ ) with associated bilinear form ( , ). Let v be a non-singular vector of
V, and let PO(V)<V> ^ G ^PrO(V)<w>. Thus PSp(K0, q) ^ G ^ PrSp(K0, q).
Then G, in its action on either of two orbits of non-singular 2-spaces containing
v, gives a classical structure. (This action, which we regard as classical for
convenience, arises from the actions of finite odd-dimensional orthogonal groups
in even characteristic on either of the two orbits on non-singular hyperplanes in
the associated odd-dimensional vector space. The action can also be viewed as the
symplectic group of dimension No over GF(^r) acting on an orbit of non-singular
quadratic forms.)

(d) G = V X H, where V is a vector space of countable dimension over a finite
field GF(q) (over GF(q2) in the unitary case), and H satisfies one of:

(i)

(ii)

(iii)

(iv)

The action of G is the natural affine one (so we may identify M with V, and if
g = (v, h) e V X H, then (x)g = (x)h + v for all x e V).

We shall refer to classical structures of Type (a), (b)(ii), etc.
Next, M is almost classical if it is transitive and there is an (Aut ^)-invariant

partition of its domain into finitely many blocks, each of which carries a classical
structure (this means that the group induced on a block has the same orbits on
finite ordered sets as one of those in (a)-(d) above). Suppose now that Jf is
K0-categorical, and A ciN is finite and algebraically closed (that is, the pointwise
stabiliser in Aut N of A has no finite orbits on N\A). Then the Grassmannian
Gr(Jf;A) is the structure M whose domain M is the orbit of A under Aut JV, with
relations corresponding to orbits of Aut̂ Y" on Mr ( r>0). Two K0-categorical
structures will be said to be equivalent if their automorphism groups are
isomorphic as permutation groups. Our main theorem is the following. It is a
refinement of an earlier conjecture of Lachlan.

THEOREM 1.1. Let M be an infinite, primitive, smoothly approximated structure.
Then there are an almost classical structure JV and a finite algebraically closed set
Ac.N such that M is equivalent to Gr(jV ; A).
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An example at the end of § 4 shows that Theorem 1.1 has no natural converse.
In §2 we give a list of certain classes 2, (l*s*s=6) of finite primitive

permutation groups. Each class 2, consists of infinitely many infinite families,
each parametrised by several fixed natural numbers, and one natural number n
(playing the role of dimension) which ranges freely. For each i = 1,..., 6 there is
a corresponding class 2°° of structures, obtained from 2, by replacing n by Ko in
the obvious places (though care is needed with certain actions on hyperplanes, as
explained in § 2). Our group-theoretic analogue of Theorem 1.1 is the following,
and in fact Theorem 1.1 is obtained as a corollary of Theorem 1.2. Note that we
sometimes refer to the 2, (or 2°°) as classes of structures, and sometimes as classes
of permutation groups. This looseness is justified by the notion of permutation
structure, defined towards the end of this introduction.

THEOREM 1.2. The infinite primitive smoothly approximated structures are
precisely the members of 27,. . . , 2£.

The proof of Theorem 1.2 depends on the following proposition. If G is a
permutation group on X, let sk{G) denote the number of G-orbits on Xk.

PROPOSITION 1.3. There is a function f: N-*N such that if G is a primitive
permutation group on a finite set X with \X\ >/(s5(G)), then (X \G) is one of the
permutation groups in 2X, ..., 26.

A proof of Proposition 1.3 is given in §3. It uses the O'Nan-Scott Theorem,
the classification of finite simple groups, and recent work of Aschbacher and
Liebeck on maximal subgroups of finite classical groups. In § 4 we give proofs of
Theorems 1.1 and 1.2, which are easy corollaries of Proposition 1.3. In §5 we
obtain a description of transitive, smoothly approximated structures analogous to
Theorem 4.1 of [7]. We also make in § 5 some other model-theoretic observations
about smoothly approximated structures.

REMARKS. 1. Since by [7], any K0-categorical, co-stable structure is smoothly
approximated, Theorem 1.2 gives an explicit group-theoretic description of the
primitive K0-categorical, a>-stable structures. (It is straightforward to determine
precisely which structures in Theorem 1.2 are a)-stable.)

2. Recall that the rank of a transitive permutation group G on X is the number
of G-orbits on X2. We hope to write up a proof of the following result: for any
r e N, all but finitely many faithful, primitive permutation groups of finite degree
and rank at most r are known. This result is stronger than Proposition 1.3, and
the list of permutation groups arising is much longer than that of Proposition 1.3.

Our group-theoretic and model-theoretic notation is fairly standard. Relational
structures are usually denoted by M or Jf, and have domains M or N respectively.
If x = (xlt..., xn) is a tuple, then l{x) = n. If M is an N0-categorical structure and
A is a finite subset of M, then acl(^4) (the algebraic closure of A) is defined to be
the union of the finite orbits of the pointwise stabiliser of A in Aut M. A relation
is said to be O-definable in M if it is definable by a formula without parameters.

If G is a permutation group on a set X, we say that G is closed if, when X is
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given a structure over a language with a relation corresponding naturally to each
G-orbit on Xk for all Ac e F^\{0}, G is the full automorphism group of the resulting
relational structure. (Equivalently, if SympQ is given the topology of pointwise
convergence, G is closed if it is a closed subset of Sym(Z).) We also talk of the
closure G of a permutation group G. When it is convenient to regard a structure
M independently of its language, we often use the notion of a permutation
structure M = (M ; G), defined in [8]. Here, G =£ Sym(M), sk(G) is finite for all k,
and G is closed. Note that for K0-categorical structures, questions about stability,
co-stability and smooth approximation are really questions about permutation
structures, as they are independent of the language. If M = (M ; G) is a
permutation structure, then the canonical language for M is the language L with a
relation symbol for each G-orbit on finite ordered sets. Note that over the
canonical language L, M will be a homogeneous structure. Two permutation
structures are isomorphic if, regarded as canonical structures over some relational
language, they are isomorphic relational structures (or equivalently if their
automorphism groups are isomorphic as permutation groups: here, we say that
two permutation groups G on Q, H on 2 are isomorphic if there are a bijection
<f>: Q—>2 and an isomorphism ij>: G—>H such that (cog)<f> = ((o<f>)(g\l)) for all
co € Q, g € G).

If G and H are groups, then Gy\H denotes a semidirect product of G by H,
and G * H denotes a central product of the groups. If G is a permutation group
on X and x e X then Gx is the stabiliser of x in G. If A c X, then GA, G^A) denote
the setwise and pointwise stabilisers respectively of A in G. We let V(n, q)
denote an n-dimensional vector space over GF(q), and PG(V) denote the
corresponding projective space. If G is a group, then the socle of G, written
Soc(G), is the direct product of the minimal normal subgroups of G. Finally, we
define the product action of the permutation group G wr H on XY, where G and
H are permutation groups on X and Y respectively. Here, the base group GY acts
coordinate wise; that is, if <j> e XY, f e GY, and deY, then (</>/)(rf) = (f>(d)f(d).
Also, H acts by permuting the coordinates (so if 0 e XY, deY, and h e H, then

We have not attempted to give detailed background for the group theory used.
Some general information on the classical groups and their associated natural
representations can be found in § 3 of [8], or in [5]. In [5, Chapter 12] there is
useful information on the automorphism groups of the finite classical groups. The
survey paper of Cameron [4] can be used as a reference for permutation group
notation.

For model theorists not familiar with the classical geometries, we describe
briefly the symplectic geometry, which yields the simplest examples of smoothly
approximated unstable structures. Let V(K0, q) be equipped with a bilinear form
( , ) which is alternating (so (v, v) = 0 for all v e V) and non-singular. There is a
standard basis {eh fr. i < a)} of V, with (eh ft) = <5,y and (eit ey) = (fh ft) = 0 for all
i, / < co. The group of invertible linear transformations of V which preserve ( , )
is denoted by Sp(K0, q). The classical structures of Type (b)(iii) arise by taking
the projective group PSp(X0, ^ ) : = Sp(K0, ^)/Z(Sp(K0, ^)) acting on the corre-
sponding projective space, and the classical structures of Type (d)(iii) arise by
taking V(X0, q) ><J Sp(K0, <l) acting on the vector space as a subgroup of the affine
group. In each case we may extend the symplectic group by outer automorphisms
to obtain other classical structures of the same types.
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2. A list of primitive permutation groups

We give below six classes of primitive permutation groups of finite degree.
Each class 2,- contains infinitely many infinite families, each parametrised by
several fixed natural numbers and one natural number n (playing the role of
dimension) which ranges freely. We also sometimes regard the 2, as classes of
permutation structures (X; G), or as homogeneous structures over the canonical
language.

The groups in families 21? 22 and 23 have non-abelian socles, while those in 24,
25 and 26 have elementary abelian socles. The family 23 is built from 2j and 22

via a standard wreath product construction. Family 25 is built from 24, and 26

from both 24 and 25.

2ii Groups An and Sn, in the action on the set of ^-subsets of {1, ...,n}, for
fixed t.

22: The classical simple groups (linear, symplectic, orthogonal or unitary
groups) possibly extended by outer automorphisms, defined over a fixed finite
field F and with dimension n, acting on an orbit of f-subspaces (fixed t) of the
associated projective space PG(n — 1, F). In the presence of a form, the
subspaces will be totally isotropic or non-degenerate, with the exception that for
orthogonal groups of even dimension in characteristic 2, we also allow non-
singular 1-spaces. We also include in 22 the following two cases.

(i) Any group G satisfying PSL(n, F).2 =s= G «s?TL(n, F).2 in its natural action
on an orbit of pairs {U, W} of subspaces, where Dim U + Dim W = n and either
U^Wor U(~)W = {0}. Here .2 refers to the graph automorphism.

(ii) An orthogonal group of odd dimension and even characteristic, acting on
either of two orbits of non-singular hyperplanes of the associated vector space.

23: All groups G ^ Gx wr Sm in the (primitive) product action, where m is fixed,
Gx is one of the permutation groups in 1,x or 22, Soc(G) is a direct product of m
copies of Soc(Gi), and G induces Gx on each coordinate and a transitive
subgroup of Sm on the set of coordinates.

24: Affine groups G = V(n, F) X G{n, F) with V(n, F) identified with the set
X. Here F is a fixed finite field, G(n, F) is a classical group of dimension n over
F, and G(n, F) has the natural irreducible module V(n, F). Note that if F is of
even characteristic, then we take O(2m + 1 , F) to have natural module
V(2m, F).

25: Let F be a fixed finite field, and let Gx, G2 have faithful irreducible
representations on the F-vector spaces Vx, V2 respectively, where Vx >d Gx is in
24, and both F and Dinv V2 are fixed. Then Gx * G2 has a natural representation
on Vx <8> V2. The set 25 consists of all those subgroups (Vi <8> V2) ><| H of
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(Vi <8> V2) XI (Gi * G2), with Vx ® V2 identified with X, such that

(i) H induces G, on V( for i = 1, 2,

(ii) the action of # on Vx 0 V2 is irreducible.

26: Let f be a fixed natural number and F a fixed finite field. Let Vi X if be a
group in 24 or 25 (so Vx is an FH-module). Then H wr 5, has a natural imprimitive
action on the direct sum of t copies of Vx. Let Vt be the ith copy, and Ht the ith
copy of H in the base group H\ acting on V). Then 26 consists of those groups
V XI Go, where Go =s # wrSt, and

(i) Go acts irreducibly on V;
(ii) Go induces the action of Ht on V̂ ;
(iii) Go induces a transitive subgroup of 5, on {Vi,..., VJ.

Note that (i), (ii) and (iii) imply quite severe restrictions—see Point 6 below.

To form the classes 2", ...,26 of families of K0-categorical structures, we take
the dimension n to be No. Seven points, however, need further discussion, and, in
particular, the class 2^ needs further restrictions.

Point 1. If the characteristic is odd, only one kind of orthogonal geometry
arises in the classes 2°°. Essentially this is because an O+(2n + 2, q) geometry
contains a 2n-space with O~(2n, q) induced on it, and an O~(2n + 2, q) geometry
contains a 2n-space with O+(2n, q) induced on it. Thus, in the affine case 2™, the
union of a chain of finite O+-geometries, each a homogeneous substructure of the
next, is the same structure as the union of a chain of finite O~-geometries (each
homogeneous in the next), or as the union of a chain of odd-dimensional
orthogonal geometries.

Point 2. In characteristic 2, the union of a chain of odd-dimensional orthogonal
geometries gives a different kind of countable structure, since it has a radical. In
the affine cases (24, ...,25) this does not affect us, since the corresponding
orthogonal group is reducible on the natural module. In the remaining cases 2"
and 2" (apart from those in Case (ii) of 2"—see Point 4 below) we can replace
the orthogonal group by the symplectic group acting naturally on the quotient
space by the radical.

Point 3. In 2 2 , a structure whose automorphism group is a projective linear
group acting on the set of ^-spaces will have automorphism group PGL(K0, F).
Note however that PGL(N0, F) and PrL(N0, F), in their actions on PG(K0, F),
give different permutation structures, as they have different orbits on finite
ordered sets. Similar remarks apply to other classes, and to other classical groups.

Point 4. The infinite-dimensional structures corresponding to 22(ii) (that is, the
members of 22(ii)) are precisely the classical structures of Type (c) defined in the
Introduction. Note that if H is a permutation group in 22(ii), then 2 " contains,
for example, the permutation group H v/r Sm in the natural primitive product
action.

Point 5. There are also infinite-dimensional structures corresponding to 22(i).
Let V be a vector space over a finite field GF(^), and let {e,: / < co} be a basis of
V. For each i < (o, call a subspace of V of codimension r good if it contains all but
finitely many of the eh and let V be the set of good hyperplanes in V. Let V* be
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the X0-dimensional vector space consisting of all linear functional V
whose kernel lies in V. There is a map which takes e, to the functional et for all
i < (o, where (ey)e, = <5,y for all i, j<co; this map induces an involutory incidence-
preserving map a: ?G(V) U V^> YG(V) U V with (?G(V))a =V, 9a = PG(V).
Let K satisfy PGL(V) *s K *£ PFL(F), and let H = {geK: {et)g = <e, > for all but
finitely many i < (o). Then the map h •-» aha induces an automorphism of H,
which we also denote by a. Fix r e f̂ J\{0}, and let M be one of the following two
sets:

(a) all pairs {U, W} where U is an r-dimensional subspace of V, W is a
subspace of V of codimension r, and U fl W = 0;

(b) as for (a), but with U^W.
Let G=H(a) in its natural action on M. Then G acts primitively on M, and
M = (M ; G) is a structure in 2"(i).

Point 6. We specify further the structures in 2g. Graph automorphisms of
general linear groups arise here too.

First, fix a finite field F, and let Vx and V2 be vector spaces over F with bases
{et: i < co) and {/: i<co) respectively. Let L be a group with GL(Vi, F) «s L *s
FL(Vi, F), and let H consist of all elements of L which fix all but finitely many of
the eh Identify V2 with the dual space V*, so that /.(«,•) = <5/; for i, j < (o. Now H
admits an outer automorphism a of order 2 corresponding to the vector space
isomorphism from Vx to V2 which takes each e, to f{. The group H{a) acts
naturally as an irreducible imprimitive linear group on Vx © V2, with H inducing
its natural action on Vx, its dual action on V2, and a interchanging e, and fi for
each i < (a. Let Go be the closure of H in the action on Vx © V2. We call
permutation structures of the form (Vi © V2 ; (Vi © V2) y\ Go) special. We also
include as special the permutation structures (Vi © V2 ; (Vx © V2) XIL), where L
induces a tensor product action on each V̂  = L̂  <8> Wh with an infinite-
dimensional linear group (isomorphic to the subgroup of index 2 in the group Go

of the last sentence) acting diagonally, inducing its natural action on Ux and its
dual action on U2, interchanged by the graph automorphism.

Now 2g consists of all closed affine permutation groups

G = (V1©...©V;)X|Go,

where G0^A wrS, in the imprimitive linear action, and all the following hold:
(i) Go is irreducible on Vx ©... © Vt\

(ii) the action of A on each Vt is of type 2X or 2s or is special, and is induced
by Go;

(iii) if B is the subgroup of Go which fixes each of Vx,..., V, setwise, and if
i, je{l,...,t) with i =£/, then \BV': B%,d\ is finite.

We remark that there are corresponding restrictions on the structures in 26.
Here 'finite index' in (iii) is replaced by 'bounded index' (so it does not increase
with Dim V̂ ). These restrictions arise essentially because if Vx and V2 are
n-dimensional vector spaces over F, and <p is an isomorphism between V̂  and V2,
then GL(n, F), in its natural diagonal action on Vx © V2 which commutes with <p,
is reducible with invariant subspace (v + v<f>: v eV). Thus, diagonal actions can
only arise from outer automorphisms, and outer automorphisms of classical
groups are well understood (see Carter [5, Chapter 12]).
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Point 7. Because of the notion of isomorphism between permutation structures
which we are using (see § 1), the permutation structure arising from the action of
PSL(n, F) on 1-spaces of V{n, F) is isomorphic to the permutation structure
arising from the action on hyperplanes, even though the corresponding permuta-
tion groups are not equivalent. A similar remark applies in 24 to the dual action
of SL(n, F) on V(n, F), and also to structures built from these actions.

3. Proof of Proposition 1.3

In this section we prove

PROPOSITION 1.3. There is a function f: f̂J—>f̂  such that if G is a primitive
permutation group on a finite set X with \X\ >/(s5(G)), then {X ; G) is one of the
permutation groups in 2X,. . . , 26.

In the proof of Proposition 1.3 we consider permutation groups (X; G) with a
fixed value of s5(G), and show that if \X\ is sufficiently large then (X ; G) lies in
2, for some i. Various parameters associated with the group G arise in the course
of the proof. We say that such a parameter N = N(G) is small if, for any fixed
r e N, there exists a constant Kx such that for any primitive {X; G) with
s5(G)«£r, we have N{G)<KX (so roughly speaking, s5{G)-+<x> as N(G)-»<»).
And we say that N(G) is unbounded if, once we% fix any r eN, then for any K2

there exists h eN such that whenever (X; G) is primitive with 1̂ 1 5*h and
s5(G) =£ r, we have N(G) > K2 (roughly speaking, N—> °° as \X\ —*• °°). We say N is
bounded if it is not unbounded.

As described in § 2, each of the families 2, is parametrised by several natural
numbers. Precisely one of these parameters is unbounded, and the rest are small.

Recall that the socle of a group is the product of its minimal normal sub-
groups. It is well known (see, for example, § 4 of [4]) that if G is a group with a
faithful primitive permutation representation, the socle of G is a direct product of
isomorphic simple groups. Let Soc(G) denote the socle of G. Using the method
of [8] (which uses [3, 14, 21]), we first reduce to the case when the socle is
abelian.

LEMMA 3.1. There is a function F: f̂ l—»f̂J such that if G is a primitive
permutation group with non-abelian socle acting on a finite set X with \X\ >
F(s5(G)), then G is one of the permutation groups in 21} 22 or 23.

Proof This is an application of the O'Nan-Scott Theorem [19], and is implicit
in [8]. By the remarks after Lemma 8 of [8], we may suppose that there is an
almost simple primitive group Gi of degree nx such that G ^ Gx wr Sm in the
product action of degree n™, with Soc(G) = Soc(Gx)

m, G inducing the primitive
group Gx on each coordinate, m small, and G acting transitively on the set of
coordinates. Since m is small, the degree na of Gx is unbounded. Also, Gx can be
taken to satisfy the hypotheses of the lemma (that is, nx is large relative to s5{Gx)
in the action on a coordinate), since G does. By Lemma 11 of [8], if Soc(G) is a
simple group of Lie type, then its defining field is small. The proof is completed in
Lemmas 13 and 14 of [8].
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For the rest of this section we will suppose that G is a primitive permutation
group with abelian socle, and that G acts on a set X of unbounded size, with a
fixed upper bound for s5(G). Then Soc(G) may be identified with a vector space
V of dimension n over a prime field F = GF(p). Since Soc(G) acts regularly on
X, we may also identify X with V. If H:= Go (the stabiliser of the zero vector),
then G = V X H, and H acts irreducibly on V with a bounded number of orbits
on vectors. Since s3(G) increases with p, p is small. Let 5 = Soc(H/Z(H)). Then
S = Nxx ... x N,xT, with Nx,..., N, non-abelian simple groups, and T abelian
(possibly trivial). For i — \,..., t, let Rt be the full preimage of N( under the
natural map H-^H/Z(H), and let W be the full preimage of T. Clearly if / # i
then (Rj,W)^CH(Rl). Hence, as R:= (R'h Z(H)), we have [/?„/*,]=.
[Rh W] - 1. Thus /?i,... , Rt, W generate a central product. Put

R:=RX*... *Rf*W

(so R^H).

LEMMA 3.2. Suppose that V is not a homogeneous FR-module. Then there is an
H-invariant direct decomposition V = Vi 0 . . . © Vrfor r > 1, with H isomorphic to
a subgroup of GL(Vi) wr Sr in the imprimitive linear action. We may suppose that
if H induces H( on Vif then

(i) Vt is a homogeneous irreducible FHrmodule,

(ii) r is small,

(iii) H induces a transitive group on {Vlt ..., Vr},

(iv) for each i, s4(Hi) (in the action on Vt) is small.

Proof. If V is not a homogeneous FR -module then there is an if-invariant
decomposition as above, and if r is chosen to be maximal then (i) will be satisfied.
For (ii), note that if v = vx + ... + vr with u, e Vif then the if-orbit of v varies with
the number of vt which are non-zero. If (iii) failed, then H would be reducible
on V. Part (iv) is obvious.

LEMMA 3.3. Suppose that V is a homogeneous but not absolutely irreducible
FR-module. Then there is an extension field K of F with [K: F] small, and
K-vector spaces Vx and A such that V = Vx <8>K A with H^H1*H2 preserving this
K-tensor decomposition in its action on V. Also

(i) Dim* Vt is unbounded and Dim* A is small,

(ii) Hx is absolutely irreducible on Vx, and H2 is irreducible on A (over K),
(iii) R acts faithfully and absolutely irreducibly on Vi, and trivially on A,
(iv) Z(H) = Z(Hl), and S = Soc(/f1/Z(/f1)), with R equal to the preimage of S

under the map Hx—*HxlZ(H).

Proof If V is an irreducible FR -module, then simply put Vx = V, K =
HomF/?(V, V), and let A be a 1-dimensional .K-vector space. Thus, we may
suppose that V is a reducible FR -module. By Clifford's Theorem V = 0^ = 1 Vh

where the Vt are isomorphic irreducible FR -modules. Let K = YlomFR(yx, Vx).
By Schur's Lemma, K is a field containing F and V has a JC-space structure
with H =s TL(V, K). Here |tf| is small, since s3(G) increases with \K\. Put
A:=HomFR(Vx, V), M:= CGUYtF)(R) and L:= CrL(v>F)(M). The following
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observations are part of Lemma 3.13 of [1].
(a) L = GL(VX)K).
(b) The representation of L*Af on V is ^-equivalent to the tensor product

representation on Vx ®KA.
(c) r({Vi, A})jT = NrL(VtF)(L*M)nNruViF)(L). The notation T({VU A})JZ is

explained in [1]. Essentially it is the largest group preserving the tensor product
decomposition, possibly extended by an involution interchanging Vx and A (this
involution is excluded in our case, since it does not normalise L).

Now H normalises R, so normalises M and L, and hence lies in Y({VX, A))n.
Thus, there are irreducible HX^TL(VX, K), H2^TL(A, K), with H^HX*H2

acting naturally on Vx ®KA, with H inducing Hx on Vx and H2 on A. By choice
of A, R centralises A, so it acts faithfully on Vx. Since HomFR(yx, Vx) = K,
Hi is absolutely irreducible on Vx (formally, V̂  is an absolutely irreducible
K(HX D GL(^, /Q)-module). Thus (ii) and (iii) hold. If D i m ^ ) were bounded,
then \R\ would be bounded, so CH(R) would be unbounded, contradicting the fact
that CH(R) =ss K*. Thus T>\mK(Vx) is unbounded. We can identify V with the set
of Dim^(V1) X DimK(A) matrices over K, with Hx D GL(Vj, K) acting by premul-
tiplication, and H2C\GL(A, K) acting by postmultiplication. Matrices of different
ranks lie in different orbits of H C\GL(V, K), so DimK(A) is small, proving (i).
To see that Z(H) = Z(HX), note that Z(H) induces scalars on V, so Z(H)^HX,
and that //, centralises H2. To see that S = Soc(HjZ(H)), note that 5 ^
Soc(Hx/Z(H)), and that any normal subgroup of HX/Z(H) is normal in H/Z(H).

In view of Lemmas 3.2 and 3.3, and of the classes 25 and 26, we now suppose
that V is an absolutely irreducible KR-module. Set 5 = Qx x ... x Q^, where each
Qi is either a non-abelian minimal normal subgroup of H/Z(H) or an abelian
characteristically simple group, and if i¥^j and Qh Q} are abelian, then
(IGil» IG/I) = 1- Let Pi be the full preimage of Q} under the natural map
H^>H/Z(H). Then, since W (the preimage of the abelian part of S) is nilpotent,
it can be seen that R = Px *... * Pm. Note that \K\ is small, since s3(G) is small.

LEMMA 3.4. For each i = l, ..., m there is an absolutely irreducible
K(PX fl GL(V, K))-module Vt such that Pt ^TUyh K), V = Vx <8>... ® Vm, and
H =£ Hx *... * Hm acting naturally on the tensor decomposition with the following
properties (each case holds for any i e {1, ..., m}):

(i) H{ *s TL(V;, K), and H induces Ht on V{;

(ii) Z(H) = Z{Ht), Qi = Soc(Hi/Z(Hi)), and Pt is the full preimage of Q{ under

(iii) m is small;

(iv) all but one of Dim Vx, ..., Dim Vm is small;

(v) Hi has a small number of orbits on vectors of V̂ .

Proof We again use Lemma 3.13 of [1] (as quoted above). There is a JC-tensor
decomposition V = VX<8)KA with Px acting absolutely irreducibly on Vx, and
P2* ••• * Pm acting irreducibly on A. An induction on m completes the proof of (i),
and (ii) follows as in Lemma 3.3. Note that since each Pt is normal in H, there are
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no group elements interchanging the V(. To prove (iii), note that if

GL(nu q)*...*GL(nm, q)

acts naturally on V(nx, q) ®... <8> V(nm, q), then the number of orbits on vectors
is at least qni-n-iq»i+-+nlf which grows with m. Part (iv) follows by the matrix
argument given in the proof of Lemma 3.3(i), and Part (v) is immediate.

In view of Lemma 3.4, and of class 25, we now suppose that the group S is
characteristically simple.

LEMMA 3.5. The group S is not elementary abelian.

Proof. Suppose for a contradiction that S is an elementary abelian r-group for
some prime r. Clearly R is nilpotent, so R=RX x R2, where /?, is an r-group and
R2 is an r'-group; furthermore R2 < Z(H) =£ K*, so \R2\ is small and V is an
absolutely irreducible KR j-module.

Since Z(Rl)^K*, it is cyclic, so Z{RX) = Z^, where rc is small. Also
RJZiRJ^iZ,)"1 for some m. By Lemma 2.27(f) and Theorem 2.31 of [13],
dim* V = r"172. Put n = r"1^. Since Z(R^ contains the Frattini subgroup of Rlf

Theorem 12.2.2 of [11] gives

\H\G\K\.\AutRA

^\K\.r(m+c)c.\GL(m,r)\

<\K\.rcm+c2+m2

< r2™2 (since rc is small and m is unbounded)

However \V\*?2n, so |F|/ |#|-»°o, which contradicts the fact that s2(G) is small.

In view of Lemmas 3.4 and 3.5, we suppose that S is a direct product of
isomorphic non-abelian simple groups Nlr ..., Nt, with full preimages Rx, ..., R,
in H, and that Â  x ... x N, is a minimal normal subgroup of H/Z(H).

LEMMA 3.6. Under these conditions, t = \.

Proof. Suppose that t > 1. Since Rt (for 1 ^ / ss t) has non-abelian centraliser in
R, it is reducible. Thus by Clifford's Theorem, V is a direct sum of at least two
irreducible #fl,-submodules; for each i let Vt be one of these. Since R/Z(H) is a
minimal normal subgroup of H/Z(H), the V( may be chosen to have equal
dimension. Thus the conditions of 3.17 of [1] apply, and there is a /C-tensor
product decomposition V = Vx <8>... ® Vt with H^HxV/r S, acting naturally, with
Soc(H1/Z(Hl)) = Nl. Now t is small, as in Lemma 3.4(iii). Hence Dim^(Vi) is
unbounded. If

M = NH^) n... n NH(vt) n GL(F, K)
then \H: M\ ̂  f! log \K\, so M has a small number of orbits on vectors. A matrix
argument as in the proof of Lemma 3.3(i) now forces a contradiction.
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LEMMA 3.7. Suppose that S is a non-abelian simple group, Soc(H/Z(H)) = S, R
is the preimage of S under the map H^H/Z(H), and V is an absolutely
irreducible KR-module with Dim* V = n. Then

(i) S^H/Z(H)^AutS;

(ii) there are a subfield L of K, and an n-dimensional classical group Rx over L
such that
(a) R=R1*Kl, where Kxis a subgroup of the multiplicative group of K,
and
(b) R has the natural action on V = V(n, L) ®L K.

Proof, (i) This is immediate, since CH(R) acts as scalars on V.
(ii) First observe that since s5(G) is small, we have \H\ > \K\3". We now

imitate the proof of [18, Theorem 4.1]. Suppose first that S is an alternating group
Am. Then as in (a) of [18, 4.1], we see that n i s m + l o r m + 2 and that V is an
irreducible constituent of the natural permutation module of Sm. It follows that H
has an unbounded number of orbits on vectors, which is a contradiction.

Next, if 5 is a sporadic group or a group of Lie type in characteristic other than
p, then as in [18, 4.1] we have \H\ < \K\3n. Similarly, if 5 is an exceptional group
of Lie type in characteristic p, the same conclusion holds.

Thus S is a classical group in characteristic p. Let d be the dimension of the
natural vector space associated with 5. If d<n, we see as in [18, 4.1] that
\H\ < \K\3n, which is a contradiction. Hence d = n and 5 is a classical group of
dimension n over a subfield L of K. The result now follows, taking Rx to be a
quasisimple subgroup of H for which Rl/Z(R1) = S.

Proof of Proposition 1.3. By Lemma 3.1 we may suppose that G has abelian
socle, so G = V X H where V = V(n, F) and H ^ GL(V). If H is imprimitive as a
linear group on V, then by Lemma 3.2 (together with the later reductions),
{X; G) e 26. If H is primitive but R is not absolutely irreducible on V, then
(X; G) is in 25 by Lemma 3.3 and later reductions. If V is an absolutely
irreducible KR-module but 5 is not a non-abelian simple group, then by Lemmas
3.4, 3.5 and 3.6, 5 = Nx x N2 where \S : Nx\ is small and Nx is non-abelian simple,
and (X; G) e 25. Thus, we may suppose that 5 is non-abelian simple, and V is an
absolutely irreducible ^5-module (where 5 is the full covering group of S). By
Lemma 3.7, (X ; G) now lies in 24.

4. Proofs of the theorems

We first prove the easier half of Theorem 1.2.

LEMMA 4.1. Let M = {M ; G) be a permutation structure in 2^ for i e {1, . . . , 6}.
Then M is primitive and smoothly approximated by a chain of finite homogeneous
substructures.

Proof. We must show that if (M ; G) e Zf then the corresponding natural chain
of finite structures (Mn ; Gn) (n < (o) in 2, smoothly approximates (M ; G). The
primitivity of (Af ; G) will then follow from the primitivity of the finite structures.
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It is necessary to check that

(a) (Mn ; Gn) chom (Mn+l; Gn+l) for each n < w,

(b) {J(Mn\ n<co) = M,

(c) U (Mn: n<(o) is K0-categorical.

Parts (b) and (c) are in each case straightforward, so we consider only (a). We
use definition (I) of homogeneous substructure, given in § 1.

Case (i). (Af ; G) e 2" This is straightforward.

Case (ii). (Af ; G) e 2^. In the cases other than Z£(0 and Z^ii), condition (I) is
an immediate consequence of Witt's Theorem (see, for example, [2, Chapter 7]).

Suppose first that (Af ; G) e ^ ( i ) . We adopt the notation of Point 5 Case (b) of
§2 (we omit Case (a), which is similar). Thus, V is a vector space over GF(^)
with basis (e,: i<(o), G ^PrL(K0, q){a), and M consists of pairs {U, W}
where U is an r-subspace of V, W is a good subspace of V of codimension r, and
U^W. For convenience we shall assume that G^PGL(S0, q). (Note here that
field automorphisms cause no more than notational problems; they give easily
analysed split extensions of the corresponding subgroups.)

For each n<a), let Vn = (elt..., en), and let Kn be the group induced by G on
Vn. Then Kn^PGL(n, q), and Kn admits a graph automorphism an induced in
the natural way by the dual map on the basis (elt..., en). Let

Mn = {{U, W}: U<W<Vn, Dim U = r, DimW = n-r},

and let Jin = (Mn ; Kn(an)). We can regard Mn as a substructure of Mn+X by
identifying each subspace W of codimension r in Vn with W(B(en+1), and
embedding Kn(an) into Kn+l(an+i) in the obvious way (so the image of Kn

preserves the decomposition Vn+l = Vn © (en+l), and the image of ocn is an+l).
To check that M,, c h o m ^ , + 1 , we shall verify condition (I) of the definition of
homogeneous substructures.

Let {Ult WJ, ...,{Ut>Wt}<= Mn, and let g e Aut ^ + 1 with {Uh WJg e Mn for
i = l,...,t. We must show that there is heAutMn such that {U,, W{}g =
{Ui, Wi}h for 1 =£ i ^ t. By replacing g by gan+l if necessary, we may suppose that
geKn+1. Let <p be the natural map GL(n + 1 , (?)-»PGL(rt + 1 , q), and let
g e GL(n + l,q) satisfy g<f> = g. Let A be a matrix representing g with respect to
the basis (elt..., en+l), and let B be the matrix obtained from A by putting the
(n + 1 , n + l)-entry equal to 1, and all other entries in the last row.or column
equal to 0. Then the image under 0 of the element represented by B fixes Jin and
agrees with g on Ult..., Ut, Wlt..., Wt, as required.

Suppose next that (Af ; G) e S^ii). Let q be a power of 2, and let V(2n + 1, q)
be an orthogonal space invariant under O(2n + 1 , q). Then (Afrt ; Gn) is the
permutation structure arising from the action of Gn :=PO(2n + 1 , q) on either
orbit of hyperplanes (again, we assume for convenience that Gn does not contain
field automorphisms).

We may describe Mn, Mn+1 and the embedding M^ c Mn+1 as follows for either
of the two orbits on hyperplanes. Let d, a", ex,..., en+1, fx, ...,fn+l be a basis of a
vector space V^+4 = V(2n + 4, q) having an O~ geometry with quadratic form Q
and bilinear form ( , ), satisfying the conditions (eitfj) = <5,y,

to.«/) = 05. /y) = ( * «i) = ( * /*) = (<*'» «i) = (<*'. //) = Qto) = (20J) = o
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for l^i,j^n + l, Q(d') = l = {d, d'), Q{d) =£0 and (d, d') anisotropic. Let
V2/1+2 be the subspace with basis d, d',ex, ...,en,fx, ...,fn. The stabiliser of (d)
in PO"(2n + 2, q) is just PO(2n + 1 , q), so our action on an orbit of hyperplanes
of V(2n + 1, q) can be identified with the action of PO~(2n + 2, <?)<</> on an orbit
of non-singular 2-spaces. Let Mn be the resulting structure, and let Mn+i be the
corresponding structure consisting of 2-spaces in V^+4 in the orbit of {d,d')
under PO"(2n + 4, #)<d>. We must show that MnchomMn+x. This, however, is
now a trivial consequence of Witt's Theorem.

Case (iii). (M ;G)e 2". If (Mn ; Gn) e 23, then the permutation group induced
on each coordinate lies in 22, and Soc(Gn) is the direct product of the socles of
the groups induced on each coordinate. Thus, the result in this case follows easily
from that of Case (ii).

Case (iv). (M ; G) e 2?. This is handled by Witt's Theorem.

Case (v). (M;G)e25 . Consider first the case where G = (Vx <8> V2) XI
(GL(N0, q) * H) acting naturally on Vx <8> V2, where Vx = V(X0, q), V2 = V(t, q), and
H is an irreducible subgroup of GL(V2). Let M» = (V{n, q) <8> V2 ; (V(n, q) ®
VT) XI (GL(n, q)*H)) for each n < co. We may identify Mn with the set of all n x f
matrices over GF(q), with GL(n, q) acting by premultiplication and H by
postmultiplication, and embed Mn into ^ n + i by adjoining an extra row and
column of zeros to each matrix in Mn. To show that Mn ch o m Mn+X we must check
condition (I) in the definition of homogeneous substructure. This is done as for
22(i), by replacing a matrix in GL(n + 1, q) by the corresponding matrix with
(n +1, n + l)-entry 1, all other entries in the last row or column 0, and the
remaining entries unchanged. Other classical groups acting on Vx are handled
similarly: if, for example, the group induced on Vx is symplectic, let Mn =
V(2n, q) 0 V(t, q), Mn+X = V(2n +2,q)® V(t, q), and in the last argument
replace a matrix in Sp(2n + 2, q) by the matrix obtained by putting all the entries

/ I 0\
in the last two rows or columns equal to 0, except for a 2 x 2 submatrix I I

at the bottom right. Note that field automorphisms again cause no difficulties;
neither does the possibility that the group induced on the tensor product is a
subgroup of a corresponding central product (to see this last point, note that
closed subgroups of small index in infinite-dimensional classical groups are very
restricted).

Case (vi). (M ; G) e 2£. First, suppose that M is a special structure of the form
(Y\ © ^2 ; (Vi © V2) X] H(a)), where Vx, V2 are infinite-dimensional over GF(g),
the closure of H on Vx is GL(VX), and a is the graph automorphism (as described
in Point 5 of § 2; note that again we assume for simplicity that field automorph-
isms do not arise). Then Mn = (Wx(n, q) 0 W2(n, q) ; (Wx 0 W2) XI//„<*)),
where Wx(n, q) has basis {ex, ..., en), W2 has basis (fx, ...,/„) identified with the
dual basis of (eX) ..., en), Hn = GL(M^) with its dual action on W2, and a swaps
each pair (ehfi). An element of Hn may be regarded as a pair (A, (A*)'1), where
A acts by premultiplication on Wx and (A1)'1 by postmultiplication on W2. To
show that Mnc.homMn+x, we check condition (I). As before, replace a pair
(A, (A')~l) in Hn+l by (B, (B')~l), where B is obtained from A by putting the
(n + 1, n + l)-entry equal to 1 and all other entries in the last row or column equal
to 0. The other special structures (those built up using tensor products) are handled
similarly. More general structures in 2£ are treated almost exactly as in 2™.
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LEMMA 4.2. Let M = (M; G) be smoothly approximated by a chain (M^ =
(M(; Gi): i < co) of finite homogeneous substructures. Let L be the canonical
language for M, and for each i let M* be the L-substructure of M with domain M(.
Then

(i) A\it(Mf) = Gi for all i < co,

(ii) M* is a homogeneous L-structure for all i < co.

Proof, (i) If g e Git then since g extends to an element of G, g induces
an L-automorphism of Mh so g e Aut M*. A similar argument shows that
Aut Mf c Gh

(ii) By (i), together with the definition of homogeneous substructure in terms
of automorphism groups, Mf^homM. Since M is a homogeneous L-structure,
and any homogeneous substructure of a homogeneous L-structure is homo-
geneous, the result follows.

COROLLARY 4.3. Let M = (M\G) and Jf-(N\H) be infinite permutation
structures smoothly approximated by chains (M^: i < co) and (̂ V): i < co)
respectively of finite homogeneous substructures, with Mi = (Mt; G,) and Jft =
(Nt; Hi) for all i. Suppose also that for each i, (M,; G,) = (fy ; Ht). Then M and J{
are isomorphic permutation structures.

Proof. Let L be the canonical language for M. By Lemma 4.2, we may regard
Mi as a homogeneous L-structure. We construct an isomorphism/: M-*N as a
union of a chain of isomorphisms/: ^ - * ^ ) . Suppose that we have constructed
f\, ••-,fk> each extending the previous isomorphism. Since Mk+X = Jfk+X, we may
regard Jfk+\ as a homogeneous L-structure isomorphic to Mk+X. It follows that
the isomorphism/* extends to an L-isomorphism/fc+1: Mk+1—>Nk+1, as required.

Proof of Theorem 1.2. By Lemma 4.1 it suffices to prove the following. Let M
be an infinite primitive structure smoothly approximated by a chain {Mil i<co}
of finite homogeneous substructures; then Mel.? for some / e {1, . . . , 6}.

Claim 1. For all i, k<co, ^(Aut M() =£ s*(Aut M) < co.

Proof of claim. The second inequality follows from the fact that M is
K0-categorical. The first inequality comes from condition (I) of the definition of
finite homogeneous substructure (see § 1).

Claim 2. There is N e N such that for all i >N, Mi is primitive.

Proof of claim. We use a criterion for primitivity given by Higman in [12]: that
is, Aut Mi is primitive if and only if for any two Aut ^-orbits Q1? Q2 on the set of
unordered 2-subsets of Mit and any {x,y} eQi, there exist reN and a sequence
x = u0, ult ..., ur=y e Mj such that {«,, w,+i} e &2 for each i = 0, ..., r — 1. Since
M is primitive, we may choose N such that for any two orbits Q1? Q2 of Aut M on
unordered 2-subsets of M, there is a path u0,..., ur as above and lying in MN. The
claim now follows from the definition of homogeneous substructure.

Claim 3. There are some infinite subsequence {MPj: j < co} of {Mi', i < co}, and
L-structures JV) with Nj = Mp. and ^}Shom-^/+i (for all j<co) such that some
structure in U (2": 1 ̂  i ^ 6) is smoothly approximated by the Jfj.
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Proof of claim. First, by Proposition 1.3 and Claims 1 and 2 above, we may
suppose that all the Mi lie in U*=i 2*. By the pigeon-hole principle, there is an
infinite subsequence of the M+ consisting of structures all lying in the same 2*.
The claim now follows by inspecting the families in each 2* and applying Lemma
4.1. For example, if infinitely many Mi lie in 2X, then the same value of / (in the
definition of 2i) occurs for infinitely many of the Mt\ this is because the
permutation rank increases with t (for the orbit of a pair of /-subsets varies with
the size of their intersection). If we choose the Jft to be increasingly large
members of 2j realising this value of t, and each isomorphic to a member of
{Mi: i < to} then this case of the claim will follow from Case (i) of Lemma 4.1.
If, say, infinitely many of the M^ lie in 22(i), then we may suppose that:

(i) the field GF(q) is fixed (as the number of orbits on Af? increases with q)\
(ii) if U is the smaller subspace in a pair {U, W} which corresponds to a point

of Mif then Dim U is fixed;
(iii) always U^W, or always U fl W = 0.

These observations prove Claim 3 in this case. A similar but easier argument deals
with 22(ii). In each case Lemma 4.1 is used. Suppose that all the M+ lie in 23.
Then we may suppose that one value of m always occurs, and that the same
subgroup of Sm operates on the set of coordinates; also, that the action on a
coordinate is the same for all the Mi (except for the variation of the free
parameter n in the descriptions of 2x and 22). Furthermore, Soc(G) = Soc(Gx)m.
There is a bound (independent of n) on the number of subgroups of the wreath
product Gx wr Sm which satisfy these conditions, so we may suppose that there is a
subsequence {Mp.: j < co) consisting of structures in the same family. Similar
arguments verify the claim for 24, 25 and Z6. Recall here Remark 5 at the end of
§ 2, which puts tight restrictions on the structures in 26 and Z£.

Given that there is an infinite subsequence {MPj: j < to} of structures as in
Claim 3, the result follows from Corollary 4.3. For by Claim 3 there is a structure
Jf e 2f smoothly approximated by a chain (Jf{: i<(o) with Jfi = Mp. for all i, and
by Corollary 4.3 we have Jf = M.

Proof of Theorem 1.1. It suffices to run through the list of smoothly
approximated structures M which arise in Theorem 1.2.

(i) M e 2". Then there are t e N and a countably infinite set X such that Aut M
is isomorphic as a permutation group to the action of SympQ on the set of
/-subsets of X. Let Jf be the trivial structure of domain X, and let A be a /-subset
of X. Then M and Gr(JV ; A) are isomorphic permutation structures.

(ii) ^ € 2 2 . If M is not of type (i) or (ii) in Z2, then there are a classical
structure Jf of dimension Ko, and a finite-dimensional totally singular or
non-singular subspace A, such that M = Gr(JV; A). Structures in 22°(ii) are by
definition classical of Type (c), so it remains to consider structures in 22°(i).

Let M = (Af ; G) e 22 (i). We shall use the notation of Remark 4 of § 2 (so there
is a vector space V over GF(^) with basis {e,: i<(o), and a group //=*
PFL(K0, q) with an outer automorphism a so that H(a) acts onVU V).

Now let W be a vector space over GF(^) disjoint from V, with a basis
{ft', i < ft)}. The structure 'Jf will have domain PG(V) U PG(W) (the union of the
projective spaces). Let 0: V —> W be the isomorphism with e,0 =f( for all i < co,
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and let 0 be the corresponding map PG(V)—>PG(W). The group H(a) acts on
N as follows. Elements of H act on PG{V) in the natural way. KM, v e PG(W)
and h e H, then uh = v just in case ({u<j>~x)<x)h = (y<j>~l)a. Also, if u e ?G(V)
then ua = u<j>, and if u e PG(W) then ua = u4>~1. It can be checked that this
makes (PG(V) U PG(W);H{a)) into a permutation structure.

If M is as in Case (a) in § 2, Point 5, then let

A = (e0,..., er_!> U </0, ...,fr-x).

By considering the stabiliser of A in H{a), we see that M and Gi(Jf \A) are
isomorphic as permutation structures. A similar argument applies if M satisfies
Case (b).

(iii) M e 2". Suppose that Aut M ^ Go wr Sr, where Go is a permutation group
as in (i) above. Let Jf be a structure consisting of an equivalence relation with r
countable classes, and let A be a set containing t points from each class. Then
M = Gr(Jf ; A). The cases when Go is classical are handled similarly. For
example, suppose that Go = PSp(N0> q) with its action on each coordinate being
the action on the set of totally isotropic ^-dimensional subspaces of the natural
module V(N0, q). Then identify Jf with the disjoint union of r infinite-
dimensional projective spaces over GF(#), each with a non-singular symplectic
form, and let A be the disjoint union of r isotropic f-spaces, one from each vector
space. It will not matter how these r-spaces are chosen, essentially because in 23

we have Soc(G) = Soc(G0)
r.

(iv) M e H.4. Let Jf be an infinite-dimensional affine space over the appropriate
field (possibly with a form on it) and let 0 be the zero vector. Then

( ; { } )
(v) M 6 Z5. Now as a permutation structure, M is isomorphic to

(Vx®V2\(Vx<S)V2)y\H),

where Vx is an S0-dimensional vector space over GF(^), V2 is an r-dimensional
vector space over GF(^), and H^Hx*H2 inducing Hx on Vx and H2 on V2.
Choose an //2-orbit Q = [Cx,..., Cs} of ordered bases of V2, and write C, ~ Cy if
there is aeZ(H2) such that Cj = (uxa,..., ura) where C,, = (ux,..., ur). Let
{S81,..., S8J be a complete set of representatives of the —classes of Q. Also let
% = (viiy -~> vir) ^or e a c n ' e {!> •'•> *}• Choose disjoint copies W(j of V(X0, q) for
all 1 ^ i ^ r, 1 ^ / ^ r. Let N = \J (Wv: 1 ^ i ^ t, 1 as/ ̂  r).

We must describe the action of (Vi® V2) y±Hon N. Forl^i^t, 1 as/ =s= r, let
0i>: V\—*Wij be an isomorphism. Let ueVx and let zeVx(8)V2. For l=s/=£f,
l^j^r, we must define (0,y(M))z. We can write z uniquely as

z = ux <8> viX +... •+ ur <8) vir.

Then (0iy("))z = 0I7(M + ">)• To define (0,y(w))/i (for h e H) note that there is a
unique way of writing h = hxh2 (hxeHx, h2eH2) such that %h2e {8ftx,..., %}.
Suppose %h2='3bk. Then define (<f>ij(u))hxh2 = <f>kJ(uhx). This makes Jf =
(A/ ; (Vi ® V2) XI //) into a permutation structure. Let

Then /I is an algebraically closed subset of Jf, and M is isomorphic to Gr(^V; A)
as a permutation structure (to see this, note that the stabiliser of A in Gr(JV ;A)
is Hx * //2)- It is possible that Aut JV is not transitive on the set of blocks of Jf. In
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this case, choose any //2-orbit on the blocks, let N* be the union of these blocks,
let N* be the permutation structure induced on N*, and put A* = A C\N*. It is
easily checked that JV* is almost classical and that M and Gi(N* \A*) are
isomorphic permutation structures.

(vi) M e 26- Now M has automorphism group G = (Vx 0 . . . © Vr) XIH, where
H^HX wr5r and H induces Hx on Vj. Suppose (using (iv) and (v) above) that
each permutation structure (V̂  ; Vt X) //,) is of the form Gr(JV); ^4,), where
NX)..., Nr are pairwise disjoint. Let N = U/=i Nh with Aut M acting naturally on
N, and let A = U;=i A- Then Jf is almost classical and the permutation structures
M and Gr(jV; A) are isomorphic, as required.

We conclude this section with a counter-example to a converse of Theorem 1.1.
The example gives an K0-categorical permutation structure which is primitive and
is a Grassmannian of an almost classical structure, but is not smoothly
approximated. We assume familiarity with the theorem of Fraisse ([9], also [10,
Chapter 11, § 1]) which says that, over any fixed relational language, countably
infinite homogeneous structures correspond exactly to amalgamation classes of
finite structures.

EXAMPLE. Let L be a language with two binary relations Exy and Rxy, and let
S' be the class of all isomorphism types of finite L-structures N such that

(i) E defines an equivalence relation on N with at most two classes,
(ii) R is symmetric and irreflexive, and N carries a bipartite graph with edges

given by R, each edge containing a vertex from each E-class.
Then & is hereditary and has the amalgamation property, so by Fraisse"'s

Theorem there is a unique countable homogeneous L-structure T whose finite
substructures are the members of <F (T is sometimes called 'the random bipartite
graph'). Now Aut T is transitive but imprimitive with the two ^-classes as a block
system, and the group induced on each Is-class is fc-transitive for all k < (o (but is
not closed). If T were smoothly approximated, there would be a finite
homogeneous substructure A containing elements x, yx, y2, zx, z2 with yx,y2, zx, z2

all in the £-class not containing x, and x adjacent to yx and y2 but not to zx and z2.
Because A is a homogeneous substructure, the ^-classes give an (AutT)A-
congruence on A; the two classes in A are interchanged by an element of
(AutF)A and the full symmetric group is induced on each class. The set of
neighbours of x must have the same number of Aut A-translates as x. Since Aut A
induces the full symmetric group on each £-class, it follows that the two E-classes
of A have different sizes, which is a contradiction.

5. Concluding results

We wish to derive an analogue of Theorem 1.1 for structures which are
transitive but not primitive. It is convenient to work with a generalisation of the
notion of smooth approximation. We say that a structure M is a k-homogeneous
substructure of a structure M if

(i) M is finite, JV is N0-categorical, and M =s N\
(ii) if L* is the canonical language for N, and M*, Jf* are the //-structures
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corresponding to M, N respectively, then
(a) every automorphism of M* extends to an automorphism of Jf*, and
(b) if U, V are subsets of M with | U\ ^ k, and there is a e Aut JV* with

Ua = V, then there is /J 6 Aut M* with a\v = p\u.

Next, we say that M is weakly approximated if it is infinite, K0-categorical, and
there is a chain {M^: i<a>} of finite substructures of M with union M such that,
for all /2=1, Mi is an IM/.jl-homogeneous substructure of M. Note that every
smoothly approximated structure is weakly approximated.

PROPOSITION 5.1. If Mis primitive, then M is smoothly approximated if and only
if it is weakly approximated.

Proof It suffices to show that each weakly approximated structure lies in 2"
for some i = 1, ..., 6. This is proved in the manner of Theorem 1.2. The
application of Proposition 1.3 runs as before. We require an analogue of
Corollary 4.3, which is easy to prove; it will have essentially the same statement
as before, except that M and Jf will be weakly approximated by the chains
{Mi'. i<(o) and (JV): i<a>) respectively.

QUESTION. IS every weakly approximated structure smoothly approximated?

If (A/; G) is a permutation structure, and £ is a O-definable equivalence
relation on M, then {M/E; G) is the structure whose domain is the set of
f-classes, with relations corresponding to the action of G on this set. The E-class
containing x e M will be denoted by x/E.

LEMMA 5.2. Let M = {M ; G) be a weakly approximated permutation structure:
(i) if Ac.M is finite, then {M ; G(A)) is weakly approximated;

(ii) if S is an infinite class of a O-definable equivalence relation on M, then
(5 ; Gs) is weakly approximated;

(iii) if A is a finite algebraically closed subset of M, then the Grassmannian
{Gi{M ,A);G) is weakly approximated;

(iv) if E is a O-definable equivalence relation on M with infinitely many classes,
then the quotient structure {M/E ; G) is weakly approximated.

Proof. Parts (i), (ii) and (iii) are straightforward, so we consider only (iv). Let
M have a weak approximation {M^: i < co). Suppose that for some k we have a
chain JV0^... ^ ^ - I of substructures of M/E, where JV) is an |̂V̂- r|-
homogeneous substructure of M/E for 1 «£ i =£ k — 1. Put c = \Nk^l\. Then there is
leN such that:

(a) Nk-xcM,lE\
(b) whenever there are xx, ...,xc, yu ...,yceM and are Aut M with xJE,

yi/E e M,/E and x((X = yt for 1 ^ i «sc, there are also ux,..., uc, vlt..., vc e
M[ with U{/E = Xi/E, v(/E = yjE and u(a = vt for 1 =£ i «s c.

Note that the notation Mt/E makes sense, since E defines a partition of Mi
invariant under Aut M,.

Now put Jfk = Mi/E. Then ^t_x c Mk, and Xk is an |A/*_i|-homogeneous
substructure of M/E, as required.
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REMARK. The notion of weak approximation is introduced because Part (iv) of
Lemma 5.2 is used in the proof of the next theorem. Parts (i)-(iii) of the lemma
would be true with 'smooth approximation' replacing 'weak approximation'
throughout, but we do not know this for (iv).

Our next result is suggested by the Coordinatisation Theorem for Ko-
categorical, w-stable structures (Theorem 4.1 of [7]). The difference is that their
'rank one' is replaced by our 'almost classical'. Recall the notion of an extension
by definitions of a structure [7]. If M = (M ; G) is a permutation structure, then
an extension by definitions is a permutation structure obtained from M by
repeating the following process a finite number of times: pick n e N\{0}, pick a
O-definable (possibly trivial) equivalence relation E on AT, and adjoin to M a
point for each £-class, with G acting naturally on the resulting structure with
domain MUMn/E. If M* is an extension by definitions of M, and S is a
O-definable subset of M*, we say that 5 coordinatises M if, for all xeM,
acl( j t )nS#0.

THEOREM 5.3. Let M be a transitive weakly approximated structure. Then there
are an extension by definitions M* of M, and an almost classical structure N which
is O-definable in M*, such that Jf coordinatises M.

Proof. We first suppose that M is primitive. By Proposition 5.1 and Theorem
1.1, there is an almost classical structure M with a finite algebraically closed set A
such that M = G r ( ^ ; A). Suppose that for some (and hence for all) x e N,
|acl{jc}| > 1. Then there is a O-definable equivalence relation == on N with x « v if
and only if y € acl{*}. The «-classes are finite, and it is easily checked that Jf/**
is almost classical, and that M is a Grassmannian of Jf/~. Hence, we may
suppose that acl{*} = x for all x e N. It follows that every finite subset of N\{x}
has a disjoint translate under (Aut N)x. Thus, for all x e N there are (Aut N)-
translates Ax, A2 of A with Ax D A2 = {x}.

Let <f>: M—>Gr(jV ;A) be an isomorphism, and for m eM identify <f>(m) with
the corresponding subset of N. By the last paragraph, there are mlt m2eM with
|0 (m 1 )n0(m 2 ) | - l - Let Q be the (Aut ^)-orbit of (m1)m2), and write
(mlt m2) ~ (nlt n2) if and only if </>(mi) n <f>(m2) = 0(«i) H <j>(n2). Clearly ~ is an
equivalence relation on Q, and furthermore it is (Aut ^-invariant. Hence ~ is
O-definable, and we may identify N with Q/~, as required.

Suppose now that M is transitive but imprimitive. Choose a O-definable
equivalence relation E on M maximal subject to the condition that MIE is
infinite, and let F be a minimal O-definable equivalence relation with E<F
(E =£ F). Then M/F is finite (possibly of size 1), and if 5 e M/F then S/E is infinite
and carries a primitive permutation structure. Furthermore, by Proposition 5.1
and Lemma 5.2(ii) and (iv), the permutation structure on S/E lies in 2f for some
i = 1,..., 6. Clearly any coordinatisation of M/E gives a coordinatisation of M.

Let Sx,..., S, be the F-classes of M/E. Since the structures S(/E are isomorphic,
by Theorem 1.1 there are a Grassmannian Gr(^V;y4) of an almost classical
structure Jf, and isomorphisms 0,-: SJE^*Gr(J{ ;A) for 1 «= /sst. Let jceiV, and
let m = (mn, m12,..., mtl, mt2) where, for 1 =si ss t,

mn, mi2 € Si/E and 0f(ma) D
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Let Q be the (Aut ^)-orbit of m. Then there is a 0-definable equivalence relation
on Q such that N may be identified with the set of classes. Thus, Jf coordinatises
MIE, and is identified with a 0-definable subset of an extension by definitions of
M. Since JV coordinatises M/E, it coordinatises M, as required.

Our next few results confirm that the notion of smooth approximation coincides
with a notion discussed in [7].

PROPOSITION 5.4. Let M be an ^-categorical structure over a language L. Then
the following are equivalent:

(i) M is smoothly approximated;

(ii) for every o e Th(M), there is a finite Jfc.hom M with Nto.

Proof. First, notice that we may assume that L is the canonical language for
M. Essentially, this is because any sentence in another language can be translated
into a sentence in the canonical language, and vice versa.

(i)4>(ii). Let (Mil i<co) be a smooth approximation for M by finite homo-
geneous substructures, and let oeTh(M). Since M is homogeneous, Th(M) is
V3-axiomatised, so we may suppose that

Here /(*,)=/?,, l(yi)-qi, and we may suppose that px, ...,ps>0 and
Ps+i> • ">Pt = 0. For i = l,...,s, let dn,...,dir. be a complete set of repre-
sentatives of the (Aut ^)-orbits on Mp>, and let bn,..., bir.eMq> be chosen so
that Mtfafajybij) for all l ^ y ^ r , . Also for s + l^k^t choose bk with
M t (pk(bk). There is a finite M( chom M with

Then M, b o.
(ii) => (i). Let (a,: i < co) enumerate Th(M), and let r, = /\j=o Oj. We construct

a sequence (./«,: i < co) inductively. Suppose we have found finite

Shorn -M-x Q

with MjtXj and MjchomM for all j<i. Then by (ii) there is some i i c h o m i
such that ^ ^ r , and Mi-X is isomorphic to a substructure JV}_I of Jft. Since M is
homogeneous, JV) is homogeneous; hence, as / j - i c h o m i , it follows that
•^i-i £hom Ni. Thus, there is Mi=,Jfi such that Mi^l<=LhomMic.homM. Now let
M* = \j\Mi: i<co). Since Th(^) is V3-axiomatised, ^*l=Th(^). Hence by
X0-categoricity M* = M, so M also has a smooth approximation.

COROLLARY 5.5. Every ^-categorical, co-stable structure over a language with
just finitely many function symbols is smoothly approximated.

Proof. Apply Proposition 5.4 above and Corollary 7.4 of [7].

COROLLARY 5.6. If M is smoothly approximated, then Th(M) is not finitely
axiomatisable.
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Proof. By Proposition 5.4, any finite subset of T\i(M) would have a finite
model.

Finally, we make some stability theoretic observations about smoothly ap-
proximated structures. The strict order property and the independence property
are defined by Shelah in [22, Chapter II, § 4]. From his definitions it follows easily
that if M is K0-categorical, then Th(^) has the strict order property if and only if
the following holds: there are r e N\{0}, a finite set A<=,M, and a formula <f>(x, y)
(with l(x) = l{y) = r) in the language of M with parameters in A, such that, if we
write x<y if and only if ME<p(x, y), then < defines a partial ordering on Mr

which contains an infinite chain. Also, TYi(M) has the independence property if
and only if the following holds: there are r e f̂ J\{0}, a finite set A, an infinite set
{a,: i < co} c AT, and a formula \j)(x, y) with parameters in A, such that for all
finite S c co there is bs e M with Mt\p(bs, a,) if and only if i e S. In [22, Chapter
II, Theorem 4.7], Shelah shows that every unstable theory has the strict order
property or the independence property (possibly both), and that a stable theory
has neither. The following proof was suggested by A. Pillay.

PROPOSITION 5.7. A weakly approximated structure cannot have the strict order
property.

Proof. Let M = {M ; G) be weakly approximated by a chain (Mil i<co), and
suppose that Th(M) has the strict order property witnessed by <t>(x, y) and A as
above. Let r = l(x), and let c = sr+lA[(G). There are 60,..., 6ceMr with
Jttcj>(bh bj) if and only if i<j. For some k, there is an (|y4| + 2r)-homogeneous
substructure Mk of M containing A, b0,..., bc. However, since in a finite poset,
elements of different height lie in different orbits, 5|/4|+r(Aut Mk) 2= c + 1. This is a
contradiction (by the analogue for weak approximation of Claim 1 of the proof of
Theorem 1.2).

Next, we confirm the claim, made in the Introduction, that there are smoothly
approximated structures which are not co-stable.

PROPOSITION 5.8. If M is a classical structure which is not of Type (a), (b)(i) or
(d)(i), then Th(^) has the independence property.

Proof. We shall suppose that M = (M ; G) is of Type (d)(iii), with M =
V(KQ, q) and G = V(K0, q) y\ Sp(K0, q) acting naturally. The other classical
structures are handled similarly.

There is a basis {eh f: i < co} of V such that, with respect to the bilinear form
( , ) invariant under Sp(K0, q), (eh fi) = <5,y and (eh ey) = (/„ g) = 0 for all i, j < co.
Let S be a finite subset of co, and put fs = Taesfi- Then for all i < co, (et, fs) = 1 if
and only if i e S. Since ( , ) is invariant under the stabiliser of the zero vector, it
follows by N0-categoricity that, whatever the language for M, there is a formula
cf>(x, y) witnessing the independence property for Th(M).

REMARKS. 1. Lachlan's Conjecture [15] holds for smoothly approximated
structures: that is, every smoothly approximated stable structure is w-stable. This
is verified by inspection for primitive structures, and proved in general by
induction on the height of the lattice of O-definable equivalence relations.
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2. We do not know any neat group-theoretic way of distinguishing those
smoothly approximated structures which are co-stable. For example, the following
primitive structure M (from 2£(0) *s unstable, but can be represented as a
Grassmannian of an almost classical structure whose blocks of imprimitivity carry
an co-stable classical structure. Let V — V(H0, q), let {e(: / < co} be a basis of V,
and let M consist of pairs {U, W) where U is a 1-dimensional subspace of V, W is
a subspace of codimension 1 containing all but finitely many of the et, and U ^ W.
We take G to be the usual group of permutations of M, and put M - (M ; G).

PROPOSITION 5.9. The above structure M is unstable {and so has the independ-
ence property).

Proof. For each / = 2, 3, 4,.. . , define

Ui = (ei) and WL;= {eQ + el}..., eQ + e^u eh ei+l,...).

Then {Uh W^eM, and Ut ̂  Wj if and only if i 2*y. It follows that if i <j then the
pairs ({Uh W,}, {Uj, Wj}) and ({Uj, Wj}, {Uh Wt}) are in different orbits of
AutM. By Ramsey's Theorem, we may suppose (by taking a subsequence of
({Uh W;}: i < co) and relabelling) that all pairs ({Uit ty}, {UJf Ws}) (for i <j) lie in
the same (Aut ^)-orbit. It follows by K0-categoricity that, whatever the language
of M, there is a formula <p(x, y) with M t <t>({Ui} Wi}, {Uj, Wj}) if and only if i <j.
This proves that Th{M) is unstable.

Added in proof (June 1989). It is worth mentioning that any group inter-
pretable in a smoothly approximated structure is nilpotent-by-finite. For, by
Proposition 5.7, its theory cannot have the strict order property, so we can apply
Theorem 1.2 of a recent paper by the third author (H. D. Macpherson,
'Absolutely ubiquitous structures and K0-categorical groups', Quart. J. Math.
Oxford (2) 39 (1988) 483-500). Extraspecial groups provide examples of
smoothly approximated groups which are not co-stable.
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