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Given a set r of permutations of an n-set, let G be the group of permutations 
generated by r. I f  p is any prime, it is known that a Sylow p-subgroup P of G can 
be found in polynomial time. We show that the normalizer of P can also be found 
in polynomial time. In particular, given two Sylow p-subgroups of G, all elements 
conjugating one to the other can be found (as a coset of the normalizer of one of 
the Sylow p-subgroups). Analogous results are obtained in the case of Hall 
subgroups of solvable groups. 0 1990 Academic press, inc. 

1. INTRODUCTION 

In [KT, Kal, Ka2] polynomial-time versions of Sylow’s theorem were 
obtained. In particular, it was shown that, in polynomial time, an element 
of a subgroup G of S, could be found conjugating one given Sylow 
p-subgroup Pi to another one Pz. In the present continuation of those 
papers, we will further investigate the transitive action of G on its set of 
Sylow p-subgroups (a set that generally does not have polynomial size). 
Namely, we will determine the stabilizer of a Sylow p-subgroup in this 
action. This will then also determine the set of elements conjugating P, to 
Pz as a coset of the normalizer of P,, thereby dealing with the counting 
problem naturally associated to the results in [Ka2]. 

THEOREM 1.1. There is a polynomial-time algorithm which, when given a 
Sylow p-subgroup P of a group G I S,, finds the normalizer N,(P) of P 
in G. 

Of course, N,(P) is specified in terms of a set of generating permuta- 
tions (as are all groups in this paper). The algorithms in [Ka2], for finding 
a Sylow p-subgroup in polynomial time and for conjugating one of them to 
another one, depend on the classification of finite simple groups for their 
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validity. The same is true of (1.1). Note that we are only able to study the 
transitive action of G on its set of Sylow p-subgroups in a very indirect 
manner. For example, it seems to be extremely difficult to determine the 
stabilizer of two Sylow p-subgroups in this action. 

More elementary versions of the results in [Ka2] had been obtained 
earlier in [KT] (see also the Appendix in [Ka2]). Those versions dealt not 
only with Sylow subgroups, but also with Hall rr-subgroups of solvable 
groups for any set r of primes, Recall that a a-subgroup of G is a 
subgroup H such that JH( is divisible only by primes in r, and that a Hull 
r-subgroup is a r-subgroup H such that 1 G : HJ is divisible by no member 
of r. In the above papers it was shown that, for any r and any solvable 
subgroup G of S,, in polynomial time one can find a Hall r-subgroup and 
conjugate one of them to another of them. The analogue of (1.1) is then 

THEOREM 1.2. There is a polynomial-time algotithm which, when given a 
solvable subgroup G of S,, a set r of primes, and a Hall r-subgroup P of G, 
find.9 N,(P). 

Of course, if r = {p) then (1.2) is just (1.1) for solvable groups. The 
proof of (1.2) is significantly simpler than that of (1.1) and will be 
presented first (Section 3). In order to further simplify matters, the reader 
may first wish to read Section 3 assuming that r = {p}, replacing “Hall 
rr-subgroup” by “Sylow p-subgroup” throughout the section. The case 
rr = (~1 of (1.2) can also be found in [Ka3]. 

The proofs of the above theorems are similar to those in [KT, Kal, 
Ka2]. Section 4 reduces (1.1) to a special case involving a simple group. 
Then the bulk of this paper (Sections 5-6) deals with that special case by 
what is, for the most part, a straightforward and boring imitation of the 
technical arguments in [Kal, Ka21. In addition, some procedures needed 
for (1.1) produce significant improvements for some of the algorithms in 
[Ka2]; these improvements are presented in Section 6 (and, to some 
extent, also in Section 5). Some subsidiary results and procedures, notably 
(5.10) and (5.151, are of independent interest. Finally, in Section 7 we 
deduce slightly stronger forms of the above theorems. 

As in [KT, Kal, Ka21, the algorithm for (1.1) is not practical. However, 
as in the Appendix of [Ka2] the algorithm for (1.2) should be moderately 
efficient-though not as efficient as the ones in that Appendix. 

2. PRELIMINARIES 

In this section we will briefly review the notation used in [Kal, Ka2]. We 
will consider G = (I) 5 S, = SymCX), where JXJ = n. If necessary, Sims’ 
algorithm [Si, FHLI can be used to arrange that I I( I n2. 
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The orbit of x E X is xc, while the stabilizer G, = (g E Glxg = x}. 
More generally, if Y c X, its pointwise stabilizer is Go,,, its set-stabilizer 
is G,, and G; P G,/G,,, is the group induced by G, on Y. Similarly, if 
Y is any set on which G acts then Go,, is its pointwise stabilizer and GY is 
the group induced by G on Y. 

The derived group of G is G’, while O,(G) is the largest normal 
r-subgroup of G. If A, B I G then [A, Bl = (a-‘b-‘&la EA, b E B). 
Note that A normalizes B if and only if [A, B] I B. 

Throughout this paper, p will always denote a prime. If m is an integer 
then mp denotes the largest power of p dividing m. 

We will frequently use (without explicit mention) the trivial fact that any 
strictly increasing sequence of subgroups of S, has at most IZ log n terms. 
(For the sharper bound 2n - 3, see [Ba].) This will be an essential 
ingredient for recursion. 

We note the following three elementary facts. 

LEMMA 2.1 (Frattini argument; cf. [Gor (1.3.7)]). Let L A G. 

(i) If P is a Sylow p-subgroup of L then G = LNo(P). 

(ii) Zf L is solvable and P is a Hall subgroup of L then G = LNJP). 

LEMMA 2.2. Let A be a p-group acting as a group of automorphisms of a 
group M of order not divisible by p. Then the following hold: 

(i) N,(A) = C,,,(A). 

(ii) For any prime q, there is an A-invariant Sylow q-subgroup Q of M; 
and for any such Q, C,(A) is a Sylow q-subgroup of CJ A); and 

(iii) Zf K is an A-invariant normal subgroup of M then C,,,(A) = 
C,&OK/K. 

See [Got-, pp. 224-2251 for (ii) and (iii). Proof of (i): [A, N,(A)] I A n 
[A, M] I A n M = 1 since p ‘r IM], so that N,(A) I C,(A). 

LEMMA 2.3 (cf. [Ka2, (2.1)]). Let T a M a G and let K be the largest 
normal subgroup of G contained in T. Then every prime dividing IM/KI also 
divides IM/T( . Moreover, if M/T is simple then M/K is the direct product of 
simple groups isomorphic to M/T, and these are permuted transitively by G if 
M/T is nonabelian. 

List of Some Known Algorithms 

Given a group G I S, = Sym(X), each of the following can be carried 
out in polynomial time: 

(A.l) [Si, FHL] Given Y c X, find G(,, and 1 G(,,I. 

(A.2) [FHL] Given h E S,, determine whether or not h E G. 
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(A.3) Find all orbits of G. 

(A.4) [FHL] Given a set of polynomial size on which G acts, find G(,,. 

(A.51 [FHL] Given S c G and H 5 G, find (Sn) := (Shlh E H). 

(A.61 [FHL] Find the derived series of G. 

(A.7) Given H 5 S, normalizing G, 
(i) [FHL] Find G II H, and 
(ii) [Lu3] Find C,(G). 

(A.8) [Lu2] (i) Given R u G find a set X’ on which G acts such that 
GX’ is simple R x’ = 1 and IX’1 < n. 

(ii) Given normal subgroups A < B of G, find a composition series for 
G containing A and B. 

When combined with (A.5), (A.8ii) yields: 

(A.9) Given normal subgroups A < B of G, find a normal series for G 
containing A and B and such each successive quotient group is a direct 
product S, x ’ * . x S, of simple groups Si which are either of the same prime 
order or are nonabelian and permuted transitively by G; and for each Si find 
a subgroup of G projecting onto it. 

(A.lO) [KT, Ka2] Zf T is a set of primes and if G is solvable, find 
O,(G); f?nd a Hall r-subgroup of G; and given two Hall r-subgroups H, 
and Hz of G, find g E G such that ( H,Ig = Hz. 

(A.ll) [Ka2] Ifp is a prime, find O,,(G); find a Sylow p-subgroup of G 
containing a given p-subgroup of G; and, given two Sylow p-subgroups P, 
and P, of G, find g E G such that (P,jg = PZ. 

(A.12) [KT, Ka2] Given R < M d G, find D such that R I D I N,(R) 
and G = DM in either of the following situations: 

(i) G is solvable and R is a Hall subgroup of M; or 
(ii) R is a Sylow subgroup of M. 

Note that (A.12) is an algorithmic version of the Frattini argument (2.1) 
(cf. Section 7). 

Ronyai [Rol, Ro2] has shown that a chief series of G can be found in 
polynomial time. However, instead of this beautiful result, we will only 
need a very elementary observation (pointed out by Ronyai) involving 
undergraduate linear algebra: 

(LA) Given an m-dimensional vector space V over GF(p) and a set r 
of linear transformations, there is a polynomial (in m, p and 1 r 1) time 
algorithm that finds the space of fked vectors of I’. 

Namely, first find the space of fixed vectors of each member of I?, and 
then intersect these subspaces, using standard matrix computations. 
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3. PROOF OF (1.2) 

The following algorithm takes care of (1.2). 

HALLNORMALIZER. 
Input: A solvable subgroup G of S,, a set r of primes, and a Hall 

rr-subgroup P of G. 
Output: N,(P). 

1. Find a maximal normal subgroup M of G, so that [G/MI is a prime 
p. (Use (A.61.) 

2. Case p @ r. (Here, P is a Hall subgroup of M.) 
Use (A.121 to find a subgroup D such that D I N,(P) and G = DA4. 
Recursively find N,( PI. 
Output DN,(P). (Namely, N,(P) = N,,(P) = DN,(P).) 
3. WLOGpErandG#P. 
Find normal subgroups M,, L of G such that L < M, I M, G/M,, is a 

r-group and M,/L is an elementary abelian q-group for some prime 
q @ r. (Use (A.9)-but actually, in this solvable case essentially just (A.61 
is needed-in order to find a normal series for G passing through A4 with 
elementary abelian quotients. Then M, is the smallest term of this series 
such that G/M, is a r-group, and L is the next term just below MO.) 

Then M, t M. (Now G/M is a r-group, and G/L is not. Note that 
G = PM.) 

4. Let “bar” (denoted -) be the natural homomorphism G + ?? = G/L. 
Use (LA) to find C/L := C,(P). (Since M is an elementary abelian 

q-group it can be regarded as a vector space over Gflq). Moreover, p 
induces a group of linear transformations, whose space of fixed vectors is 
precisely C,(P).> 

5. If G > PC (tested using (A.l)) then recursively find and output 
Npc( PI. 

(Certainly P normalizes C, so that PC is a group. By (2.2i), NM(F) = 

C,(p) = c. Then NG( P) I Ndp) = Nm(p) = PNm(P) = PC. Thus, 
NJ P) I PC since L I C, and hence N,(P) = N,,(P).) 

6. If G = PC then find a subgroup C, 2 L of index q in C, and let 
WI = <p,_c,>. 

(Here, G = PC= p x c; for, p centralizes c, while i’ n c = 1 as p is 
a r-group while c is a +-group. Also_c # 1, as otherwise G/L = PC/L 
= PL/L would be a r-group. Since C is elementary abelian, it is easy to 
find C,. Note that M, is a maximal normal subgroup of G containing 
PL.) 

Now M + it4, and return to 2. (This replaces M by the new maximal 
normal subgroup M,, for which 1 G : M,,l is a prime q @ r. Thus, 2 
produces the desired output.) Cl 
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4. REDUCTION TO SIMPLE GROUPS 

In this section we will show that the proof of (1.1) can be reduced to a 
situation involving simple groups. Consider the following two problems. 

SYLOWNORMALIZER. 
Input : A subgroup G of S,, a prime p, and a Sylow p-subgroup P 

of G. 
Output: NJ P). 

Of course, this is precisely the situation in (1.1). 

SIMPLENORMALIZER. 
Input : L Q G I S, with G/L a nonabelian simple group of order 

divisible by_p; the natural homomorphism “bar” (denoted -) 
from G to G = G/L; and a Sylow p-subgroup P of G. 

Output: H < G such that L I H, NC(~) I H and fi is normalized by 
N Aut&)- 

Remark. Of course fi = N&1 behaves as required by SIMPLENOR- 
MALIZER. However, generally it will be more convenient to produce a 
subgroup H larger than this. Namely, in general (e.g., if I??1 > ns and p 
is noncyclic) p will merely be the set-stabilizer in G of a suitable family of 
subsets canonically determined by p in a suitable permutation representa- 
tion of ?? (cf. (6.1)). 

THEOREM 4.1. SYLOWNORMALZZER is polynomial-time reducible to 
SZMPLENORMALZZER. 

Proofi 1. Use (A.8) to find a set X’ on which G acts such that GX’ is 
simple and IX’1 _< IZ. 

Find M := Gcx, (using (A.4)). 

2. Case GX’ = G/M is nonabelian of order divisible by p. 
Use SIMPLENORMALIZER to find a subgroup H r M such that 

No,,(PM/M) I H/M < G/M. 
Recursively find and output N,(P). 
(Since N,(P)M/M I N,,,,.,(PM/M) I H/M we have N,(P) I H 

< G, while N,(P) = N,(P).) 

3. Case GX’ has order not divisible by p. (Here, P is a Sylow 
subgroup of M.) 

Use (A.12) to find a subgroup D such that D I N,(P) and G = DM. 
Recursively find N,(P). 
Output DN,(P). (Namely, N,(P) = N,,(P) = DN,(P).) 
4. WLOGIGX’J =p. 
Find normal subgroups M,, L of G such that L < MO 5 M, G/M, is 

a p-group, G/L is not a p-group, and M,/L is the direct product of 
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simple groups which are either of the same prime order or are nonabelian 
and permuted transitively by G. (Find a normal series for G passing 
through M behaving as in (A.9). Then let M,, be the smallest term of this 
series such that G/M,, is a p-group, and let L be the next term just below 
M,.) 

Then MO t M. (Now G/M is a p-group and G/L is not. Moreover, 
G = PM.) 

Let “bar” (denoted -1 be the natural homomorphism from G to 
i? = G/L. 

5. Case p I Ial. (Then N&? = C,(P), by (2.2ij.j 
5.1. Let 

5.1.1. 
5.1.2. 

5.1.3. 

5.1.4. 

5.2. 

5.3. 

5.4. 

q be a prime dividing /MI. 
Find a Sylow q-subgroup Q of M (using (A.11)). 
Use (A.12) to find a subgroup D4 of N,(Q) such that 
G = MD,. 
Find a Sylow p-subgroup Pq of Dq, find g E G with 
(P )g I P, and then Q + Qg and Pq + <Pq>g. (Use (A.ll). 
Nzte that q= p since p4 I P and G = MD, = MP.) 
Find Nep,(Pq) by applying (1.2) to the Sylow p-subgroup 
Pq of the solvable group QP,, and find C, := Q n iVep$Pq) 
= NJP,) using (A.7i). 

(Here, QPq is a group since Pq normalizes Q. By (2.2i), 
C, = N,(P,) = C,(P,>, so that C, . (Q n M>/Q n M = 
C,(P,XQ n W/Q n M = Ce,enM(Pq) (by (2.2iii) with 
K = Q n M). Then q= C,&>. By (2.2ii1, Co<> is a 
Sylow q-subgroup of Cue>. Since 5 = P, it follows that q 
is a Sylow q-subgroup of C,&).) . . 

Let C be the subgroup of M generated by L together with 
groups C,, one for each prime q[ [MI. (Then c contains a 
Sylow q-subgroup q of C,(P) for each q, so that c = C,(p).> 
If G > PC then recursively find and output N,,(P). 

(Since L I C and p centralizes c, P normalizes C, so that 
PC is a group. Since f&(P) = C’iF> = I? we have NG( P) I 
ZVdP) = N&P) = PiVM(P) = PC. Thus, N,(P) I PC since 
L I C, and hence NJ P) = N,,(P).) 
If G = PC then find a maximal normal subgroup MO 2 PL of 
G (using (A.8)). 

(Here, G = pc and c centralizes P. Also, P n c 5 P n a 
= 1 (as p and &? have relatively prime orders.) Thus, G = p 
X c, while G > p since c is not a p-group, so that PL a G. 
Consequently, there is such a subgroup M,.) 

Now M t MO and return to 3. (This replaces M by the new 
maximal normal subgroup MO 2 PL for which p t I G : M,,I . 
Consequently, 3 outputs a subgroup behaving as required.1 
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- 
6. WLOG M is the direct product M, x * * * x q of nonabelian 

simple groups q, each of order divisible by p, where L < Mi I M. - 
Moreover, G = PA4 acts transitively on (M,, . . . , @], and hence so does P. 

Find Mr,..., Ml using (A.9). 
Find Pi := P f? M,. (Use (A.7i), since P n Mi = (P f’ M) 1’3 M,.) 
(Note that pi is a Sylow subgroup of K, and hence is nontrivial. Since 

p n q is a p-group containing that Sylow subgroup, we have p n @= c. 
Then p n %f = q x . . . - X F. Also, since P acts transitively on 
IM,, * * * 7 ?VJ} it is transitive on {q;, . . . , c}; and the stabilizer Np(pl) - 
normalizes M, .) 

7. Use SIMPLENORMALIZER to find a group H, such that L I - 
H, < M, and NF(P,) I H, < M,, and such that ZV,(Q normalizes Hi. 

8. Find E := (HP) using (A.5). 
Recursively find and output N&P). 

- - 
Comments. We claim that M, contains exactly one conjugate of H, 

under the action of p. For, suppose that Kg 5 M, with g E p. Then S - - 
normalizes M, (since p acts on {M,, . . . , _M,}), and hence g induces an - - - 
automorphism of M, that also normalizes P n M,, where p n M, = c by 
6. By a basic property of the output H, in 7, this implies that g normalizes - - 
Hi. Thus, Kg = H,, as claimed. 

Since P permutes (M,, . . . , Ml] transitively, it follows that each group J?& 
contains a unique conjugate q of q under the action of P. Thus, - E =H, x . . . x q < a. Also A# P) = fvF(FJ x . . . x N$&;) 5 
H,x ... xq=E. 

- 
On the other hand, NJ P) s A@) = NAP) = PA’&& I P(H, 

x . . . x Tfl) = p.!?, so that N,(P) I PE (since L 5 E) and hence N,(P) 
= NPE(P). Clearly p normalizes the proper subgroup ,I? of M, while 
?? = Fm does not, so that PE < G, as required for recursion. q 

5. SIMPLE GROUPS 

This section is a review and elaboration of some of the results contained 
in [Kal, Ka21. These consist of the Replacement Theorem (in Subsection 
5A), the structure of Sylow subgroups (in Subsection 5B), and some 
technical algorithms (Subsections 5C and 5D). 

(5A) i%e Replacement Theorem 

The following results were proved in [Kal; Ka2, Part III]. 
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THEOREM 5.1 (Replacement Theorem). There is a polynomial-time algo- 
rithm which, when given a nonabelian simple subgroup G of S, such that 
IGI > n8, produces a set Y on which G acts such that JYI < n2 and one of 
the following holds: 

(I) G =/IA,, IYI = m, and G acts on Yin the natural manner. 

(II) G is a classical group defined on a vector space V over a field F, 
and G acts on Y as it does on the set of all l-spaces of V. Both V and F are 
also found, and I VI < n2. If G is symplectic, orthogonal, or unitary then the 
form on V involved in the definition of G is also found. 

We will also need numerous consequences of (5.111); see (5.12)-(5.13). 

Convention . The notion of a nonsingular subspace is standard when V 
is equipped with a form. When G = PSL(V) we will view all subspaces as 
being “nonsingular,” and the symbols “ I ” and “ @ ” will be interpreted 
as being identical; moreover, any two subspaces will be viewed as being 
perpendicular to one another. 

In (5.111) let Isom(V) denote the group of all isometries of V (using the 
zero form if G = PSL(V ), so that Isom(V) = GL(V 1). For background 
concerning the classical groups, see (for example) [Di]. 

(5B) Sylow Subgroups 

If G is as above then we must describe one of its Sylow p-subgroups P 
in terms of its behavior on Y or V. This behavior depends on whether or 
not G is classical and, if so, on whether or not p is the characteristic of V. 
The descriptions given here were used in [Kal] in order to construct Sylow 
subgroups of the simple group G. 

(5.2) The alternating group G = A,. We will assume that m > 6, in 
which case Aut(G) = S,. Write m = Ca,p’ in base p. Partition Y into ai 
subsets of size pi for those i for which ai > 0. Then the set-stabilizer of 
this partition in G contains a Sylow p-subgroup P of G. Note that the 
indicated partition of Y is just the set of orbits of P. 

This reduces many considerations to the case m = up’ with a < p, and 
even to the case m = pi. In the latter case let g E G be the disjoint 
product of pi-’ cycles of length p. Then it is easy to check that C,(g) 
contains a Sylow p-subgroup P of G, and that Z(P) = (g) (since m # 
4,5). Consequently, there is an obvious recursive construction for P. 

LEMMA 5.3. Let G = A,,,, let P be a p-Sylow subgroup of G, and set 
N = Nsm(P) = N,,,&‘). 
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(i) Zf P is intransitive and has exactly ai > 0 orbits on Y of size pi for 
certain values of i, then N induces the direct product of symmetric groups of 
degree ai on the set of orbits of P on Y. 

(ii) Zf m = p then N/P is cyclic of order p - 1. 

ProoJ (i) Since N permutes the set II of orbits of P we may assume 
that m = ap’ with a < p. Certainly, (S,): = S,, while (S,), = (S,,&,, . N 
by the Frattini argument (2.1). Thus, N” = (S,)! = S,. 

(ii) Here N can be identified with the group of all permutations 
x c) ax + b of GF(p), where a # 0 and b are in GF(p). 0 

Throughout the remainder of this subsection G will be a classical group. As 
above let V be the corresponding vector space over a field F. Recall that 
IL(V) denotes the group of all semilinear transformations of I/, while 
PTL(V) = IL(V)/Z(I’L(I/)) is the group of projective transformations 
induced by IL(V). We may assume that Y is the set of l-spaces of I/. 

Let I/* denote the dual space of V, and let Y * be its set of points (i.e., 
the set of hyperplanes of V). 

LEMMA 5.4. (i) Zf G is not isomorphic to any of the groups Sp(4, q) with q 
even, PR+@, q), or PSL(V/) with dim V > 2, then Aut(G) = NPrL(YJG). 

(ii) Zf G = P%(V) with dim V > 2 then Aut(G) = PTL(VXT), where 
7 is any isomorphism between V and V*. In particular, Aut(G) _< Sym(Y U 

Y*), and Aut(G) acts on the set of all subspaces of V. 

Proof See [Di, Chap. IV] (compare [Ca, p. 2111). q 

From now on, 

(5.5) We will assume that dim V > 4, and dim V > 8 if G is an 
orthogonal group. 

(Otherwise, it is easy to check that 1 G 1 < ( I/( 4, whereas we will be in the 
situation of the Replacement Theorem 5.1, where 1G 1 > n* > 1 Vj4.> Then 
G is simple, so that there is a unique subgroup G* of SC(V) such that 
G* = (G*)’ and G*/Z(G*) = G; here, Z(G*) consists of scalar transfor- 
mations of V, and G* preserves the form on I/. 

(5.6) If plq then a Sylow p-subgroup P of G fixes a unique l-space y 
and a unique hyperplane of V, where y is totally isotropic or totally 
singular if G # PSL(V/). Moreover, NAut&P) normalizes the stabilizer in 
G of this pair of subspaces. 

6.7) Sylow subgroups when p C q (cf. [Ka2, (14.8), (14.5)], based on 
[We, CF]; also [GoLy (lo-l)]). 

Let P be a Sylow p-subgroup of G, let G* = (G*)’ I XL(V) project 
onto G (modulo scalars) and preserve the form on V, and let P* be the 
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largest p-subgroup of G* projecting onto P. There is a decomposition 
I/= v, I *** I V, such that the following all hold: 

(a) P and P* act on R := {Vi,. . . , V,). 
(b) If the space C,(P*) of fixed vectors of P* is nonzero, then 

C,(P*) is one of the I(, say V,, c > 1. (If C,(P*) = 0, write V, = 0.) 
(c) One of the following holds: 

(cl) If p # 2 th en, for each y # V,, the set-stabilizer PG. induces a 
cyclic group acting fixed-point-freely on K:., and either 

(~1.1) PG is irreducible on I$, or 
(~1.2) G # PSL(V) and P$ splits 4 into the direct sum of two 

totally isotropic or totally singular P$-irreducible sub- 
spaces of dimension idim K. 

(~2) If p = 2 then dim K _ < 2 and P$ is irreducible on r/;. for each 
I( # V,; moreover, dim Vi = 2. ’ 

(d) Any K # V, lies in Vy, except perhaps if p = 2 and G is 
orthogonal, in which case V, = 0 and there can be one or two subspaces 
K 66 VrG, each of dimension 1. 

(e) The set-stabilizer Go induces the symmetric group on ViG n R 
while fixing each member of fi not in VIG n R. 

Remarks 5.8. (a) The isometry type of K. is determined as follows, 
assuming that K # V, and that dim y > 1 when p = 2 (i.e., assuming that 
K E VIG, in view of (5.7d)). 

If p > 2 then V;: is a nonsingular subspace of minimal dimension subject 
to the condition that pll(Gc,)FI. Moreover, I<V,)Gnl = [(dim V)/ 
(dim Vi )]. 

If p = 2 then the isometry type of the nonsingular 2-space K is 
determined by the requirement that 81 I(G;)yI. If G is not orthogonal, or 
has odd dimension, then I(V,)Gnl = [i dim VI. In the even-dimensional 
orthogonal case I(V1)Gnl = i dim V or i dim V - 1, depending upon 
whether or not V is the orthogonal sum of subspaces isometric to I’,. 

In each case, the various parameters implicit in (5.7) are completely 
determined by the form, field, dimension of V, and p. 

(b) There is a further parity condition in (5.7~1.2): 
if G is symplectic or orthogonal then 3 dim v. Lr odd; and 
if G is unitary then 3 dim y k even. 

When G is symplectic or orthogonal, and (GR)h eSp(2m, q) or 
fi+(2m, q), respectively, the irreducibility of (PC)5 on a (totally isotropic 
or totally singular) subspace of V;: of dimension m = i dim 5 implies that 
PI qm - 1 but p I q’ - 1 for 1 4 i < m. If m = 21 then pi q’ + 1, so that 
(G$.)K contains a subgroup Sp(21, q) X Sp(21, q) or a-(21, q) X a-(21, q) 
such that each factor has order divisible by p, whereas (P$)” is cyclic. 
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This contradiction shows that m is odd. Similarly, if G is unitary and 
(G$i)y L SU(2m, 9) with m odd, then a subgroup SU(m, 4) X SU(m, q) 
produces the same contradiction. 

(c) In (5.7c1.2), there are exactly two (P$)v-invariant subspaces other 
than 0 and vl,, and they are not (P$)K-isomorphic. 

For, there are two (P$)y-invariant subspaces U, and U, of dimension 
i dim V;: such that y = Z?, @ U,. Then (c) is clear if U, and U, are not 
(P,*)K-isomorphic, which can be proved as follows. 

There are bases e,, . . . , e, of U, and fi, . . . , f, of U, such that 
(e,, 4) = aij for all i, j. The group G,, * n G& consists of linear transfor- 
mations whose matrices with respect to the basis e,, . . . , e,, f,, . . . , f,,, 
have the form A O ( ) 

for m x m matrices A and B satisfying AB’ = Z 

when G is sym;legtic or orthogonal and AZ? = Z when G is unitary 
(where t denotes transpose, and - is the involutory field automorphism of 
the underlying field F = GF(q2), so that c = l9 for l E GF(q2)). In 
particular, each eigenvalue of B (in an algebraic closure of GF(q)) has the 
form l- ’ (or L- ‘1 for an eigenvalue 5 of A. 

With this in mind we can now consider a generator g of the cyclic group 
(P$)“. This can be realized as follows (cf. [Hu, pp. 187-1881). Write 
q’ = q for G symplectic or orthogonal, and q’ = q2 for G unitary. We can 
identify U, with GF(q’“) so that the restriction of g to U, is field 
multiplication u t, (YV for a generator (Y of the Sylow p-subgroup of the 
multiplicative group of the field U,. The eigenvalues of g on U, are (Ye”, 
0 I i I m - 1. Then the eigenvalues of g on U, are K9” (or (Ye9’ in the 
unitary case). 

Now assume that U, and U, are (Pc)K-isomorphic. Then the eigenval- 
ues of g on these subspaces must be the same. Thus, whenever 0 I i I 
m - 1 there must be a j such that 0 I j I m - 1 and (yqti = (Y-~” (or 
a9” = c-9” in the unitary case). In particular, there is a j such that 
0 I j I m - 1 and cr = ap9” (or a = Cu-9”). 

In order to derive a contradiction, we first consider the symplectic and 
orthogonal cases. Here (Y 1+qi = 1. Clearly, j # 0, as otherwise we would 
have a2 = 1. Thus cxqzi- ‘=lwithO<j- < m - 1. The irreducibility of 
(P*)e on U, implies that m is the smallest positive integer I such that 

F 
(Y~ -’ = 1. Thus, m)2j < 2m, so that m = 2j is even, which contradicts 
Remark (b). 

Now consider the unitary case. Here, &!” = 1, or, equivalently, (Y(Y~*‘+’ 
= 1. Then c&‘+‘+~ = 1, so that ag4j+‘-* = 1. The irreducibility of (P,*)” 
on U, implies that m is the smallest positive integer 1 such that LY~“-~ 1 1. 
Thus, m12j + 1, so that m is odd, which again contradicts Remark (b). 
This proves (c). 
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Notation. 
and inducing 

Let Pi be the subgroup of Isom(V) agreeing with P; on I( 
the identity on each 5 # vl,. Then Pi x *. . x P, is a 

subgroup of Isom(V) containing the kernel P& of the action of P* on R. 
Clearly, P, = 1, where V, = C,(P*). 

Define a’ as follows: a’ = rR - {V,} if p # 2, while if p = 2 then R’ is 
obtained from fl by removing any l-spaces in 0. 

LEMMA 5.9. All Pi are isomorphic for U;. E s/‘, and PC:, I P, x * * * x 

P,. Moreover, if S := IP, X .. . x P, : P&,1 then S = 1 unless one of the 
following holds : 

6) All K E R have dimension 1, and either G = Wd, q), plq - 1, or 
G = SU(d, q), p[q + 1, in which cases 6 = IP, 1 = (q - ljP or (q + ljP, 
respectively; 

(ii> p = 2, 6 = IP, : P, n P* 1, and either G = Wd, q), 6 = (q - 112, 
or G = SU(d, q), 6 = (q + 11,; or 

(iii) G is orthogonal, p = 2, and 6 = (P, : P, n P* I = 4. 

In all cases, if 5, Vj E R are distinct then they are nonisomorphic PC&,-mod- 
ules, and C,.(I$)Vf = (P,*)“. 

Proof. By (5.7e), IR’ = <V,lG R. By the Frattini argument (2.11, N(JP, 
X * * * x P,) is transitive on R’, which proves the first assertion of the 
lemma. Clearly, P&, 5 P, X . * * X P,. 

We must consider the possibility that PC:, < P, X . . . X P,. Determi- 
nants show that this can happen only if pIIF\ - 1, and then dim v = 1 or 
2 by (5.7~). 

If G* = Sp(d, q) then dim K = 2, so that Pi < Isom(K) = Sp(2, q) I 
G* and hence PC*,, = P, X 1. * x P,. Similarly, if G* = SU(d, q) and 
2 # p[q - 1 then dim K = 2 (since IGU(1, q)j = q + 11, so that (P,)y = Pi 
is a Sylow subgroup of Isom(F) = GU(2, q), and hence also of SU(2, q) 
(since jGU(2, q) : SU(2, q)l = q + 11, where SU(2, q) I G*. Once again, 
P(*,, = P, x . . . x P,. The case G* = R*(d, q), p # 2, is also similar. 
For, here dim K = 2 and a Sylow p-subgroup of Isom(y) lies in Kl’(y) 
(since IIsom(Vi): n*(y)1 divides 4), and once again PC*,, = P, X . . . X P,. 

Next, assume that G* = SL(d, q) or SU(d, q), in which case we are left 
with the possibilities plq - 1 or p lq + 1, respectively. Moreover, dim l( I 
2 (and this dimension is 2 only if p = 2). An element of P, X * * * X P, lies 
in P& if its determinant is 1. This proves that 6 = (q + ljP. By (5.5), 
dim I’ > 4, so that there are at least three subspaces V;: in R’. If k # i, j 
then (Pip, n P*)F = (P,)F in view of the determinant restriction, while 
(Pip, n P*>y = 1. This proves the lemma in this case. 

Finally, suppose that G* = R*(d, q) and p = 2. By (5.5), d > 8. By 
(5.7d, e), dim V, = 2 and at most two of the subspaces V, are not in 
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CI’ = (V1)Gn, each such V, having dimension 1. It follows that 10’1 2 3. If 
L$ “;., V, are three distinct members of Cl’ then (PjPk f~ P*)b = (Pi)K, 
since, for every reflection rj E Pi, there is a reflection rk E Pk such that 
rirk lies in G* and hence in P*; clearly, (Pip, n P*)y = 1. The cases K or 
y E 0’ are handled similarly using reflections (but are even easier). Since 
P, contains representatives of each conjugacy class of reflections, we also 
have6= JP,:P,nP*( =4. 0 

In order to be able to find the normalizer of P we will need to locate a 
proper subgroup of G containing that normalizer. The crucial step is the 
next proposition. First we need more notation. If G* and P* are as in 
(5.7), and if W is any minimal nonsingular P*-invariant subspace, write 

II(W) := w,(P,:)py is maximal for 0 # u E W), 
II’(W) := {(X,Y)IX,Y E II(W) and (X,Y) contains more than two 

members of II( W 11, 
II’(W) := K,(P,*)JIP,*l is maximal or next-to-maximal for 0 # u E W), 
II’*(W):= {(X,Y)IX,Y E II’(W)and (X,Y)containsmore thantwo 

members of II’(W)}. 

THEOREM 5.10. Let p % q and let P, P* and fl be as in (5.7). Then 
either 

(i) For p # 2 or G symplectic, R - {C,(P*)} consists of all of the sets 
II(W) as W ranges over all minimal nonsingular P*-invariant subspaces of V 
not contained in C,(P*); or 

(ii) For p = 2 and G not symplectic, fi consists of all the l-spaces fiked 
by P*, together with all of the following sets as W ranges over all minimal 
nonsingular P*-invariant subspaces of V of dimension > 1: 

(iia) II’*(W) if G is either PSL(d, q), q = 1 (mod 4), or PSU(d, q), 
q= -l(mod4);or 

(iib) II*(W) otherwise. 

In particular, the set R is uniquely determined by P. 

Proof By the last statement in (5.9) together with (5.8c), V is the direct 
sum of C,(P*) and pair-wise nonisomorphic nontrivial irreducible P&,- 
modules, so that each irreducible P&module lies in some member of a. 
Let W be one of the subspaces in (i) or (ii). By Maschke’s Theorem, W is 
the direct sum of the irreducible P&,-modules it contains. Thus, W is 
direct sum of W n C,(P*) and of various nontrivial irreducible P&-mod- 
ules, each of the latter being perpendicular to W n C,(P*). Since W is 
nonsingular, it follows from (5.7~) that W is the perpendicular sum of 
W n C,(P*) and of members of a; by minimality, W n C,(P*) = 0 and 
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P* permutes these members of fi transitively. Thus, I/ is the perpendicu- 
lar sum of C,(P*> and the various subspaces W under consideration in 
(5.10)-along with the l-spaces fixed by P* in the case of (ii). Conse- 
quently, all we need is to recover the members of R lying in a given W. 

We may assume that CR’ = (I’l)Gn = {V,, . . . , V,), where t := IsZ’l. By 
(5.7e), P*n P P*’ is a Sylow subgroup of S,. 

Let Q = P*(P, x e-0 x P,) (this is a Sylow p-subgroup of Isom(V),). 
Let 6 := IP, x 0.. x P, : P&I = IQ : P* I be as in (5.9). 

Fix W as in (i) or (ii). Let s’ be the number of members of fi contained 
in W, so that s’ is a power of p (since P* permutes these members of CR 
transitively). Consider an arbitrary nonzero vector u E W. Then u = ui, 
+ . . . +ui, is the sum of r 2 1 nonzero vectors ui, E Kj c W for r I s’ 
distinct values of the subscript ii; we may assume that i, = 1. The 
stabilizer Q, permutes the Kj and hence also the ui,, so that I<Q,)ol 5 
(r!(s’ - r)!(t - s’)!},. Also, Q, contains the direct product of the groups 
Pi, where i is not one of the subscripts ij. 

Case p # 2. Here, <QJ” = 1 for any i whenever 0 # ui E K (cf. 
(5.7~)). Recall from (5.7d) that a’ = n or 51 - {V,}, where P, = 1. Then 
IQ,1 2 {r!(s’ - r)!(t - s’)!. IPIlz--‘)p, and equality holds when r = 1. By 
(5.9), either 6 = 1 or 6 corresponds to a determinant condition. If r < t 
and 6 # 1 then S elements of Pi, for i none of the ij but K E R’, 
can be used to satisfy this determinant condition, so that lP,*I 5 {r!(s’ - 
r)!(t - s’)! (P, I v’-r/s)D. 

Claim. lZ’,* ( is maximal precisely when r = 1. For, assume that r > 1. 
Then 

{lP,I’-‘(s’ - l)!(t - s’)!/S),l{IP,lL-‘r!(s’ - r)!(t - ~‘)!/a), 

= ((lPAW( “,‘I ;)}p > 17 

which proves the claim if r < t. Suppose that r = t. Then s’ = t is a power 
of p. This time {IPII’-‘(s’ - l)!(t - s’>!/S),/{t!}, = (PII’-‘/&. Since 6 I 
(P, ( (cf. (5.9)) and t up 2 3, we have IP,(‘-‘/at > 1 unless 6 = 
IP, I = t = 3; but then dimV, = 1 (which holds since 6 > 1, in view of 
(5.9)) and we obtain the contradiction dimV = 3 (cf. (5.5)). This proves 
our claim. 

Since C,(P,T) = Vi for 0 # U, E Vi (by the final assertion in (5.9)), this 
proves (i) when p # 2. 

Case p = 2. Here, (Q2, )‘I = (P$)‘l can be nontrivial for some nonzero 
vectors u1 E Vi. The possbilities for this group can be found in [CF] (this 
merely involves calculations with 2 x 2 matrices). If G is symplectic then 
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(Q,)‘] is fixed-point-free of order (Pi/ 2 8, and we are in the same 
situation as in the preceding case. Therefore, we may assume that G is not 
symplectic. Then (Q,)‘l contains a dihedral group of order 8; any noncen- 
tral involution of the latter group fixes some nonzero vector, so that the 
stabilizer of that vector in (Q,)“] has order at least 2. Moreover, if p is 
the maximal order of the stabilizer of a nonzero vector of I’,, then the 
stabilizer of each nonzero vector of V, has order 1, 2, or CL. Here, p = 2 
except in the following cases: G = PSL(d, q) or PSU(d, q), q = E (mod 4) 
with E = 1 or - 1, respectively, and then IP, 1 = j(Qv,>v’I = 2(q - E);, 
CL = (q - E)*. (Th ese situations for which p > 2 correspond exactly to 
part (iia) of the theorem.) In all cases, lPll = I(QV,)“‘lI 2 2~‘. Note that 
p = 6 if G is not orthogonal. 

By (5.7d), C,(P*) = 0 and each of the s - t members of R - R’ has 
dimension 1. If v E R - Cl’ then IPi I = p (as is seen by checking all 
cases). Thus, I Q,o,l = IP, lfpspl. 

If 0 # w  E V1 5 W then (Q,,,,)“l = (Q,)F, so that IQ,,,,,,1 = 

lf’l(‘-lps-‘((Q,)“lI, h w  ere I(PI,,,)v’) = I(Q$“lI = 1, 2, or /.L. We will only 
consider those vectors w  for which the latter order is 2 or CL. Then 
IQ,,,1 = lQ,,,,l{(s’ - l)!(t - s’)!}, 2 {2(Pllf-~pUs-‘(s’ - l)!(t - s’)!}~, and 
hence IP,*l 2 {21Pllf-$.F(s’ - l)!(t - s’)!/S},. 

On the other hand, IQ,1 I ($jP1 (l-rps-‘r!(s’ - r)!(t - s’>!},. More- 
over, if t > r then (by (5.9ii, iii)) we can use P,, for i none of the ij but 
y E fI’, in order to see that IQ, : P,? I = 6. Similarly, if G = P,SL(d, q) or 
PSU(d, q) with d odd then s = t + 1, and we can use P, to see that 
IQ, : P,* I = 6 in this case as well. Thus, one of the following holds: 

(A) lP,*I I {pL’IPI I’-‘p”-‘r!(s’ - r>!(t - ~‘)!/a},; or 

(B) lP,,*l I prpS-‘t!2, t = r (in which case s’ = t as well, so that t is a 
power of 2) and either G is orthogonal or dim V is even. 

We are assuming that u has a nonzero projection u1 into V1. This time 
we claim that (PC* I is maximal when r = 1 and u = w  is a vector in Vi for 
which I(Q = p; and that, if p > 2, then IP,Fl is next-to-maximal 
when r = 1 and u = w  is a vector in VI for which I(Q,JVl 1 = 2. For, 
suppose that r > 1, and first consider (A). Here 

IP,*I/IP,*I 2 {2~Ppps-ys - l)!(t - s’)!/8}*/ 

($lP, Jt-‘$-‘r!( s’ - r) !( t - s’) !/a}, 

= ({WI lrel/wr}( “,’ 1: )), > 1, 
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since 21P, lr- ’ 2 2(2p2)‘- ’ > r$. On the other hand, in (B) we have 

IP,*I/IP,?I 2 {21P1Jf-‘pS-‘(t - l)!/G)2/(~~~S-‘f!}2 

= 2pll'-'/6tp.'2 2(2py/Stpt = 2’u~-2/& > 1, 

since one of the following holds: G is orthogonal, 6 = 4 and hence t r 4 
(since dim I/ > 8 by (5.5) and t is a power of 2); or G is not orthogonal, 
S = p., and t 2 4 (since t is a power of 2, s - t = 0 or 1 by (5.7d), 
dim I/ = 2t + (s - t) is even in the non-orthogonal subcase of (B), and 
dim V > 4 by (5.5)). This proves our claim. 

Moreover, in each case, C,(P,*) = (w) by (5.9). Thus, II(W) or II’(W) 
consists of the l-spaces (w) contained in some 5 z W such that J(P$)FI 
2 2, and II’(W) occurs only when p > 2, which is the situation in (iia). 

Finally, as already noted, there are at least four l-spaces X of I’, 
centralized by nontrivial elements of (QV,)V~ = (P$,)Vl, and then X E 
II( W> or II’(W) depending upon the value of CL. If X and Y are two of 
these l-spaces such that (X, Y) contains a third member of n(W) or 
II’(W), then X and Y lie in some l$::; and each V, E 0’ contains such pairs 
X, Y. Consequently, I12(W) or II12(W) (depending on the value of PL) 
behaves as required. 

In order to prove the last remark in the theorem, note that G* is 
uniquely determined by G, so that P* is uniquely determined by P. The 
subspaces W are uniquely determined by P*, and hence so are II(W), 
II’(W), I12(W), and II12(W). Thus, so is CR. 0 

Remark. The preceding theorem implies a uniqueness statement for 
P (or Another, more group-theoretic (and more easily proved) description 
is as follows when p > 2: PC,, is the set of elements in P that commute 
with all their conjugates. In fact, if g E P - PC,, then g does not com- 
mute with gh for some h E P(o). However, it is not clear how to convert 
this description into an algorithm, whereas an algorithm is implicit in the 
theorem (cf. (5.13ii)). 

PROPOSITION 5.11. Letp t q. 

(i) No(P) lies in the set-stabilizer G, of 52 := IV,,. . . , V,} <cf. (5.7)). 

(ii) Each element of PJTL(V) normalizing both G and P preserves IR 
and hence normalizes G,. (Hence, if G is not PSL(V) then NAutCGJP) 
normalizes G,.) 

(iii) Zf s = 1 and P is irreducible then P is cyclic. Zf g is a linear 
transformation of V inducing a generator of P, then the additive group E of 
linear transformations generated by g is closed under multiplication and is 
isomorphic to the field GF() VI). Moreover, V can be identified with E. Write 
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E* := E - (O} and let r be the characteristic of E. Then NT&(g)) = 

4-&E*) = E* M (P>, where p is the semilinear transformation of V 
induced by the automorphism e ++ er of E. 

(iv) Ifs = 1 and P is reducible then the following all hold: G # PSL(V), 
P is cyclic, p > 2, and V = U, @ U, for tota& singular or totally isotropic 
subspaces U,, U, such that each element of PTL(V) normalizing both G and 
P also normalizes G{v,, vZi,). 

(v) If G is PSL(V) then N,,,&P) normalizes G,. 

Proof: Let G* and P* be as in (5.7). Certainly Nr,o,,G*) n NrL&P*) 
leaves invariant the nonsingular subspace V, = C,(P*). 

(i), (ii) These are immediate consequences of (5.10). (The parentheti- 
cal remark in (ii) requires (5.4) and (5.5X) 

(iii) See [Hu, pp. 187-1881 for the description of Nr,,,,(P*). 

(iv) See (5.7~) and (5.8~). 

(v) View the dual space V* of V as the set of linear forms on V, and 
let K# be the subspace of V* consisting of those linear forms vanishing 
on all of the 5 for j # i. Then l(# is isomorphic to the dual of I(. We 
have V* = V;’ @ . . . @ Vt#, where this P*-invariant decomposition has 
the same properties relative to V* as the decomposition of V we have 
been dealing with (cf. (5.7)). Some element of NAut(o)(P) sends R to 
cv:, . .*, V,#} and hence normalizes Go. Then INAut(o)(P) : N,,,,(,,(P)I = 
2, and (v) holds. 0 

(50 Linear Algebra 

Much more than the Replacement Theorem 5.1 is actually proved in 
[Ka2] in the case of classical groups. The net effect of the results in Part 
III of [Ka2] is that permutation group considerations can be replaced by 
linear algebra. This permits the desired properties of G to be computed 
much more directly and concretely. Many of these results will be needed 
later and can be summarized as follows (see Subsection 5A for the 
convention concerning the term “nonsingular”). 

PROPOSITION 5.12 [Ka2, Sections 13, 141. In the situation of (5.110, 
there are polynomial-time algorithms for each of the following problems. 

(9 Find (the set of all vectors in) the subspace of V spanned by a given 
subset of V. (In particular, jkd a basis of V.) 

(ii) Given a semilinear transformation t of V (in terms of a given basis of 
VI, jkd the permutation of l-spaces induced by t. In particular, decide 
whether or not t has the same action as an element of G on the set Y of 
l-spaces of V. 
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(iii) Find G* I S!,(V) preserving the form on Vsuch that G* = (G*) 
and G* projects onto G modulo scalar transformations; find the preimage in 
G* of any given subgroup of G. 

(iv) Given a nonsingular, totally isotropic or totally singular subspace U 
of V, find the set-stabilizers G, and G$. 

(v) Given nonsingular, totally isotropic or totally singular subspaces U, 
and U, of V, decide whether or not U, c UIG; and if U, E UIG then find 
g E G with U, = U:. 

(vi) Given a decomposition V = VI I . * * I V, into nonsingular sub- 
spaces V., find the set-stabilizers of {V,, . . . , V,} in both G and G*. 

(vii) Given decompositions V = V, I * . . I V, = V; I . . . I V,’ of 
V into nonsingular subspaces V. and V’ such that {Vi, . . . , V,‘) E 
IV,, . . . , VSIG, find g E G with {Vi, . . . , V,‘) = (VI,. . . , V,Ig. 

(viii) Given a subgroup P* of G* of order relatively prime to the 
characteristic of V, find all P*-irreducible subspaces and all minimal nonsin- 
gular P*-invariant subspaces of V, find P*-irreducible subspaces VI,. . . , V, 
such that V = V, ~33 * * . @ V,; and find minimal nonsingular P*-invariant 
subspaces W,, . . . , W, such that V = W, I * . . I W,. 

(ix) Given conjugate elements t,, t, of G* (or Isom(V)> each of which 
is irreducible on’ V, find g in G* (or Isom(V), respectively) such that tf = t,. 

COROLLARY 5.13. (i) In (5.61, the unique P-invariant l-space, the unique 
P-invariant hyperplane, and the stabilizer in G of this pair, can be found in 
polynomial time. 

(ii) A decomposition (5.71, and its set-stabilizer, can be found in polyno- 
mial time. 

(iii) The groups N,,&(g)) = NrL&E*) and &((g)) in (5.lliii) 
can be found in polynomial time. 

(iv) A decomposition V = U, 8 U, in (5.1 liv), and its set-stabilizer 
G K4, U2)’ 

can be found in polynomial time. 

Proof (i) These are just point-stabilizer problems: use (A.1). 

(ii) Each subspace W in (5.10) can be found, and all computations 
involved in the definitions of II(W), I12(W), II’(W), and lI’2(W) can be 
carried out in polynomial time, using (A.l) and (5.12i, viii). Thus, by (5.10), 
R can be constructed in polynomial time. The stabilizer Go can then be 
found using (5.12vi). 

(iii) All of the computations implicit in (5.lliii) can be carried out in 
polynomial time, using (5.12i, ii). Then lNr,&E*)I is small (certainly 
< 1 V12), so that all of its elements can simply be listed and tested for 
membership in G*. 
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(iv) Use (5.12i) in order to recursively find a basis e,, fr, . . . , e,, f, of 
V such that, for all i and i, ei E U,, 6 E U,, ei and fi are isotropic or 
singular, and (e,,f,) = Sjj. Write matrices with respect to the ordered 
basis et,. . . , e,, ft, . . . , f,. Let A be the set of matrices i i preserving ! 1 
the form on V such that A - I and B - I have at most two nonzero 
entries (compare [Ka2, p. 3781). Then (A) is the group of all elements of 
Isom(V) that fix U, and U,. Let M be the matrix of the linear transforma- 
tion defined by sending ei + f, + ei in the orthogonal and unitary cases, 
and ei + f, + -ei in the symplectic case (i = 1,. . . , m). This linear 
transformation interchanges U, and U, and preserves the form on V. Let 
H be the group of linear transformations of V determined by the matrix 
group (A, M). Then H n G* = GG,,u21, and this can be found using 
(A.7i) since G* gIsom(V). The group of permutations of the l-spaces of 
V induced by G$J”~, 

. . 
is the desired stabthzer Gt,,,,,. 0 

(5D) Centralizers in Classical Groups 

This subsection will not be needed for the proof of (1.1). It is included 
both because of its relevance to complexity issues regarding permutation 
groups and because it can be used to obtain a slightly different (and more 
complicated) approach to one of the results in [Ka2] (cf. SYLEMBED- 
SIMPLE + SYLEMBEDlSIMPLE below in Subsection 6B). 

We begin with an example before dealing with the general case in 
(5.15). 

(5.14) EXAMPLE. Assume that G = P%(V) = PSL(d, q) with q odd, 
and that t is an involution in PTLW). Then some preimage t* of t in 
TL(V) behaves in one of the following ways [Di, pp. 5-101: (i) t* is an 
involutory linear transformation, so that C,(t*) is a proper subspace of V, 
(ii) t* is a field automorphism, so that C,(t*) is a d-dimensional vector 
space over GF(fi); or (iii) t* is a linear transformation, C,(t*) = 0, and 
- 1 E (t*). In each of these cases we will determine C,(t) in polynomial 
time. Let G* = SL(V). 

(i) Here V = C,(t*> @ C&t*). Use (5.12i) to find a basis ZJ~, . . . , ud 
of V such that ut, . . . , vk is a basis of C,(t*) and vk+t, . . . , ud is a basis of 
C,(-t*). Let A consist of those d X d matrices A such that det A = 1, 
the i, j entry is 0 for i I k <i or j I k < i, and such that A - Z has at 
most two nonzero entries. Then the group of linear transformations 
determined by (A) with respect to the basis vr, . . . , vd is precisely C&t*). 
If k # id then C&t*) = N&( - 1, t*)), and C,h*> projects (module 
scalars) onto C,(t). 
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If k = $d then let g be the linear transformation such that v,! = oi+k 
for i I k, vi” = vi-k fork < i < d, and vdg = (- ljkv,. Then (C&*1, g) = 
iV,.(( - 1, t*)), and (C&t*), g) projects onto C,(t). 

(ii) Use (5.12i) to find a basis v i, . . . , vd of V belonging to C,(t*). Let 
A consist of those d x d matrices A such that det A = 1, A - Z has at 
most two nonzero entries, and those entries lie in GE’(&). Then the 
group of linear transformations determined by (A) with respect to the 
basis vi,. . . , vd is precisely Co&*>. The subgroup of G it projects onto is 
C,(t). 

(iii) Find the GE(q)-space E of linear transformations generated by 
the linear transformation t *. Then E is a field and is isomorphic to 
GE(q*>. Now I/ can be viewed as a id-dimensional vector space over E. 
Find a basis vi,..., vtd of this vector space using (5.12i). Let A consist of 
those nonsingular id x id matrices A (over E) such that det A = 1 and 
A - Z has at most two nonzero entries. Then the group of linear transfor- 
mations determined by (A) with respect to the basis vi,. . . , vtd is 
precisely C&t*). This time we must go slightly further to obtain C,(t). 
Consider an element g E G* such that tg and t agree modulo scalars. 
Then g acts on E as a field automorphism and is GE(q)-linear, so that g 
induces either 1 or the involutory field automorphism p of E. Let p’ 
denote the /3-semilinear transformation of V (viewed as an E-space) fixing 
each vi, in which case ~3’ is linear over GF(q). Then, if we view I/ as a 
GE(q)-space, the group of linear transformations determined by (A, /3’) 
projects onto C,(t). 

THEOREM 5.15. There is a polynomial-time algorithm which, when given 
an element t of prime order p in the automorphism group of a classical simple 
group G of characteristic not p-where G is given as a subgroup of S, for 
some n-finds C,(t). 

Proof If /Cl _ < n8 then brute force can be used, so we will assume that 
IGJ > n8. Using the Replacement Theorem 5.1, we can switch sets in 
order to assume that we are given G acting on the set Y of l-spaces of a 
d-dimensional vector space I/ over a field F. By (5.51, dim I/ > 4 and G is 
not Pfi+(S, 4). 

The theorem is more or less implicit in [GoLy (g-11, (8-21, (9-l)], except 
when p = 2 and t arises from a linear transformation or when G = Z’SL(V) 
and t does not act projectively on V (i.e., does not act on Y>. The latter 
case is postponed until (5.16). Let G* be as in (5.71, and let t* be a 
semilinear transformation projectively preserving the form on I’ (if any> 
and inducing t on Y. We will only sketch the description of C,&*) 
provided in [GoLy (8-11, (8-2), (9-l>], as well as the required algorithm. 



544 WILLIAM M. KANTOR 

Case 1. t* is linear and can be chosen of order p. 
First we will find C Isom~v~(t*). This group is described in [GoLy (S-l)] 

when p + 2. Here, Clsomo,) (t*) is the direct product of centralizers of 
restrictions of t* to easily found (via (512viii)) subspaces U, and on which 
it can be assumed that t* acts “orthogonally homogeneously”: the perpen- 
dicular sum of minimal t*-invariant nonsingular subspaces, on each of 
which t* acts as in (5.7~1, all of which are equivalent under transforma- 
tions in Isom(V) (and hence all of which have the same dimension k). It is 
easy to reduce to the case V = U. Find the F-space E of linear transfor- 
mations generated by t*. Then E is a field, and [E : F] = m, where 
mk = d or td depending on the nature of G. Moreover, I/ can be viewed 
as a vector space over E, possibly equipped with a form (which again 
depends on the nature of G). Now CIsom&t*) can be found as in (5.14). 

Then C&t*) can be found using (A.7i), and so can its projection into 
G. This projection is just Cc(t) except in the following situations: (A) 
G = PSL(d, q), p)q - 1, and t* has p eigenspaces each of dimension 
d/p; or (B) G = PSU(d, q), plq + 1, and t* has p pairwise orthogonal 
eigenspaces, each of dimension d/p. 

Assume that (A) or (B) holds. Find a linear transformation g of 
determinant 1 and order p permuting the eigenspaces in a p-cycle, and 
preserving the form if (B) holds. Namely, such a linear transformation can 
be found in (A) using bases of the eigenspaces exactly as in (5.14i). The 
same is true in (B) provided that orthogonal bases of the eigenspaces are 
used; and such bases can be found easily using (5.111) and (5.12i). 

Let s E G* be the scalar transformation obtained by multiplication by 
an element of F* of order p. Then NJ(s, t*)) = (C,,(t*), g), and this 
group projects onto C,(t). 

The case p = 2 is handled in the same manner. 

Case 2. t* is linear and cannot be chosen to have order p. 
The F-space E of linear transformations generated by t* is again a 

field, there is a form on V, and NI,,,~V)((t*)) can be described [GoLy, 
(S-2)], and then generated, as in (5.14iii). This group acts on (t*)/( t*P) = 
(t), so that C,(t) can be found using (A.l). The case p = 2, not discussed 
in [GoLy], is handled in the same manner. 

Case 3. t* is nonlinear. 
Here t* has order p and is a field automorphism, and CIso,,,&t*) can 

be described [GoLy, (9-l>], and then generated, as in (5.14); and then so 
can C,(t). 0 

LEMMA 5.16. Given G = PSL(V) as a subgroup of S, for some n, given 
V, and given an involutory automorphism t of G that does not act projectively 
on V, the centralizer C,(t) can be found in polynomial time. 



SYLOW NORMALIZERS 545 

Proof By [Di, pp. 10-131, t arises from a nonsingular alternating, 
symmetric, or hermitian form on V. This form is easily computed. (Namely, 
the map t : Y + Y * is induced by an invertible semilinear transformation 
T: V + I/*, and then the form is (u, VI := (u)u’.) Then C,(t) is the image, 
under the projection from G* = SL(V) to G, of the group of isometries of 
this form having determinant 1. This group of linear transformations can 
be generated as above by using matrices most of whose entries are 0. 0 

Remark 5.17. If G has characteristic p then it is harder to describe 
C,(t). However, in this situation (5.16) continues to take care of the case 
in which t does not act projectively on I/. If t acts projectively on I/ then 
C,(t) lies in the set-stabilizer of the set Y0 of fixed points of t on Y. Here 
Y,, is the set of l-spaces either of a vector space of dimension dim I/ over a 
subfield of F, or else of a subspace W of I/. In the first case C,(t) can be 
found as above. In the second case IV’ := W n W ’ can be found, as can 
the space IV” spanned by the singular vectors in IV (which is relevant only 
when p = 2 and G is orthogonal); then (5.12iv) will output a proper 
subgroup G,, G,., or G,. of G containing C,(t) and invariant under the 
action of CAut&t). All of this takes polynomial time. 

Remark 5.18. There is a polynomial-time algorithm which, when given 
an element t of prime order p in the automorphism group of an alternat- 
ing group G-where G is given as a subgroup of 5, for some n-finds 
C,(t). 

Namely, it is easy to reduce to the case G(t) = A, or S,, in which case 
finding C,(t) is elementary. 

Remark 5.19. The Graph Isomorphism Problem can be reduced to the 
problem of finding centralizers of involutions in arbitrary permutation 
groups [Lu3] (cf. [Ka3]). Consequently, centralizers have relevance outside 
of the specific context of this paper. However, none of the algorithms 
presented here seem to produce any information concerning the special 
cases of the centralizer problem relevant to the Graph Isomorphism 
Problem. 

6. COMPLETION OF THE PROOF OF THEOREM 1.1 

In Section 4 we saw that the proof of Theorem 1.1 reduces to the 
consideration of simple groups. In this section we will first complete that 
proof (in Subsection 6A) and then conclude with comments concerning the 
corresponding portions of [Ka2] (in Subsection 6B). 
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TABLE 1 

G P 

Small JG 1 Arbitrary 
Alternating Intransitive 

Transitive, noncyclic 
Transitive, cyclic 

Classical over F pIIF 
Reducible, noncyclic, p + IF/ 

Reducible, cyclic, and no 
fixed l-space 

Irreducible, cyclic 

H 

NJ P) 
Stabilizer of the set of orbits 
Stabilizer of the set of orbits of Z(P) 
N,(P) 
Stabilizer of fiied {l-space, hyperplane} 
Stabilizer of orthogonal 

decomposition (5.7) 
Stabilizer of decomposition (5.11iv) 

NJ P) 

(6A) Simple Groups 

All that was needed in Section 4 was a polynomial-time algorithm for 
the following problem. 

SIMPLENORMALIZER. 
Input: L Q G I S, with G/L a nonabelian simple group of order 

divisible by_p; the natural homomorphism “bar” (denoted -> 
from G to G = G/L; and a Sylow p-subgroup P of G. 

Output: H < G such that L I H, NdP) 5 H and a is normalized by 
N A”t&). 

Remark 6.1. Table 1 indicates the choices of H we will make in the 
various cases, assuming that L = 1. For alternating or classical groups G 
the description is in terms of the action of P on the set or vector space 
involved in the definition of G. 

We now turn to SIMPLENORMALIZER. 

1. Call (A.%) in order to reduce to the case L = 1. 

2. If lGl I n* then N,(P) can be found by brute force. Output 
H = N,(P). 

3. WLOG IGI > n8. 
Apply the Replacement Theorem 5.1 in order to obtain a new set Y 

of size < n2. 
(Now G is an alternating group A, or a classical group, and Y is 

either the m-set involved in the definition of A, or the set of all l-spaces 
of the vector space V involved in the definition of the classical group.) 

4. Case G is A,,,. (Since /Cl > n8, m > 6 and hence Aut(G) = S,.) 
4.1. If m = p then an element of order p - 1 normalizing P can 

easily be written down (see the proof of (5.3ii)). 
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4.2. If m = pi > p then find the set R of orbits of Z(P) on Y, and 
find and output H = G,. (Finding G, = (S,), n G is 
straightforward, since (S,), is generated by a symmetric group 
of degree p on one member of R, together with a symmetric 
group S,,, acting faithfully on a.) 

4.3. If m is not a power of p then find the set II of orbits of P on 
Y, and find and output H = G,. (As above, Gn is easily 
found.) 
Note. The same II appeared in Steps 2-5 of the proof of [Ka2, 
(16.2)1, as did R (but unnamed). The statement there about 
the structure of G, is strange since Gn = (S,), n G, where 
(S,), is the direct product of wreath products of symmetric 
groups with symmetric groups, all of which are easily found. 

5. WLOG G is classical. Then (5.1) produces the underlying vector 
space V, field F and form (if any) on I/. 

(By (5.5) and (5.4), if G # P%(V) then Aut(G) acts projectively on 
the underlying vector space V.) 

If pi IFI then there is a unique P-invariant pair (l-space, hyperplane} 
(cf. (5.6)), whose stabilizer H can be found using (5.13i). Output H. (Then 
H behaves as required, by (5.6)) 

6. WLOGp Ji IFI. 
If P is noncyclic use (5.13ii) in order to construct a family of 

subspaces of I/, and the set-stabilizer H in G of that family, such that 
N,(P) I H (cf. (5.1Oi)). Output H. (Then H is N,,,&P) invariant, by 
(5.11i, v).) 

7. WLOG P is cyclic (so that p > 2 by (5.7~)). 
Use (5.12viii) to test the irreducibility of P. If P is reducible, then use 

(5.13iv) to find a decomposition (5.11iv) and its set-stabilizer H in G, and 
output H. (By (5.11iv), H behaves as required, since G # PSL(V/) so that 
Aut(G) acts projectively on V by 5.) 

8. WLOG P is irreducible. 
Find and output N,(P), using (5.13iii). q 

This completes the proof of Theorem 1.1. 

(6B) Finding and Conjugating Sylow Subgroups 

In view of some of the results presented earlier in this paper (especially 
(5.10), (5.11), (5.13)-but not (1.1) or (1.2)!), simplifications are possible in 
[Ka2]. This subsection contains revised versions of algorithms in [Ka2] and, 
in general, should be viewed primarily as commentary on [Ka2]. 

The simpler algorithms SYLFIND, SYLCONJ, SYLCONJl, and 
SYLEMBED in [Ka2] are merely overly terse. The following modified 
versions of the algorithms SYLCONJSIMPLE, SYLEMBEDl, SYLEM- 
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BEDSIMPLE, and SYLEMBEDlSIMPLE of [Ka2] represent significant 
simplifications, and do not presuppose that the reader has studied their 
counterparts in [Ka2]. (At the end of this subsection yet another (com- 
bined) version of SYLEMBEDSIMPLE and SYLEMBEDlSIMPLE is 
also presented, based on (5.15)~(5.18I.j All of these new algorithms also 
correct or sidestep minor errors and misprints occurring in [Ka21. They 
also correct omissions in [Ka2] concerning timing analyses involving classi- 
cal groups (analyses which were glibly omitted in that paper, and which 
turn out to be more complicated than realized there and hence are better 
circumvented). 

In order to set the stage, let G I S, and p be as usual. Recall from 
[Ka2] that SYLFIND easily reduced finding a Sylow p-subgroup to SYL- 
CONJ, conjugating Sylow p-subgroups. SYLCONJ was, in turn, easily 
reduced to two special cases of itself, SYLCONJl (conjugating when, in 
effect, a Sylow p-subgroup has order p) and SYLCONJSIMPLE: 

SYLCONJSIMPLE. 
Input: Sylow p-subgroups Pi, P2 of the nonabelian simple group G. 
Output: f E G with Pf= P,. 

1. WLOG ]G ] > n8 (as otherwise the permutation representation of 
G on the set of conjugates of P, can be determined, by brute force). 

Use the Replacement Theorem 5.1 together with (5.12iii) to find a set Y 
such that ]Y] < n* and either 

6) G is A, and Y is an m-set on which G acts in the natural 
manner, or 

(ii) G is a classical group and Y is the set of l-spaces of the vector 
space involved in the definition of G. In the latter case, also find all 
elements of the underlying vector space I/ (and field F), also of size < n*; 
a group G* = (G*)’ of linear transformations of V preserving the form on 
I/ and projecting onto G (so that G*/Z(G*) = G); and the quadratic, 
bilinear, or hermitian form on V (if G is not PSI,(V)) involved in the 
definition of G. 

2. Case G is A,. (Here, IY] = m.) 
2.1. Subcase P, is intransitive on Y. 

2.1.1. Find the set Ci of orbits of Pi on Y. 
Find g E G such that C f: = X2, and P, +- Pf. (Finding 

g is elementary, since G acts on Y as the full alternating 
group.) 

Now Z := C i coincides with X2. 
2.1.2. For each Y’ E 2, recursively find f(Y’) E G such that 

Pf”’ and P, coincide on Y’, while f(Y’> = 1 on Y - Y’. 
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(Note that it is straightforward to pass from AMY’) to 
SymO”). Namely, if p > 2 then Py and Pr are Sylow 
subgroups of AMY’), so that recursion produces f(Y) such 
that f(Y’jy E AMY’). On the other hand, if p = 2 then 
Py n AMY’) is a Sylow 2-subgroup of AMY’), and it is 
easy to see that Py coincides with its normalizer in Gc,’ if 
1 Y’ 1 # 4,5. Recursively find f’ E Gc,’ conjugating Py n 
AMY’) to Py n AMY’). Then modify f’ so it conjugates 
Py to PF (where no modification is needed if 1Y’I # 4,5, 
while if JY’I = 4 or 5 then the modification is trivial to 
accomplish). Finally let f(Y) be the identity on Y - Y 
and let f(Y) = f’ or f’t on Y’, where t is a transposition in 
PF and the choice is designed to make f(Y’> an even 
permutation.) 

2.1.3. Output the product f of all these elements f(Y’) of G. 
(Here f behaves as required. For, (Pf, P2) induces 1 on 

2, and induces a p-group on each member of C. Then 
(Pf, PI) is itself a p-group, and hence coincides with both 
Pf and P2; that is, Pf = P2.) 

2.2. Subcase P, is transitive on Y. 
2.2.1. Find Z(P,> and its set Zi of orbits. (Use (A.7ii). As noted 

in (5.21, since we are assuming that IG I > n8 and hence 
that IYI > 5,Z(P,) is cyclic; it is generated by an element 
of order p having no fixed points on Y. Then ICI = I YI /p.> 

Find g E G such that Cf = & and P, +- Pf. 
Now Z := C, coincides with X2. 

2.2.2. If P, = Z(P,) (tested using (A.2)) then P, is cyclic of 
order p = I YI , and it is elementary to conjugate a genera- 
tor of P, to one of P,. 

WLOG P, is noncyclic. (Then II: 1 > 1.) 
2.2.3. Recursively, find g E G such that (PFjg = P,“, and P, +- 

P1”. 
(An additional remark is needed if p = 2. In that case 

Pp is a Sylow 2-subgroup of the symmetric group G$. 
Recursion produces an element g E G conjugating P? fl 
Ah(X) to P; n Ah(X), and then (Pf)” = P; if 1x1 # 4, 
since it is easy to check that PF is the normalizer of 
Pf n Ah(X) in G$. However, if 1x1 = 4 then IYI = 8, so 
that brute force can be used.) 

Now Pf = P” 
2.2.4. Find an elemem’ f of Go, conjugating PICzj to PzCzj. (As 

in 2.2.2, it is straightforward to find such an f.) 
Output f. (Namely, Pf = P, for the reason given in 

2.1.3.1 
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3. WLOG G is classical. (In 1 we found the underlying vector space V 
and field F, as well as a group G* = (G*)’ of linear transformations 
preserving the form on V, if any, and projecting onto G.) 

Find the largest p-subgroup Pi* of G* projecting onto Pi for i = 1,2. 
(Use (5.12iii).) 

Then G + G* and P, +- P,* for i = 1,2. 
(Now G is a group of linear transformations of V. We must still 

conjugate P, to P2.) 

4. Case PI IFI. Find yi E Y fixed by Pi (cf. (5.6)). 
Find g E G with yf = y2 (using (A.3)) and P, + Pf. Now y, = y2. 
Similarly (and recursively), for each j = 1, . . . , dim I/ - 1, find a j- 

space vj fixed by Pi, and repeatedly conjugate P, in order to have 
Vii = VZj for each j. (Namely, P, acts on the set of (j + 1)-spaces 
containing Vij, and there are fewer than IV1 such subspaces.) 

Then it is easy to check that now P, = Pz. 

5. WLOGp + IFI. 
Use P, and (5.13ii) in order to decompose V as I/ = Vi I . * * I V, 

as in (5.7). Let R = (V,, . . . , V,]. 
Note. This is not the approach taken in [Ka2], where Pi-irreducible 

subspaces were used. 
5.1. Find an analogous decomposition V = I’,’ I * * * I V,’ us- 

ing P2. 
5.2. Find g E G sending the first decomposition to the second. 

(Since P, canonically determines 1R by (5.10), such an ele- 
ment g exists by Sylow’s Theorem. It can be found using 
(5.12vii).) 

5.3. Then Pf + P,. 
(Now both P, and P, produce the same family CR and 

decomposition I/ = V, I . . . I V, (so that P, and P, both 
lie in the set-stabilizer Go).) 

6. Use (5.12vi) to find Go. 
Use 2 to find g E Go such that (Pp)” = Pp, and P, c Pf. 
(Here GE fixes at most two members of R and induces the symmetric 

group on the remainder of a, by (5.7e). Since Pf and PF induce S@v 
subgroups of this symmetric group, Pp can be conjugated to PF exactly as 
described in 2.1.2.) 

Note. Now P, and P2 agree in their action on the set a. The kernel of 
the action of P, is contained in the direct product (P,,,)v’ X * - * X (Plvs)b, 
just as in (5.9) (where, however, P, had a different meaning). The latter 
group lies in Isom(V). At this point it sz.@ces to find an element f E Go 
sending each y to itself and conjugating ( Plvi)‘l to ( P,vi)c for each i. For, 
if f behaves in this manner then (Pf, P2) induces a p-group on 0, while 
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the kernel of its action on C! is a p-group, so that (Pf, P2) is itself a 
p-group, and hence coincides with both Pf and P2 (compare 2.1.3 and 
2.2.4). 

7. For each i find the subgroup GIil of elements of G inducing the 
identity on all I$, j # i (using (A.l)). 

Similarly, fmd PkLil := Pk n Gtil for k = 1,2. (This group is cyclic if 
p # 2, by 6.7cl)J 

8. Assume that i is such that (P,[,,)~ is irreducible. 
Find an element f(i) E Gti, conjugating (P,,,)K to (P,,)F, as fol- 
lows: 

If (P,K)K = (PILil)v’ I (G,i,)Vf z Gtil and p > 2 then apply 
(5.12ix) to generators of the cyclic subgroups (P,,,)c and (P,,,)c of 
(G,i,>‘* 

If (PI,,)5 > (P,[i,)~, or if p = 2, then p/IF1 - 1 and dim 6 5 2 
(cf. (5.9)). If dim v. = 1 then f(i) = 1 works. If dim r/; = 2 then 
p = 2 (as CPQi]) is irreducible), and it is easy to check that there 
is, indeed, an element f(i) E GIil z (G,,,>y behaving as required; 
since (Gtil( I IGL(K)( is small, f(i) can be found by brute force. 

9. Assume that i is such that (P,[,,)~ is reducible. (By (5.7c, 5.8c), 
there are exactly two proper (P,,,)c-invariant subspaces of I$ they are 
totally isotropic or totally singular, and y is their direct sum. Moreover, 
p > 2.1 

9.1. Use (5.13iv) to find the two proper (P,t,Jb-invariant subspaces 
and the two proper (P.&K-invariant subspaces. 

9.2. Find an element g” E Gtil sending the first of these decompo- 
sitions of K to the second one. Also, find the stabilizer Ri in 
GLil E (G,,,>y of the second one. 

(Use the first decomposition of y to find a basis of K 
behaving as in the proof of (5.13iv), and then do the same for 
the second decomposition. Let g” map the first basis to the 
second one while inducing the identity on all 5, j # i; it is easy 
to modify this g”, if needed, in order to make it lie in G and 
even in Gtil while still behaving as required in 9.2. Use (5.13iv) 
in order to find Ri. Here Ri t? SL(d,, F), where di := i dim I$ 
Note that the two proper (PivE)K-invariant subspaces and the 
two proper (P,,,)K-invariant subspaces of K are in the same 
G,,,-orbit by Sylow’s Theorem.) 

9.3. Find an element g’ E Gtil z (G,,,)K conjugating ((Pf”),)y to 
(P*,)“$ as follows. 

If (P,, )K = ( PILi >F then apply (5.12ix) to Ri. 
If (P,,‘Y > ( Plpl \K then p(IFj - 1 and dim K = 2 (cf. (5.9)). 
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Find g’ E G,,,, conjugating ((P,,#‘)‘; to (P2tilli’;. (By Sylow’s 
Theorem, g’ exists, and it can be found by brute force since 
lGL(I/;)I is small. Moreover, g’ conjugates ((P,R”l,,,)~ to (P,,,)y. 
Namely, for j = 1,2, the centralizer of (pjril)y in G,!,(y) is an 
abelian group, so that (Pjril)y lies in exactly one Sylow p-sub- 
group of GL(y1.I 

9.4. Let f(i) = g”g’ E GIil 5 G. (Then f(i) conjugates (P,,,)K to 
(P,,)? 

10. Let f:=f(l) ... f(s) be the product of all of the elements f(i) 
found in 8 and 9. 

Output f. (This behaves as required, by the Note in 6.1 0 

SYLCONJSIMPLE is the only revision to be given here of the algo- 
rithms in [Ka2] for finding or conjugating Sylow subgroups. We turn next 
to SYLEMBED, an algorithm for embedding a given p-subgroup P of G 
(not Sylow in G) into a Sylow p-subgroup of G. By a reduction that is 
precisely as in [Ka2] (and hence omitted here), SYLEMBED is readily 
reduced to three related procedures SYLEMBEDl, SYLEMBEDSIM- 
PLE, and SYLEMBEDlSIMPLE. We now present revised versions of 
these three. 

SYLEMBEDl. 
Input : A p-subgroup P of G that is not a Sylow subgroup; M Q G 

such that P n M Q G and G/M is a cyclic p-group. 
Output: A p-subgroup of G properly containing P as a normal sub- 

group. 

(These hypotheses state, among other things, that G/P n M k(M/P n 
Ml M (P/P r-l M).) 

1. WLOG P n M < A4 (as otherwise G is a p-group). 
Use (A.81 to find a set X’ on which M acts such that MX’ is simple, 

(PnMjX' = 1, and IX’] in. 
Use (A.4) to find T := Mcx,. (Then T 2 P n M and M/T z My.) 
Use (A.11 to find M,, for some x’ E x’. 

2. Let Y be the set of cosets of M,, in G. Determine the action of 
(the generators of) G on Y. (Note that lY] = IG : MI . ]M : M,,] = 
IG/MI . IX’1 I n2 since G/M is cyclic.) 

Use (A.41 to find K := Go,,. 
(Note that P fl M I K I T I M,, < M and P n A4 = P n A4 n K = 

P n K.) 

3. If G/K is a cyclic p-group then M + K and return to 1. (Observe 
that IKl < [MI and, as just noted, P n K = P n M. In particular, this 
loop can occur at most log lG1 + log [Ml times in the recursion for 
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SYLEMBEDl. Note that this loop can turn a situation in which G = PM 
into one in which G > PM; this is the reason why we did not assume that 
G = PM in the input.) 

We may now assume that G/K is noncyclic if it is a p-group. 

4. Let PM/M = (fM) with f~ P. (Then P = (P f7 M, f) = (P n 
K, f ). Also, ( fllc ) n (M/K) = 1 since any power of f lying in M must lie 
in P n A4 I K.) 

5. Case IM/TI = p. 
5.1. Subcase P is not Sylow in K(f) = ZP. Then G t K( f ), 

M + K and use recursion. (Here, P n K 4 K( f ), P lies in 
K( f > but is not Sylow, and K 4 K(f) with K( f )/K a cyclic 
p-group. Also, G > K( f ) by 3. Thus, recursion can be ap- 
plied.) 

5.2. Subcase P is Sylow in K( f ). Find m E M - K with Km 
centralized by f. (Since M/K is a vector space over GF(p) by 
(2.31, there is such a vector, and it is easily found using linear 
algebra.) 

Find k E K such that Pmk = P. (Since [m, K( f )] L K, m 
acts on K( f ). Then Pm and P are conjugate by an element of 
K( f ) and hence by an element of K. At this point we have 
available an algorithm for conjugating Sylow subgroups, so that 
m can be found in polynomial time.) 

Let (g’) be the Sylow p-subgroup of (mk), and output 
(P, g’). (Since m E M - K we have m @ K( f ), so that 
IK( f, m): K( f > I = p. Then g’ is a p-element lying in N,(P) 
- P. Thus, the output behaves as required.) 

6. WLOG IM/Tl zp. 
Suppose that G > PM. 

6.1. If P is not Sylow in PM then G + PM and use recursion. 
6.2. If P is Sylow in PM then let g E G - PM; find h E PM with 

(Pg)h = P; find the Sylow p-subgroup (g’) of (gh); and 
output (P, g’). (Since G/M is cyclic, PM a G. Then Pg is 
Sylow in PM. Thus, we are proceeding exactly as at the end of 
5.2.) 

WLOG G = PM. (Now G/P n M = (M/P n Ml >a (P/ 
P n M), where M/P n M has order divisible by p since P/ 
P n M is not Sylow in G/P n M. Moreover, G = M( f ).> 

7. If p .+ IM/TI then G + (K, f) and M + K, and use recursion. 
(Clearly P n K = P n M a K( f ), while P = (P n K, f ). By (2.3), p + 
IM/KI, so that P is not Sylow in K( f ). Moreover, K( f )/K is a cyclic 
p-group while G/K is not, so that K(f) < G. Thus, recursion can be 
applied.) 
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8. WLOG M/T is a nonabelian simple group of order divisible by p. 
Use (A.91 to find simple subgroups S,, . . . , S, of M/K permuted 

transitively by (f) such that M/K = S, x . . . X S,. (See (2.31.) 

9. Let (f, K) be the stabilizer in (fK) of S, (and hence the point- 
wise stabilizer of {S, , . . . , S,) in ( fK ), since ( jZC ) induces a regular group 
on IS,, . . . , SJ). 

(Note that S,( f,K) acts faithfully on Y since G/K does.) 
9.1. Apply SYLEMBEDlSIMPLE (see below) to the p-sub- 

group P, := (f,K) of the group G, := S,(f,K) I Sym(Y) 
having the simple normal subgroup MO := S,. (Note that 
SYLEMBEDlSIMPLE can be used. For, P,, is not Sylow 
in G, since P, n M, = 1 (cf. 4), while plIM/TI implies that 
PHI = I&I. S’ mce G, = P,,M,, and G,/M, is clearly cyclic, 
the requirements of SYLEMBEDlSIMPLE are met.) 

This produces a group M, > K such that the following all 
hold: 

M,/K < S,, (f,K) normalizes M,/K, and pllM,/KI. 
9.2. Find M* := (M{f)) I M and G* := M*( f ). 

(Then G* D M*. Also, (fK> acts transitively on (S,, . . . , S,}, 
with the stabilizer (f,K) of S, normalizing Ml/K. It follows 
that M*/K = M,/K x . . . x MI/K with each factor M,/K 
the unique (flu )-image of M,/K lying in the corresponding 
simple group S,.) 

9.3. Now G* +- G and M* + M, and use recursion. (Namely, 
P = (P 17 K, f) I G*, so that G* = M*(f) = M*P. Also, 
M* Q G*, where G*/M* = (fM*) is a cyclic p-group. Since 
pIIM,/Kl, P is not Sylow in G*. Finally, P n M* = P I? K (7 

M* = P n M Q G*. Thus, recursion can be applied.) 0 

Remark. We have just simultaneously handled all of the individual 
situations treated at greater length in the original version of Steps 9-11 in 
[Ka2]. 

SYLEMBEDSIMPLE. 
Input : A p-subgroup P of a nonabelian simple group G that is not a 

Sylow subgroup of G. 
Output: A proper subgroup H of G containing P such that P is not 

Sylow in H. 

1. WLOG JGI > n8 (as otherwise brute force can be used to test each 
element of G - P until a p-element g is found in G - P normalizing P, 
in which case output (P, g)). 
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Use the Replacement Theorem 5.1 together with (5.12iii) to find a set 
Y such that lY( < n* and either 

(i) G is A, and Y is an m-set on which G acts in the natural manner, 
or 

(ii) G is a classical group, and Y is the set of l-spaces of the vector 
space involved in the definition of G. In the latter case, also find all 
elements of the underlying vector space V (and field F), also of size < n2; 
a group G* of linear transformations of V preserving the form on I/ and 
projecting onto G (so that G*/Z(G*) = G) and such that (G*l’ = G*; 
and the quadratic, bilinear, or hermitian form on I/ (if G is not PsL(V)) 
involved in the definition of G. 

2. Suppose that G is an alternating group. (Here, IYI = m if G is 
A,.) 

If P is intransitive on Y then find and output the set-stabilizer G, of 
the set II of P-orbits on Y. (Finding the set-stabilizer is straightforward. 
Since N,(P) I G, and there is a p-subgroup of G properly containing P 
as a normal subgroup, G, behaves as required.) 

If P is transitive on Y, find Z(P) using (A.7ii), and test each 
z E Z(P) - (1) as follows. Find the set Il of orbits of (z) on Y, find Gn, 
and find lGnl. For some z, P will not be Sylow in G, (tested using (A.l)), 
in which case output G,. 

(First note that jZ(P)j divides IYI since P is transitive on Y, so there 
are fewer than IYI elements z to test. If Q is a Sylow p-subgroup of 
N,(P), then one of the tested elements z belongs to P n Z(Q), and then 
G, behaves as required.) 

3. From now on, WLOG G is a classical group. (In 1 we found the 
underlying vector space I/ and field F, as well as a group G* = (G*)’ of 
linear transformations preserving the form on V, if any, and projecting 
onto G.) 

WLOG P # 1. (At this point we have available an algorithm for 
finding Sylow subgroups.) 

Find the largest p-subgroup P* of G* projecting onto P (using 
(5.12iii)). 

Then G + G* and P + P*. 
(Now G is a group of linear transformations of I’/, and P is a 

p-subgroup of G that contains a non-scalar element and is not a Sylow 
subgroup of G. We must find a proper subgroup H of G containing P 
such that P is not Sylow in H.) 

4. Case P is reducible. 
4.1. If V has characteristic p, find a l-space y E Y fixed by 

P-and which is totally isotropic or totally singular if G Z 
X,(V); then use (A.l) to find and output G,. (See (5.61.) 

WLOG I/ does not have characteristic p. 
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4.2. Find the subspace C,(P) of fixed vectors of P. (This is a 
nonsingular subspace. For, we may assume that G f XV/). If 
O#uECV(P)andI/#(v)Iai,thenuEUI sothat(by 
Maschke’s Theorem) I/ = u ’ e(u) for some P-invariant l- 
space (u); if h E P then (uh - u, v) = (uh, uh) - (u, u> = 0, 
where uh - u E (u), so that u, u E C,(P) while V = (u, u) 
I (u,u)‘. Continue in this manner in order to see that 
C,(P) is nonsingular.) 

If C,(P) # 0 then find and output GCdp,. (Use (5.12iv)J 
4.3. WLOG C,(P) = 0. 

Find a minimal nonsingular P-invariant subspace U and a 
P-invariant subspace U+ such that V = U I U+. (Use (5.12viii); 
recall the convention in Subsection 5A.1 

4.4. If U+= 0, find a P-irreducible subspace W of I/. 
(Use (5.12viii). We will need to know that W is totally 

isotropic or totally singular. First note that, in the present 
situation, P is reducible but there is no proper nonsingular 
P-invariant subspace of V. Embed P in a Sylow p-subgroup Q 
of G. Then there is no proper nonsingular Q-invariant sub- 
space of I/. By (5.7~) this implies that V is equipped with a 
form. Moreover, if V = V, I * * * I V, is the decomposition 
(5.7) corresponding to Q then P is transitive on {V,, . . . , V,), by 
the minimality of U = K It follows that p > 2 and W is the 
direct sum of totally isotropic or totally singular subspaces, one 
in each y (cf. (5.7~1, (5.8~)). This proves that W is totally 
isotropic or totally singular, as asserted.) 

Find and output G,, using (5.12iv). (We just saw that G, 
contains a Sylow p-subgroup of G.) 

4.5. WLOG U+# 0. 
Find G, using (5.12iv). 
If P is not Sylow in G, (tested using (A.l)) then output G,. 
WLOG P is Sylow in G,. 

4.6. Find minimal nonsingular P-invariant subspaces U,, . . . , U, such 
that V = U, I * * * I U,, using (5.12viii). 

WLOG P is Sylow in G, for each i. (In 4.5 let U range 
through (U,, . . . . U,).) 

4.7. Find and output Gtrl-,, _, u,l, using (5.12vi). 
(The argument in (5.9) shows that, if dim Uj I dim q5:, then 

C,(q)“, z 1, so that the P-modules q. are pairwise noniso- 
morphic. In particular, N,(P) I Gfu ,,,,., u,l. Since P is not 
Sylow in G it is not Sylow in N,(P), and hence also not in 
G Iu,,...,u/)* Thus, qu,. , U,) behaves as required.) 
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5. WLOG P is irreducible on V. 

Find the set fi of all nonsingular subspaces VI of V such that 
(i) V = VI I * - - I V, with V[ = {VI, . . . , V,}, and 
(ii) Either p > 2 and VI is a minimal nonsingular h-invariant sub- 

space for some h E P - (11, or p = 2 = dim VI. 

Comments. It is easy to use (5.7) in order to check that (PI = 0(lV13). 
Hence, we can search through P for a choice of an element h one of 
whose minimal nonsingular h-invariant subspaces behaves as in (i). (These 
minimal nonsingular h-invariant subspaces can all be found using (5.12viii)J 
Note that it is not necessary to find all of V: once two non-perpendicular 
members are obtained. If p = 2 then we can search through all of the 
subspaces of V of dimension 2 in order to test condition (i). Thus, Sz can 
be found in polynomial time. 

It remains to show that R # 0. Consider a Sylow p-subgroup of G 
containing P, and let {V,, . . . , V,} be the associated family as in (5.7). We 
claim that this subspace V, lies in a. 

Since P is irreducible it is transitive on (V,, . . . , V,). Moreover, P, is 
irreducible on V,. (For, if U c VI is a Pi,,-invariant subspace and if 
Ug c VI, g E P, then Vf = VI, so that g E P,, and hence Ug = U. Then 
the P-invariant subspace (Up) is the direct sum of s images of U under 
the action of P. Since P is irreducible it follows that U = V,.) 

If p = 2 then dim VI = 2 by (5.7c2), so that V[ = IV,,. . . , V,} and hence 
VI E n. 

Let p > 2. Then (P,), induces a cyclic group on VI by (5.7~1). Let 
h E P,, be such that hVl generates (P,)‘]. Then VI is a minimal nonsin- 
gular h-invariant subspace behaving as in (i). 

This proves that the required type of decomposition exists and can be 
found. 

(N.B.-Condition 5(ii) is a slight modification of the corresponding one 
used in [Ka2].) 

6. For each V, E R, decompose V = VI I * * * I VI as in 5. Find 
H := qv,, ., V,] using (5.12vi). Test whether P is Sylow in H. If it is not, 
and if 1 > 1, output H. (As already noted in 5, for some choice of VI E fI 
the group H contains a Sylow p-subgroup of G.) 

7. WLOG 1 = 1 for every V, E R. (We saw in 5 that some V, E 0 
arises from a decomposition (5.7) of V. Thus, we will now be assuming 
that there is only a single summand in (5.7). By (5.7c), p # 2 since 
dim V > 2, and P is cyclic.) 

Let P = (f). 
Find a Sylow subgroup (h) of G. (At this point we have available an 

algorithm for finding Sylow subgroups.) 
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8. Use (5.12ix) to find f’ E (h) and g E G such that f’X = f. Then 
(/z)~ is a Sylow p-subgroup of G containing P. (Since P is irreducible so 
is its conjugate lying in (h). Thus, (5.12ix) applies.) Output (/z)~. •I 

SYLEMBEDlSIMPLE. 
Input : A cyclic p-subgroup P of G; M Q G with M nonabelian and 

simple of order divisible by p, G = PM, and P n M = 1. 
Output: A proper subgroup of M normalized by P and having order 

divisible by p. 

1. WLOG IM( > n8 (as otherwise brute force can be used to find an 
element of M of order p that is centralized by PI. 

Let P = (t). 
Use the Replacement Theorem 5.1 to find a set Y such that IYI < n* 

and either 
(9 it4 is A, and Y is an m-set on which M acts in the natural 

manner, or 

(ii) M is a classical group, and Y is the set of l-spaces of the vector 
space V involved in the definition of M. In the latter case, also find the 
underlying vector space V (and field F), also of size < n*; and the 
quadratic, bilinear, or hermitian form on V (if M is not P%,(V)) involved 
in the definition of M. 

2. Find C,(M) (using (A.7ii)). 
Find the set II of orbits of C,(M) on X. (Note that Gn, M”, and 

P” satisfy the requirements of an input for SYLEMBEDlSIMPLE. For 
otherwise Mn = 1 by simplicity, so that M = MO,. Then M has the same 
orbits as the cyclic group C,(M) it centralizes, which is_absurd.) 

If C,(M) # 1, recursively find a proper subgroup H of Mn normal- 
ized by P” and having order divisible by p. Output the preimage H of R 
in M (using (A.4)). 

WLOG C,(M) = 1. 
(Now G/M = P is a group of outer automorphisms of M.) 
3. Let y E Y. 

3.1. Find My (using (A.l)). 
3.2. Find the set Y’ of all cosets of M,, in G. (Here IY’l = IG : MI 

* IM: M,,l I it . n; in fact, JY’I = IY( or 2lYI by the following 
Note.) 

3.3. Determine the action of (the generators of) G on Y’. 
Note. G acts faithfully on Y’, since the kernel of the action is a normal 

subgroup of the simple group M. In effect, all work will now take place 
inside Sym(Y’). Since IM( > n8 we have (Yl > 6, so that either Y’ = Y or 
we are in case (ii) of Step 1 and Y’ - Y can be identified with the set of 
hyperplanes of I/ (cf. (5.4) and (5.5)). 
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4. Suppose that M is A,. (Here, IYI = m.) 
Then Y = Y’ and GY = A, or S, (by the above Note). Moreover, 

ICI =p = 2(by2). 
Clearly Py = (tY> normalizes (c) for any nontrivial cycle c of tY. Let d 

be the product cc’ of c with either another 2-cycle c’ of tY or (if ty = cl a 
transposition c’ fixing every point of Y moved by tY, and output the 
preimage of (d). 

5. From now on, WLOG M is a classical group. In 1 we found the 
underlying vector space V, set Y of l-spaces, field F, and form (if any) 
associated with M. We will think of subspaces of V as subsets of Y (i.e., 
projectively). In 3 we found a set Y’ on which G also acts, where if Y’ # Y 
then Y’ - Y can be thought of as the set of hyperplanes of V. 

6. If t* = 1 then take any y E Y, find y’ := y’ E Y’, and then use 
(A.0 to find and output M,,,.. (It is easy to see that this group has even 
order.) 

WLOG t* # 1. In particular, every proper subgroup of P acts on Y. 

7. Suppose that a Sylow p-subgroup of M is cyclic and fixes no 
l-space (i.e., member of Y). (This can be tested by finding such a Sylow 
subgroup using SYLFIND, but it is really a simple arithmetic question by 
(5.8a). Note that the hypotheses of 7 imply that p # 2, by (5.71, and hence 
P I PTL(V/) by (5.4) and (5.5j.j 

7.1. Let P, be the subgroup of order p in P. 
Let Yi be the set of fixed points of P, on Y. 
(In order to see the structure Y1 inherits, note that our 

present hypothesis that M has cyclic Sylow p-subgroups, com- 
bined with (5.71, implies that MP, = M(B) for a field automor- 
phism 13 of M of order p. If Q is a Sylow p-subgroup of M 
normalized by P then we may assume that QP1 = Q(f3). Using 
the description of Q and Q(0) given in (5.lliii) or (5.11iv) 
(compare [Ka2, Section 1511, it is easy to check that P, is a 
group of field automorphisms. Thus, Y1 is the set of l-spaces 
of a vector space Vi over a subfield F, of the original field F, 
and dim,, V, = dim, I/. Moreover, if V is equipped with a 
form then so is Vi.1 

7.2. Find generators for the subgroup H of C,(P,> generated by 
all the r-elements of C,(P,), where r is the prime dividing 
IFI. (If M is P,SL(V) then H is generated by all transvections 
of Vi, all of which can be easily written down. If there is a 
form on Vi then H is found exactly as in (5.13iv) or (5.14). In 
fact, the method in (5.13iv) or (5.14) will find all of C,(P,).) 

Output H. (For, H is clearly normalized by P.> 
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8. WLOG we are not in the situation hypothesized at the start of 7. 
8.1. For each y E Y (i.e., l-space of V) find W := ( yp n prL(v)) 

(using (5.12i)). 
(Recall that P n PTL(V) acts on Y, and that P n PTL(V) 

= P except perhaps if M = PsL( V) and p = 2.)- 
8.2. Find all such subspaces W # I/ that are either nonsingular or 

satisfy (W, W) = 0 (tested using the form on V.1 
If I’ is orthogonal of characteristic 2 and if (W, W> = 0 then 

also find W” := (w E W/w is singular}. (This is a subspace of 
codimension 0 or 1 in W.> 

8.3. For each such W find M, or M,cl using (5.12iv). (Either W is 
nonsingular, or else W or W” is totally isotropic or totally 
singular.) 

8.4. If P acts on Y, then for each such W # V test whether 
Wp = W; and if so, test whether p divides lMwl or jMw”l. 

Output a group M, or M,o of order divisible by p. 
8.5. If P does not act on Y then choose W in 8.2 of minimal 

dimension, find CM,)‘; and find the shortest orbit W* of 
(M,)’ on Y. (Since t interchanges Y and Y - Y’, W* is a 
subspace of V.) 

Find and output M,, i,++ (By the minimality of dim W, either 
V = W @ W* or W c W*. Use (5.12iv,vi) to find M,,.. This 
is clearly a group of even order normalized by P.) 

Comments. All computations run in polynomial time. We must show 
that y can be chosen in 8.1 so as to make 8.4 or 8.5 output correctly. This 
is clear in the case of 8.5, so we may assume that G acts on Y. 

If pIIF then P fixes some l-space y, in fact a totally isotropic or totally 
singular l-space if I/ is equipped with a form (cf. (5.6)). For this y, pi jM,I . 

If p = 2 then M, and M,o are proper subgroups of M normalized by 
P, and it is easy to see that they have even order. 

Now assume that p + IFI and p # 2. Let Q be aSylow p-subgroup of 
A4 normalized by P, and let V = Vi I . . * I V, be the corresponding 
decomposition of I/ in (5.7). Then s > 1 (this is, in effect, the first 
sentence in 8). 

Let W, c Vi be a P,,-irreducible subspace. Consider any y E WI and 
let W = ( yp). If P fixes Vi then it normalizes the nontrivial subgroup 
C,.(V,) of M$ (where M* and Q* are linear groups defined as for (5.71, 
and C,.(V,) # 1 by (5.9)). Thus, we may assume that P moves Vi. 

Since PQ acts on {Vi,. . . , V,} by (5.11& each image of y under an 
element g E P lies in some member of {Vi, . . . , V,}; and if yg E Vi then 
g E P,, so that yg E W,. Then the various distinct images WI,. . . , W,,, say, 
of W, under the elements of P lie in different members of IR, so that 
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w= WI I *** I W,,. Since p # 2 it follows that the Wi are all isometric. 
(N.B. If p = 2 and V is orthogonal then there are automorphisms of M 
preserving the form on V projectively and sending each nonsingular 
subspace of odd dimension to a subspace not isometric to the original one. 
This is why we handled the case p = 2 separately.) 

Clearly s’ is a power of p; and s’ > 1 since P moves Vi. Thus, there is a 
linear isometry of W acting on {WI,. . . , W,,} and inducing a permutation of 
order p there. By Witt’s Theorem [Di, pp. 21, 361 this can be extended to 
an element of Isom(V/), after which it is easy to see that there is also an 
element of M acting on {W,, . . . , W,.} as a permutation of order p. Thus, 
p] lMwl , while M, < M. In the case of orthogonal groups of characteristic 
2, if (W, W> = 0 then M, I Mwo, so that pIIMwol. Consequently, at least 
for the stated choice of y, 8.4 outputs as required. 

9. WLOGI’= (y pn prL(v)) for each y E Y. 
9.1. For each y E Y, and for each subgroup P,, < P, 

find W := (~‘0) (here P,, acts on Y by 61, 
successively determine members of Wp n prL(V), discarding y 

if two members are non-perpendicular, and 
if {WI,. . . , W,) := Wpn prUV) consists of pairwise perpen- 

dicular subspaces (so that V = W, I *. . I W,, since V = 
( Wp” prL(V))), then find Mtw ,,, wk) using (5.12vi). 

9.2. For some choice of y and PO: the following all hold: I/ = W, 
I . . . 1 w,, 

PIIqw,,...,w,)l~ 

k > 1, P normalizes Mtw,,, ,,, wkl, and 

Output grv,. ( w/J. 
Comments. All subgroups of the cyclic group P are readily found. At 

most dim I/ members of Wpn prL(v) can be pairwise perpendicular, so 
that each test performed in 9.1 requires polynomial time. We must show 
that 9.2 actually produces an output. 

Let Q be a Sylow p-subgroup of M normalized by P. Let V = VI I 
* * . I V, be the canonical decomposition of V associated with Q in (5.71, 
and write fi := {V,, . . . , V,}. Then QP normalizes MO by (5.11). Also, 
s > 1 (by the first sentence of 8). 

Let PO := P”,, so that PO < P (since V = ( Vipn prL1V)) by the first 
sentence in 9) and hence PO I P n PTL(V); and let y be any l-space of 
Vi. Precisely as in 8, the various distinct images of W := (~‘0) under 
P n PI’,%(V) lie in different members of R. Moreover, ( Wp n prL(v)) = 
((ypo)pnprL(v)) = v. Th us, the distinct images of W are precisely the 
members of 0. Consequently, for this choice of PO and y the procedure 
does indeed output a subgroup behaving as required in 9.2. 0 

The preceding was an elaboration of [Ka2] assisted by (5.9). It may seem 
to be a lot of effort using ad hoc arguments instead of merely applying the 
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algorithms sketched in (5.15)-(5.18X However, before applying these it is 
perhaps worth mentioning that a more complete version of (5.151, written 
out in greater detail, would involve rewriting portions of [GoLyl using the 
methods just employed in SYLEMBEDSIMPLE and SYLEMBEDlSIM- 
PLE. With this proviso, the following is a “short” combined algorithm 
replacing both of those procedures. 

SYLEMBEDSIMPLE + SYLEMBEDlSIMPLE. 
Input : A cyclic p-subgroup P of G; M 4 G with M nonabelian and 

simple of order divisible by p such that G = PM and P is not 
Sylow in G. 

Output: A proper subgroup H of M normalized by P such that P is 
not a Sylow subgroup of PH. 

WLOG [MI > n8, in which case apply (5.1) in order to obtain first a new 
set Y on which M acts and then a set Y’ on which G acts such 
that JY’I I 21YI < 2n2 (cf. Step 3 of SYLEMBEDlSIMPLE). In particu- 
lar, M is now an alternating or classical group. Let R be the subgroup of 
order p in P. Then (5.15145.18) find a proper subgroup H of M 
containing C,(R) and normalized by N,(R) (where H = C,(R) except in 
(5.17)). Output H. (Namely, P < N,(R) normalizes H, so that PH is a 
subgroup containing C,,(R) = C,( RI. Here, C,( RI contains a Sylow 
p-subgroup of NJ P). Since P is not Sylow in G it is not Sylow in NJ P), 
and hence also not in PH. Thus, H behaves as required.) 0 

7. CLOSING REMARKS 

The proofs in this paper relied heavily on the version of the Frattini 
argument contained in (A.12). This enabled us to approximate the desired 
normalizers. However, once (1.1) and (1.2) have been proved, these 
approximations can be made much more precise. 

COROLLARY 7.1. There is a polynomial-time algorithm which, when given 
a Sylow subgroup P of M LI G I S,, finds N,(P). 

COROLLARV 7.2. There k a polynomial-time algorithm which, when given 
a Hail subgroup P of a solvable normal subgroup M of G I S,, finds N,(P). 

Proof of (7.1) and (7.2). Find N,(P) using (1.1) or (1.2). Find D I 
N,(P) such that G = DM, using (A.12). Then DN,(P) is the desired 
normalizer. 0 

The methods used here yield much more in the case of a solvable group 
G. For example, system normalizers and Carter subgroups can be found, 
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and one such subgroup can be conjugated to another one, in polynomial 
time. 
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