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1. Introduction 

Let 93 be a finite connected regular graph of degree k>2 having n vertices and 
diameter d. Fix a vertex x. Each vertex at distance i<d from x is joined to at most 
k-l vertices at distance i+l from X. Thus, n=1+k+k(k-1)+k(k-1)2+*..+ 
k(k- l)d-’ zz2kd, so that dz (log +n)/(log k), where logarithms are to the base 2. 
This argument suggests that graphs B in which dr Clog n have a “tree-like 
structure”. 

One way to look for such (families of) graphs is to use Cayley graphs. Let S be 
a subset generating a finite group G, where we assume that 1 $ S. The corresponding 
Cayley graph B(G, S) is the undirected graph (without loops) whose vertices are the 
elements of G and whose edges are the pairs {g,sg} with gc G and SE S. The group 
G acts as a vertex-transitive automorphism group of %(G, S) (with h E G sending the 
vertex g to the vertex gh). In particular, B(G, S) is a regular graph, whose degree 
k satisfies ks21S 1 (note that the vertices g and g’ ar? adjacent if and only if 
g’g-’ ES U S-‘, the latter set having size I 21s 1 -with equality if and only if S con- 
tains no element of order 2). The distance d(g,g’) is the same as d(l,g’g-‘), which 
is the minimal length of the expressions of g’g-’ as words in the alphabet S U S-‘. 

In particular, the diameter of B(G,S) is the smallest integer d such that every ele- 
ment of G can be expressed as a word of length 5 d in the alphabet S U S-‘. We 
are interested in the case in which IS I is bounded and d 5 C log 1 G 1. 

Nonexample: It is easy to see that no such set S (of bounded size) can exist for 
the case of cyclic groups G of prime order. 

The remainder of this note is devoted to a discussion of the following joint work 
with Babai and Lubotzky [l]. 

Theorem (Babai, Kantor and Lubotzky [l]). There is a constant C such that every 
nonabelian finite simple group has a set S of at most 7 generators for which the 
diameter of B(G, S) is at most C log IG I. 
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The constant C can be taken to be 1 Monster ] I but this is a gross overestimate. It 
seems likely that the number 7 can be lowered to 2, but we have not yet been able 
to do this. One obstacle to such a reduction will be seen below. It should also be 
possible to find both a set S of at most 7 generators (in fact, just 2 generators) and 
an O(log [Cl) step algorithm which will write an arbitrary element of G as a word 
in S U S-‘. Below we will implicitly see examples of such algorithms. However, 
presumably it would be unreasonably difficult to expect to be able to find the 
shortest expression for an element of G as a word in S US-‘. 

The proof of the theorem uses the classification of finite groups-or, more 
precisely, the fact that there are only finitely many sporadic simple groups, which 
can therefore be ignored. In other words, the theorem really concerns the alternating 
groups A, and the finite groups of Lie type (i.e., the finite analogues of the simple 
Lie groups over C). The proof applies to a slightly more general situation, that of 
“nearly simple” groups: groups G such that S 5 G d Aut S for a nonabelian simple 
group S. The most obvious example is S,, in which case the theorem is almost 
familiar. However, the very familiar 2-element Bubble Sort [3] generating set 
{(1,2),(1,2,3,..., n)> produces a graph of diameter 0(n2), which suggests that it is 
not straightforward to fitid 2 generators yielding a diameter of O(log n !) = 
O(n log n). 

The theorem leaves many interesting questions. Does every pair of generators of 
a finite simple group produce a Cayley graph of polylog diameter (i.e., diameter 
O(log’I G I) for some constant c)? For example, as indicated above the Bubble Sort 
generators behave in this manner. On the other hand it is conceivable that “most” 
pairs of generators of S, produce diameter O(n log @-more precisely, that a ran- 
dom pair of generators has this property with probability close to 1. However, even 
the weaker result, that a random pair of generators has polynomial diameter with 
probability close to 1, would be extremely interesting. 

Steinberg [7] produced a pair of generators for each group of Lie type. What is 
the diameter of the corresponding Cayley graph? While it seems to be difficult to 
answer this, a modification of his approach produces diameter O(log ICI) in many 
situations. 

The girth g of a graph satisfies gs2d. Therefore, just as it is natural to bound 
d from above it is natural to try to bound g from below. In particular, in the situa- 
tion of the theorem, is there a constant C’ such that each G has a set S of generators 
as in the theorem for which, in addition, gr C’ log ICI? Examples for PSL(2,p) are 
given in [5]. 

In the remainder of this note we will sketch the arguments used in the following 
three situations: 

- S, (which is similar to but slightly simpler than A,), 
- PSL(2,p) for an odd prime p, 

- PSL(2,q) for an odd prime power q. 

Most finite groups of Lie type are built from the groups S, and PSL(2,q) (this 
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is described in f2, Ch. 81). This is not to say that the general case is easy, rather that 
these are the basic cases-besides being the most interesting ones. 

Recall that, if g and h are elements of a group, then gh = h-‘gh. 

2. Symmetric groups 

In this section we will exhibit 3 generators of S,, with respect to which the 
diameter is O(log n !) = O(n log n). Let X be an n-element set. 

Case 1: n - 1 odd. Identify X with (cp} U Z,- 1, and consider the 2 permutations 
bO : x--,2x and b1 : x--,2x+ 1 (both fixing a)). Any element TV iZn-, can be written 

t= z aj2j= (.--(a,2+a,_t)2+ --.)2+a,, 
i=O 

where m = [log n] and each 0,~ (0, l> (the second equality is “Homer’s rule”). 
Thus, our arbitrary t E Z,_ 1 can be written t = 0” for the element w = b,,,, b+ ,--bo,, E 

( bo. b1 > of length O(log n). 
We claim that S:= ((m,O), bo, b,) behaves as desired. For, if t and w are as 

above, then (00, t) can be written (00, t) = (00, O)w, and hence has length 5 2(m + 1) + 
1 in S. Moreover, any element of S, is easily written as a product of 12n of the 
transpositions (m,t), t#O. Thus, each element of S, has length s2n(2m+ 3)= 
O(n logn) in SU S-l. 

Case 2: n - 1 even. This time identify X with (a+ 00’) U Zn__*, and consider the 
permutations b. : x--,2x and b, : x+2x+ 1 (both fixing cg, and a~‘). As before, it is 
easy to check that S:= ((oo,O),(~, oo’)bo, b,) behaves as required. (Namely, we 
first obtain (oo’, 0) = (00, O)(cD.CP’)bO and (oo,oo’)=(03,0)@‘~“), then one of the trans- 
positions @,t), cr~(oo,=‘) for each teZ,_Z, aid finally use the fact that (00, t) = 
(00; t)‘“*O”‘).) 

The same idea works for A, as well, if sufficient care is taken to deal only with 
even permutations. Decreasing from 3 to 2 generators requires some uninformative 
arithmetical bookkeeping, and hence is omitted. 

Note that there is an O(n log n) algorithm implicit in the above sketch, writing 
an arbitrary element of S,, as a “short” product of members of S U S-l. 

3. PSL(2, q) 

In this section we will consider the groups G = PSL(2,9) with 9 a power of an odd 
prime p. These are defined as follows. 

Let SL(2, q) denote the group of all 2 x 2 matrices, with entries in GF(g), having 
determinant 1. Then PSL(2,9) is just SL(2.,9)/( - 1). (Equivalently, PSL(2,9) is the 
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group of all linear fractional transformations x + (ax+ @/(cx + d) with a, b, c, d c 
GF(q) and aC-bc= 1.) 

We will write elements of PSL(2, q) as matrices, with the understanding that each 
matrix is to be identified with its negative. Note that jPSL(2, q)/ =+q(q* - l), so 
that 0( / PSL(2, q) I) = O(log q). 

When q=p, a standard and natural generating set for G is 

It is, indeed, true that the resulting Cayley graph has diameter O(logp). This is 
proved in [l], using expanders somewhat as in [4,5], by means of very deep number 
theoretic results [6,8]. However, there is no known algorithm (in the sense of Sec- 
tion I) for this generating set. 

Note that each of the above generators has order p. Thus, a basic problem here 
is dealing with all the powers of such generators. 

Another natural generating set of PSL(2,p) is 

However, this suffers from the same problems as the previous one. In fact, it is easy 
to check that each of the new generators has length 13 in the old ones and their 
inverses, and vice versa. 

As we will soon see, a slight modification 

behaves as required in the theorem. 
First we will need some notation. Write 

x0=(: :), h(b)=(bgt i) forb#O, tEGF(q), 

0 -1 
r= ( > 1 0 - 

These matrices behave as follows: 

x(t + 2.4) = x(t)x(u), x(t)h(@ := h(b))-‘x(t)h(@ = x(tb2) 
for all b #O, t, u E GF(q). 

Case 1: q =p. We will show that 

S = {x(l),s}, where s = h(+)r, 

works. Note that this is precisely the generating set mentioned above. If ad - bc = 1, 
then a straightforward calculation yields that, for c # 0, 
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g:= a b ( > c d 
= x(-c-’ +ac-l)x(-c)‘x(-c-l +dcP). (*) 

In case c = 0 use rg instead of g. As we will see, this reduces the proof to showing 
that each x(a), aEGF(p), has length O(logp) with respect to the given set S. 

Every element t eGF(p) can be written in the form 

t = i ai22i= (---(am22+am_,)22+ ---)22+a0 
i=O 

(the second equality is “Horner’s rule” once again), where m ~logp and aiE 
(0, 1,2,3) (base 4 representation of t). 

By matrix multiplication, 

h(2)_’ = h(+) = x(1)-2(x(1)2)~x(I)(x(1)-4)~ 

has length I 13. Since s=h(+)r, it follows that r has length I 14. Moreover, 

x(t) = (e-s (x(am)h(2?u(am_ I))h(2)---)h(2)x(a0) 

by Horner’s rule. Here, each x(qi)=x(l)@ has length 13, while h(2) has length 
I 13. Thus x(t) has length ~2*13m+ Cqi=O(logp). 

Let X= (x(t) 1 t eGF(p)} nGF(p)+, and set Y=X’. By (*), G= (1,r)XYX. We 
just saw that each element of X has length O(logp). Hence, every element of G has 
length 3 . O(logp) = O(log 1 G I). 

Case 2: q=pe, ez2. Let 8 be a primitive element of GF(q). This time we will 
show that 

S = (x(l), h(+)r, h(8)) 
works. 

Note that GF(q) =GF(p)(e2), so that every element t eGF(q) can be written in 
the form 

e-1 

t = Jo ailJZi = (--(a,_,82+ae_2)82+ ---)82+a0 

with aiEGF(p). As above, each x(t) is a word 

x(t) = (-- (x(a,_ I)h(e)x(ae_2))h(B)...)h(B?y(ag) 

in e elements x(a), acGF(p), and 2e elements h(8)“. We just saw that each such 
x(a) has length O(logp). Thus, each x(t) has length 2e+es O(logp) = O(log q). 

By (*), each element of G has length O(log q) = O(log 1 G I). 

By crudely counting lengths it is easy to check that the diameter just found for 
PSL(2,q) is % 135 log ICI. 

Note that there is an algorithm (cf. Section 1) implicit in the above argument. 
We have seen that PSL(2,p) has a 2-generator set producing a Cayley graph of 

diameter O(logp). However, we have not been able to obtain such a 2-generator set 
for PSL(2,q). This is a major obstacle for the reduction of the “7” in the theorem 
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to “2”. The argument we have just used would go through if the following conjec- 
ture holds: 

Conjecture. There is an effectively computable constant C such that, for any finite 
field GF(q) of odd order and some generator 6 of GF(q)*, every element t E GF(q) 

can be written 

m 

t = C aiezi 
i=o 

with mSC logq and all qiEZ with jail SC. 
In fact, it seems plausible that every generator 0 of GF(q) behaves in the required 

manner (even in the case q=p). 
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