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Abstract 

The diameter of a group G with respect to a set S of 
generators is the maximum over g E G of the length 
of the shortest word in S U S-’ representing g. This 
concept arises in the contexts of efficient communica- 
tion networks and Rubik’s cube type puzzles. “Best” 
generators (giving minimum diameter while keeping 
the number of generators limited) are pertinent, to  
networks, “worst” and “average” generators seem a 
more adequate model for puzzles. We survey a sub- 
stantial body of recent work by the authors on these 
subjects. Regarding the “best” case, we show that 
while the structure of the group is essentially irrele- 
vant if IS1 is allowed to exceed (logIGI)’+C (c > 0), 
it plays a heavy role when 1.51 = O(1). In particu- 
lar, every nonabelian finite simple group has a set of 
5 7 generators giving logarithmic diameter. This can- 
not happen for groups with an abelian subgroup of 
bounded index. - Regarding the worst case, we are 
concerned primarily with permutation groups of de- 
gree n and obtain a tight exp((nlnn)’/2(1 + o(1))) 
upper bound. In the average case, the upper bound 
improves to exp((lnn)’(l + o(1))). As a first step to- 
ward extending this result to  simple groups other than 
A,, , we establish that almost every pair of elements of 
a classical simple group G generates G, a result previ- 
ously proved by J .  Dixon for A,. In the limited spa.ce 
of this article, we try to illuminate some of the basic 
underlying techniques. 

1 Introduction 

The diameter of finite groups has been investigated 
in connection with efficient communication networks 
(cube-connected cycles, etc. [Sto], [PV] and others) 
and generalizations of Rubik’s puzzles (cube, rings) 
([DF], [McK]). Determining the exact diameter with 
respect to a given set of generators is NP-hard even 
in the case of elementary abelian 2-groups (every ele- 
ment has order 2) (Even, Goldreich [EG]). The length 
of the shortest positive word (no inverses) represent- 
ing an element in terms of given generators of a per- 
mutation group is known to be PSPACE-complete 
(Jerrum, [Je]). The difficulty of the problem of deter- 
mining the diameter is indicated by the gap between 
the best known upper and lower bounds for Rubik’s 
cube (see [FMSST]). 

In this paper we report some progress on estimating 
the best, worst, and average case diameters of various 
classes of finite groups. In connection with the average 
case problem, we consider the probability that a small 
set of random elements generates a given group. 

The results were obtained by various subsets of the 
authors. The full proofs will appear in a number of 
separate papers [Ba2], [BH], [BKLZ], [BS2], [Ka], [KL]. 

Let G be a finite group and S a set of generators 
of G. The diameter diam(G, S )  is the maximum over 
g E G of the minimum word length expressing g as 
a product of elements of S U S-*. Taking the posi- 
tion that we wish to minimize the diameter, we de- 
fine the worst case diameter of G to be diam,,,G = 
maxs diam(G, S )  (the generators are brought in by an 
adversary). 
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We have to be a little careful when defining the best 
case: when referring to  friendly generators (selected by 
ourselves), there should be a limit on how many gen- 
erators we are entitled to  use. We use diamm,,,(G, k) 
to  denote the minimum of diam(G,S) Over all sets of 

do not suffice to generate 
G then this quantity is infinite.) 

We are unable to  find two generators which would prG 
duce optimal (O(1og [GI)) diameter, but 7 generators 
suffice for this purpose: 

Theorem 2.1 [BKLZ] E v e r y  nonabelian f in i t e  simple 
group G has a set  S of at m o s t  7 generators  such that 
the resulting d i a m e t e r  i s  O(log IGl). 

generators. (If 

Similarly in the average case: we consider bounds 
on diam(G,S) which hold for almost every  choice of 
the k-set S c G. (This is not to  be confused with the 
average d i a m e t e r  over the same collection of Cayley 
graphs; we do not invesigate this quantity here.) 

In this connection it is of interest to find out what 
the minimum number of generators is, and to  find the 
tradeoff between the size of a random subset S of a 
group and the probability that S generates G. 

In other words, diam,i,(G, 7) = O(1og IGl). This re- 
sult is algorithmically e f i c i en t ;  given an element of G, 
the corresponding word can be found using O(1og IGl) 
group operations. (Here we assume that the elements 
of G are given in their "natural" matrix representa- 
tion.) 

A comment on expanders is in order here. For sim- 
plicity, we use the term for the not necessarily bipar- 
tite version: an €-expander is a graph in which the 
boundary of every set A of a t  most half of the vertices 
has size 2 CIA(. A family of expanders is a family of 
€-expanders for a fixed 6 > 0. 

We note that in the network context one is most 
interested in the best case; in the puzzle context, the 
worst and average cases seem more relevant. Fam- 
ilies of expanders are relevant for the best case; we 
shall comment on this connection after the statement 
of Theorem 2.1. 

2 Statement of the main re- 
sults 

The C a y l e y  graph r ( G , S )  of the group G wit.h re- 
spect t o  the set S of generators has G for its vertex 
set; the edges are the pairs { g , g s }  ( g  E G, s E S). 
The diameter of this graph is diam(G,S). Note tlmt 
diam(G, S) = diam(G, S U S- ' ) .  

For obvious counting reasons, the diameter is at least 
logarithmic as a function of the order of the group: 

diam,i,(G, k) > log IGl/ log(2k). (1) 

This bound is tight, up to a constant factor, for 
every group G,  assuming k > (loglGl)'+' for some 
positive constant c (Prop. 3.2). On the other hand, 
the ratio of the two sides of inequality (1) may diverge 
while IGI +. 00 if k 5 (log IGl)'+"(') (Prop. 3.3). 

Expanders on n vertices have diameter O(1og n). 
The current champion of bounded degree explicit ex- 
panders arises as a family of Cayley graphs of the 
simple groups PSL(2,  q )  (Margulis [Ma], Lubotzky - 
Phillips - Sarnak [LPS]). Some other families of fi- 
nite simple groups have also been known to give rise 
to families of expanders (notably, PSL(d ,  q )  for fixed 
dimension d 2 3, see Alon - Milman [AM]). It is 
not known, however, whether or not all finite simple 
groups admit bounded degree expander Cayley graphs. 
Even the seemingly most accessible cases are open. 

Problem 2.2. Do the alternating groups and the 
linear groups PSL(d ,q)  for fixed q admit families of 
bounded degree expander Cayley graphs? 

We should also point out that the known construc- 
tions of explicit expanders do not yield the algorithmic 
consequence stated after Theorem 2.1. (Observe that 
in comparison to  the size of the Cayley graphs con- 
structed, we find short paths in logarithmic number of 
group operations.) 

The number 7 in Theorem 2.1 can probably be im- 
proved. The following result exists in this direction. 

The greatest interest is in the case of groups gener- 
ated by a bounded number of elements. It is natural 2'3 [Ka] 'f 2 lo then there IW0 
to begin the ''best case" study of these groups wit]> the 
finite simple groups. These groups turn out to behave '(log IGI>. One Of generators  be 

generators  Of = PSL(n ,  q )  ' I i a t  I h e  d iameter  is 

t o  be an involution ( i . e .  a n  element of order  two) .  quite favorably. 

By a result essentially due to  R. Steinberg, every fi- 
nite simple group is generated by two elements ([Ste]). 

(This reduces the degree of the Cayley graph, i.e. the 
size of the set S U S-' to 3 which is minimum.) The 

858 



same result holds for the other classes of classical sim- 
ple (matrix) groups of sufficiently large dimension, as 
well as for the alternating groups [Ka]. 

We suspect that finite simple groups behave quite 
nicely even in the worst case. More precisely, the fol- 
lowing conjecture has been made. 

Conjecture 2.4 [BSl] For every finite simple group 
G, diammax(G) = (log IGI)O('). 

Unfortunately we are unable to  verify this conjecture 
even in the case of the alternating groups A, of order 
n ! / 2 .  The only result in this direction gives a moder- 
ately exponential upper bound: 

Theorem 2.5 [BSl] 
di"ax(An) < e x p ( d m ( l +  ~ ( l ) ) .  

Conjecture 2.4 would require an upper bound, polyno- 
mial in n .  Such upper bounds have been verified for 
special classes of generators only (Driscoll-Furst [DF], 
McKenzie [McK]). 

The upper bound stated for the alternating groups 
in Theorem 2.5 actually holds for all permutation 
groups of degree n :  

Theorem 2.6 [BS2] If G 5 S, i s  a per- 
mutation group of degree n then diam,,,(G) < 
e x p ( J m ( l +  o(1)). 

This result is tight, as shown by the cyclic group gen- 
erated by the product of as many cycles of different 
prime lengths as will fit in a set of n elements. A 
potentially much stronger bound holds for transitive 
permutation groups (cf. the Conjecture above): 

Theorem 2.7 [BS2] If G 5 S n  i s  a transitive 
permutation group of degree n then diam,na,(G) < 
exp(c(1og n)3)diamax(An). 

For the average case analysis we first quote a remark- 
able result of J. Dixon [Di]: 

Theorem 2.8 (Dixon) A randomly selected pair  of 
permutations f r o m  S, almost always generates A, or 
S n  . 

("Almost always" refers to having probability ap- 
proaching 1 as n + 00. All the (n!)' pairs of per- 
mutations have equal probability of selection.) The 
speed of convergence is also known: 

Theorem 2.9 [Ball T h e  probability that a randomly 
selected pair  of permutations f r o m  S, generates A, or 
S, i s  1 - 1/n + O ( ~ I - ~ ) .  

While Dixon's proof is completely elementary, unfortu- 
nately the proof of this result, like the proofs of nearly 
all results announced here, depends on the classifica- 
tion of finite simple groups. (Theorems 2.5 and 2.10 
are the only exceptions.) The best error-term obtained 
previously using generating function techniques only 
was n-'+'(') (Bovey [Bo]). 

We are able to  prove that a random pair of per- 
mutations not only generates A, or S,, but that it 
generates them fairly efficiently: 

Theorem 2.10 [BH] Almost  every pair  of per- 
mutations generates A ,  or S, with d iameter  < 
,In n ( l P + o ( l ) ) .  

As a first step toward extending this result to sim- 
ple groups other than An, we present an analogue of 
Dixon's theorem for classical simple (matrix) groups. 
These groups are the projective linear, symplectic, or- 
thogonal, and unitary groups over finite fields. 

Theorem 2.11 [KL] If Go i s  a classical simple group 
and Go 5 G 5 Aut(G0) then almost every pair  of 
elements of G generates a subgroup containing Go. 

There is a hope that this result can be extended to 
every class of finite simple groups. We mention that 
Theorem 2.11 is employed in [BKLl] to construct 
a bounded-round interactive protocol for nonisomor- 
phism of permutation groups. 

3 General remarks 

First we comment on the best case when the number 
of generators is allowed to grow with the size of the 
group. If we allow a logarithmic number of generators, 
then favorable sets of generators always exist; allow- 
ing a little more earns us optimal sets of generators 
(matching the lower bound (1)). 

These statements follow from a result of Erdijs and 
RCnyi [ER] of which we quote a special case here. 

Theorem 3.1 [ER] In any  finite group G there exists 
a sequence 9 1 , .  . . ,gt of elements such that 

( i )  i = [log IGI + log log lGlJ + 2;  
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(ii) eve? element of G can be represented as a product 
of the f o r m  g:’ . . . g:‘, where q E {0,1} f o r  every 
i. 

(For a half-page proof, see [BE].) “log” stands for base 
2 logarithms; obviously, for (ii) to  hold, t >_ log IGl is a 
necessary condition. Erdiis and R h y i  also prove that 
if the term +2 in (i) is replaced by WG + 00 arbitrar- 
ily slowly, then almost every choice of 91, .  . . ,gt  will 
satisfy (ii). 

It follows that  G has a set o f t  generators, t as under 
(i), such that  the resulting Cayley graph has diameter 
5 t.  This upper bound misses the trivial lower bound 
(1) by a loglog IG[ factor only, and with slightly in- 
creased t , holds for almost every set of size t .  

Next we show that some further growth of the set 
of generators makes inequality (1) tight. 

Proposition 3.2. 
(log lG/)’+‘, then 

For any constant c > 0,  if k 2 

diam,;,(G, I C )  = @(log \GI/ log I C ) .  (2) 

Proof. Divide the sequence g1 , . . . , gt (defined in The- 
orem 3.1) into segments of length s (the last segment 
may be shorter). Consider all the 2’ subproducts of 
each segment. Let S be the set of these 5 2’t/s sub- 
products. Clearly diam(G,S) 5 t / s  + 1. Choosing 
the greatest s such that  2’tls < k, the upper bound 
follows. The lower bound is from (1). 0 

In contrast, IC = (log(GI)’+O(’) does not suffice for 
inequality (1) to give always the right order of magni- 
tude. 

Proposition 3.3. For G = 27 and k 2 In let d = 
diammin(G, I C ) .  Then d l o g ( e h / d )  > in. In particular, 
if 6 > 1/ logm and k = (logm)l+‘ then 

diam,i,(G, I C )  = R(1og IG(/c log k). (3) 

Proof. 2m 5 E:=, ( 5 )  < ( e k / d ) d .  0 

Theorem 3.1 and Proposition 3.2 show that for super- 
logarithmic degrees, the behavior of the dia.m,in func- 
tion hardly depends on the group stucture. This is in 
sharp contrast with the case of sublogarithmic degrees 
and in particular with the case of constant degree. 

One of our main results (Section 4) is that non- 
abelian simple groups behave favorably: they have 
bounded generating sets with respect to  appropriate 
bounded size sets of generators. 

On the other hand, abelian groups, and more gener- 
ally nilpotent groups of bounded class cannot have log- 
arithmic diameter with respect t o  bounded generating 
sets. (For the definition of nilpotent groups we refer to 
texts in group theory, such as [Gor]. We note that the 
abelian groups are exactly the nilpotent groups of class 
1; and every nilpotent group is solvable but not vice 
versa. Among nilpotent group, the “class” parameter 
may serve as a measure of “nonabelianness”.) 

The following result is essentially known. 

Lemma 3.4 [WO], [Bass], [AB] If G is a group with 
a subgroup H of indez r which is nilpotent of class e 
and S is Q set of k generators of G then the number 
of elements of G representable as words of length 5 d 
an S is at most 

rd2(kre)‘. 

(It follows from the work of Wolf [WO] and Bass [Bass] 
that an upper bound of the form d c ( k J , e )  exists. The 
calculation for r = 1, using “commutator collection”, 
was carried out by Annexstein and Baumslag [AB]. 
The case of general r follows by using Schreier gener- 
ators.) 

It is now immediate that the class of groups de- 
scribed in the Lemma has best diameter f2(lGlc) for 
some fixed c > 0. More specifically: 

Corollary 3.5 [AB] If G is a group with a subgroup 
H of index r which is nilpotent of class e then 

(4) 

The exact relationship between group structure and 
best diameter is far from clear. While it seems that be- 
ing “far from abelian” may help reduce the diameter, 
there are examples which by any standard are quite 
close to abelian and still behave nicely. The prime ex- 
ample is the “cube-connected cycles” group of order 
k2k  which is solvable and for k itself a power of 2 it 
is even nilpotent. It has an abelian subgroup of very 
small index (the index is k = O(1og IGl)). Yet this 
group has two generators yielding logarithmic diame- 
ter. 



4 Outline of the proof of the 
“best case” results 

In this section we illustrate some of the flavor of the 
proofs of Theorems 2.1 and 2.3. 

Apart from the 26 sporadic simple groups, the non- 
abelian finite simple groups fall in the following two 
categories: the alternating groups, and the finite sim- 
ple groups of Lie type. The linear groups PSL(n ,q)  
form a subclass of the Lie type simple groups, and they 
are typical in many ways for the entire class. This re- 
semblance makes it possible to illustrate the main ideas 
involved in the proof of Theorem 2.1 on the examples 
of alternating and linear groups. 

Instead of A,, we consider its close relative S,. 
We remark that the familiar bubblesort generators (a  
transposition and an n-cycle) give rise to diameter 
O(n2) ,  as opposed to the optimal O(n!)  = O(n1ogn) 
we require. 

Next, we construct 3 generators of S,,, producing di- 
ameter O(n logn). 

Proof. Assume n is even. (A slight modification of 
the argument solves the odd case.) Let S, act on the 
n-set X = Z,-1 U {co}. Let a0 : 3: H 2;c and a1 : 
t H 23: + 1 be two permutations of X (both of them 
fix co). Starting from the point 0 E X ,  one can reach 
any positive integer t 5 n - 1 by applying a word wt of 
length < logn in c q  and al. This follows by applying 
“Horner’s rule” to the binary expansion o f t :  

m 

t = C a i 2 ’  = ( . . . ( a m  . 2 + ~ , - 1 ) 2 + . . . ) 2 + a , o .  (5) 
i = O  

Then wt = aam . . . aao is such a word. Let 7t de- 
note the transposition ( t ,co) (t E Z,-,). Now yt = 
w , ’ ~ o w ~ .  Since every permutation can be written as a 
word of length < 2n in the transpositions -yt, it follows 
that the diameter resulting from the three generat,ors 
C Y O , C V ~ , ~ ~  is < 2n(2logn+ 1). 0 

J .  J .  Quisquater informed us that earlier he had found 
another set of equally efficient generators which are 
close relatives of the ones just constructed. We de- 
scribe Quisquater’s generators for even n; again, the 
modification for odd n is easy. Let now the set X be 
X = { 0 , 1 , .  . . , n-1}, and the 3 permutations: Po is the 
product of all 3-cycles (3:,23:,23: + 1)  where 2j 5 3: < 
2Jt1, for all even values of j (1 5 3: 5 (n/2) - 1). The 
permutation is the product of all three-cycles of the 
same form for all odd values of j. Let be the trans- 
position (0, t ) .  Like before, a word of length < log n in  

PO and ,B1 takes 1 to  any t (1 5 t 5 n - I) ,  and con- 
jugating 61 by such a word yields the transposition 6 t .  
The conclusion is the same as above. One additional 
feature of Quisquater’s generators is that their number 
can be reduced to 2 in a very simple way, just observing 
that 61 and PI commute. It follows that 61 = (61P1)~ 
and PI = (61/31)-~, hence S, =< ,80,6lP, > and S, 
has diameter < 6n( 2 log n + 1) with respect to this pair 
of generators [Qu]. 

Rather than handling the projective linear groups 
PSL(d ,  q ) ,  we shall consider the groups S L ( d ,  q )  con- 
sisting of those n x n matrices over the field F, of order 
q ( q  a prime power) with determinant 1. “Good” gen- 
erators for S L ( d ,  q )  are good for its simple factor group 

First we treat the case d = 2. For this case, [Ma] 
and [LPS] independently arrived at the same fam- 
ily of rapidly expanding Cayley graphs (Ramanujan 
graphs). Although these graphs clearly have loga- 
rithmic diameter, no algorithm is known to actually 
find logarithmic length paths in reasonable (polylog) 
amount of time. 

PSL(d,q)  as well. 

We present a simple algorithmic proof that another 
set of 3 generators of SL(2, q )  gives diameter O(1og q) .  
(The order of S L ( 2 ,  q )  is q(q2  - l).) 

Proof. Write 

and 

for b f  0 , t  E F,. Then 

z( t  + U )  = 3:( t ) t (u)  and h(b)-’z(t)h(b) = 3:(tb2) 

for all b # O,t, U E F,. If ad - bc = 1 then a straight- 
forward calculation shows that 

(6) 

( ; ; ) = 3:(-C-1+aC-l)r-13:(-C)r3:(-~-1+~c-~). 

(In the case c = 0 one can find a simpler expression, 
or multiply our matrix by r first.) This reduces the 
proof to showing that the length of each z(Q), a E F,, 
is small with respect to a fixed set S of 5 3 generators. 

In the case q = p ,  odd prime, we take S = 

In the case q = p k  is odd, k 2 2, we take S = 
{3:( l ) ,  h( l /2)r,  h(B)}, where B is a generator of F, over 
its prime field F,. 

(4 1) 7 h( 1/2)rl .  
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In the case q is even, we take S = {z( l),  r, h ( 0 ) ) .  

We indicate the proof in the case q = p .  In this 
case we write t in base 4 and use Horner’s rule ( 5 )  
for this case. Using identities (6), one can turn the 
Horner expansion into a word of length O(1ogp) in the 
generating set S, expressing +( t ) .  

We omit the general case from this survey. 

5 Outline of the proof of the 
“worst case” results 

A normal series of a group G is a chain of subgroups 

where each Gi is a normal subgroup of G. 

For large n,  the permutation groups G 5 S, have 
normal series with remarkable properties. The con- 
struction of such normal series is a central part of the 
proof of Theorem 2.6. The overall structure is inspired 
by the “augmented structure forests”, introduced in E. 
M. Luks’s seminal paper on parallel algorithms for per- 
mutation groups [Lu], cf. [BLS]. Along the way, we 
make use of several consequences of the classification 
of finite simple groups and in particular of the classifi- 
cation of those primitive permutation groups of degree 
n whose order is divisible by some prime p > fi [LS]. 

For primes q < p ,  where qlp - 1, let H ( p ,  q )  denote 
the (unique) nonabelian group of order p q .  

Direct products of simple groups are called semisim- 
ple. A group is characteristically simple if it is the di- 
rect product of isomorphic simple groups. A subgroup 
G 5 H1 x . . . x Hk is a subdirect product of the Hi if 
G projects onto each factor Hi .  

Let G =  Go 2 G I . . .  2 G, = 1, GiaG be anormal 
series of the group G. We refer to  the factors Gi-llGi 
as the levels of the series. We call the level Gi-lIGi an 
alternating level if all composition factors of Gi-lIGi 
are alternating groups. On a small level, all composi- 
tion factors are nonabelian, nonalternating. (The rea- 
son for this terminology is that nonalternating simple 
permutation groups of degree n have fairly small or- 
der: exp (clog: n)  [Cam].) Gi-l/Gi is an abelian level 
if Gi-l/G; is abelian. Finally, a metacyclic level is 
the subdirect product of cyclic groups of prime order 
and metacyclic groups of the form H ( p ,  q )  (see above). 
A normal series is organized if (i) it has at most one 
metacyclic level; (ii) all the other levels are semisim- 

ple; (iii) each level is either metacyclic or abelian or 
alternating or small. 

Let G 5 S,. A giant level is an alternating level 
involving an alternating group of degree > fi. A 
normal series is well organized if it is organized and 
has at most one giant level. 

We define the multiplicity free part of the integer 
pyl . . . p;k as v(p?’ . . , p:“ )  = p l  . . . pk where the pi 
are all distinct primes. 

Theorem 5.1 [BS2] Let  G 5 S,. T h e n  G has a well 
organized normal series G = Go 2 G I  2 ... 2 Gm = 
1, Gi a G with the following properties. 

(i) In = o(i0g3 n )  

(ii) Let s ,  be the multiplicity free part of the order 
of Gi-l/G,. If Gi-l/Gi is abelian then si _< 
exp( (1 + o( I))). 

(iii) I f  Gi-lIG; is metacyclic then all primes r divid- 
ing its order satisfy < r < 

Reinark 5.2. Instead of the exponents 0.4 and 0.7 we 
could have chosen any numbers a < f < b satisfying 
a > i b  and a +- b > 1. 

The case of transitive groups is much simpler. 

Theorem 5.3 [BS2] Let G _< S, be transitive. T h e n  
G has a normal series G = Go 2 G1 2 . . . 2 G, = 1, 
Gi a G with the following properties. 

( i )  172 = o(1og3 

(ii) Each factor  G;-l/G; is characteristically simple. 

(iii) A t  most  one of the levels Gi-l/Gi is giant, i.e., 
the product of alternating groups of degree > fi. 

Note that the normal series described in Theorem 
5.3 is well organized. The estimate in part (ii) of The- 
orem 5.1 is replaced by the trivial bound si _< n. 

6 Metacyclic groups 

Recall from the previous 
primes and r lp  - 1 then 
abelian group N ( p , r )  of 
normal subgroup of order 

section that when p , r  are 
there exists a unique non- 
order p r .  It has a cyclic 
p ;  the corresponding factor 
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group is cyclic of order r .  This seemingly simplest of 
nonabelian groups offers a number of interesting cases 
in the study of the diameter, with a surprising array 
of relevant mathematical tools and large regions of un- 
solved cases. Here is a summary of some of the results. 

We observe that these groups have 2 generators and 
every non-redundant set of generators has two ele- 
ments. The notation diam,,, will in this section al- 
ways refer to pairs of generators. 

Theorem 6.1 [Ba2]. If r is bounded while p - 00 

then both diam,,(H(p, r ) )  and diam,j,(H(p, r ) )  have 
the order of @(p'/(+')). 

This unison disappears when r becomes large. 

Theorem 6.2 [Ba2]. If r > pl/'+' for  some constant 
c > 0 dhen 

( 2 )  diam,i,(H(p, r ) )  = O(rl/'). 

(ii) diam,,,(H(p, r ) )  = 0 ( r ) .  

The proof of Theorem 6.1 is elementary, based on a 
resultant argument involving the irreducibility of the 
rth cyclotomic polynomial. Theorem 6.2 on the other 
hand rests on Weil's estimate on t,he number of solu- 
tions of the diagonal equation over finite fields which 
we quote below ( [We]), cf. [Jo, p. 571). 

Theorem 6.3 (A. Weil) The number of solutions 
N ( b )  of the diagonal equation 

Z : + . . . + T :  = b  (8) 

over the finite f ie ld  F,, where b # 0, satisfies flie in- 
equality 

(9) 

The connection is made through an elementary reduc- 
tion of the diameter of H(p, r )  to the diameter of the 
rth cyclotomic graph mod pl defined on the vertex set 
F, by the rule that i and j are adjacent if ( i - j )r  = fl 
in F,. This is a Cayley graph of 2, and it is easy to 
see that its diameter is in close connection with the 
solvability of the diagonal equation (8) with q = 1) and 
IC = (p - l)/r. Finding the diameter of the directed 
version of this graph (when k l  is rephced by 1 in the 
definition) is also referred to as the Waring problem 
mod p and has extensive literature. 

7 Average case 

We describe some of the prerequisites of the proof of 
Theorem 2.10. The required information on the cycle 
structure of most permutations is provided in a series 
of papers by Erdiis and Tur8n. 

Theorem 7.1 [ET11 Let g ( x )  denote the number of 
cycles of x E S,. If w, --$ 00 arbitrarily slowly, then 
f o r  almost all x E S ,  we have 

Theorem 7.2 [ET21 Let 1 5 a1 < a2 < . . . < as  5 n 
be  a sequence of integers. Then the number of those 
ir E S, having no cycles of length a; for  any i cannot 
exceed 

n! 
(11) 

c:=11/av ' 

Just as in  the worst case results (Theorems 2.5 and 
2.6), the bottleneck in obtaining a better bound is the 
order of the permutations involved. While the maxi- 
mum order of a permutation is exp(=(l+ o(l)), 
explaining the bound obtained in those theorems, the 
nest result explains the main bottleneck in the average 
case. 

Theorem 7.2 [ETl], [Gon] For arbitrary E > 0 ,  the 
order of almost all permutations is between the bounds 
exp((1/2 iz €)(Inn)'). 

The support of a permutation is the set of elements 
actually displaced. The size of the support is the de- 
gree of the permutation. Our strategy is to construct 
permutations of small degree. Eventually we obtain 
3-cycles, and rapidly build any (even) permutation. 

The two operations we employ to achieve small de- 
gree is taking large powers and commutators. The 
following lemma helps calibrate the degree of a power 
of a random permutation. 

Leinma 7.4. Given 0 < r < 1, almost every U E S, 
h.as a power of degree nr+O('). 

This result is one of the tools in establishing the fol- 
lowing lemma, from which the proof of Theorem 2.10 
is essentially immediate. 
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Lemma 7.5. For almost every u,ir E S,, th.ere exist 
powers us and irt such that the commutator of ua and 
its conjugate ~ ~ u ~ i r - ~  is Q 3-cycle. 

What we have to show in effect is that the support of 
us and its image under nt share precisely one element 
for appropriately chosen s and t .  We choose s such 
that the degree of us be about and regard its 
support M as a random subset of this size. Now A! 
has two elements, a and b, on the same ir-cycle (since x 
has a logarithmic number of cycles only). Let t be the 
smallest positive integer such that xt  maps a to b. We 
claim that with large probability, ir‘(A4) n M = {b} .  
The proof involves case distinctions and counting. 

8 Randomly selected genera- 
tors 

The basic principle of the proofs of Theorems 2.9 and 
2.11 is similar. 

Proposition 8.1. Let G be a group, and AT a sub- 
group o f  G. The  probability that k randomly chosen 
elements o f  G generate a subgroup contained in some 
conjugate of M i s  _< IC : 

Indeed, the number of conjugates of M is IG : 
NG(M)I 5 IG : MI,  and the probability that each 
of the k elements selected belongs to a particular one 
of these conjugates is IG : M I - k .  (7 

Corollary 8.2. Let G be a group. The probabaliiy 
that k randomly chosen elements generate a proper 
subgroup o f  G i s  < C M  (G : where the suiiinia- 
tion is  extended over representatives of the conjugncy 
classes of  the maximal subgroups of G .  0 

We can apply this estimate directly when G is simple 
(G = Go in Theorem 2.11). In most cases one can 
prove that  M either has a specific structure (such as an 
imprimitive permutation group in the case G = A,,,), 
or has large index. The  work then consists of showing 
that there are not too many conjugacy classes of the 
latter kind; and of a detailed analysis of the cases of the 
first kind. Aschbacher’s work on maximal subgroups 
is the relevant tool for groups of Lie type [Asch]; the 
case of the alternating group rests on consequences of 
the O’Nan-Scott Theorem (cf. [Cam]). 
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