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ABSTRACT. The permutation representations in the title are all determined, and no 
surprises are found to occur. 

1. Introduction. A group G has rank 3 in its permutation representation on the 
cosets of a subgroup K if there are exactly 3 (K, K)-double-cosets; that is, if K has 
exactly 3 orbits on the set G j K of K-cosets. Such permutation representations have 
been studied a great deal during the past 15 years; classical groups have been 
intensively studied for more than a century. The purpose of this paper is to relate 
these two areas, by proving the following results. 

THEOREM 1.1. Let M be one of the groups 

Sp(2m-2,q), g±(2m,q), g(2m-l,q) or SU(m,q) 

for m;;' 3 and q a prime power. Let M <l G with GjZ(M)";; Aut(MjZ(M)). 
Assume that G acts as a primitive rank 3 permutation group on the set X of cosets of a 
subgroup K of G. Then (at least) one of the following holds up to conjugacy under 

Aut(MjZ(M)). 
(i) X is an M-orbit of Singular ( or isotropic) points. 
(ii) X is an M-orbit of maximal totally singular (or isotropic) subs paces and 

M = Sp(4, q), SU(4, q), SU(5, q), g- (6, q), g+ (8, q) or g+ (10, q). 
(iii) X is any M-orbit of nonsingular points and M = SU(m,2), g± (2m, 2), 

g ± (2m, 3) or g(2m - 1,3). 

(iv) Xis either orbit of nons in gular hyperplanes of M = g(2m - 1,4) or g(2m - 1,8) 
(where G = g(2m - 1,8) . 3 in the latter case). 

(v) M = SU(3, 3), K n M = PSL(3,2) (Mitchell [40], Suzuki [56]). 
(vi) M = SU(3, 5), K n M = 3 . A7 (Mitchell [40], Higman [24]). 

(vii) M = SU(4, 3), K n M = 4 'PSL(3,4)(Hartley [21], McLaughlin [38]). 
(viii) M = Sp(6,2), K = G2(2) (Edge [15], Frame [19]). 
(ix) M = g(7, 3), K n M = G2(3). 
(x) M = SU(6,2), K n M = 3 . PSU(4, 3) ·2 (Fischer [17]). 
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THEOREM 1.2. Let M = PSL(n, q) ~ G ~ Aut M. Assume that G acts as a primitive 
rank 3 permutation group on the set X of cosets of a subgroup K of G. Then (at least) 
one of the following occurs up to conjugacy under Aut M. 

(i) X is the set of lines for M, n ;;;. 4. 
(ii) M = PSL(2, 4) ~ PSL(2, 5), I X I = (~), 

M = PSL(2, 9) ~ A 6 , I XI = (~), 
M = PSL(4,2) ~A8' I XI= (~), or 
G = prL(2, 8), I X I = (~). 

(iii) M = PSL(3,4), M n K = A 6 • 

(iv) M = PSL(4,3), M n K = PSp(4, 3). 

The reader is cautioned that isomorphisms between, and automorphisms of, the 
various groups allow many different ways of viewing some of these cases. Specifically, 
the isomorphisms PSp(4, q) ~ Q(5, q), PSU(4, q) ~ PQ- (6, q), 
PSL(4, q) ~ PQ+ (6, q) and PSU(4, 2) ~ PSp(4, 3) lead to numerous representations 
under (1.1i). Similarly, a triality automorphism of PQ+ (8, q) can be applied to 
(1.1iii) and a polarity automorphism can be applied to (1.2i). 

The 2-transitive representations for G have been determined by Curtis, Kantor 
and Seitz [9]; from this result, the imprimitive rank 3 representations of G can be 
obtained (see §ll). Our approach is similar to theirs, especially their note "Added in 
proof'. Both arguments rely heavily on the degrees of the nonprincipal irreducible 

constituents of l~, where B is a Borel subgroup (and Gis semilinear on the natural 
module V for .M). All such degrees are divisible by p, with only 3 exceptions for 
G = Sp(2n, 2). This fact, which follows from Hoefsmit [26], was not available in [9]; 
on the other hand, 2-transitivity permitted counting arguments in [9] which have no 
parallels here. (Only if G = Sp(6, 2) or Sp(8,2) are we able to use the standard 
rationality conditions for the parameters of a rank 3 group.) When combined with a 
result of Seitz [SO], this divisibility implies that l~ and l~ have exactly one 
nonprincipal constituent X in common. In almost all cases, this fact by itself is 
strong enough to determine K. (A more general classification based upon this idea is 
found in (11.1).) Computations within the Weyl group yield strong transitivity 
properties for the action of K on V. Now a method of Perin [46] applies and K can 
be determined. The analogues of (1.1) and (1.2) for the remaining Chevalley groups 
seem blocked by the problem of finding all subgroups transitive (or almost transitive) 
on one or more classes of parabolic subgroups. 

The only other results of this type are the beautiful theorem of Seitz [51] which 
proves the same result for q large relative to m, and the determination by Bannai [2] 
(resp., Cohen [5]) of all representations of rank at most 5 of An and Sn (resp., of rank 
3 of all complex reflection groups). It seems quite difficult to extend our arguments 
to higher rank representations. 

The paper is organized as follows. In §2 we present some notation and numerous 
preliminary results. Characters of the Weyl groups of type Bn and Dn are discussed in 
§3, and applied to Gin §4; this is where some of Hoefsmit's results are described. 

Highly transitive subgroups of G are crucial to our approach. These are studied 
for small dimensions in §5, and for large dimensions in §6 (using Perin's method). 
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We obtain a number of extensions of Seitz's flag-transitive theorem. For example, 
subgroups transitive on points, lines and planes (if planes exist) are all determined; 
mere transitivity on lines suffices for unitary geometries of dimension at least 8. On 
the other hand, §§5 and 6 contain many technical results with hypotheses tailored to 
the proof of (1.1). The proofs tend to be involved and unpleasant, due in part to 
several interesting (and annoying) exceptions. These exceptions, which arise in §5, 
are carried over to §6, where reductions are made to small dimensional situations. 

The proof of (1.1) occupies §§7-9. The basic ideas in the proof of (1.1) can be 
clearly seen in §§7-8. In particular, the precision with which the Pigeon-Hole 
Principle applies is evident in (8.1). In §9 we deal with two exceptional and tedious 
cases: Sp(2n, 2), where l~ contains two nonprincipal characters of odd degree; and 
the possibility of graph automorphisms arising in the case of PQ+ (8, q). 

The proof of (1.2) appears in §1O. This result is much simpler than (1.1), and its 
proof is relatively self-contained. The reader may wish to start the paper with that 
section. 

One of the features of our proofs of (1.1) and (1.2) is that the rank 3 hypothesis is 
not fully used. Consequently, other subgroups of classical groups are able to occur 
which, from our point of view, behave very much like stabilizers in rank 3 
representations. This is discussed in §ll, where more general technical results are 
indicated (a generalization of much of (l.2) having already been proved in (10.1». In 
§ 11 we have also listed the known examples of rank 3 representations of other 
Chevalley grou~s. 

Finally, §12 represents a change of topic, though not of method. In [25], Higman 
and McLaughlin studied subgroups K of fSp(V) or fU(V) which are rank 3 on the 
set of points of V. A complete determination was made by Perin [46], except in the 
case Sp(2n, 2). (For a stronger unitary result, see our (6.1).) The orthogonal case was 
examined by Stark [54] for odd characteristic and small dimensions. By imitating 
Perin [46] and some portions of §6, we will prove the following result. 

THEOREM l.3. Suppose that K,;;;; fO ± (d, q), d ~ 5, and that K has rank 3 on 
points. II d is odd, assume that q is odd. Then K ~ Q± (d, q). 

We are indebted to Dr. Jan Saxl for his invaluable assistance with parts of §3. We 
are also grateful to Professor Harriet Pollatsek for a number of helpful remarks. 

Finally, we are very grateful to the referee for his diligence and his many 
constructive suggestions and comments. 

2. Preliminaries. 
A. Notation. Let V be a finite vector space of characteristic p equipped with a 

symplectic, unitary, or orthogonal geometry. The corresponding Chevalley (or 
twisted) group Chev(V) is Sp(V), SU(V), or Q ± (V) (or just Q(V) if dim V is odd). 
Note that Chev(V) may have a nontrivial center. 

The group of semi similarities of V will be denoted by f(V) = fSp(V), fU(V) or 
fO ± (V). This is the group of semilinear transformations g of V such that 
I( ug,vg) = c/( u, v)" (or I( ug) = c/( u )") for some scalar c, some field automorphism 
cr, and all u, v E V; here, I is the sesquilinear (or quadratic) form on V. (See 
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Dieudonne [13, 1.10, 1.16].) Modulo scalars, rev) is the automorphism group of 
Chev(V) in almost all cases. The only exceptions occur for Sp(4,2e) and g+ (8, q) 
(Carter [3, Chapter 12]). 

Chev(V) is generated by "long root elements": nontrivial transvections in the 
symplectic and unitary cases; in the orthogonal cases (with dim V > 4), elements of 
order p having L.L as an eigenspace, for some totally singular line L. For more 
information, see [13], [3] or [33]. 

There is a natural isomorphism Sp(2n, q) ~ g(2n + 1, q) for q even. We will 
therefore only have to consider whichever one of these groups is most convenient in 
a given situation, usually without even mentioning the other group. We will 
frequently make use of the isomorphisms g(5, q) ~ PSp(4, q), 
pg+ (6, q) ~ PSL(4, q) and pg- (6, q) ~ PSU(4, q). 

Totally singular (or isotropic) i-spaces will simply be called" i-spaces". All other 
subspaces will be modified by suitable adjectives. Points, lines and planes are, of 
course, just I-spaces, 2-spaces and 3-spaces. The letters x, y, z will be reserved for 
points, L for lines, and E for planes. By abuse of language, we will write xES in 
place of xeS. 

The maximum dimension of an i-space will be denoted by n. 
An (i, j)-flag consists of an i-space and a j-space containing it; also, in the 

g+ (2n, q) case, there are (n, n)-flags, consisting of two n-spaces meeting in an 
n - I-space. A flag for Sp(V), SUeY) and ° ± (V) is a nested sequence of i-spaces, 
one for each i = 11 ... ,n; a flag for g+ (2n, q) is a sequence (V], ... , v,,-2, v", V~) 
consisting of nested i-spaces for i = 1, ... , n - 2, along with two n-spaces 
v", V~ ::J v,,-2 meeting in an n - I-space. 

Throughout §§2-9, G will denote a group lying between Chev(V) and reV), while K 
will be a subgroup of G. 

If W ~ V, then K wand CK( W) are the set-wise and vector-wise stabilizers of W 
in K; the semilinear group induced by K w on W is denoted K:: ~ K wICK(W). 
Also, WK is the orbit of Wunder K; [V, K] = [K, V] = {v k - v IkE K}; K' is the 
commutator subgroup of K, K(oo) is the last term of the commutator series for K, 
Z(K) is the center of K, and O/K) is the largest normalp-subgroup of K. If H is a 
group, n . H is an extension of H by a group of order n, while H . n is H with an 
automorphism of order n adjoined. 

B. Some subgroups of classical groups. We will require a number of properties of 
classical groups related to generation and transitivity. We will also make very 
frequent use of the structure of the most obvious parabolic subgroups [9, §3]: 

LEMMA 2.1. Let x be a point, and set Q = O/Gx ), so that Q centralizes x.L Ix. Let 

Q] be the group of transvections in Q. 
(i) The representations of Cc(x) (resp., Gx ) on QIQ] and x.L Ix are isomorphic 

(resp., projectively isomorphic), via gQ] ---> [V, gQdlx. 
(ii) In the orthogonal case, singular vectors in x.L Ix correspond to long root elements 

in Q; nonsingular vectors correspond to nontrivial elements g E Q having 

rad[V, g] =1= [V, g]. 
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(iii) If V is unitary, or symplectic of odd characteristic, then Q' = QI = <P(Q), and 
the commutator function on Q X Q induces a nondegenerate alternating bilinear form 

on Q/QI. 

LEMMA 2.2. Suppose that K is a subgroup of f(V) containing a Sylow p-subgroup of 
Chev(V). Then either K;;;. Chev(V), or K stabilizes some totally singular subspace. 

PROOF. This is due to Tits (see Seitz [51, (4.6)]). 
The preceding lemma is, in effect, concerned with subgroups of Chevalley groups 

generated by root groups, even in the infinite case. We will require much more 
detailed information concerning groups generated by long root groups. 

LEMMA 2.3. Let K be a subgroup of f( V) which is primitive (as a linear group) on 
V / rad V, where V does not have type Q + (4, q). Assume that the subgroup K* 
generated by all long root elements of K is nontrivial. Then either (i) K* = (t K*) for 
some long root element t, or (ii) V has type Q(5, q) with q even, and there is a 
nonsingular K-invariant hyperplane on which K* induces Q+ (4, q). 

PROOF. Clearly O/K*) = 1. By Cooperstein [7, (3.8)], there are subgroups 
K I, ... ,Kr of K* such that K* = KI ... K" [K" K) = 1 for i *' j, K; = (t,K') for 
some long root element t " and UK; contains all long root elements of K. We must 
show that r = 1 unless (ii) holds. 

Suppose t1;lat r > 1, and consider A, = [V, tJ 
If V is symplectic or unitary, then Al and A2 are points which are perpendicular 

since [t I' t 2] = 1. Thus, the subspaces [V, K ,] are pairwise orthogonal. Since V is 
spanned by these subspaces, while K permutes these subspaces, K cannot be 
primitive. 

If V is orthogonal, then Al and A2 are lines. This time, [tl' t2] = 1 implies that 
either A2 ~ A~ or Al n A2 *' 0. Consider the latter possibility. Since O/K;) = 1, 

W= (AI' AD is a nonsingular 4-space for some g E K I. Since A~ nAy = 0, it 
follows that, if h E G, then W h = Wor Wh C W.l. Then V = (W, rad V) by the 

primitivity of K. 
Consequently, if we exclude case (ii), then the subspaces [K" V] are again pairwise 

orthogonal and we obtain the same contradiction as before. 

THEOREM 2.4. Suppose that n ;;;. 2, V is not of type Q + (4, q), and K is a subgroup of 
f(V) which is point-transitive and contains a long root element. Then one of the 
following holds: 

(i) K;;;. Chev(V); 
(ii)K!::: G2(q)andf(V) = fO(7,q); 
(iii) K!::: N with -1 E Z(N) and N / (-1) conjugate in Aut PQ+ (8, q) to one of the 

usual subgroups PQ(7, q); 
(iv) K!::: SU(m, q) and f(V) = fO'(2m, q) (with f = + iffm is even); or 
(v) 03(K) { Z(K) and K has an extraspecial subgroup of order 33, where 

K < fO- (6, 2). 
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PROOF. This follows from (2.3) and a check of the lists in [33]. 
REMARKS. That the groups in (iii) are point-transitive follows from the fact that 

the usual subgroup Q(7, q) is transitive on each class of 4-spaces of V. Aut PQ+ (8, q) 
will enter into our arguments in a number of other situations. 

There will also be other occasions when [33] will be quoted. Unfortunately, the 
lists in that paper are too long to reproduce here. Another use of [33] is the following 
lemma (compare Stark [53]). 

LEMMA 2 .. 5. Let K be a primitive subgroup of ro ± (m, q), where q is odd and m ;:;;. 5. 
Let x be a point, and bl' b2 E x-L with dim(x, b], b2 )= 3. Assume that 
1 CK«x, b;)-L) 1 = q for i = 1,2. Then either K;:;;. Q± (m, q) or Kf> 2 . Q(7, q), inside 
ro+ (8, q). 

PROOF. Write A(x) = CK(x) n CK(x-L jx), Vex) = [V, A(x)] and Q = x K. Note 
that V = (Q). 

If K contains long root elements, then (2.3) and [33] provide a short list of 
possibilities. Since 1 CK«x, b])-L) 1= q, the only ones that occur are those stated in 
the lemma. 

From now on, we will assume that K contains no long root elements. By (2.1), 
V(x)jx is an anisotropic 2-space and 1 A(x) 1= q2. 

Lety E Q - x-L . If ° =!= b E V(x) n y-L , there is a nonzero vector dE V(y) n x-L 
such that exactly one of (b, b), (d, d) is a square in GF(q). Then (b, d) is 
nonsingular, and hence so is W = (x, y)EB (b, d). Write 

K] = (CK(x,b)-L),CK(y,d)-L)). 

Then Kt is generated by nonconjugate groups of order q, and hence is Q(W). Also, 
K] centralizes W-L . Since K has no long root elements, W must have type Q - (4, q). 
Moreover, Vex') c Wand dim Vex) n Vex') ~ 2 for each point x' of W (since a 
Sylow p-subgroup of K] has order q2). 

By primitivity, there is a point z E Q - (W U W-L). We may assume that z f1. x-L . 

As above, dim Vex) n V(z) = 2. Thus, Z = (W, V(z) has dimension 5. Clearly, 
H = (A(x), A(y), A(z) acts on Z, while centralizing Z-L . 

By Mitchell [41], Z cannot be nonsingular. (This also follows readily from the fact 
that K] would be transitive on the lines of Z.) Set r = rad Z and T = O/CH(Zjr)). 
Both K] and (A(x), A(z) induce Q- (4, q) on Zjr, and they fix different 
hyperplanes of Z. Thus, T =!= 1. Here, T consists of transvections of Z with direction 
r. Since K] acts on T, we must have 1 T 1 = q4. But now some element of T fixes x 
while moving Vex). This contradiction proves the lemma. 

THEOREM 2.6. Suppose that n ;:;;. 2 and that V is not of type Q+ (4, q). Let K be a 

flag-transitive subgroup of reV) which does not contain Chev(V). Then one of the 
following holds: 

(i) K is A7 or S7' inside 0+ (6, 2); 
(ii) K is A 6 , inside Sp( 4,2); 

(iii) K is a semidirect product of an extraspecial group of order 32 with As, Ss or a 
Frobenius group of order 20, inside rSp( 4,3); 
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(iv) K has a normal subgroup which is a semidirect product of an elementary abelian 
group of order 16 with As, Ss or a Frobenius group of order 20, inside rO(5, 3); 

(v) K!::: 2 . PSL(3, 4) ·2, inside ro- (6, 3); or 
(vi) K!::: 4 . PSL(3, 4) ·2, inside rU(4,3). 

PROOF. Seitz [50]. (Note that (iii) and (iv) are related via the isomorphism 
PSp(4, 3) ~ Q(5, 3), while (v) and (vi) are related via the isomorphism 
PQ- (6, 3) ~ PSU(4, 3).) 

LEMMA 2.7. Let K,,;;; prL(3, q). 

(i) If K is point-transitive on PG(2, q), then K ~ PSL(3, q) or K has a normal 
irreducible cyclic subgroup of order dividing q2 + q + l. 

(ii) If K has 2 point-orbits and 3 flag-orbits, then K fixes a point or line, or else K is 

A6 or S6 stabilizing a hyperoval of PG(2, 4). 
(iii) If K has 3 point-orbits and at most 6 flag orbits, then K has 6 flag-orbits and 

fixes a point or a line, or an oval or its dual. 
(iv) If L, L' are lines and both Kt and Kf are transitive, then L' ELK. 

PROOF. Mitchell [40] and Hartley [22]. 

LEMMA 2.8. Let K,,;;; prU(3, q). 
(a) If K is transitive on isotropic points, then one of the following holds: 
(i) K ~ PSU(3, q); 
(ii) K,,;;; prU(3, 2); 

(iii) K' is PSL(3, 2) inside prU(3, 3); or 
(iv) K' is A7 inside prU(3, 5). 
(b) If K has 2 orbits on isotropic points, then one of the following holds: 

(i) K fixes a line; 
(ii) K,,;;; prO(3, q); 

(iii) K n PSU(3, q) is inside one of the groups appearing in (a iii) or (a iv); or 
(iv) K lies in the normalizer of a Sylow 7-subgroup of prU(3, 5). 

PROOF. Mitchell [40] and Hartley [22]. 
C. Some elementary geometric lemmas. 

LEMMA 2.9. Let Q be a nonempty set ofpoints of PG(d, q), d ~ 2, such that each line 

meets Q in ° or k points, where 1 < k < q + 1. Then 
(i) k I q; and 
(ii) If d > 2, then Q is the complement of a hyperplane. 

PROOF. If W is an i-space, then I W n Q I is ° or 

ni = 1 + (k - 1)( qi - 1)1 (q - 1). 

In order to prove (i), assume that d = 2, pick a point x fi. Q, and note that there are 
I Q Ilk lines on x meeting Q. 

Now suppose that d> 2. If every hyperplane met Q, then Q and the hyperplanes 
would form a symmetric design with more blocks than points. Thus, some d - 2-space 
W misses Q. There are then ndlnd- , hyperplanes containing Wand meeting Q. But 
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n din d-I is an integer only if k = q, in which case n d is the number of points outside 
of a hyperplane missing Q. 

LEMMA 2.10. Let V be a symplectic, unitary or orthogonal space with n ;;;;. 3. Let Q be 
a nonempty set of points such that every line meets Q in 0 or q points. Then Q is the set 
of all points not in some hyperplane. 

PROOF. If Q' denotes the set of points not in Q, then every line meeting Q' twice 
must have all its points in Q'. Such a line exists: a plane E meeting Q has 
lEn Q 1= 1 + (q + l)(q - 1) = q2, so that En Q is the complement of a line. 

If (Q') =1= V, then Q contains all points not in (Q'), and our assertion follows 
readily. If (Q') = V, then Q = 0 by Tits [58, (8.10)], which is absurd. 
(N.B.-Hypotheses (A) and (B) of [58, (8.10)] assert that the sesquilinear form on V is 
trace-valued, which is always the case for finite fields.) 

Combining (2.9) and (2.10) produces the following curious consequence. 

COROLLARY 2.11. Let Q be a nonempty set of points of a finite symplectic, unitary or 
orthogonal space V. Assume that V contains totally isotropic (or totally singular) 
4-spaces. If every line meets Q in 0 or k points, for some constant k > 1, then Q consists 
either of all points, or of all points off of some hyperplane. 

A group K.;;;;; G is called (i, i)-transitive if it is transitive on the set of (i, i)-flags. 

LEMMA 2.12. Suppose that K .;;;;; f( V) is transitive on the sets ~ I and ~j of i-spaces 
and i-spaces. If'W E ~j' then all orbits of K w on ~i have length divisible by 

I ~, 1/(1 ~, I , I ~J I). (In particular, if i <) and I ~i 1/(1 ~i I ' I ~j I) is the number of 
i-spaces in a)-space, then K is (i, ))-transitive.) 

PROOF. Let U be any i-space. Then {(Uk, Wk) IkE K} has size 

I ~i II WKu I = I ~j II U Kw I· 
LEMMA 2.13. Let Q be a set of points, and ~k' ~k-I collections of k-spaces (resp., 

k - I-spaces) contained in Q. Assume that every k-space on a member of~k-I is in ~k' 
Then Q consists of all points. (If V has type Q+ (2k, q), modify the hypothesis so that 
all k-spaces considered have a fixed type.) 

PROOF. The elementary connectedness argument is omitted. 
D. Cohomology. We will also require some results concerning the first cohomology 

groups of classical groups. These are collected in the next theorem. 

THEOREM 2.14. (i) For a classical group K = Chev(V), set d(K) = dim HI(K, V). 
Then d(K) = 0, except in the following cases: d(K) = 1 for K = Q(3,5), Q(5,3), 
SU(4,2), Q+ (6, 2), SU(2,2i ), Sp(2n,2'), and Q(2n + 1,2 i ), except that 
d(SU(2,2)) = d(Sp(2, 2)) = 0 and d(Q(5, 2)) = 2; and d(Q- (4, 3)) = 2. 

(ii)d(SL(V)) = dimHI(SL(V), V)isOfordimV> 2,exceptthatd(SL(3,2)) = 1. 
(iii) d(K) = 0 for each of (2.6 i, iii-vi) and (2.8 ii-iv), while d(K) = 1 for (2.6 ii). 

PROOF. Parts (i) and (ii) are a summary of results of Higman [23], Pollatsek 
[47]-[49], Cline, Parshall and Scott [4], Jones [29], McLaughlin [39], Fischer [17, 
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(16.1.10)], and Finkelstein [16, p. 82] (cf. Jones and Parshall [30]). The cases 
SU(m, q) and &2- (2m, q) with q .,;; 3 (due to McLaughlin and to Pollatsek) are not 
in print, and will be dealt with here. 

Our approach is very elementary, cocycles remaining invisible throughout. It is 
based primarily upon the following two elementary observations, which are simple 
consequences of the interpretation of first cohomology in terms of conjugacy classes 
of complements. 

( 0:) Let D .,;; G L( V), and assume that D has a normal r-subgroup R =1= 1 (where 
r=l=p). If W= Cv(R) is zero, or if CD(W) = OP(CD(W)) and pjlDWI, then 
HI(D, V) = o. 

(13) If K = (B, C) with HI(B n C, V) = HI(B, V) = HI(C, V) = 0 and 
Cv(B n C) = 0, then HI(K, V) = o. 

PROOF OF (0:). If DV=DIV;;'RV and DlnV=l, we may assume that 
D n DI ;;. R. Then DW = NDV(R) = DIW, and D = DI if I WI= 1. If I WI> 1 
then CD(W) = OP(CDW(W)) = CD,(W), so that (D/CD(W))W= (DI/CD(W))W. 
Thus, D W = D /CD(W) and DI/CD(W) are conjugate under W. 

PROOF OF (13). Let V be a hyperplane of a space U, and embed K into GL(U) so 
as to fix a vector u fi. V. Set T = 0/ G L( U) v). Then D acts on T as it does on V. 
Let KT = KIT with KI n T = 1. Let B I, CI .,;; KI correspond to B, C. By hypothesis, 
there is a unique I-space (u l ) of U centralized by BI n CI. Using T, we may assume 
that u l = u. There is also a unique I-space centralized by BI (resp., CI). Thus, 
(B I, CI) = 1\1 centralizes u, so KI = CKT(u) = K. 

REMARKS. Assertion (13) is due to Alperin and Gorenstein [1], where an entirely 
different proof is given. (Their more general result is also immediate, using the above 
argument.) Yet another elementary proof can be obtained by translating the above 
one into statements concerning cocycles. Note that U and T were introduced in 
order to avoid using the elementary fact that HI(K, V) ~ ExtGF(q)K(GF(q), V). 

We will use (0:) and (13) in several examples, primarily those not already in print. 
We may assume that (0:) does not apply with D = K (and in particular that 
Z(K) = 1). This handles (2.6 iii-vi) and (2.8 ii, iv). Of course, in situations in which 
d(K) > 0, ad hoc methods will be needed. Note that d(K) can be proved to be 
nonzero by exhibiting an indecomposable K-module containing the K-submodule V 
as a hyperplane. 

EXAMPLE 1. PSL(2, 7) < SU(3, 3). Use B ~ C ~ S4 with B n C = Dg in (13). 
EXAMPLE 2. K = SU(m, q), m ;;. 3, excluding SU(4, 2) (McLaughlin [39]). Let b 

and c be perpendicular I-spaces, and set B = Kb and C = Kc. Note that 
1 =1= Z(B) < C and Cv(Z(B)Z(C)) = 0, so HI(B n C, V) = 0 by (0:). Since 
B =1= SU(3,2), either Cv(Z(B)) = 0 or C8 (b) = OP(C8 (b)). Thus, HI(B, V) = 0 by 
( 0:), and (13) applies. 

Now consider the case K = SU(4, 2) ~ &2(5,3). Let Band C be maximal parabolic 
subgroups of &2(5,3) such that K = (B, C), B n C contains a Sylow 3-subgroup of 
K, and B/OiB) ~ SL(2, 3). Then C acts monomially on V, so that HI(C, V) = 0 
by (0:). Suppose that KV = KIVwith KI n V = 1. We may assume that K n KI ;;. C. 
If R = 0iB), then KI = (C, NK,(R). But NKV(R)/R has at most 4 subgroups 
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~ SL(2, 3), since B = NK(R) is the stabilizer of a nonsingular I-space of V. Thus, 
d(K) .;:; 1. That d(K) = 1 is due to Fischer [17, (16.l.l0)], and is discussed in [33, 
§2] and Case 4 of the proof of (2.l6). 

EXAMPLE 3. K = Q(3, q). If q> 5 and q is odd, use B ~ A4 and C dihedral of 
order q ± 1, with IBn C I = 4. If q = 3, (0:) applies. Higman [23] and Pollatsek [47] 
proved that d(Q(3, q)) = 1 for q even. 

Consider K = Q(3, 5). First use the standard permutation module for A5 over 
GF(5) in order to find that d(K) =1= O. Then suppose that KV = K 1V with 
K1 n V = 1. By (0:), we may assume that K n K1 ;;" B ~ A 4 • Let T E Syi3(B), and 
note that K1 = (B, NK,(T). Since I Cv(T) 1= 5, NKV(T) has exactly 5 subgroups 
S3' so there are at most 5 choices for NK/T). Thus, d(K) .;:; 1. 

EXAMPLE 4. K = Q- (4, q). Set B = Kb for a nonsingular I-space b. If q is odd and 
q ;;" 5, let C be a dihedral group of order q2 - 1, chosen so that 
IBn CI= 2(q ± 1) == 0 (mod 8). Then K = (B, C) (since q > 5), and H1(B, V) = 0 
by Example 3, while H1(B n C, V) = 0 by (0:). Also, B n C is not inside 
CK(b) = Q(3, q), and hence Cv(B n C) = O. Hence, (/3) applies. 

If q is even and q>2, then dimH1(B,V/b) = 1 (Example 3), while B acts 
indecomposablyon V. Thus, H1(B, V) = O. Let KV = K 1V with K1 n V = 1. We 
may assume that K n K 1 ;;" B. Let A be a dihedral subgroup of B of order 2( q - 1). 

Then K1 = (B, A, CK,(A'), where (A, CK,(A') is dihedral of order 
2(q2 - 1). Here, (A, CKv(A') = b X (A, CK(A') has exactly q such dihedral 
subgroups, and these are conjugate under b. Since b centralizes B, it follows that K 
and K1 are also conjugate under b. Thus, d(K) = 0 (Jones [29]). 

Next, consider the case q = 3. If KV = K 1V with K1 n V = 1, we may assume 
that K n K1 ;;" D with I D 1= 10. Let t be an involution of D. Then K1 = (D, g) 
with g2 = t. But I tVI= 9, so that CKV(t) has only 9 subgroups of order 4. Thus, at 
most 9 classes of complements exist. Using generators and relations, Finkelstein [16, 
p. 82] showed that 9 classes actually occur. An alternative procedure is as follows. 
Let W be the 6-dimensional permutation module for S6 over GF(3), equipped with 
the usual inner product. If w is its S6-invariant I-space, then S6 has a unique orbit of 
length 6 on W /w. Thus, Aut S6 cannot act on W /w, but it certainly acts on 
H1(A6' wJ.. /w). Consequently, dim H1(Q- (4, 3), wJ.. /w) > 1. 

Finally, consider K = Q- (4,2). Let KV = K 1Vwith K1 n V = 1. We may assume 
that K n K1 contains (s, t)~ DIO with S2 = t 2 = 1. Then K = (r, s, t) for a 
uniquely determined involution r E CK(t) such that I rs 1= 3. Thus, K1 = (r1' s, t) 
with r12 = 1, r1 E CK(t), I r1s 1= 3, and rr1 E V. Since I rr1 1=2, rr1 E Cv«r, t»). 
Suppose that r =1= r1. Then v = rr1 is uniquely determined (since dim C v( (r, t») = 1), 
and is singular. But (sr1)3 = (srv)3 = V + vsr + o<sr)2. Since I sr 1= 3 and sr moves v, 
the singular vectors v, vsr and o<sr)2 are linearly independent. Thus, I sr1 1=1= 3. This 
contradiction shows that K1 = K, as desired. 

EXAMPLE 5. K = Q+ (4, q). If q is odd, then -1 E Z(K) and (0:) applies. If q = 2, 
(0:) also applies. If q is even and q > 2, the corresponding argument in Example 4 
applies. 
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EXAMPLE 6. K = ~r (2m, q), m;;;' 3. Let B and C be the stabilizers of two 
perpendicular anisotropic 2-spaces. By (0:), Example 4, or induction, un applies to 
(B,C). Here, (B,C)=K except when K=Q-(6,3) or Q-(6,2). Note that 
-1 E Q- (6, 3) (since -1 E Q- (2, 3)), so that (0:) applies here. 

Finally, if K = Q- (6, 2) ~ Q(S, 3), let Bo and Co be maximal parabolic subgroups 
of Q(S,3) containing a Sylow 3-subgroup of Q(S,3). Then ({3) applies to 
(Bo, Co)= K, by (0:). 

EXAMPLE 7. K is A 6, inside Sp(4, 2) or Q(S, 2). Using the standard 6-dimensional 
permutation module for Kover GF(2), we find that d(K) =1= O. 

Let KV = K,V with K, n V = 1. By Example 4, we may assume that K n K, 

contains As ~ Q- (4,2). Let T E SyI3(B). Then K, = (B, NK1(T). However, 
NKv(T) has exactly two Sylow 3-subgroups containing NiT). Thus, d(K) ,,;;:; 1, as 
required. 

EXAMPLE 8. K is A7 or S7' inside 0+ (V) = 0+ (6, 2). Here, d(K) = 0 (proved for 
S7 in Pollatsek [47]). For, let KV = K,V with K, n V = 1. We may assume that 
K n K, contains a Frobenius group B of order 21. Let T E SyI3B. Then 

K, = (B, CK1(T). But CKV(T) = CK(T) X Cv(T). Thus, CK1(T) = CK(T) and 
K, =K. 

REMARK. We have concentrated on low dimensional examples. The higher 
dimensional ones can be readily handled inductively, as in Examples 2 and 6. 

PROPOSITION 2.IS. Let H,,;;:; fL(W) = fL(n, q), n ;;;. 3. Suppose that H is not 

flag-transitive, bilt that Hx is point-transitive on W Ix for some point x. Then one of the 
following holds: 

(i) H fixes a point or hyperplane; or 

(ii) H is 3 . A6 or 3 . S6 inside f L(3, 4), fixing a hyperoval. 

PROOF. Clearly, Q = x H does not consist of all points, and we may assume that 
I Q I> 1. If n = 3, use Mitchell [40] and Hartley [22]. If n ;;;;. 4, then (2.9) yields (i). 

The next result is similar, but more interesting. 

THEOREM 2.l6. Let K,,;;:; f(V), where V has rank n ;;;. 3 but does not have type 
Q+ (6, q). Let x be a point moved by K, and assume that Kx is flag-transitive on xJ.. Ix. 

Then one of the following holds. 

(i) K fixes a nondegenerate hyperplane or a nonsingular 2-space. 

(ii) K t> 3 . PSU(4, 3), inside fU(6, 2). 

(iii) K is As or Ss inside 0+ (8, 2), and fixes a point other than x. 

(iv) K is A9 or S9 inside 0+ (8, 2). 
(v) K t> Q- (6, 2), inside fO(7, 3), where K fixes a point other than x. 

(vi) K t> Sp(6,2), inside fO(7, 3). 

REMARK. Some interpretation is required for (i) when V is of type Sp(2n, 2') or 
Q(2n + 1, 2i). Namely, fixing a nonsingular 2-space of the former must be regarded 
as essentially the same as fixing a nondegenerate 3-space of the latter, while fixing an 
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orthogonal subgeometry 0 ± (2n, 2i) of the former must be identified with fixing a 
nonsingular hyperplane of the latter. 

PROOF. We may assume that (i) does not hold and that K contains no long root 
elements ((2.3) and [33]). Let Q = 0if(V)x) and let Q, be the group of transvections 
in Q (as in (2.1)). ThenKn Q, = l. 

In fact, K n Q = 1. For otherwise, Q = (K n Q)Q, by (2.1) and the irreducibility 
of Kx on x-L Ix. If Q' =1= 1, then Q, = Q' = <I>(Q) implies that Kx n Q = Q> Q,. 

Thus, Q' = 1, and similarly, Q, =1= 1, so we are in the case Sp(2m, q) with q even. 
But here, Kx acts indecomposably on Q (by (2.6)), so that again Kx n Q = Q. 

Clearly, KtlX is as in (2.6) or contains Chev(x-L Ix). In the latter case, Kx has a 
normal subgroup D ~ Chev(x-L Ix). If H'(D, x-L Ix) = 0, then H'(D, QIQ,) = 0 
by (2.1), so DQ, is unique up to conjugacy in Chev(V), and hence so is (DQ,)' = D; 

in this case, K x has a subgroup which centralizes a nonsingular 2-space containing x 
and induces Chev(x-L Ix) on x-L lx, so that Kx contains long root groups. 
Consequently, we are only left with the possibilities that either H'( D, x-L I x) =1= 0 or 
that K t Ix is one of the exceptional cases occurring in (2.6). By (2.14), V must have 
type Sp(2m, q) with q even, Sp(6, 3), n(7, 3), n+ (8, 2), SU(6, 2), n- (8, 3) or SU(6, 3). 

We will consider these possibilities separately. Set n = x K • 

Each line meets n in 0 or k points, for some constant k. If E is a plane meeting n 
more than once, then (2.9) applies to Ki. Thus, by (2.10), if k > 1 then V has type 
SU(6, 2) and E n n is a hyperoval of E (which is precisely what happens in (ii)). 

Case l. K,,;;; Sp(2n, 2), n ~ 3, q even, excluding Sp(6, 2). By (2.14), 
dim H'(D, Q) ~ l. By [33, §2, Example RLl], each complement to Q in DQ 

contains long root elements. 
Case 2. Kx is A7, S7' Ag or Sg, inside 0+ (8, 2). Here, k = 1, so that x-L n n = {x}. 

Let Kx ~ A = A 7 • According to (2.14 iii), there is essentially just one possibility for 
A. Thus, there is a basis {e,} of pairwise nonperpendicular nonsingular vectors of V 
such that (identifying each point with the corresponding vector) x = ~ei and A 
permutes the basis, fixing eg• The point-orbits of A have lengths 1, 1,7,21, 35, 35, 
35. Since k = 1 it follows easily that I n I,,;;; 9. Then n is preserved by the transvection 
t with direction e, + e2 , and (K, t) must be Sg or S9' Thus, (iii) or (iv) holds. 

Case 3. Kx isA6 or S6' inside 0(7,2). Let Kx ~ A = A6. Once again, x-L nn = {x}. 
By (2.14 iii), there are two possibilities for the action of A on V. 

Suppose first that Cv(A) is a nondegenerate 3-space. Then the point-orbits of A 
have lengths 1, 1, 1, 15, 15, 15, 15 (as is most easily seen by regarding A as being 
inside Sp(6, 2)). Since each nontrivial orbit contains a pair of perpendicular points, 
I n I,,;;; 3. Thus, (i) holds when V is replaced by V lrad v. 

Thus, dim C v( A) = 2 and V has a basis {e,} of pairwise nonperpendicular 
singular vectors which A permutes while fixing x = e7 • This time, x-L n n = {x} 

implies that I n 1= 7 and that K is A7 or S7' But K then fixes the nonsingular 
hyperplane {~aie, I ~a, = O}. 

Case 4. K < fU(6,2). Here, Kx [> H = SU(4,2), where H does not fix a 
nonsingular 2-space. By Fischer [17, (16.1.10)], H is uniquely determined up to 
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conjugacy in rU(6, 2) (compare (2.14 i)), and there is a transvection t E SU(6, 2)x 
normalizing but not centralizingH. Set z = [V, t] and K+ = (H, K z' t) I> (H, K z). 

If K+ is irreducible on V, then [33] applies. In this case, K+ n S U(6, 2) = 
3 . P S U( 4, 3) ·2, so that K ~ 3 . P S U( 4, 3). The latter group has only two orbits on 
points: one of length 126 containing z, and one of length 567 (Fischer [17, 
(16.1.16)]). Consequently (K (t») n S U( V) = 3 . P S U( 4, 3) ·2, and (2.16 ii) holds. 

If K+ is reducible on V, then K+ must fix x (since H fixes only two proper 
subspaces of V, namely, x and x-L). Thus, K z ,,;;:; Kx' Let E be any plane containing 
(x, z). Then Kff contains A 6 , so that K z cannot fix x, and this situation cannot 
occur. 

Case 5. K < ro- (8, 3). Here Kx I> H = 2 . PSL(3, 4), so that I Z(Kx) 1= 2. Then 
K x fixes a hyperbolic line containing x, and hence also a second point y. Note that H 
is transitive on each class of nonsingular points in (x, y)-L. (For, n- (6, 3) has rank 
3 on each class of nonsingular points, as well as on the conjugates of H, and it is 
easy to check the degrees of the irreducible constituents of the permutation 
characters.) Thus, each H-orbit of points not in (x, y) U (x, y)-L has length 56 or 
126. It is now easy to check that x-L n n = {x} forces n to be {x, y}, so that (i) 
holds. 

Case 6. K < rU(6, 3). Here, Kx I> H = 4 . PSL(3, 4), and Kx fixes a hyperbolic 
line T containing x. Moreover, H centralizes T and is point-transitive on T-L. Since 
K moves T, n must contain a point of the form (u + v) with u E T, v E T-L and 
(u, u) + (v, v) = O. Let (a) be a point in T-L n v-L . Then a Sylow 3-subgroup P of 
Ha fixes (a, v): Also, P moves v (as otherwise, P would act on T-L n v-L , and hence 
would have an element inducing a transvection on V). Thus, n contains 
(u + v + aa) for some scalar a =1= O. Since (u + v, u + v + aa) = 0, this contradicts 
the fact that k = 1. 

Case 7. K < rSp(6, 3). Here, Kx > H with Oz{H) extraspecial of order 25 and 
I HjOz{H) 1= 5. Once again, Kx fixes a nonsingular 2-space T on x. Then H 
centralizes T and is transitive on T-L. Thus, since k = 1, (i) holds. 

Our last case is the most interesting one, since it leads to (2.16 v, vi). 
Case 8. K < rO(7,3). Here, Kx > H with A = Oz{H) elementary abelian of order 

24 and I H j A 1= 5. Then H fixes a point y =1= x. There is an orthogonal basis {bJ of 
(x, y) -L such that H permutes the I-spaces (b, ). We may assume that (b" bi ) = 1 
for all i. Fix d) E (x, y) with (d), d) =) for) = ±1. 

Recall that x-L n n = {x}. Using {bJ, it is easy to check that H has only 3 
point-orbits outside of (x, y) which might belong to n, namely 

B ~ (d-, "- b,)ll "i" 5) and F,. ~ { (d' + * ',b, )1 ~" ~"} fo," ~ "-I. 

Here, IBI= 10 while IF/LI= 16. Thus, Inl is 11, 12, 17, 18,27 or 28 (since 
(d, + ~i bi' d, + b, + b2 - b3 - b4 - bs) = 0 and x-L nn = {x}). The third of 
these fails to divide I rO(7, 3) I, while the first leads to a nonexistent group of degree 
11. 
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Suppose that I Q 1= 12. Then Kx cannot induce Q(5, 3) on x.l jx, so that Kx I> A. 
Consequently, K acts imprimitively on Q, with 6 blocks of size 2 which K permutes 
2 - transitively. However, the 2 - space spanned by a block is (x, y) or 
(d_ 1 + b" d_ 1 - b,), and hence contains d_ 1• Thus, K fixes (L 1), and (i) holds. 
(N.B.-This case actually occurs.) 

Assume that I Q 1= 18. Once again Kx I> A and K acts imprimitively on Q. 

However, Kx acts primitively on~, so that this situation cannot occur. 
Consequently, I Q I is 27 or 28. Note that, in either case, Q is uniquely determined 

(as {x} U B U Fl or {x, y} U B U F1) up to rO(7,3)-equivalence. Thus, it suffices 
to show that K* = rO(7,3)n has the required transitivity properties, and then to 
study subgroups of K* containing H. For this we will require a digression involving 
root systems mod 3. 

Digression. In order to examine the embedding of the Weyl group W = W(E7) of 
type E7 into 0(7,3), we will consider the embedding of the Weyl group W(Es) into 
0+ (8, 3). The latter embedding will also arise in later sections. 

Let {ei } be an orthonormal basis for an 0+ (8, 3)-space. Form the vectors 
Eie, + Ejej (i =1= j) and Lf Eie, with mE, = -1, where each Ej is ±1. Then W(Es) is 
generated by the reflections in the hyperplanes perpendicular to the above "root" 
vectors (Carter [3, p. 48]). 

Set p = e7 - es and u = e6 + e7 + es = -p + (e6 - e7), and write W = W(Es)p. 
Then Wu = W(E6 ), so (Wu)' ~ Q(5, 3). Moreover, (Wu)' acts faithfully on u.l j(u) 
as Q(5, 3). In particular, W' behaves as in (vi), with x = (u) and 
I (u)WI=1 W: 'W(u)l= 28. 

Now consider Wu' This group acts on the set of 27 roots 0: such that 0: E p.l and 
0: + (e6 - e7) is a root. (These roots 0: are e7 + es, ±ei - e6 with 1 .;;; i .;;; 5, and 
L~ Eiei + e6 - e7 - es with IIi 10, = -1.) Then Wu also acts on the corresponding 27 
points (0: + u). One of these is (u') with u' = e6 - e7 - es, and Wuu' = W(Ds). 
Consequently, (2.16 v) holds when K = (Wu)' and x = (u'). (N.B.-The 
correspondence with our previous notation is as follows: x = (u'), y = (u), 
dJ = -ju' - U, bi = e,.) 

We now return to Case 8. Which subgroups K of K* = rO(7,3)n behave as 
required in (2.16)? We may assume that I Q 1= 28. Then W';;; K* < rO(7, 3). By 
Fischer [17, (15.3.16)], K* = (-I) X W. First suppose that 

K.;;; K; ~ (-1) X 0- (6, 2). 

Two suitable K;-conjugates of A = 02(H) generate Q- (6, 2), so that K is as 
in (2.16 v). Now suppose that K is transitive on Q. If Kx ~ Q(5, 3), then 

(2.16 vi) certainly holds. Suppose that A I> Kx' Then K acts imprimitively on Q, 

with 14 blocks of size 2. Since an element of K* of order 5 fixes only 3 members of 
Q, this is impossible. 

This completes the proof of (2.16). 
REMARK 2.17. We will need further information concerning the embedding of 

W(Es) into 0+ (8, 3), whose study was begun in Case 8 of (2.16). The vectors e" p 

and u were defined there. Changing notation somewhat, we will now write x = (u) 

and K = W(Es). 
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Note that (u, p) contains all root vectors f3 such that f3 - u is also a root. Thus, 
Kx = NK«u, p») (since x = rad(u, p»), where Kx = Ku X (-I). Recall that Kup is 
W(E6)' Moreover, Ku = Ku/rp, ru+p) where rp is the reflection with axis p.l.. Note 
that (rp' ru+p) ~ S3' and it contains the 3-cycle t = (6,7,8) acting on {e,}. Here, t 
centralizes both K up and x.l. Ix. 

The points of our 0+ (8, 3) have the shape ( ±I3 05 ) or ( ±I 60 2). It follows that K is 
transitive on them. Also, Kx induces 0(5,3) on x.l. Ix, so that K has 2 orbits of 
(1,2)-flags and is transitive on (1,4)-flags. Then K' = Q+ (8, 2) is transitive on 
the (1,4)-flags of each type. Moreover, if F is a 4-space then WF ~ 3 ·Sp(4, 3); 
this is easily proved directly, but also follows from the fact that Aut Q+ (8, 2) < 
Aut PQ+ (8, 3). 

E. Primitive divisors. If q> 1, a primitive divisor of qk - 1 is a prime r dividing 
qk - 1, but not dividing q' - 1 for 1 ..; i < k. (Note that k I r - 1.) For conven
ience, a primitive divisor of qk + 1 is defined to be the same as a primitive divisor of 
q2k - 1. The following number-theoretic fact will be crucial in §6. 

LEMMA 2.18. qk - 1 has a primitive divisor, with the following exceptions: 
(i) q = 2, k = 6; or 
(ii) q is a Mersenne prime, and k = 2. 

PROOF. Zsigmondy [67]. 
The following simple result will be used often, frequently without reference. 

LEMMA 2.1 9. 'Let r be a primitive divisor of qk - 1, and R a nontrivial r-subgroup of 
f(V). Then 

(i) V = Cv(R) ..1 [V, R], and 
(ii) each irreducible constituent of[V, R] has dimension k. 

3. Characters of the Weyl groups. Let Bn = 22 wr Sn be the n-dimensional 
hyperoctahedral group, viewed as the group of all "signed" permutations of 
Q = {±I, ... ,±n}. Then Bn is generated by {(i, i + I)(-i, -i - 1); 
(n, -n) I i = 1, ... ,n - I} C Sn. The groups Bn and Dn = Bn n An are the Weyl 
groups of classical groups, and hence the proof of our main theorem requires explicit 
information about certain of their permutation characters. 

The purpose of this section is to describe how the appropriate permutation 
characters decompose as sums of irreducible characters. The authors acknowledge 
the generous help of Jan Saxl in the development of Table II. 

A partition A of the natural number s, written A ~ s, is a nonincreasing sequence of 
nonnegative integers AI"" ,As such that ~A, = s. The length k of such a partition is 
defined by A k+ I = 0 oF A k • We say a subset X of Q is admissible when x E X if and 
only if -x E X. In case X C Q is admissible we define X+ = X n {l, 2, ... ,n} and 
X- = X n {-I, -2, ... , -n}, and consider two groups of permutations of Q: 

Ax= «x,x')(-x,-x')lx,X'EX+) 

and 
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Observe that I X 1= 2k if X is admissible and that A x is isomorphic to the symmetric 
group Sk while Bx is isomorphic to the hyperoctahedral group Bk . 

Let (A; u) be a pair of partitions where A ~ s has length I and }L ~ n - s has length 
m. Partition ~ into admissible sets L I , ••• ,L" M I , ••• ,Mm so that I L, 1= 2A, and 
I Mj 1= 2}Lj for 1 .;;; i';;; I, 1.;;;).;;; m, and consider the Weyl subgroup (notation of 
Mayer [35]) 

It is easy to see that the conjugacy class of W( A;}L) is uniquely determined by (A;}L). 
The Weyl subgroups of Bn playa very important role in the character theory of Bn 

that is quite analogous to the role played by the Young subgroups W( A; <p) in the 
character theory of the symmetric groups (in the notation of Kerber [34]). In spite of 
this we are most interested in the parabolic Weyl subgroups, i.e., those that 
correspond to parabolic subgroups of a group with a (B, N)-pair of type Bn. These 
are the Weyl subgroups W( A; }L) where I.;;; 1. 

Let I(A;}L) denote the character of Bn obtained by inducing the trivial character of 
W(A;}L) to BIl , and let e(A;}L) denote the character of Bn obtained by inducing the 
alternating character e of W(A;}L) to Bn. (Recall that e(g) = -1 if g is an odd 
permutation in S[j and e(g) = 1 if g is an even permutation in S[j.) 

Let C(/, m) denote the 21 + m by 21 + m matrix having block diagonal form: 

C(i, m) ~ diag{ (~ ~), (~ ~)" (~ ~), ~}, 
'--'"""" 'V",...----/ m 

I 

and let M( a; b II; m) denote the set of all nonnegative integral 2a + b by 21 + m 
matrices M = (M,j ) such that 

(i) C(a, b)MC(/, m) = M and 
(ii) M'j is even whenever both i > 2a and) > 2/. 

Suppose W( a;,8) and W( A;}L) are Weyl subgroups, where the associated partitions 
have lengths a, b and I, m, respectively. Define M( a;,81 A;}L) to be the set of all 
M EO M( a; b II; m) such that the row sums of Mare 

and the column sums of Mare 

Finally, let N( a;,81 A;}L) be the set of elements of M( a;,81 A;}L) of the form 
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THEOREM 3.1. Let ( , ) denote the usual inner product of characters and suppose 

W(a; P), W(A; p.) are Weyl subgroups in Bn' Then 

(I( a; P), I(A; p.) = IM( a; P I A; p.)1 = (e( a; P), e(A; p.) 

and 

(I(a;p), e(A;p.) =IN(a;p I A;p.)I· 

REMARK. This should be compared to Coleman [6, Theorem 15] and Snapper [52]. 
PROOF. By the Mackey subgroup theorem, 

(I(a;p), I(A;P.) = ~ (lw(a:.B) Iy, IW(l\:I') Iy) 
yEll 

where Y = W(a; P) n (W(A; p.»Y and Ll is a complete system of (W(a; P), W(A; p.» 

double coset representatives in Bn' Since each term in this sum is I, we have 

(I(a;p), I(A;P.) =ILlI = the number of W(A;P.) orbits on Bn/W(a;/J). 

Let AI"" ,Aa' B I,··· ,Bb and L I, ... ,Lt , M I, ... ,Mm be the admissible partitions 
of g associated with W(a;p) and W(A;P.), respectively. View the coset gW(a;p), 

g E Bn' as the admissible partition gAl> ... ,gAa, gBI, ... ,gBb of "type" (a;p). We 
claim that gW(a; P) and hW(a;p) are in the same W(A;p.)-orbit if and only if 

Ig(At) n LJ+I =lh(A,+) n LJ+I for I,,;;; i,,;;; a, I ";;;j";;; I, 

Ig(A,-) nLtl=lh(A,-) nLJ+1 forI ";;;i";;;a, I ";;;j";;;l, 

19B, n LJI = IhB, n LJI for I ,,;;; i ,,;;; b, I ";;;j";;; I, (3.2) 

IgA, n MJI = IhA, n MJI for I ,,;;; i,,;;; a, I ";;;j";;; m, 

IgB,n~I=lgB,n~1 forl";;;i,,;;;b,I";;;j";;;m. 

It is clear that these conditions are necessary, since for example 

and all relevant i,j. To see that (3.2) is also sufficient, observe for example, that the 
group A L ,,;;; W( A; p.) acts as the full symmetric group on L i and acts trivially on 

I 

g - L I. Consequently thereis an x E ALI taking g(Af) n Li to h(Af) n Li and 
gBk n Li to hBk n Li , since these two partitions of Li have the same type. A 
similar observation holds for each group A L , 2";;;j";;; I, and each group BM , 

J J 

I ";;;j";;; m. 
This shows that the orbit parameters given in (3.2) completely determine a 

W( A; p. )-orbit on Bn/ W( a; P). Thus, each element of Ll is associated with a 2a + b 
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by 21 + m matrix of the following form: 

M= 

IgAt n Lt i , IgAt n L; I 
19-Aj n Lt I , IgAj n L; I 

••• 19B; n Lt i , igB; n L; I ..• 

Lt ... Lt 

IgAt nMjl 

IgAj n Mjl 

gAt 

gAj 

(3.3) 

The sum of the entries in one of the rows of this matrix is just the cardinality of the 
set labeling that row, and similarly for columns. Since {{x, - x} 1 x = I, ... , n} is 
a system of imp'rimitivity for the action of Bn on Q, we have 

IgA,+ nLj+1 =lgA,- nLj-l, 

IgA,+ nM,1 =lgA,- nM,I, 

and it follows that M E M( a; {31 A; 1-'-). 

IgA;- nLj+1 = IgA,+ nL;I, 
19B, n Lj+1 = 19B, n Lj-I, 

We leave to the reader the verification that any element of M( a; {31 A; 1-'-) may be 
viewed as a matrix of intersection numbers as in (3.3), and hence determines an 
element in Ll, from which it follows that 

(I (a; {3), I (A; 1-'-) = IM( a; {31 A; I-'- )1. 
The Mackey subgroup theorem also implies that 

(e(a;{3),e(A;I-'-)= ~ (ely,ely)=ILlI, 
yE<l 

where Y = W( a; f3) n W( A; I-'-V and Ll is a complete system of (W( a; {3), W( A; I-'- ))
double coset representatives as above. Therefore 

( e( a; {3), e( A; 1-'-) = IM( a; {31 A; 1-'-) I· 

In fact, the same argument establishes the remaining equality provided only that the 
elements of N( a; {31 A; 1-'-) correspond to those double coset representatives yELl 

having the property: 

(ly, loy) = I where Y = W(a;{3) n W(A;I-'-)Y. 
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This condition that Y';;; ker f amounts to the condition that none of the various 
intersections considered in (3.3) contains both ±k, 1 .;;; k .;;; n. These are just the 
elements of N( ex; 131 A; p,), and the theorem follows. 

COROLLARY 3.4. < 1( ex; 13), 1( A; p,) is the coefficient of 

a b I m 

II (x,x_Y" II (y;y_;)p, II (ZjL)AJ II (Hjw_)I'J 
;=1 ,=1 )=1 )=1 

in the expansion of the generating function 

II (1 - x,x_,zJLJ 

(1 - x,zJ(l - x_,LJ(l - x;x_,w/)(l - y,\LJ(l - y,2 wn . 
Theorem 3.1 can be used to express the irreducible characters of Bn and the 

permutation characters 1( ex; 13) as linear combinations of one another, since the 
characters l(ex;f3) span the character ring of Bn (Mayer [35, 3.1]). We will, however, 
not require this much information. 

The irreducible characters of Bn are also labeled by ordered pairs of partitions 
(ex 1 13) where ex ~ s, 13 ~ n - sand (ex 1 13) occurs as a constituent of 1(13; ex) (Kerber 
[34, 2.22]). A routine, though tedious calculation yields Tables I and II. An example 
is given after (3.7). We note in passing that rows 1,2,4, 5, 8, 9 and 10 of Table I can 
be found on p. 154 of Murnaghan [42]. 

TABLE .1. The irreducible constituents of selected permutation 
characters 1 (ex; 13) and their multiplicities. 

,-, 
S 0 

S ,-, 
S S - ,-, S 

- ::c - ,-, - - - - - '" - ::c - -" - ,-, - '" - ':... -- '" - '" '" N - '" --...: "," N N 
-

"," <Vi' <Vi' S - '" <Vi' "," <Vi' 
- I I I I I I I I I I I I 
5 5 5 5 5 5 5 5 5 5 5 5 5 

1(0; n) I 

I(O;n-I,I) I I 
1(I;n-l) I I I 

1(0; n - 2, 2) I I I 

1(0; n - 2, I, I) I 2 I I 

1(I;n-2,1) I 2 I I I I 

1(2; n - 2) I I I I I I 

1(0; n - 3, 3) I I I I 

1(0; n - 3, 2, I) I 2 2 I I I 
1(0; n - 3, 13 ) I 3 3 3 I 2 I 

1(I;n-3,2) I 2 I 2 I I I I I 

1(1; n - 3,1 2 ) I 3 I 3 3 2 I 2 I I I 

1(2; n - 3, I) I 2 I 2 I 2 I I I I I I 

1(3; n - 3) n * 4 I I I I I I I I I 

1(3; I) I I I I I - - - I 

(N.B.-Characters involving non decreasing sequences are to be ignored.) 

,-, 

'" -

'" I 

5 

I 

I 
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TABLE II. The multiplicities to which the irreducible constituents of 
1(l;n - 1), 1(2;n - 2) and 1(3;n - 3) occur in selected parabolic 

characters of Bn (also the multiplicities to which the irreducible 
constituents of 81, 82 and 83 occur in selected parabolic characters 

of a group with (B, N)-pair of type Bn or en-see §4). 

Character degree 

1(I;n-l)n;;;'2 

1(2; n - 2) n;;;' 3 

1(3; n - 3) n ;;;, 5 

1(3; I) 

1(4; n - 4) n;;;' 7 

1(4; 2) 

1(4; I) 

I(n; 0) 

1(l2; n - 2) n;;;' 3 

1(2, I; n - 3) n ;;;, 5 

1(2, I; I) 

1(l3;n-3) n;;;'4' 

1(1 3 ; 0) 

1(3, I, n - 4) n ;;;, 7 

1(3, I; 2) 

1(3, I; I) 

I (n - I, I; 0) n ;;;, 4 

1(2, I; 0) 

S 
5 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

S 
:::c 

-' 
5 5 

n - I n 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

0 I 

2 2 

2 2 

2 2 

3 3 

2 3 

2 2 

2 2 

2 2 

I 2 

I 2 

"" '" 1\\ 1\\ 

'" '" 
S -
N 

N' N' 

I I 

5 5 

n(n - 3) n(n - 2) 
2 

0 0 

l. I 

I I 

0 I 

I I 

I I 

0 I 

0 0 

I 2 

2 3 

I 3 

3 6 
- 3 

2 3 

2 3 

I 3 

0 I 
- I 

'" "" N I';. 1\\ I';. 

1\\ '" '" '" 
'" s ~ ~ 

N ,...:; -
N '" N 

N ",' ",' ",' 

I I I I 

5 5 5 5 

(~) (;r~5 (;)(n - 4) (;)(n - 3) 

0 0 0 0 

I 0 0 0 

I I I I 

I - - I 

I I I I 

I 0 I I 

I - 0 I 

I 0 0 0 

I 0 0 0 

2 I 2 2 

2 - - 2 

3 I 3 3 

3 - - -

2 2 3 3 

2 I 3 3 

2 - I 3 

2 0 0 I 

2 - - -

'" 1\\ 

'" 
'" 
'" I 
5 

G) 
0 

0 

I 

I 

I 

I 

I 

I 

0 

I 

I 

I 

I 

2 

2 

2 

2 

I 

Since this paper was first written, Geissinger and Kinch [20] has appeared. These 
tables may be calculated directly from the elegant Theorem III.5 of [20]. 

This completes the data required to deal with groups of type Bn' The characters of 
Dn are related to those of Bn in a particularly simple manner. 

THEOREM 3.5 (KERBER [34, 2.25]). An irreducible character (ex I f3) of Bn remains 
irreducible when restricted to Dn if and only if ex =1= f3. The characters of the form (ex I ex) 

decompose into a sum of two irreducible characters (ex I ex)± conjugate in Bn' In any 

case, (ex I f3) ID" = (f31 ex) ID,,' 
COROLLARY 3.6. Let W( >-.; p,) be a Weyl subgroup of Bn and define 

and 

W*(>-.;p,) = W(>-.;p,) n Dn , 1*(>-';p,) = 1~'(A;fL) for p, =1= 0 

W*(>-.;ot = W(>-';O) n Dn , 

W*(>-';O)- = (W(>-';O)" n Dn ), 

1*(>-.;0)+ = 1~'(A;o)+, 

1(>-';0)- = 1~'(A;o)-, 
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where (J is the permutation (1, -I) in Sg. Also, define (a 1 fJ) to be the restriction of the 
Bn-character (a 1 fJ) to Dn- Finally, set I *(A; 0) = I *(A; 0)+ + I *(A; 0)- . Then 

( 1*( A; JL ), ( a 1 fJ) ) = (I (A; JL) + e( A; JL ), ( a 1 fJ) ) 

and 
(1*(a;fJ), I*(A;JL) =IM(a;fJ 1 A;JL)I + IN(a;fJ 1 A;JL)I· 

PROOF. Since Dn = ker e, 

I*(A;JL)B" = I~*u\;p.) = (I + e)~(A;P.) = I(A;JL) + e(A;JL) 

for JL =1= O. In case JL = 0, 

I *(A;O)B. = (IW*(A;O)+ + IW*(A;O)- )B" = 2(l w*(A;O)+ + IW*(A;O)+ )B", 

since W*(A; 0)+ and W*(A; 0)- are conjugate in Bn' However, W*(A; 0)+ = W(A; 0) 

and IW(A;O) = eW(A;O)' so 

I*(A;O)B" = (IW(A;O) + eW(A;O»)B" = I(A;O) + e(A;O). 

The first claim now follows from Frobenius reciprocity. 
By the Mackey subgroup theorem, I *(A; JL) = I(A; JL)D,,. Consequently, if 

I(A; JL) = };Cy6( Y 18) for integers Cy6' then I *(A; JL) = };cyi Y 18) also. Thus, 

( I * ( a; fJ), 1*( A; JL ) ) = (I * ( a; fJ), ~ Cy6( Y 1 8) ) 

= (I ( a ; fJ) + e( a ; fJ ), I ( A ; JL ) ) = 1M ( a ; fJ 1 A; JL ) I + IN ( a; fJ 1 A; JL ) I 

by the first part of this corollary and (3.1). 

COROLLARY 3.7. (i) 

(1*(A;JL),(ala)+)= (1*(A;JL),(ala)-) ifJL=I=O. 

(ii) If a =1= fJ and if (I *(3; n - 3); (a 1 fJ» =1= 0, then 

(I*(A;JL), (a 1 fJ) = (I(A;JL), (a 1 fJ) 

whenever JL ~ t with t > 3, while 

(1*(A;Ot ,(alfJ))= (I*(A;O)- ,(alfJ))= (I(A;O),(alfJ). 

(iii) 

(1*(A;Ot ,(ala)+)= (I*(A;O)- ,(ala)+)= (1*(A;Ot ,(ala)-) 

= (I*(A;O)- ,(ala)-). 

PROOF. Statement (i) follows from (3.6) and the fact that I *(A; JL) is Bn-invariant. 

If JL ~ t and t> 3, then N(A; JL 13; n - 3) = 0, and hence (ii) holds in this case. 
Clearly, N(A;O 1 a;fJ) = M(A;O 1 a;fJ) for all partition pairs (a;fJ). Thus, 

(I *(A; 0), (a 1 fJ» = 2( I(A; 0), (a 1 fJ». Here, (a 1 fJ) is Bn-invariant while I *(A; 0) ± 
is not, so that 

(I*(A;O)± ,(alfJ))= -HI*(A;O),(alfJ)= (I(A;O),(alfJ). 

This completes the proof of (ii). 
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Write 

I*(;\;ot = ~ C(alP>(a I fJ) + ~Ca(a I a)+ + ~da(a I a)-
a=fo/1 

for integers c(alP>' Ca and da. Since (W*(;\; 0)+ Y = W- (;\; 0)- , we can conjugate 
by a (cf. (3.6)) in order to obtain 

1*(;\;0)- = ~c(aIP)(al,8) + ~ca(ala)- + ~da(ala)+. 
We claim that 0 = (1*(;\;0)+,1*(;\;0)+ -1*(;\;0)-). For, let {a,iI";; i..;; t} be 

a complete set of (W*(;\; 0) + , W*(;\; 0) + ) double coset representatives in Dn' Then 
{a,a 11..;; i";; t} is a complete set of (W*(;\;O)+, W*(;\;O)-) double coset 
representatives; for, w+ aaw- = ba if and only if w+ aaw- a = b, while 
a w - a E W*(;\; 0) + whenever w - E W*(;\; 0) - . This proves our claim. 

Thus, 

0= (1 *(;\; 0), ~ (ca - da){ a I a) + + ~ (da - ca)( a I a) - ) 

= ~ (ca - da)( 1 *(;\; 0), (a I a) + - (a I a) - ) = ~ (ca - daf 

This proves (iii). 
Further inner products, not handled in (3.7) and Table II, will be needed later. 

These are found in Table III, which is obtained by further straightforward 
calculations, as in the following example. 

EXAMPLE. We illustrate the use of (3.1), Table I and (3.6) in a very simple 
situation. For n ;;;. 3 we show that 

1 (n - 2, 1 ; 1) = (n I 0) + 2( n - 1, 1 I 0) + 2( n - 1 11) + X, 

1 *(n - 2,1; 1) = (n I 0) + 2(n - 1,110) + 3( n - Ill) + X' 

where (X, 1(1; n - 1) = 0 = (X', 1 *(1; n - 1). We see trivially that the elements of 
M(O; n I n - 2,1; 1) and M(O; n - I,ll n - 2, 1; 1) are (n - 2, n - 2,1,1,2) and 

(n ~ 2 
n-2 1 1 ~) , (n ~ 2 

n-2 0 0 ~) , 0 0 0 0 1 1 

(n ~ 3 
n-3 1 1 ~) , 1 0 0 

respectively. It is almost as easy to see that M(I; n - 11 n - 2,1; 1) consists of 

(nL 
0 0 0 

~) , lnL 
1 0 0 

~) , 1 0 0 0 0 0 
n-3 1 1 n-3 1 1 

(nL 
0 1 0 

~) , (.L 0 0 1 

~) 0 0 1 0 1 0 
n-2 0 0 n-2 0 0 

and 

l.L 0 0 0 

il 0 0 0 
n-2 1 1 
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TABLE III. The multiplicities of the irreducible constituents of 
1 *(3, n - 3) in selected parabolic characters of Dn (also the 
multiplicities of the irreducible constituents of °1, 02 and 03 in 
selected parabolic characters of a group with a (B, N)-pair of type 
Dn-see §4). 

1 *(1; 3) 

1 *(2; 2) 

1 *(3; 1) 
1*(12;2) 

1*(2,1; 1) 
1 *(13; 1) 

1 *(2; 3) 

1 *(12; 3) 

1 *(3; 2) 

1*(2,1;2) 
1 *(13; 2) 

1 *(3, 1; 1) 

1 *(3; 3) 

1*(2,1;3) 

1 *(3, 1; 2) 

1 *(3, 1; 3) 

1 *(4; 3) 

1 *(4, 1; 2) 

~ 

0 

-5 

1 

1 

1 

1 

1 

1 

1 

1 

.1 
1 

1 

1 

1 

1 

1 

1 

1 

1 

,-.., 
0 

. -
-5 

1 

1 

1 

2 

2 

3 

1 

2 

1 

2 

3 

2 

1 

2 

2 

2 

1 

2 

,-.., ,-.., 
0 

,-.., 
N 

N N 

I I 

-5 :;: :;: 
'-' '-' 

1 0 0 
1 1 1 

2 0 1 

2 1 2 

3 1 4 

4 2 8 

1 1 1 

2 1 2 

1 1 1 

2 2 3 

3 3 6 

3 1 4 

1 1 1 

2 2 3 

2 2 3 

2 2 3 

1 1 1 

2 2 4 

,-.., ,-.., ,-.., 
0 N 

,-.., ,-.., 
N (V) N (V) 

N (V) (V) (V) (V) 

I I I I I 

-5 :;: :;: :;: -5 '-' '-' '-' 

0+0 - - 0 
(V) 

1 + 1 - - 0 .:: 

1 + 1 1 
E 

- - -@ 
1 + 1 - - 0 u 

(!) 

2+2 - - 3 (!) 

v:l 

3 + 3 - - 6 

1 - 0 0 
\.0 

1 - 0 0 .:: 
2 1 1 E 

- E 
3 2 3 

0 
- u 

4 3 5 
(!) 

- (!) 

v:l 

4 - 1 4 

1 1 1 1 1 + 1 

2 1 2 2 1 + 1 

3 1 3 1 2 + 2 

2 2 3 3 3 

1 1 1 1 2 

2 1 3 2 2 

By (3.1) we have 

and 

(I(0;n),I(n-2,I;I)= 1, 

(I(O;n - 1,1), I(n - 2,1; 1) = 3 

(I(l;n - 1), I(n - 2,1; 1)= 5. 

23 

The first three rows of Table I imply «(0 In), I(n - 2,1; 1) = 1, «(n - 1,11 0), 
I(n - 2,1; 1)= 3 - 1 = 2 and «(n - Ill), I(n - 2, 1; 1)= 5 - 3 = 2. The first 
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claim follows. By (3.6) and the above enumeration, 

and 

(I*(O;n), I*(n - 2, 1; 1)= 1 + 0 = 1, 

(I*(O;n - 1,1), I*(n - 2, 1; 1)= 3 + 0 = 3 

(I*{I;n - 1), I*(n - 2, 1; 1)= 5 + 1 = 6, 

since the last matrix listed in M(I, n - 1 I n - 2, 1; 1) above IS In N(I, n - 1 I 
n - 2,1,1). The second claim follows from (3.7) (each of the characters (n I 0), 
(n - 1, 1 I 0), (n - 1 11) is an irreducible character of Dn) and from Table I, just as 
above. 

The last Weyl group we must discuss is the symmetric group Sw Since Sn is a 
homomorphic image of En' some of the irreducible characters of En are also 
characters of Sn' It turns out that these characters are precisely those of the form 
(a I f3) where f3 = 0 (this follows, for example, from Mayer [35, 1.1]). In fact, one can 
obtain a table describing characters of the symmetric group from Table Ii by 
deleting columns 3, 5, 6, 8, 9, and 10, and replacing the semicolons in the row labels 
by commas and rearranging into partitions. 

The information we require about characters of Sn is included in the following 
lemma. 

LEMMA 3.8. Let {)i be the permutation character of Sn on i-sets (alias l(n - i, i», {)ij 

(i < j) the character on pairs consisting of an i-set and a j-set containing it (alias 
I(n - j, j - i, i», and so on. Then thefol/owing holdfor 1 ,,;;;; i";;;; nj2. 

(i) (), - {),-I is irreducible, {)o = 1. 
(ii) ({), - {),-I' ()i-I)= O. 
(iii) ()'] = {)j-"r 

(iv) ({)I - 1, {)12 .. . n-I)n - 1. 
(v) ({)3 - {)2' ()34) = ({)4 - {)3' ()45) = 2 ifn > 8. 
(vi) ({)2 - {)I' ()12)= 1; ({)2 - {)I' ()13) is 1 if n = 4, and is 2 if n > 4; 

({)2 - {)I' ()123)= 3; and ifn > 5 then ({)2 - {)I' ()124) = 4 and ({)2 - ()I' ()1234)= 6. 

For these inner products, see Murnaghan [42, p. 154], where more standard 
notation is used; or see (10.1) below. 

4. Parabolic characters. In this section we are concerned with characters of 
Aut(Chev(V». After a technical lemma that is used to deal with graph automorphisms 
in §§8-IO, we turn to characters of parabolic type. We recall the fundamental 
correspondence, due to Curtis, Iwahori and Kilmoyer [8, (7.2)], between these 
characters and those of the Weyl group, which provides the link with §3. Finally, in 
(4.7) we use the remarkable formulae of Hoefsmit [26] to completely determine the 
characters of parabolic type that fail to have degree divisible by p (compare Howlett 
[27]). 
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LEMMA 4.1. Let G be as in (1.1) or (1.2), and let G+ = G n GG, where GG is 
generated by Chev(V) and its diagonal and field automorphisms. Let K.;; G satisfy 

G = KG+ , and set K+ = K n G+. Write cp = I~ = 1 + X + ~ where X is irreduc

ible, and let cp+ = cp IG+' X+ = X IG+ and ~+ = ~ IG+. Finally, let B be a Borel 
subgroup of G+ (cf. [9, (2.6)]). Then 

(a) cp+ = (1K+ )G+; 

(b) Each irreducible constituent of X + occurs to multiplicity one; 

(c) The irreducible constituents of x+ are conjugate under G; 
(d) Either X+ C; If or <x+ , If) = o. 
REMARKS. (1) reV) = GG unless V has type n+ (2n, q) m which case 

I r(V): GG 1=2. 
(2) A slightly more technical, similar lemma that can be used to restrict to 

Chev(V) is described in §I1. 
PROOF. Since K+ = K n G+ , g E G+ fixes a coset Kh, h E G+ , if and only if it 

fixes K+ h. This proves (a). Since I G: G+ I divides 6, Isaacs [28, (6.18)] (applied 
twice if necessary) implies (b), and (c) follows from Clifford's theorem [28, (6.5)]. 
Finally, (d) follows from (b) and (c) together with the fact that I~' is G-invariant [9, 
(2.6)]. 

The (B, N) structure of Chev(V) is discussed in detail in Carter [3] (and also 
Curtis, Kantor and Seitz [9, §2]). We observe that each of the groups G in Theorem 
1.1 or 1.2 has a (B, N)-pair with the associated Coxeter system (W, R), 

R = {Sl' ... ,sn}·of type Bn, Cn' Dn or An. 
For each subset I C; {l, ... ,n}, WJ = <Sj Ij E 1) and GJ = BWJB are parabolic 

subgroups. (This is consistent with §3, where S, = (i, i + 1) (-i, -i - 1) for i < n 

while sn = (-n, n), and W= W(Bn) ~ W(Cn).) The irreducible characters ~ of G 
that occur as constituents in Ig, are said to be of parabolic type. 

It is elementary to see that the normalizer of a Sylow p-subgroup of G fixes a 
unique flag in V. The group B is just such a normalizer [3, §8.6], [9, §2], and so fixes 
a flag (VI> V2 ' •• • ). The group G v, is maximal in G and contains B. Consequently, G v, 

is the parabolic subgroup G, = G(I} for a suitable labeling of the elements of R (cf. 
[3, 8.3.3]). It follows that the parabolic subgroup GJ is the stabilizer of an 
(i I' i2 ,· .. )-flag, where I = {i I> i 2 ,· .. }; and the character OJ = 0,, 12 ••• = I~, is just 
the permutation character of G on the set of all (i I> i2 , ... )-flags. 

Theorem 7.2 of Curtis, Iwahori and Kilmoyer [8] provides a natural 1-1 
correspondence ~ ---> ~o between the irreducible characters ~ of parabolic type and the 
characters ~o of W such that 

U,OJ)= (~,IgJ= (ro,I~J= Uo,I(A;~), (4.2) 

where I = {il> i 2 , ... ,it}, A is obtained by rearranging the sequence 
(il> i2 - i l,··· ,it - it-I) into a partition of it' and ~ = (n - it), provided that it < n 
when G has type Dn- (The flags of groups of type Dn have the more complex 
structure described at the beginning of §2, but A is obtained in an analogous way.) 
The examples most relevant to (1.1) are 0, = I(i; n - i), 0Il = I(i - 1, i; n - i), and 
0123 = 1(13; n - 3) (cf. Table II). 
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A consequence of the fact that the right-hand side of (4.2) depends only on the 
partition (ft.;}-t) and not on I is that 

(4.3) 

for appropriate values of r, s. 
For simplicity of notation we will use (ex I f3) to denote the irreducible character of 

W as well as the corresponding parabolic character of G. 
The importance of (4.2) cannot be over-emphasized. The proof of Theorem 1.1 

essentially reduces to the situation where one of the characters in l~ corresponds 
under (4.2) to a character labeling a column of Table II. In each case, the table 
forces K to have so much transitivity of one sort or another that it cannot escape 
recognition. 

The following is a simple example of (4.2). 

COROLLARY 4.4. Let Chev(V) ,,;;; G+ ,,;;; G,,;;; f(V), and assume that G and G+ have 

the same Weyl group. Let B be a Borel subgroup of G, and let B+ = B n G+ . If X is 

an irreducible constituent of l~, then X Ic+ is an irreducible constituent of l~:. 

PROOF. Apply (4.2) to both G and G+ . 

A few entries of Tables II and III can be computed using the following special 
case of Curtis, Iwahori and Kilmoyer [8, (2.2) and (9.17)]. 

THEOREM 4.5. (i) The multiplicity to which the character t in (4.2) occurs in l~ is the 

degree of the associated character to. 
(ii) If p is the character of G corresponding to the reflection character (n - 1 11) of 

W(Bn) or W(Dn), then 

n -III = (p, (}[)= ((n - Ill), l~J. 

As an example of the use of (4.5 ii), we will give another proof of the fact that 
«(}'n-,,(n - 1,110)= 2 for groups of type Dn (cf. §3). First, compute 
«(}'n-" (},)= 6 by considering the action of the stabilizer of a (1, n - I)-flag on 
points. Then note that (}'n-' = (}'nn is the character of triples (V" v", V;) with 
Vn n V; an n - I-space on V,. By (4.5 ii), «(}'n-,,(n - 111)= 3. Since 
(), = 1 + (n - Ill) + (n - 1,110), the desired result follows. 

In his thesis [26], Hoefsmit gives formulae for the generic degrees for all irreducible 
representations of the generic ring corresponding to a classical group. These formulae 
require numerous preliminary definitions. 

The index parameters x and y of G are defined by 

x =IB: B n Bs'l, y =IB: B n BSnl. 

The index parameters of a classical group associated with the field GF( q) are powers 
of q and are given explicitly in Curtis, Kantor and Seitz [9, §5]. 

The crux of our discussion concerns groups of type Bn , since groups of type Dn 

correspond to the situation y = 1 and groups of type A n -, correspond to the 
situation y = 0 (Hoefsmit [26, (3.4.12), (3.4.15)]). It is important to note that x > 1 
III every case. 
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Let a be a partition of s and let a also denote the associated Young diagram (cf. 
Kerber [34]). The conjugate partition ii is associated with the diagram obtained from 
a by interchanging the rows and columns of a. The (i, j)-hook of a for a node (i, j) 
of a is At U {(i, j)} U L'0 where At = {nodes (i, t) in a It> j} is the hook's arm 
and L'0 = {nodes (t, j) in a It> j} is the hook's leg. The (i, j) hook length of a is 

h~j =IAfj U L'0 U {(i, j)}1 = (a, - j) + (iij - i) + 1. 

Hook lengths were first introduced by Nakayama [45] in connection with modular 
representations of the symmetric groups. They play an important role in the intricate 
recursion relations that arise in the study of the symmetric groups. 

Let (a;,8) be a partition pair as in §3, where a f- s, ,8 Hn - s). The (i, j)-split hook 
lengths are defined by gij = (ai - j) + (Ii; - i) + 1 for each node (i, j) of a and 
ge = (,8i - j) + (ii) - i) + 1 for each node (i, j) in ,8. (Caution: A split hook 
length may be negative; for example, if (a;,8) = (12; 0) then gi 1 = -1.) Following 
Hoefsmit [26], we define the following rational functions of x and y: 

H,j = x,-aJ(xh~J - 1)/ (x - 1), 

Ga. = 1 +yxg~ 
') , 

Hf; = Xi-~ (Xh~ - 1)/ (x - 1), 

Ge = x-aJ(y-lxg~ + 1), 

and the Poincare polynomial 
n-l 

P(x, y) = IT {(I + x'y}(X,+1 - l)/(x - I)}. 
,=0 

Hoefsmit gives the following formula for the degree d( a 1,8) of the irreducible 
character (a 1,8) of G associated with the Weyl group character (a 1,8) by (4.2). 

d(al,8)=P(x,y)/( II HijG,j IT H~Gf;). (4.6) 
(i,j)Ea (i,j)E/l 

THEOREM 4.7. Suppose (a 1,8) is not 1 = (n I 0) and G has type An' En' Cn, or Dn, 
n ;;. 2. Then p divides d(a 1,8) unless G of type Sp(2n, 2) and (a 1,8) = (n - 1,110), 
(n - 111) or (0 In). In these cases 

and 

d(n - 1,110) = (I + 2n )(2n - 1 - 1), 

d(n - Ill) = (1 + 2n - 1)(2n - 1) 

REMARKS. (1). The first two exceptional cases of (4.7) are the nontrivial irreduc
ible constituents of the 2-transitive permutation representations of Sp(2n, 2). While 
they do not yield exceptional cases for (1.1), they do appear in the characters of the 
imprimitive rank 3 representations of Sp(2n, 2) = U(2n + 1,2) on the cosets of 
U±(2n,2). 
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(2). The case of G of type An in (4.7) is treated in Curtis, Kantor and Seitz [9, 
(5.9)] by a more elementary argument. 

(3). In (4.7), the case of untwisted G of type Bn, en with q> 2, or Dn is due to 
Howlett [27]. 

PROOF. Consider the product 

Here, 

~ (ii) - i) = ~ [ i (ii) - i)] = ~ [ i i] = ~ ( ii) ) , 
(1,)Ea ) 1=1 ) 1=1 ) 2 

and each factor of the form (Xh - l)/(x - 1) is congruent to 1 modulo p. It follows 
from (4.6) that 

(d(o:lf3))p =xL(fl)+(QJ)(P(X, Y)/( II G,~ II G~)), 
(I,) Ea (1,)E{3 p 

where (Q)p denotes the highest power of p dividing Q. Next, observe that 

II G,~ II G~ = II (1 + yxg~J) II (1 + y-lx gQlxL, 
(1,)Ea (1,)E{3 (l.j)Ea (1,)E{3 

where 

Since 

we now have 

(i) Suppose p =1= 2. Then the only way a factor in the denominator can influence 
(d(o: I f3))p is if it has the form 

In this case it contributes a positive power of p. Therefore, 

(d(o: I f3))p;;;' XL(iiJ;iiJ). 

Since x > 1 is a power of p, (d( 0: I 13 ))p = 1 only if ii) + 13) ,,;;; 1 for all j, that is, 
(0: I 13) = (n I 0) or (0 I n). But if (0: I 13) = (0 I n), then g~ = 0 and Gfl = 1 + y-l. 
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Therefore, 

This shows that d(O In) is divisible by p also, unless perhaps y = 1. If y = 1, G is of 
type Dn and (0 In) = (n I 0), by (3.5) and (4.3). 

(ii) Suppose p = 2. Then there is the possibility that a factor in the denominator 

has the form 1 + 1 = 2. Observe that g,~ and gf; are both strictly decreasing 
functions of i (as a, ;;;. ai + I> f3i ;;;. f3i+ I by the definition of a p~rtition of integers). 
Therefore, factors of this troublesome type occur at most (XI + f31 times in (4.8). Set 

x = 2m and Yj = (XJ + Ii;. Then (4.8) yields 

10g2[ (d( a I f3) )2] ;;;. m ( L ( (XJ : Ii; ) ) - (XI - PI 

= ; [ YI ( YI - ( 1 + ~ ) )] + m Jt ( ~ ) . 
Now YJ is an integer so each summand is nonnegative, and the first term is 
non positive only on the interval 0.;;; YI .;;; 1 + 2jm .;;; 3. It follows easily that 
d( a I f3) is divisible by p, except perhaps if 

(a) YI = 3, Y~ .;;; 1 and m = 1, 

(b) YI = 2, Y2 = 2, Y3 .;;; 1 and m = 1, or 
(c) YI = 2, Y2 .;;; 1 and m .;;; 2. 

(d) YI = l. 
Since {Yi} is a nonincreasing sequence of natural numbers (it is the sum of two such 
sequences), the corresponding pairs of partitions are: 

(a) {a, f3} = {(n - 2,1,1); 0}, {(n - 2,1); (1)}, {(n - 2); (1, I)}, 
(b) {a, f3} = {(n - 2,2); 0}, {(n - 2); (2)}, 
(c) {a, f3} = {(n - 1); (1)}. 

(d) {a, f3} = {(n); 0}. 
Direct computation of (4.8) shows that 2 divides d( a I f3) in each case except (c) 

and (d) when m = 1 and x = y = 2. These index parameters are those of Sp(2n, 2) 
(Curtis, Kantor and Seitz [9, Tables 2 and 5]). This completes the proof of (4.7) in 

case G has type Bn or en' 
If G has type An' then (4.6) still holds with y = 0 and f3 ~ 0 (Hoefsmit [26, 3.4.12]), 

and so the above calculation also establishes (4.7) in this case. 
Suppose G has type Dn- Then y = 1 and (a I f3) is irreducible only if a =1= f3 

(Hoefsmit [26, 3.4.15]). Since G ;;;. ~+ (2n, q), G is of index 2 in a subgroup G* of 
ro+ (2n, q) of type Bn' By Clifford's theorem, the irreducible characters of G that 
do not extend to characters of G* are conjugate in G*, and hence have degree a half 

of the expression (4.6). Therefore, the above argument proves (4.7) for G, except 

perhaps for characters of the form (a I a) when y = 1, p = 2 and the right-hand side 
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of (4.8) is not divisible by 4. In this case, split hook lengths are hook lengths and 
hence are positive, and 

4+ (X L6) P(X,l) 2) 
[ II (I + Xg~)] ,2 

(i,})Ea 

contrary to the hypothesis that n ;;:;. 2. This completes the proof of (4.7). 

5. Transitivity in small dimensions. In this long section, we will consider classical 
groups of low rank: those of rank 2 or 3, as well as fO+ (8, q). The goals are a 
number of results concerning subgroups having specific transitivity properties. Most 
of these are closely related to (1.1) or (11.1). However, some are designed for use in 
§6, where arbitrary dimensional situations are reduced, in part, to small dimensional 
ones. 

There are two approaches to the required transitivity results. One is geometric, ad 
hoc, tedious, and very long, but reasonably elementary. The other uses classification 
theorems [14], [43], [44], [61], [64]-[66] which depend upon deep results concerning 
the classification of finite simple groups. We have chosen the latter approach: it 
requires much less space, and at the same time yields somewhat stronger results than 
are essential for our main theorems. 

This section is divided into four subsections: (A) invokes the aforementioned 
classification theorems in order to deal with subgroups of fL(4, q) and fL(S, q); (B) 
uses (A) in order to discuss subgroups of rank 2 classical groups; (C) deals with 
subgroups of rank 3 classical groups; and (D) concerns fO+ (8, q). 

Recall that H(oo) denotes the last term of the derived series of H. Throughout this 
section K(oo) (or H(OO» will be uniquely determined up to conjugacy in f(V), unless 
otherwise stated. Since K(oo) is usually irreducible on V, K/Z(K)K(oo) is a group of 
outer automorphisms of K(OO), and hence can be determined at a glance. 

(A) Subgroups of fL(4, q) and fL(S, q). Throughout this subsection, let 
H.;;; fLeW) = fL(4, q) or fL(S, q). The possibilities for H have been more or less 
determined by Mwene [43], [44], Wagner [61], DiMartino and Wagner [14], ZalesskiI 
[64], [65] and ZalesskiI and Suprunenko [66]. 

THEOREM S.l. Let H be a primitive subgroup of fL(4, q). Then one of the following 
holds. 

(a) H ;;:;. SL(4, q). 
(b) H.;;; fL(4, q') with GF(q') C GF(q). 
(c) H.;;; fL(2, q2), with the latter group embedded naturally. 
(d) H.;;; Z(H)HI' where HI is an extension of a special group of order 26 by Ss or 

S6' Here, q is odd, HI induces a monomial subgroup of 0+ (6, q), and HI is uniquely 
determined up to fL(4, q)-conjugacy. 

(e) H(oo) is Sp(4, q)' or SU(4, ql/2). 
(f) H .;;; fO '" (4, q). 
(g) H(oo) is PSL(2, q) or SL(2, q) (many classes). 
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(h) H(oo) is As. Here, H arises from the natural permutation representation of Ss in 
0(5, q), and p =1= 2,5. 

(i) H(oo) is 2 'A s, 2 ·A6 or 2 ·A7 • These arise from the natural permutation 
representation of S7 in 0(7, q). 

(j) H(oo) = A 7 , and p = 2. 
(k) H(oo) = Sp(4, 3), and q == I (mod 3). This arises from the natural representation 

of the Weyl group W(E6) in 0+ (6, q). 
(1) H(oo) = SL(2,7), and q3 == I (mod 7). Here, H(oo) lies in the group 2 ·A7 

occurring in (i). 
(m) H(oo) = 4 . PSL(3, 4), and q is a power of9. 
(n) H(oo) = Sz(q), and p = 2. 

PROOF. If q is even, see [43], [65]. (It is necessary to sift through the various cases 
examined in these references in the course of proving their main theorems.) 

If q is odd, we will use [44]. (Note that [66] assumes that p > 5.) 
By primitivity, if H has a noncentral abelian normal subgroup then (c) holds. 

Suppose that (c) does not hold, but that H has a noncentral normal subgroup E of 
prime power order. Since dim V = 4, E is a 2-group. We may assume that E/Z(E) 
is elementary abelian, and then (d) follows readily. 

Let M = M/Z(H) be a minimal normal subgroup of H = H/Z(H). We may 
assume that M is a direct product S] X ... X Sk of isomorphic nonabelian simple 

groups s" where S, = S/Z(H). 
If S] is reducible, then (by Clifford's theorem) M preserves a decomposition 

W = T] Ell T2, where T] and T2 are S]-isomorphic 2-spaces. Then S] fixes a 
regulus ~ of q + I lines, which are permuted by NH(S]), Thus, NH(S])";;; fL(4, qh:, 
= fO+ (4, q). If k = 1, then (f) holds. If k> 1, then S] X S2 ,,;;; Q+ (4, q)Z(H), 
from which (f) again follows. 

Finally, suppose that S] is irreducible. Then M = S], and K(oo) is quasi simple. 

This is precisely the situation studied by Mwene [44]. His theorem, and his study of 
the modular representations of covering groups of S], complete the proof. 

For further information concerning (5.lm), see Finkelstein [16], McLaughlin [38] 
and Mwene [44]. 

THEOREM 5.2. Let H be a primitive subgroup of fL(5, q). Then one of the following 
holds. 

(a) H;;;. SL(5, q). 
(b) H,,;;; fL(5, q') with GF(q') C GF(q). 
(c) H,,;;; fL(1, qS). 
(d) H,,;;; Z(H)H], where H] is an extension of an extraspecial group of order 53 by 

SL(2, 5). Here, H] is uniquely determined up to fL(5, q)-conjugacy, and p =1= 5. 
(e) H(oo) = Q(5, q) or SU(5, q]/2). 
(f) H(oo) is PSL(2, q), in the representation afforded by homogeneous polynomials of 

degree 4 in 2 variables. 
(g) H(oo) = Q(5, 3), and q == I (mod 6). 
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(h) H(oo) is A 5 , A6 or A7, and is contained in Q(S, q). Here, p = 7 if H(oo) = A 7. 
These cases arise from the permutation module for PGL(2, S), S6 or S7' 

(i) H(oo) = PSL(2, 11), p =1= 11. This arises from the irreducible complex 
representation of PSL(2, 11) of degree 1(11 - 1). 

(j) H(oo) = M",p = 3 (two classes). 

PROOF. See [61], [65] for q even and [14] for q odd. (Note that [66] assumes that 
p > S.) 

REMARK. The precise fields over which the groups listed in (S.l, 2) can be realized 
are discussed at length in [14], [44], [61]. 

Various transitivity and related results are simple consequences of (S.l, 2). 

COROLLARY S.3. Let H be a subgroup of fL(4, q) of order divisible by a primitive 
divisor r of q 2 + 1. Then one of the following holds. 

(i) H ;;. SL( 4, q). 
(ii) H,,;;; fL(2, q2). 
(iii) H(oo) = Sp(4, q)'. 
(iv) H,,;;; fO- (4, q). 

(v) H = A7 < SL(4, 2). 
(vi) H(oo) = Sz(q). 

(vii) r = S, and one of (S.l d, h, i, j, k, 1, or m) holds. 

PROOF. Clearly, H is primitive, so we only need to sift through the list in (S.l). 
Note that r;;' Sand r =1= 7. If r = S then (vii) can occur. All remaining cases of (S.l) 
are easily checked. 

REMARK S.4. We will use primitive divisors together with (S.l, 2) in other situations. 
It will always be as straightforward to check the lists as it was in (S.3). Another 
example is provided by the next result. 

COROLLARY S.S. If H is a subgroup offL(n, q), n = 4 or S, and if H is transitive on 
points, then one of the following holds. 

(a) H;;. SL(n, q). 
(b) H,,;;; fL(1, qn). 
(c) H,,;;; fL(2, q2) < fL(4, q). 
(d) H(oo) = Sp(4, q)' < fL(4, q). 
(e) H = A 7, inside SL(4, 2). 
(f) H has a normal extraspecial subgroup of order 25, and SII HI, where 

H < GL(4,3). 

PROOF. If n = S, then 1 HI is divisible by a primitive divisor r of q5 - 1. Here, 
r > 11, and it is straightforward to use (S.2). 

If n = 4, then (S.3) applies. The possibilities listed in (S.3 vi) are easily checked. 
(B) Subgroups of rank 2 classical groups. The results in (A) can clearly be used to 

study fSp(4, q), fU(4, q), fU(S, q), fO(S, q) and fO- (6, q). We only need to 
consider the first three of these. fSp(4, q) was handled long ago by Mitchell [41], 
when q is odd. (Partial results for q even were obtained by Flesner [18]; he 
essentially only dealt with the case of subgroups containing transvections.) 
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THEOREM 5.6. Let K ,,;;; fSp( 4, q). Then one of the following holds. 
(i) K(oo) = Sp( 4, q'Y with GF( q') <:;::; GF( q). 
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(ii) K fixes a point, a line, a pair of skew lines, or a pair of perpendicular hyperbolic 

lines. 
(iii) K n Sp(4, q) ,,;;; Sp(2, q2) . 2. 
(iv) K(oo) is SL(2, q'), in its representation afforded by homogeneous polynomials of 

degree 3 in 2 variables, where G F( q') <:;::; GF( q) and p > 3. 
(v) K,,;;; fO ± (4, q), where p = 2. 
(vi) K(oo) = Sz(q), where q > P = 2. 
(vii) K iYlduces a subgroup of fO(5, q) fixing an anisotropic 2-space. 
(viii) K fixes a quintuple of pairwise orthogonal nonsingular points when viewed 

inside fO(5, q), and q is odd. 
(ix) K(oo) is 2 ·A s or2 ·A6 , in the representation obtainedfrom the mod p permutation 

representation of A6 in 0- (6, q). 
(x) K(oo) is 2 ·A 7 , in the representation obtained from the mod 7 permutation 

representation of S7 in 0(7, q). 
HISTORICAL REMARK. The first q > 2 for which this was proved was q = 3. 

Dickson [11] listed all 70 factors of 25920, and then sifted through them, primarily 
using Sylow's theorem and lists of permutation groups of small degree. 

THEOREM 5.7. Let K ,,;;; f U( 4, q). Then one of the following holds. 
(i) K(oo) = SU(4, q') with GF(q') <:;::; GF(q). 

(ii) K fixes a point or line, a nonsingular point or line, a pair of skew lines, a pair of 
perpendicular nonsingular lines, or a quadruple of pairwise perpendicular nonsingular 
points. 

(iii) K induces a subgroup of PfO- (6, q)fixing a nonsingular point or line, a pair of 
perpendicular nonsingular planes, or (when q is odd) a sextuple of pairwise perpendicular 
nonsingular points. 

(iv) K(oo) is 2 ·A 7 or SL(2, 7). Here, K(oo) arises from the permutation representation 

of S7 in 0(7, q). 
(v) K(oo) = Sp(4, 3), and q3 == 1 (mod 7). Here, K(oo) arises from the natural 

representation of W(E6). 
(vi) K(oo) = 4 . PSL(3, 4), and q is a power of 3. 

THEOREM 5.S. Let K,,;;; fU(5, q). Then one of the following holds. 
(i) K(oo) = SU(5, q') with GF(q') <:;::; GF(q). 

(ii) K fixes a point or line, a nonsingular point or line, or a quintuple of pairwise 
perpendicular nons in gular points. 

(iii) K ,,;;; Z( K )fO(5, q), where the 0(5, q) is embedded naturally. 
(iv) K ,,;;; fU(l, qS). 
(v) K,,;;; Z(K)K" where K, is an extension of an extraspcial group of order 53 by 

SL(2, 5), and p =1= 5. 
(vi) H(oo) = 0(5,3), and p > 3. 
(vii) H(oo) is As, A 6 , or A 7 , and is contained in 0(5, q). Moreover, p = 7 if 

H(oo) = A 7 • 

(viii) H(oo) = PSL(2, 11), where p =1= 11. 
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Theorems 5.6-5.8 are almost immediate consequences of the following elementary 
result. 

LEMMA 5.9. Let H be an absolutely irreducible subgroup of GL(W) = GL(n, q). Let 
( , )1 and ( , h be two nonsingular hermitian forms on W (or two nonsingular 
alternating forms on W) preserved by H. Then there is a scalar c such that ( , )1 = 

c(, h. 
PROOF. View H as a group of matrices, and ( , )i as arising from a matrix A,. 

Consider the unitary case. Here, AilhA, = (h-1y for all hE H. Then A2Ail 
centralizes H, and hence is a scalar by Schur's Lemma. 

PROOF OF (5.6)-(5.8). We may assume that K is primitive. Suppose first that 
Ko = K n SL(V) is absolutely irreducible. By (5.9), if a group occurring in (5.1) or 
(5.2) can arise in (5.6), (5.7) or (5.8), then all occurrences are conjugate. The groups 
listed in the latter theorems all occur, for suitable q [44], [14], [60]. Note that neither 
(5.1j) nor (5.2j) can occur: in each case, there is a I-dimensional subspace x such that 
K;/~) does not fix any hyperplane. 

If Ko is not absolutely irreducible, then one of (5.1 c, f) or (5.2 c) holds. Suppose 
that K lies in both fSp(4, q) and fL(l, q4). Then Ko has an irreducible normal 
cyclic r-subgroup for some prime r (cf. (2.18)) By Sylow's theorem, K:S;; fSp(2, q2), 
with the latter group embedded naturally. The same argument applies if K is in 
fU(5, q) n fL(l, qlO), this time producing (5.8 iv). However, the case 
fU(4, q) n fL(l, q8) cannot occur (acting irreducibly), since I SU(4, q) I is not 
divisible by the required prime r. 

This leaves us with the possibility that dim V = 4 and (5.1 f) holds (with q 
replaced by q2 in the unitary case). Then K has a normal subgroup S acting 
irreducibly on some 2-dimensional subspace T. By primitivity, T has at least 3 
images under K, all of which must be S-isomorphic. 

If T is a line, then (5.6 vii) or (5.7 iii) holds. (For, S fixes at least 3 points of the 
corresponding 5- or 6-dimensional orthogonal space.) 

If T is nonsingular, then T.l. is also S-invariant. Moreover, T and T.l. are 
S-isomorphic. This uniquely determines S up to conjugacy. Then S fixes a nonsingu
lar plane of the corresponding 0(5, q) or 0- (6, q) space. Consequently, (5.6 vii) or 
(5.7 iii) holds for K. This completes the proof of (5.6)-(5.8). 

The remainder of this subsection parallels (5 A): primitive divisors will be used in 
order to. deduce transitivity properties. 

LEMMA 5.10. Let K:S;; fU(4, q), and assume that I KI is divisible by a primitive 
divisor r of q 2 + 1. Then one of the following holds. 

(i) K has a normal Sylow r-subgroup, and fixes a hyperbolic line when viewed inside 
fO-(6, q). 

(ii) K fixes aline. 
(iii) K(oo) = SU(4, q). 
(iv) K(oo) = Sp(4, q)'. 
(v) K(oo) = Sp(2, q2). 
(vi) K(oo) = 0- (4, q). 
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(vii) K(oo) = Sz( q). 

(viii) K(oo) = 4 . PSL(3, 4), and q is a power of 3. 

(ix) r = 5, and either K(oo) is A5 (with q odd), 2 ·A5, 2 ·A6, 2 ·A7 or Sp(4, 3), or 

K n SU(4, q) induces a monomial group inside 0- (6, q). 

PROOF. Check the lists in (5.6) and (5.7) (using Dickson [12, Chapter 12] in order 
to deal with subgroups in the cases (5.6 iii, v)). 

LEMMA 5.11. If K~rU(5,q), and if IK/Kn Z(rU(5,q))1 is divisible by both 
q2 + 1 and q3 + 1, then either 

(i) K;;;. SU(5, q), 

(ii) K I> zi )<J A 5 , acting monomially inside rU(5, 2), 
(iii) K(oo) = SU(4, q), 

(iv) K(oo) is A5, A6 or E )<J A 5, with E extraspecial of order 32, where K < rU(5, 2) 

and K fixes a nonsingular point, or 
(v) K(oo) = 4 . PSL(3, 4), inside rU(5, 3). 

PROOF. Assume that (i) does not hold. If q3 + 1 has a primitive divisor, then K 

fixes a nonsingular point by (5.8), and hence (5.10) applies. If no primitive divisor 

exists, then q = 2 by (2.18). Thus, I K I is divisible by 45. If (ii) does not hold, then K 
fixes a nonsingular point by (5.8), and hence K ~ (Z3 X GU( 4,2)) . 2. The subgroups 

of rU(4, 2) of order divisible by 15 give rise to the examples in (iv). 

COROLLARY 5.12. Let K ~ rSp(4, q), rU(4, q) or rU(5, q). If K is transitive on 

points or lines, then one of the following holds. 
(i) K(oo) = Chev(V)'. 

(ii) K(oo) = Sp(2, q2), inside rSp(4, q). 

(iii) K(oo) = SL(2, 5) < Sp(2, 32 ), inside rSp(4, 3). 

(iv) K(oo) = g- (4, q), inside rSp(4, q) with q even. 

(v) K(oo) = SU(3, q), inside rU(4, q). 

(vi) K E:': SU(3, 2)", inside rU(4, 2) (and K fixes a nonsingular point). 

(vii) K has a normal monomial subgroup zj )<J A 4 , and K < rU(4,2). 

(viii) K(oo) = PSL(3, 2), inside rU(4, 3) (and Kfixes a nonsingular point). 

(ix) K(oo) = 3 ·A7 , inside rU(4, 5) (and Kfixes a nonsingular point). 

(x) K ~ E ~ Z5' where E is extraspecial of order 25, E ~ 02(K), K < rSp(4, 3), 

and K acts monomially within rO(5, 3). 
(xi) K(oo) = 4 ·PSL(3,4), inside rU(4,3). 

PROOF. If K ~ rSp( 4, q), then (q + 1)( q2 + 1) II K I. Thus, (5.10) applies by 
(2.18). All possibilities are easily checked (although some computation is required in 

the monomial case of (5.10 ix)). 
Let K ~ rU(4, q). If K is point-transitive, then (q2 + 1)(q3 + 1) II KI, and (5.10) 

again applies. If K is line-transitive, then (q + 1)( q3 + 1) II K I . As in the proof of 
(5.11), if q > 2 then a primitive divisor of q3 + 1 can be used: if K is irreducible then 

(i) or (xi) holds. For any q, (2.8) can be applied in case K fixes a nonsingular point. 
Finally, if q = 2 then PSU(4, 2) ~ PSp(4, 3) and (q + I)(q3 + 1) = 27, so that (5.6) 

and our transitivity lead to (vi) or (vii). 
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If K ~ rU(5, q), then qS + 111 K I. By (2.18) and (5.8), only (i) can occur. 
DEFINITION. K is an (a, b, c)-group if it has a point-orbits, b line-orbits and c 

flag - orbits. The next two results contain complete determinations of all 
(a, b, c)-groups for some triples (a, b, c) of special importance later. 

COROLLARY 5.13. Let K ~ rSp(4, q), rU(4, q) or rU(5, q), and let (a, b, c) be one 
of the triples (1,2,2), (1,2, 3), (2, 1, 2) or (2, 1, 3). If K is an (a, b, c)-group, then one of 
the following holds. 

(1,2, 2)i K(oo) = Sp(2, q2), inside rSp(4, q). 

(1,2, 2)ii KjZ(K) = zi ~ D, where D is dihedral of order 10, K < rSp(4, 3), and 
K acts monomially within rO(5, 3) with respect to an orthonormal basis. 

(1,2, 2)iii Kj( -I) = Ss, As X Z2 or Ss X Z2' K < rSp(4, 3), and K acts monomially 
within rO(5, 3) with respect to an orthonormal basis. 

(1,2, 2)iv K(oo) = 4 . PSL(3, 4), inside rU(4, 3). 

(1,2,3) There are no (1,2, 3)-groups. 
(2,1, 2)i K(oo) = [2- (4, q), with q even, inside rSp(4, q). 
(2,1, 2)ii K(oo) = SU(3, q), inside rU(4, q). 

(2,1,2)iii K < rU(4, 2), and either K r> zj ~ A4 with the latter group monomial 
with respect to an orthonormal basis, or K fixes a nonsingular point and 
K r> SU(3, 2)" ~ Z8. 

(2,1,3) There are no (2, 1, 3)-groups. 

PROOF. This i~ a consequence of (5.12) and some straightforward computations. 

LEMMA 5.14. Let K ~ rSp(4, q), rU(4, q) or rU(5, q). If K is a (2,2, 3)-group, then 
one of the following holds. 

(i) K(oo) = Sp(4, q'), inside rU(4, q). 

(ii) K(oo) = SL(2, q) X SL(2, q), K fixes a pair of perpendicular hyperbolic lines, 
and K < rSp(4, q). 

(iii) K r> [2+ (4, q), inside rSp(4, q) with q even. 
(iv) K < Sp( 4,2), K behaves as in (ii), and 1811 K I . 
(v) K < rSp(4, 3), K behaves as in (ii), and K r> SL(2,3), X SL(2,3)'. 
(vi) KjZ(K) r> zi ~ A 4 , where K < rSp(4, 3) and K acts monomially inside 

rO(5, 3) with respect to an orthonormal basis. 
(vii) KjZ(K) r> zi ~ PSL(2, 5) or zi ~ A 6 , where K < rU(4, 3) and K acts 

monomially inside ro- (6, 3) with respect to an orthonormal basis. 
(viii) K(oo) = zi ~ As, where the latter group acts monomially inside rU(5, 2) with 

respect to an orthonormal basis. 
(ix) K(oo) = SU(4, q), inside rU(5, q). 

PROOF. There is a point x and a line L such that both K:.L Ix and Kt are transitive 
on points. 

Suppose first that K ~ rU(5, q), but that (viii) does not hold. Then (5.11) applies, 
so that K fixes a nonsingular point b. Clearly, K must be transitive on the points of 
b~ , as well as on the q3( q4 - 1) points not in b~ . Thus, only (5.11 ii or iii) can 

occur. 
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Next, suppose that K.;;; fU(4, q). This time, I K I is divisible by both q + I and 
q2 + 1, and (5.10) applies. (5.10 i-vii) are easily handled. Consider (5.10 ix). The 
first four cases lie in fSp(4, q), but are not transitive on points there (cf. (5.12». If 
K(oo) = Sp(4, 3) then q;;;. 7, and hence q2 + 1 tiKI. 

Finally, suppose that K.;;; fSp( 4, q). Then q + 1 II K I . Consider the possibilities 
listed in (5.6). We may assume that K is primitive. This takes care of (5.6 ii), llnd 
(5.6 iii) is easily eliminated. In (5.6 iv, vii and ix) there are more than 2 point-orbits, 
while in (5.6 vi) there are 4 flag-orbits. 

If K t> 0+ (4, q), and if K has an element interchanging the two normal subgroups 
SL(2, q) of 0+ (4, q), then K has the desired orbit structure. Similarly, this and (v) 
are the, only possibilities arising from (5.6 v). 

Finally, in (5.6 viii) it is again straightforward to check the orbit structure. 
(C) Rank n = 3. We now turn to spaces Vof rank n = 3. The only interesting 

result is (5.19), which characterizes both the groups Giq) and (for q = 2 or 8) the 
groups fL(2, q3). 

The case of Vof type 0+ (6, q) is especially easy, and will usually be ignored in 
view of the following result. 

LEMMA 5.15. A point-transitive subgroup off 0+ (6, q) either contains 0+ (6, q) or is 
A7 or S7 inside 0+ (6,2). 

PROOF. (5.1) (but compare (10.2». 
REMARK. The next two results concern groups K which are transitive on points 

and planes:The numbers of points, lines and planes are given in §6, Table IV. By 
(2.12), if Vis not unitary then Kis (1,3)-transitive. 

LEMMA 5.16. If n = 3, then f(V) has no subgroup transitive on points and planes 
and having 2 orbits on lines and (1, 3)-flags, and 3 orbits on (1, 2)-flags. 

PROOF. Let K be such a subgroup. As just noted, V must be unitary. By 
hypothesis, there is a line L such that K f is transitive. An element of K L of order a 
primitive divisor of q2 + 1 (cf. (2.18» will fix each plane E ::J L. On the other hand, 
q2 + q + 111 Kff I by (2.12). By Mitchell [40) and Hartley [22), Kff;;;. SL(3, q2), 
whereas K is not (1, 3)-tra.I).sitive. 

THEOREM 5.17. If n = 3, and if K is a subgroup of f(V) which is transitive on 
points, lines and planes. then K;;;. Chev(V) (or K is A7 or S7 inside 0+ (6,2». 

PROOF. By (2.6), we may assume that K is not flag-transitive. Also, we may assume 
that K = OP'(K). Let E be a plane and x a point of E. Set K* = K;.L Ix. We will 
consider the various possibilities for V separately. 

Case K < fSp(6, q) or fO(7, q). Since K* is line-transitive but not flag-transitive, 
(5.12) can be applied: K < fO(7, q), and either K* fixes a nonsingular 4-space For 

q = 3 and K* !> z1 >4 Z5' 
Also, Kff is point-transitive but not flag-transitive. By (2.7), if I K;£x I is divisible 

by q then q = 3 and q2 cannot divide this order. Thus, if F exists then K*F ~ 
0- (4, q). 
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Consequently, q = 3, and either K*(oo) = As or K* [> zi ><t ZS' If K* [> zi ><I Zs, 
there is an involution t E CK(x) such that [V, t] has type Q+ (4, 3); then t fixes a 
plane and acts non trivially on it, and this contradicts the known behavior of K ff. 
Thus, K*(oo) = As. Let A < Kx, where 1 AX.l /x 1 = 4, A < K(oo), and A is a 2-group. 

Then 311 NK(A)x I, and A centralizes x. Let T E SyI3NK(A)x' Then AT centralizes 
nonsingular 2-spaces of both V and x-1 Ix. Consequently, T centralizes y-1IY for 
some point y. There is a plane E' on y not centralized by T. Then T E' contains a 
transvection, and we again obtain a contradiction. 

Case K < ro- (8, q). Since K* is line-transitive but not flag-transitive, it cannot 
be point-transitive by (5.12). 

Let r be a primitive divisor of q2 + 1 (cf. (2.18)). Let R E SylrK, and set 
W = Cv(R) and N = NK(R). Then Whas type Q+ (4, q), and N W is point-transitive 
by Sylow's theorem. Thus, Nf: is point-transitive for each line Lew. Now K is 
(1, 2)-transitive, and hence K* is point-transitive. 

Case K < rU( 6, q). By (2.12), each line-orbit of K i has length divisible by 
(q6 - 1)/(q2 - l)d (where d = (q + 1,3)), while each line-orbit of K* has length 
divisible by q3 + 1. Exclude for the moment the possibility that q = 2 and K* is 
monomial but irreducible. By (5.7) and (2.8), K* fixes a nonsingular point, and 
K* [> SU(3, q), 3 ·A7, PSL(3,2) or SU(3,2)". In the first two cases, q2 or 5 divides 
1 K;E I, and we find that Ki is flag-transitive. 

Assume that K*(oo) = PSL(3,2). By (2.14 iii), Kx has a subgroup S = PSL(3,2) 

such that dim C v($) = 3. An element of S of order 3 fixes a point y E [V, S] and 
induces a transvection ony-1 Iy. This contradict~ the known action of K*. 

This leaves us with the case q = 2. Note that K = 02'(K) .;;;; GU(6, 2). Let 
R E SyI7K. Then R fixes exactly 2 planes. Since 1 CGU(6,2)(R) 1 is odd, there is an 
involution j E NK(R) interchanging these planes. If v is a vector in one of these 
planes, then (v + vi, v + vi) = O. Thus, Cv(J) is a plane, which we may assume is 
E. Set P = CK(E). In view of the known action of K*, px.l/x lies inside of a 
dihedral group of order 8. On the other hand, a Sylow 7-subgroup R] of KE acts 
fixed-point freely on P. If 1 P 1 = 8, then all nontrivial elements of Pare R]-conjugate 
to j, and hence P acts faithfully on x-1 Ix. Thus, we must have 1 PI> 8, and hence 
1 P I;:;. 64. If x =1= Y E X R1 , it follows that Cp(x-1 Ix) n Cp(y-1IY) contains an 
involution i. Thus, dim C v(i) ;:;. 5, which is clearly impossible. 

Case K < rU(7, q). By (2.12), each point-orbit of K* has length divisible by 
qS + 1. By (5.8), K* .;;;; rU(1, qS). The latter group has order (qS + l)lOe, where 
q = pe, and it contains all scalars in rU(5, q). Thus, qS + 1 must be a divisor of 
(qS + l)lOel(q + 1). This is only possible if q is 9 or 4. However, rU(1, 95 ) has a 
point-orbit of length (9 5 + 1)/2. Thus, q = 4. Since K = 02'(K), 1 K* 1= (45 + 1)5. 
By (2.1), 1 Kx 1 is odd. If R E SyI7K, then R fixes 2 planes, and hence 1 NK(R) 1 is 
even; but then so is 1 K xl. This contradiction completes the proof of (5.17). 

LEMMA 5.18. If n = 3, then r(V) has no subgroup which is (1, 2)-transitive and has 2 

orbits of planes, (1, 3)-flags and flags. 

PROOF. Let K be such a subgroup. Let E be a plane, let x E E, and consider both 
Ki and K* = K;.l/x. Since Ki is flag-transitive, it contains SL(E), except perhaps 
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if q = 2 or 8 (by (2.7». On the other hand, K* is a (1,2, 2)-group, so that (5.13) 
applies. Use of K;£x eliminates (1,2,2)u. In every other case in (5.13), there is a 
plane E such that p II (K;)E/x I, and then Ki ~ SL(E). 

Thus, K;E ~ A )<J SL(2, q), where I A 1= q2. Since K* is irreducible, (2.1) shows 
that K* must also contain a section A )<J SL(2, q). By (5.13), either K* [> Sp(2,22) 
or K* [> zj )<J A 4 , where K < rSp(6, 2) or ro- (8, 2), respectively. In either case, 
the existence of an S4 section in K* forces I (K;)E/x I to be even for every plane E 
on x. But then K; has an S4 section for every E (as above), and this is not the case. 

THEOREM 5.19. Let n = 3, and let K be a point-transitive subgroup of reV) having 2 
orbits of lines, planes and (1, 2)-flags, 3 of (1, 3)- and (2, 3)-flags, and 4 of flags. Then 

either 
(i) K [> G2( q)', embedded naturally in rO(7, q) or (if q is even) in rSp(6, q); or 
(ii) K [> rSp(2, q3), q = 2 or 8, embedded naturally in rSp(6, q) (or rO(7, q». 

PROOF. We will proceed in several steps. 
(I) There are planes E and F such that Ki is point-transitive while K;; has 2 

point-orbits Q, Q' and 2 line-orbits. Each line meeting both Q and Q' produces 2 
flag-orbits. Hence, K;; has 3 flag-orbits, K i is flag-transitive. 

By (2.7), Ki ~ SL(3, q) except, perhaps, if q = 2 or 8 and Ki has order 
(q2 + q + l)(q + 1). 

Let x be a point. By hypothesis, K* = Kt/x is a (2, 3, 4)-group. 
(II) For each line L, K Z is transitive. Suppose that V is unitary. Let r be a 

primitive divisor of q2 + 1 (cf. (2.18». An element of order r in KL centralizes 
L -1 I L. Thus, if L c F then r II K ZF I . Then K;; is line-transitive by Sylow's theorem. 
Thus, V is not unitary. 

Suppose that q =1= 2, K < rO(7, q) or ro- (8, q), and Ki ~ SL(3, q). Then 
CK (E-1 IE)E ~ SL(3, q). By (2.14), KE has a subgroup H inducing SL(3, q) on 
VI E-1 and such that VIE has an H-complement WI E to VI E-1 . Here, W has type 
Q+ (6, q). Passing to SL(4, q) and again applying (2.14), we find that H may even be 
assumed to fix a second plane of W. Now H contains long root groups, and (2.4) 
applies. Only (2.4 ii) can occur. 

(III) Since F contains representatives from both line-orbits, there is a line L 
contained only in planes from F K , and having K L transitive on these planes. We may 
assume that L C F, and that E n F = M is a line. Note that K M is intransitive on 
M-1IM . 

Suppose that K < ro- (8, q), where q = 2 or 8. Since q2 + 111 KL I, if D E SyisK 
then D =1= 1 and Cv(D) has type Q+ (4, q). Then NK(D) is point-transitive on 
Cv(D), and hence (q + 1)211 NK(D) I. Since I D 1= 5, (q + I? II CK(D) I· It follows 
that C K( D) has an element r of order 3 such that C v( r) has type Q + (6, q). 

Let R be a 3-group maximal with respect to centralizing a line. Set W = C v( R), 
N = NK(R) and C = CN (W-1). Then Nf,' is transitive for each line L' C W (by the 
Frattini argument). Also, Whas type Q+ (6, q). (If Whad type Q+ (4, q) or Q- (6, q) 
then RW~ would fix a point.) By (5.1), N W ~ Q+ (6, q) or A 7 . Thus, C W ~ Q+ (6, q) 

or A7. By (2.4), C W ~ A7 and q = 2. 
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There is a nonsingular vector wE W such that Cw ;;;' A 6 • Let 0 =1= v E W.L, and 
set y = (v + w). Then K("/Y contains a subgroup A6 fixing a nonsingular vector. 
Since K* is a (2, 3, 4)-group, this is impossible. 

(IV) From now on, we will assume that r < rSp(6, q), where q is odd, 2 or 8. 
Suppose that q is odd. There is an involution t E KME inducing -Ion M. We may 

assume that -1 E K. Let R E SyI2CK(M), and define W, Nand C as above. Then 
dim W = 4, so R cannot be properly contained in a larger 2-group centralizing a 
line. Note that N!J;;;. GL(2, q), while NF is transitive for any line L' C Wand N W 

has at most 2 line-orbits. By (5.12), C W is transitive on points. This contradicts the 
intransitivity' of K*. 

(V) Thus, q = 2 or 8. 
Next, suppose that K* has an element of order 3 centralizing a point. Let R be a 

3-group maximal with respect to centralizing a line, define W, Nand C as above, 
and again find that C W is point-transitive. Thus, K* has no such element. 

However, K* is a (2,3, 4)-group. By (5.6), K* fixes a line. Thus, Kx fixes a unique 
plane F(x) on x. 

We must distinguish between the cases F(x) E EK and F(x) E FK. 

(VI) If F(x) E E K, note that F(x g) = F(x)g = F(x) whenever g E KF(x). Thus, 
I EK I = q3 + 1. The cosets of the members of EK form an affine translation plane & 
(Dembowski [10, p. 133)). 

Since K* is transitive on the q3 lines opposite F( x) I x, & is desarguesian and 
K .;;; r L(2, q3) [to, pp. 130-131). Since I K I is divisible by 

q3(q + 1) . (q6 - 1)1 (q - 1), 

it follows that K;;;. rL(2, q3). 

(VII) Now suppose that F(x) E FK. Note that Kx is tranSItIve on the lines 
of F(x) through x. If L' is such a line, then I L'K I = I x K I (q + 1)/(q + 1) = 
(q6 - 1)/(q - 1). The points of V, together with L'K, form a generalized hexagon 
with parameters q, q. (For, K* has just 2 point-orbits, so all lines in L'K through x lie 
in F(x). If XI' ... ,x5 are distinct points such that (Xi' xH I) E L'K for all i (mod 5), 
then all x, are perpendicular since, for example, (XI' x 2 ), (XI' x 3) C F(x l ); thus, all 
F(x , ) coincide, which is absurd. Thus, there are no triangles, quadrangles or 
pentagons, and a count shows that we have a generalized hexagon.) By Yanushka 
[63, (1.1»), this is the G2(q) hexagon. 

Since K has just 2 plane-orbits, I EK I = q3(q3 + 1). Then I K I = q3(q3 + 1) I KE I. 
If q = 2 then K contains a Sylow 3-subgroup of Gi2)' ~ PSU(3, 3), and hence 
K I> Gi2)'. 

Finally, if q = 8 then we may assume that K does not contain any nontrivial 
scalars, and hence that I K I = 83(83 + 1)(82 + 8 + 1)(8 + 1). Set H = K n Gi8). 

Then I HI = I K 1/3 (since Ki of GL(3,8». 
G2(8) has a class of 83(83 - 1) subgroups S ~ SU(3, 8). Choose S so that S n H 

contains a Sylow 3-subgroup of H. Note that IS n HI;;;.I H 1/8\83 - 1) = 
(83 + 1)3/7> 2(8 + 1)2. Then S n H = S by Hartley [22), and (2.4) yields the 
desired contradiction in this case. This completes the proof of (5.19). 
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REMARK 5.20. (i) In its natural embedding in fSp(6, q) with q = 2 or 8, the group 
K = fL(2, q) = fSp(2, q) actually satisfies the hypotheses of (5.19). Indeed, K 
produces a partition EK as in (VII), consisting of planes since isotropic I-spaces over 
GF(q3) have dimension 3 over GF(q). Also, I KE I = q3(q3 - l)(q + 1) and 
I K: 1= (q3 - 1)( q + 1), where K: is flag-transitive. Let K* be the group induced 
by Kx on x-L Ix. Certainly K* stabilizes Elx, and permutes its points transitively. 
Since 02(Kx) is transitive on EK - {E}, K* is transitive on the lines missing Elx. A 
subgroup of K* of order q + 1 fixes a line missing E I x and acts transitively on that 
line. Thus, K* has 2 orbits on points, 3 on lines and 4 on flags. Then K has just 2 
line-orbits. Finally, if a plane meets E in a line, it meets each other plane in EK in at 
most one point, so K has 2 plane-orbits. 

However, the permutation representation of fSp(6, q) on the set X of cosets of 
fL(2, q3) does not have rank 3. For, if it did, the permutation character would be 
1 + X + t with X = (112), by Table II of §3. However, I X I -1 - X(l) does not 
divide I fSp(6, q) I· 

(ii) The groups K = Giq)' also satisfy the hypotheses of (5.19), since Kx behaves 
as indicated in (VII). 

It is known that Sp(6, 2) has rank 3 on its class of subgroups Gi2) (Frame [19), 
Edge [15)). In view of (1.1), we must consider the rank for other values of q as well. 

The group g(7, q) has 2 classes of subgroups Giq), which are all in a single class 
under fO(7, q). These can be viewed as follows. Consider g+ (8, q), with underlying 
vector space V. There is a subgroup G of g + (8, q) such that - 1 E G, 
G I (-1) ~ g(7, q), and G* = (G I (-1) r fixes a nonsingular point b, where 7" is a 
triality automorphism of pg+ (8, q). Since G* is transitive on each class of 4-spaces, 
G is point-transitive. Moreover, G* n G*T- 1 = CG*( 7") = Gi q). Note that b can be 
chosen to be in any g+ (8, q)-orbit of nonsingular points of V. There are (2, q - 1) 
such orbits, conjugate in Nro+(s,qi G). Checking orders, we find that G is transitive 
on each class X of nonsingular points of V. 

If b, c E X, b =1= c, then (b, c) may be anisotropic or contain a unique singular 
point; it can also contain 2 singular points if q> 3. Thus, if q> 3 then G cannot 
have rank 3 on X. 

Suppose that q = 3. If (b, c) is anisotropic, then Gbc = SU(3, 3) ·2. If (b, c) 
contains a singular point r, then Gbr is a parabolic subgroup of Gb = G2(3), has an 
element inverting r, and hence acts nontrivially on (b, c). Since Gb is transitive on 
the points of b-L, it is transitive on {c E X I (b, c) is an anisotropic 2-space}. 
Consequently, G has rank 3 on X. (Of course, the case q = 2 can be handled 
similarly.) 

(D) Subgroups of fO+ (8, q). The case of fO+ (8, q) is somewhat similar to the 
rank 3 cases already considered. The only interesting result is (5.22), which deals 
with W(Es)'. We begin with an analogue of (5.15). 

LEMMA 5.21. If K is a subgroup of fO+ (8, q) which is transitive on both points and 

lines, then K ~ g+ (8, q). 
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PROOF. By (2.12), K;.L Ix is either point-transitive or has 2 point-orbits of length 
-i-(q2 + 1)(q2 + q + 1). By (5.1), Kx is flag-transitive, and hence (2.6) applies. 

PROPOSITION 5.22. Let K < ro+ (8, q), and assume that K stabilizes each class of 

4-spaces, is transitive on each class of (1, 4)-flags, has 2 orbits of lines, (1, 2)-flags, and 

each class of (2,4)-, (1,2,4)- and (1, 3)-flags, and has 3 orbits of flags. Then K is 
W(Eg )" embedded naturally in g+ (8, 3). 

PROOF. Set K* = K;.Llx, A(x) = CK(x) n CK(x-L jx) and V(x) = [V, A(x)). By 
hypothesis, K* is transitive on each class of planes, and has 2 orbits of points, lines 
and (1,3)-flags and 3 orbits of flags. By (5.l), K*(oo) = g- (4, q) or g(5, q)', 

embedded naturally in g+ (6, q). 
Case K*(oo) = g- (4, q). Let F be a 4-space. By (5.1), (K:)(oo) = Sp(4, q)' or 

SL(2, q2). Computing I K I using points or a class of 4-spaces, we find that 
(K:)(oo) = SL(2, q2). 

Suppose that A(x) =1= l. By (2.1, 4), V(x)jx is anisotropic. If x E F then 
F lZ V(x)-L . Thus, A(xt is nontrivial and contains transvections, which is not the 
case. 

Consequently, A(x) = 1 and K!oo) ~ g- (4, q). If q =1= 3, then K!oo) centralizes a 
4-dimensional space, by (2.14); but then A(y) =1= 1 for some point y. 

Thus, q = 3 and dim W(x) = 3, where W(x) = Cv(K!oo)). Here, W(x)jx is 
anisotropic. 

Let f E Kx have order 5. Then dim CvU) = 4, and f centralizes W(y) for each 
y E CvU). Thus, T = W(x) n W(y) is an anisotropic 2-space if y E CvU) but 
y =1= x. Then H = (K!oo), K;OO) acts on T-L. By (5.7), H is 2 ·PSL(3, 4). Set 
(j)= Z(H). 

Let T, be a second anisotropic 2-space in W( x), and let YI denote the point other 
than x in Tt nCvU). This produces a second group 2 ·PSL(3,4), and a second 
involution il. Both i and il invert W(x)-L, and both centralize W(x)jx. Hence 
iii E A(x) = 1, and K*(oo) cannot be g- (4, q). 

Case K*(oo) = g(5, q)'. If q > 3, then (2.14) applies: Kx has a subgroup g(5, q) 
centralizing a 3-dimensional subspace. Then (2.4) yields a contradiction. 

Suppose that q = 3. Then K!oo) has a subgroup J = zi >4 As, where 
dimCv(OiJ)) = 3. Thus, dimCv(J) = 3, and J acts monomially on [V, J). In 
particular, A(y) =1= 1 for some y, so that I A(y) 1=3 and dim V(y) = 2 by (2.1, 4) 
and the action of K*. Moreover, there are pointsy, z E [V, J) such that V(y) n V(z) 

is a nonsingular point b. 
Since K;OO) centralizes V(y)jy, it centralizes V(y). Then K b ;" (K;ool, K~oo), 

where K;OO) =1= K~oo) (as otherwise K;oo) would act on the nonsingular 3-space 
(b, y, z), in which case I A(y) I would be at least 33 ). By (2.16), Kf;.. W(E7),. 

Note that A(y) moves b to another nonsingular point c in V(y). Then 
Kt;.. W(E7)'. Moreover, (K;OO))b.L lies in a unique subgroup W(E7)' (see the proof 
of (2.16), Case 8); a similar statement holds for (K~OO)y.L. Thus, (K~oo), K~oo) is 
contained in a group W(Eg)" and hence is W(Eg),. Also, bK contains all "roots" for 
the latter group. Consequently, K = W(Eg)" as desired. 
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Finally, if q = 2 then K* > [2- (4, 2). By (2.l4), Kx has a subgroup [2- (4, 2) 
centralizing a 4-dimensional subspace. This time, I A( x) I:;;" 4 in view of the action of 
this [2- (4, 2), and (2.1, 4) yield a contradiction. 

LEMMA 5.23. ro+ (8, q) has no subgroup stabilizing each class of 4-spaces, transitive 

on points and each class of 4-spaces, and having 2 orbits on lines, planes and each class 
of (1, 4)-flags, 3 orbits on (1,2)-flags and each class of (2, 4)-flags, 5 orbits on (1,3)
and (2, 3)-flags and each class of (1, 2, 4)-flags, and 9 orbits of flags. 

PROOF. Let K be such a group. Let F be a 4-space, and set H = K;. Then H has 2 
point-orbits, 3 line-orbits, 5 orbits of (1,2)-flags and 9 flag-orbits. Corresponding 
statements hold for K* = K;"- Ix. (In fact, our hypotheses are invariant under 
triality.) 

First consider the possibility that H(oo) = [2- (4, q) ~ K*(oo). If q is odd, then 
K*(oo) is [2(3, q2), in its natural embedding into [2+ (6, q). By (2.1), (2.4) and (2.14), 
K;oo) centralizes a hyperbolicline. If P E Sylp(Kx n [2+ (8, q)), then dim Cv(P) = 4, 
dimrad Cv(P) = 2, and NK(P) cannot be transitive on the fixed points of P. 

If q is even, then K*(oo) fixes a nonsingular I-space b, and induces at least 
SL(2, q2) on bJ... lb. By (2.1) and (2.4), A(x) = CK(x) n CK(xJ... Ix) has order at 
most q. Let x =1= y E Cv(A(x)). Then A(xV"-IY lies inside an SL(2, q2), and hence 
has order 1 or at least q2. Consequently, A(x) = 1. By (2.14), H1(K*(oo), xJ... Ix) = O. 
Thus, K;oo) again centralizes a hyperbolic line, and we obtain the same contradiction 
as before. 

It remains for us to show that there are no possibilities for H(oo) other than 
[2- (4, q). This involves checking all the possibilities in (5.1). Most are eliminated by 
the following facts. 

H has 2 point-orbits. 
There is a line L C F such that Hi is transitive. 
There is a plane E such that Hi fixes a point, a line, or (if q = 4) a hyperoval; 

moreover, Hi contains either an elementary abelian group of order q2 or A6. (For, 
let EH and E'H be the plane-orbits of H, where Hi has fewer point-orbits than Hf. 
If Hi has 2 point-orbits, then it has at least 3 flag-orbits; by (2.7 iii), Hf has at least 
6 flag-orbits, and hence Hi behaves as desired. If Hi is transitive let [21' [22' [23' [24 
be the point-orbits of Hi:. If no line of E' meets all orbits [2;, then joining the [2; in 
pairs accounts for at least 9 flag-orbits, and leaves Hi with none. Thus, some line 
meets [2;, and accounts for 4 flag-orbits. This leaves only 4 flag-orbits for the 
remaining 3 line-orbits of Kf, and (2.7 iv) yields a contradiction.) 

Applying (5.1) we find only one situation requiring further comment: that in 
which H fixes a line L. Here, H is transitive on L, on the q2( q + 1) points y tf. L, on 
the q(q + 1)2 lines meeting L in a point, and on the q4 lines skew to L. As in (2.12), 
Hy has just 2 orbits of lines on y. The same holds for Hx' x E L. Then H has only 4 
orbits of (1, 2)-flags, and this situation cannot occur. 

LEMMA 5.24. ro+ (8, q) has no subgroup stabilizing each class of 4-spaces and 

having 2 orbits on points and each class of 4-spaces, 4 orbits on planes and each type of 

(1,4)-flags, 5 orbits on (1, 2)-flags and each type of (2, 4)-flags, 7 orbits on (1, 3)-flags 

and each type of (1, 2, 4)-flags, and 10 orbits of flags. 
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PROOF. Let K be such a subgroup. As in the proof of (5.23), if E is a plane such 
that Kff has i orbits of points and lines, then Kff has at least 2i - 1 flag-orbits. The 
only partitions of 7 with 4 parts are 

7=4+1+1+1=3+2+1+1=2+2+2+1. 
Since there are only 10 flag-orbits, it follows that Kff is flag-transitive for some plane 

E. 
Let F be a 4-space containing E. By (2.15), K: contains SL(4, q) or A 7 , or else 

fixes a point or a plane. 
If K: contains SL(4, q) or A 7 , let T denote a triality automorphism of PQ+ (8, q). 

Then (2.l6) applies to (KjZ(K))'; but then K either fixes F or contains Q+ (8, q) or 
A 9 , and hence cannot satisfy the required orbit conditions. 

Thus, K: fixes a point or a plane. If K: fixes both a point and a plane, then it has 
at least 10 flag-orbits, which is impossible. Thus, K: has 2 orbits of points and lines, 
and 3 orbits of (1, 2)-flags. 

Let F' E F"'+(8,q) - FK. Then K:: has 2 orbits of points, lines and (I,2)-flags. 
Then KIF' is transitive for each line L of F', and hence K:: has only one point-orbit, 
which is not the case. 

LEMMA 5.25. ro+ (8, q) has no point-transitive subgroup having 2 plane-orbits and 3 
orbits of (1,3)- and (1, 4)-flags. 

PROOF. Let K be such a subgroup. There is a plane E such that K ff is transitive. By 
(2.7), if F is a 4-space containing E then KffF is still transitive, as is K;E for some 
point x of F. By·(2.15), Kt/x fixes a plane or a pair of planes. In either case K;"-/x 
has more than 3 plane-orbits, contrary to hypothesis. 

6. Subspace transitivity. For rank n ;;. 4, our study of highly transitive subgroups 
of reV) will employ the elegant method of Perin [46]. This method was, in fact, 
already used several times in §5C. As in §5, we will require numerous technical 
results. The only general results are (6.1, 6.4, 6.5). 

The following notation will be used throughout this section, as well as in §12. 
K ~ rL(V), with K point-transitive. 
x is a point. 
r is a prime and R is an r-subgroup of Kx' 
W = Cv(R), N = NK(R) and C = CN(W-L). 

Usually, R E SylrKx' Then, by Sylow's theorem, N W is point-transitive. Perin's 
method involves comparing N wand N w"- in order to show that C W is relatively 
large. We begin with a simple example. 

THEOREM 6.1. Let K be a point-transitive subgroup of rUed, q), where d;;. 4. 

Assume that K is transitive on lines; if d = 6 or 7, assume further that K is also 
(1,2)-transitive. Then K;;. SUe d, q). 

PROOF. By (5.12), we may assume that d;;. 6. Let r be a primitive divisor of 
qd-3 + (_I)d (d. (2.18)); we will exclude the cases rU(6, 2) and rU(9, 2) until the 
end of the proof. Let R E SylrKx' By Table IV, R i= 1. Since r divides the number 
of nonzero vectors of W-L , from Table IV it also follows that W is a nonsingular 
3-space. 



TABLE IV 
The numbers of points, lines, planes and n-spaces (of each type in case V has type n +(2n, q» 

points lines planes 

Sp(2n, q) } I 2n -I (q2n_ I )(q2n-2 -I) (q2n _1)(q2n-2 -I )(q2n-4 -I) q 

n(2n+l,q) q-I (q _1)(q2 -I) (q -1)(q2 _1)(q3 -I) 

(q2n_ l )(q2n-1 + I) (q2n -I )(q2n-1 + l)(q2n-2_ I )(q2n- 3 + I) (q2n_ I )(q2n-1 + 1)(q2n-2_ 1)(q2n-3 + 1)(q2n-4_ 1)(q2n-S + I) 
SU(2n, q) 

q2_1 (q2 _1)(q4 -I) (q2 _1)(q4 _1)(q6 -I) 

(q2n+1 + l)(q2n_ l ) (q2n+1 + l)(q2n_l)(q2n-1 + 1)(q2n-2_ 1) (q2n+1 + 1)(q2n_l)(q2n-1 + l)(q2n-2_ 1)(q2n-3 + 1)(q2n-4_ 1) 
SU(2n+ I,q) I 

q2_1 (q2_1)(q4_1) (q2 _1)(q4 _1)(q6_ 1) 

(qn_I)(qn-1 + I) (qn _I)(qn-I + 1)(qn-I_ 1)(qn-2 + I) (qn _I)(qn-I + 1)(qn-I_ I )(qn-2 + 1)(qn-2_ 1)(qn-3 + I) 
n+(2n,q) 

(q_I)(q2_ 1) (q _1)(q2 -1)(q3 -I) q-I 

(qm+I)(qm-I_ I ) (qm +1)(qm-I_I)(qm-1 + 1)(qm-2_1) (qm + 1)(qm-I_I)(qm-1 + 1)(qm-2_ 1)(qm-2 + 1)(qm-3 -I) 
n-(2m,q), 

(q_I)(q2 -I) (q_I)(q2_ 1)(q3_ 1) m=n+1 q-I 

n-spaces 

n n (qi+l) 
i=1 

n n (q2i-I+ I ) 

i=1 

n n (q2i+1 + I) 
i=2 

n-I n (qi+ I) 
i=1 

m n (qi+ I) 
i=2 

g; 
Z 
~ 
W 

"C 
m 

~ 
~ 
:3 z 
~ 
"C 

~ 
gj 
Z ..., 
~ .... o z 
C/J 

Ii'> 
c.n 



46 w. M. KANTOR AND R. A. LIEBLER 

By (2.12), NWr> SU(3, q), PSL(3,2), 3 ·A7, or an extraspecial group of order 27. 
Also, N Wl is a subgroup of rL(2, qd-3). 

If N W contains SU(3, q), PSL(3, 2) or 3 ·A7, then so does Cwo If C W ;;;. SU(3, q), 
then (2.4) applies. 

We claim that Kx acts irreducibly on x-L Ix. This is clear if d = 6 or 7. If d;;;. 8, 
then I Kx I is divisible by primitive divisors of qd-2 - (_I)d and qd-3 + (_I)d, from 
which irreducibility follows. immediately. (If K < rU(8,2), this argument fails. 
However, in this case K is (1, 2)-transitive by (2.12), and then the irreducibility of Kx 
is obvious.) 

In particular, by (2.1) and (2.4), we may assume that C n Q = 1, where 
Q = O/SU(V)x). But in both of the exceptional cases q = 3 and 5, C W n QW =1= 1. 
Thus, we are left with the case q = 2. 

N ow all we know is that N W has a normal extraspecial subgroup of order 27 and 
exponent 3. Since NWl",;;;, rL(2,2d- 3), it follows that C W contains the center (t) of 
S U(3, 2). Note that t centralizes the hyperplane (W-L + x) I x of x-L Ix. Thus, Wagner 
[60] applies to the group H induced by Kx on x-L Ix. Using r, we find that 
H ;;;. S U( d - 2,2). Consequently (2.6) applies. 

Finally, suppose that K",;;;, rU(6, 2) or rU(9, 2). In the former case, 
Kt/x ;;;. SU(4, 2) by (5.12). Consider the case rU(9, 2). By (2.12), K is 
(1,2)-transitive. Let R E Syl7K x' and define W, Nand C as before. Then N W is 
transitive on points, and dim W = 3 or 6. If dim W = 3, we can proceed as before. If 
dim W = 6, then.N w is (1, 2)-transitive, so that NW;;;' SU(6, 2). Then C W ;;;. SU(6, 2), 
and (2.4) completes the proof of (6.1). 

REMARK. By Table II and (4.2), a subgroup of rU(m, q), m ;;;. 6, is point-transitive 
if it is line-transitive. 

LEMMA 6.2. Suppose that K is a point-transitive subgroup of reV) which is either 
transitive on lines or has 2 line-orbits and at most 3 orbits of (1, 2)-flags. ( Moreover, if 
there are 2 line-orbits and V has type rO(2m + 1,3) or ro- (2m, 2), assume that K 
has 2 plane-orbits and at most 4 orbits of (2, 3)-flags.) Define s by the following table. 

Type of V Sp(2m, q) Q(2m + 1, q) Q± (2m, q) SU(2m, q) SU(2m + 1, q) 

s qm 2 + 1, qm 2 + 1, qm 3 ± 1 (either sign), q2m 5 + 1, q2m 3 + 1, 
m;' 4 m;' 4 m;' 6 m;.4 m;' 4 

q2 + 1, m = 5 

Assume that, for some line L, I KL I is divisible by a primitive divisor r of s. Then 
K;;;. Chev(V). 

REMARK 6.3. (i) The parenthetical hypothesis in (6.2) is only used in cases (h) and 
(j) of the proof. 

(ii) Several cases are automatically excluded in (6.2): those in which s has no 
primitive divisor. For future reference, these excluded cases are listed in the 
follnwing continuation of the preceding table 

Type of V I Sp(10, 2) I r2(11, 2) I r2 ± (12, 2), r2 ± (18, 2) I SU(8,2) I none 
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PROOF OF 6.2. The argument falls into several steps. 
(I) Let R E Sy1rKL. In each case, W = Cv(R) is a nonsingular subspace; its type 

is given in the following continuation of the previous tables. 

Type of W I Sp(4, q) I [2(5, q) I [2± (6, q) I SU(5, q) I SU(4, q). 

Clearly, R E SylrKxL for x E L. Also, rf I f(W)x I except when W has type 
[2- (6, q) and V has type [2- (10, q). Thus, if R t1:. Syl,.Kx then W has type [2- (6, q), 

and r II NyW I for each point y of W, in which case (5.10) applies. On the other hand, 
if R E SylrKx then N W is point-transitive. In any event, N W has at most 2 
line-orbits and at most 3 orbits of (1, 2)-flags, by Sylow's theorem. Note that if N W 

has 2 line-orbits then so does K. 
In view of (5.12,5.13,5.15), one of the following holds (and is handled in the step 

indicated): 
(a) NW;;;' Chev(W) (II); 
(b) N W I> SU(3, q) for Wof type [2- (6, q) (II); 
(c) N W I> SL(2, q2) for Wof type Sp(4, q) (V); 
(c') N W I> SL(2, 5) for Wof type Sp( 4, 3) (V); 
(d) N W is A 6 , for Wof type Sp( 4,2) (VI); 
(e) N W is A7 or S7' for Wof type [2+ (6, 2) (VI); 
(f) N W I> 4 . P SL(3, 4) for Wof type S U( 4, 3) (VII); 
(g) N W I> 2 . PSL(3, 4) for Wof type [2- (6, 3) (VIII); 
(h) OiNW) is elementary abelian of order 16 or 32, and 20 II N W /OiNW) I, for 

W of type [2(5,3) (IX); 
(i) 02( N W) is extraspecial of order 32, and 511 N wI, for Wof type Sp( 4,3) (X); 

or 
(j) I 03(Nw) I;;;. 27, for Wof type [2- (6, 2) (XI). 
(II) By (2.4), we may assume that K contains no long root elements. (In (2.4 iv), 

there are 3 line-orbits, 2 of which arise from lines of the unitary geometry.) 
If s = qi ± 1, then the normalizer of R W"- in f(W..L) is contained in fL(2, q'). 

Consequently, this statement holds for N w"- . However, N W is not contained in any 
fL(2, q'). 

If (a) or (b) holds (excluding Sp(4,2) and SU(3, 2)), then (Nw)', has no 
homomorphic image in any fL(2, q'), so that (C w)" = (Nw)" and C contains long 
root elements. 

If NWI> SU(3,2), then C W contains a transvection (since fL(2,2') never has a 
quaternion subgroup). Once again, C contains long root elements. 

Finally, if N W is Sp( 4, 2), or if one of (c )-(g) holds for N w, then one of (c )-(g) 
also holds for C W in place of N w. We will have to consider these possibilities for C W 

separately. Note that, if (h) or (i) holds for N W, it might not hold for C w: only 
I 0i C w) I = 16 or 32 is clear at this point. Similarly, if (j) holds for N W it need not 
hold for Cwo 

(III) Set Q = Op(f(V)x), A(x) = K n Q and V(x) = [V, A(x)]. Clearly, Kx acts 
on both A(x) and V(x). Recall that A(x) is assumed to contain no long root 
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elements. However, in several of our cases, C n A(x) is nontrivial: 
(c) 1 C n A(x) 1= q and V(x) is a line (since a Sylow p-subgroup of Cx has order 

q2 and acts on the q + 1 lines through x, centralizing one of these lines: V(x »; 
(c') 1 C n A(x) 1 = q and V(x) is a line; 
(d) 1 C n A(x) 1 = 4 and V(x)/x is an anisotropic 2-space when K is regarded as 

lying in O(2n + 1,2) (since W is an obvious section of the standard mod 2 
permutation module for A 6 ); 

(e) 1 C n A( x) 1 = 4 and V( x) / x is again an anisotropic 2-space; 
(f) 1 C n A(x) 1 = 9 and V(x) = W n x..L; 

(h) If 311 N W 1 then 1 C n A(x) 1 = 3 and V(x )/x is a nonsingular I-space; 
(j)ICnA(x)I~2. 

In cases (g) and (i), C n A(x) = 1. In all cases, we will use (2.1) in order to show 
that 1 A(x) 1 is small. 

(IV) We claim that A(x) ~ C. For, suppose not. Then A(x) ~ CK(R). In 
particular, IA(x) I> q2. By (2.1), V is neither symplectic of characteristic 2 nor 
orthogonal. 

If V is of type Sp(2m, q), then r 1 qrn-2 + 1, so 1 A(x) 1 ~ q2rn-4. By (2.1), A(x) is 
abelian and A(x)Q'/Q' contains q2rn-4 mutually orthogonal vectors in a 
2m - 2-dimensional symplectic space. This is clearly impossible. 

Thus, V is of type SU( d, 3). By hypothesis, s = 3d - 4 + 1 or 3d - 5 + 1. Thus, 
1 A( x) 1 ~ 32d- lO • But 1 Q/ Q' 1 = 32(d-2) and 2d - 10 > d - 2 if d > 8. Consequently, 
(2.1) produces.the same contradiction as above if d > 8. This leaves us with the case 
of V of type SU(8,3). Here, IA(x)l= 36 by the above argument. However, 
1 C n A(x) 1 = 32 in case (f), whereas our group R of order 7 cannot act 
fixed-point-freely on a group of order 34. 

This contradiction proves our claim. In particular, A(x) = 1 in cases (g) and (i). 
(V) In (c) and (c'), use of N W shows that V(x) = V(x') whenever x' E V(x). Let 

L be a line on x such that L C V(x)..L but L =1= V(x). If y ELand y =1= x, then 
y E V(x)..L implies that A(x) acts on V(y). Since V(x) n V(y) = 0 and 
V(x) = (V, A(x)], it follows that V(y) C V(x)..L C x..L. Thus, L = (x, y) C V(y)..L. 

Consequently, there are at least 3 types of lines: those of the form V(x), those 
lines L contained in V(x)..L for all x E L (but not of the form V(x», and all other 
lines. Since K has at most 2 line-orbits, this is impossible. 

(VI) We treat cases (d) and ( e) together. Recall that 1 A( x) 1 = 4 and V( x) / x is an 
anisotropic 2-space. We first show that, if y E V(x)..L, then V(y) <:;:; V(x)..L. For, let 
B(x) be the subgroup of C such that A(x) 1: B(x) ~ A4 and 
Cv(B(x» = Cv(A(x» = V(x)..L. Then B(x) acts on A(y), and hence A(x) 

centralizes A(y). In particular, A(x) acts on V(y), fixing each subspace throughy. If 
v E V(y), a E A and va =1= v, then va - v must be the third nonzero vector in 
(v, va), and hence is in y n V(x). Thus, if y =1= x then A(x) centralizes V(y), and 
hence V(y) C V(x)..L. 

Let M be a line on x such that M !Z V(x)..L. Then A(X)M =1= 1. If x =1= y E M then 
y fl. V(x)..L, so x fl. V(y)..L by the preceding paragraph, and hence A(y)M =1= 1. 
Thus, K:: is transitive. 
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Since K has at most 2 line-orbits, it has 2 such orbits: those lines M as above, and 
all remaining lines. In particular, K is transitive on the (1,2)-flags of the form 
(x, M) with M lZ V(x)-L. Then Kx is transitive on the points on x-L Ix not in 
V(x)-L Ix. Consequently, Kx is transitive on the nonsingular vectors in V(x)-L Ix. In 
particular, rad V = o. 

Fix x, let x =1= y E V(x)-L, and set V«x, y») = (V(y), V(y'), where y' is the 
third point of (x, y). Since V(y) and V(y') are perpendicular, V«x, y») is a 
6-dimensional subspace of V( x)-L , and V( (x, y») I (x, y) has type Q+ (4,2). 

Consider the pairs «x, y), (x, d») with y E V(x)-L, dE V«x, y»), and d 
nonsingular. Each point of V(x)-L Ix arises as a first component; V«x, y») 
determines 6 . 2 second components; and K x acts transitively on the set of second 
components. Thus, the number of nonsingular points of V(x)-L Ix divides twelve 
times the number of singular points, which is not the case (since rad V = 0). 

(VII) In (f), V( x ) I x is a nonsingular 2-space. There are thus 4 types of lines on x: 
those in V(x), those in V(x)-L, those perpendicular to exactly one line of V(x) 
through x, and all others. (If M is one of the latter lines, then (M-L n V(x))/x is 
nonsingular.) Thus, K has more than 3 orbits of (1, 2)-flags. 

(VIII) In (g), Cx acts irreducibly on (x-L n W)/x: it induces at least Q- (4, 3) 
there. We claim that Kx acts irreducibly on x-L Ix. For, let M be a proper 
K x -invariant subspace of x-L I x of least dimension. If dim M ~ 4, then R centralizes 
M, so that M = (x-L n W)/x and Kx has at least 4 point-orbits on x-L Ix (namely, 
those in M, those in M-L , those on lines meeting M and M-L , and those on no such 
line). Thus, dim M> 4. Also, dim M ~ 1 dim(x-L Ix) = m - 1 (by minimality). 
Since R acts on M, we cannot have s = 3m - 3 + l. Thus, s = 3m - 3 - l. Using Cx 

again, we see that dim M =1= m - 2, m - l. Consequently, M is a totally singular 
m - 3-space. The lines on x must fall into Kx-orbits of lengths 1(3m-3 - 1), 
10 ·3m- 3 and 13m(3m-3 - 1). Let L' be any line such that Kf is intransitive. 
Counting suitable (1, 2)-flags in four ways, we find that I L,K lei = I x K III with II and 
12 two of the above numbers and e l , e2 integers ~ 3. However, the equation 
eJ2 = e2/1 is easily seen to have no solution. 

Thus, Kx acts irreducibly. Set E = CK(L) n CK(L-L IL), so that lEn CI= 9. If 
e E E then dim[x-L lx, e] ~ 2 by (2.1). 

We next show that Kx acts primitively on x-L Ix. For, suppose that Kx preserves a 
nontrivial decomposition x-L Ix = WI EEl ... EEl Wk. The above property of E n C 
shows that E n C cannot act faithfully on {WI' ... ' Wd. Since (Cx )' ~A6' we may 
assume that (x-L n W)/x <: WI. Then R fixes WI. Since r 13m-2 ± 1, it follows that 
x-L n WI x = WI. But K x has at most 3 point-orbits on x-L Ix. Thus, k = 2, and V 
has type Q+ (10, 3). Now the 3 point-orbits have lengths 2 ·10, 10·10·2 and 
30 ·15 ·2. This leads to an impossible equation e l / 2 = e2 / 1 as before. 

Now Kx is primitive, I E I;;;;. 9, and E acts faithfully on x-L Ix (since A(x) = 1 by 
(IV)). By (2.5), K x induces at least Q( x-L I x) or 2 . Q(7, 3) on x-L Ix. The first case is 
eliminated by (2.6) or (2.14). By (a) in (2D), the second case leads to a subgroup 
2 . Q(7, 3) of Kx containing long root elements. Thus, (g) cannot occur. 
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(IX) In (h), I 02( C) I ~ 24. There is an involution} E 0i C) inverting L such that 
F = [V, }j has type n+ (4, 3). Then} centralizes L -L IL. Since 

KLr> (J)(CK(L) n CK(L-L IL)), 

by the Frattini argument we have KflL = HfIL, where H = CK(Jk Note that 
L -L I Land F-L are H-isomorphic. 

If L' is any line on x such that L' n F-L=j= 0, then} acts nontrivially on L'. 
However, if L" is any line of W then Nt:' acts regularly on points since N W is 
monomial; moreover NF' = KY by the Frattini argument. Then L' f£ L K , and 
hence L" ELK since K has at most 2 line-orbits. In particular, N W is line-transitive. 

Note that KY'- IL' cannot be point-transitive. (For, if it were, then we would have 
r II K L' I, and then L' would belong to L K by Sylow's theorem.) Thus, by the 
parenthetical hypotheses of (6.2), HFJ. has at most 2 point-orbits. There are two 
sub cases to consider: (0:) H fixes W, and (/3) H moves W. 

(0:) Here, H is transitive on the (3 m- 2 + 1)(3m-3 - 1)/2 points of F-L. Suppose 
that m ~ 6. Let r] be a primitive divisor of 3m - 3 - 1 (cf. (2.l8», let R] E Sy1r,H, 
and set Z = Cv(R]), N] = NK(R]) and C] = CN,(Z-L). Then N]z is point-transitive, 
W C Z, and N/t;, = K t:: = N W by the Frattini argument. Moreover, dim Z = 7. Set 
Nt = (N]zyJ. Ix . Then 511 Nt I. Also, Nt contains an elementary abelian group of 
order 8 none of whose involutions induces -Ion Z n x-L Ix. (Namely, (N]w)z has a 
subgroup Z1 centralizing W-L n Z and fixing a member of the distinguished 

orthogonal basis of w.) Since Z contains a line L' meeting both F and F-L n Z, Nt 
has 2 or 3 'point-orbits, and it follows from (5.6) that Nt ~ zi ~ 
Zs' The latter group is line-transitive, so N]z is (1, 3)-transitive. But then N]z is also 
(2, 3)-transitive, whereas it is not even line-transitive (since L, L' C Z). Thus, m .;;; 5. 

If m = 5, then HFJ. is a point-transitive subgroup of fO- (6, 3). By (5.12), 
CK(F) f> n- (6, 3) or 2 ·PSL(3,4). In particular, 511 CK(L) I. Setting r] = 5 and 
proceeding as before, we again obtain a contradiction. 

If m = 4 then H wJ. is transitive on the points of W-L , and on those of F-L not in 
W..L. Thus, CK(F) f> n- (4,3) or As. By (IV), IA(x) 1= 3 and CK(F) r> As. Since 
A(x) < CK(R), we have Cc> zi ~ As. Ify is a point of W-L, then C acts ony-L Iy. 
Also, V(x)-L Ix has type n+ (6, 3). (For, V(x)-L n Wlx and W..L have respective 
types n- (2, 3) and n- (4, 3).) Thus, Kv induces a subgroup of Aut PfL(4, 3) having 
at most 2 line-orbits and containing the point-transitive group induced by C. By 
(5.12), K(IYf> n+(6,3), n(5,3) or Zi ~ As. The latter 2 cases require that K{IY 
fixes more than one nonsingu1ar point, and hence that it has more than 3 point-orbits. 
In the first case, (2.14) produces long root groups. 

(/3) Let h E Hwith Wh =1= W. Then Fe Who Set Z = (W, Wh) and D = (C, Ch). 
Then dim Z = 6, D acts on Z, and D centralizes Z-L . 

Since C w(J) and C w(J)h are isometric, Cz(J) is either anisotropic or has a 
nontrivial radical. 

Assume that z = rad Z =1= 0. Since C and Ch agree on Zlz, while centralizing Z-L , 
they are conjugate under 03(D). Thus I 03(D) 1=1= l. If 1 =1= d E aiD), then 
dimCz(d) = 5; since d centralizes Z-L, we have d E A(z). Now C f> zi ~ As once 
again. Thus, I A(z) I> 3 (since C acts on A(z », which contradicts (IV). 



RANK 3 PERMUTATION REPRESENTATIONS 51 

Consequently, Cz(J) is an anisotropic 2-space. Since C w(J) and C W(J)h are 
isometric, it follows that Z = P..l Cw(J)..l CW(J)h. However, 02(C)P = 02(Ch)P. 

Thus, 02(C) and OiCh) commute. 

Now N = (02( C)H) is an elementary abelian normal subgroup of H, and acts 
nontriyially on p1- . Then H acts monomially on [p1- , N], while having at most 2 
point-orbits on p1-. Thus, 2m - 3 = 5 and HP.L;;;;, z1 XI Z5. Then 
CK(P)p.L;;;;, Z1 XI Z5. 

Let {eJ be an orthogonal basis of (p1- , x) I x with respect to which C K( P) is 
monomial. We may assume that (e" eJ = 1. Let {e, f} be a basis of x1- n Pix with 
(e, e) = 1 = -(f, f). We may assume that RP.L is generated by g = (1,2,3,4,5). 
Then Cj/(g) = (e, /,Liei), where V= x1- Ix. Consequently, Nx acts transitively on 
{(e + f), (e - f), (e + L,e,), (e - L,e,)}. Set K* = K:.L/x and n = (e + f)K*. 

Then CK(P) acts on n, and hence n contains all the points (e + L,l',e,) with each 
l', = ±1. Then n contains two perpendicular points, such as (e + L,e,) and 
(e + e l + e2 - e3 - e4 - e5 ). Also, CK(P) is transitive on the lines of V through 
(e + f). By (2.10), K* fixes a hyperplane. The only one available is /1- , which has 
type n + (6, 3). This produces the same contradiction as in the last part of (a). 

(X) In (i), C W has a normal extra special subgroup of order 25. Let i be an 
involution in C such that [V, i] is a hyperbolic line, and let x E [V, i]. Theni inverts 
x and centralizes x1- Ix. 

By (IV), Q n K = 1. Thus, (j) = CK(x1- Ix) ,,;;;; Z(Kx)· Write ix = i and 
U(x) = [V, ix]. If y E U(x) then U(y) = U(x). If y E U(x)1-, thenix centralizesiy 
and U(x) n U(y) = 0, so that U(y) C U(x)1-. . 

Let y E U(x)1- and z E U(x)1- n U(y)1-, and consider S = (U(x), U(y), U(z). 

If s E S1- then U(s) C S1-. Thus, S1- = (U(s) 1 s E S1-). Similarly, 
S = (U(s) 1 s E S). There are (36 - 1)/(32 - 1) = 91 hyperbolic lines U(s) in S, of 
which (34 - 1)/(32 - 1) = 10 lie in U(s)1- ns. Call each such U(s) a Point, and 
each of these sets of 10 Points of S a Line. Then two distinct Points are in at most 
one Line. A standard counting argument shows that we have a projective plane of 
order 9. Since U(s) ---> U(s)1- ns induces a polarity without absolute Points, this 
contradicts a result of Baer [10, p. 152]. 

(XI) In (j), there are two possibilities for N w, which are dual to examples 
(2.1, 2)iii of (5.13). In both cases, 1 03(C) I;;;;, 33• Let (i) be a subgroup of order 3 in 
03( C) such that (i)W is central in a Sylow 3-subgroup of n- (6, 2). Then [V, i] = W, 
and there are exactly 9 lines of V fixed but not centralized by i, all of which lie in W. 

There is also an elementi of 0iC) such that P = [V, i] has type n+ (4, 2) and for 
which there are exactly 3 lines of V fixed but not centralized by i, all of which lie in 
P. We may assume that x E L C P, and that L is the fixed line ofi through x. Note 
that (j) is transitive on L, while (i) is transitive on the second line L' of P through 
x. Also, L K =1= L'K since LN =1= L'N. 

If E is any plane containing L, then i fixes E and K IE is transitive. If E' is any 
plane containing L' and fixed by i, then K£:E' is transitive. Here, E' tl EK. (For 
otherwise, some conjugate i' of i acts nontrivially on E. By Sylow'S theorem, [E, i'] 
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and [E, J] are in the same line-orbit of Kf, and hence of K, which is not the case.) 
Thus, EK and E,K are the two plane-orbits of K (cf. (6.3 i)). 

In particular, all planes containing L lie in EK. Moreover, K# is transitive on the 
members of LK lying in E (again by Sylow's theorem). By considering (L, E)K, it 
follows that K L is point-transitive on L 1-I L. 

Since U)(CK(L) n CK(L1- IL)) <J Kv we have KflL = HL~/L by the Frattini 

argument, where H = NK(U»)L' Then H is point-transitive on L1- IL, and hence 
also on F1- . Since U) is transitive on L, it follows that Hx is also point-transitive on 
F1-. Here, Hx fixes both Land L'. Consequently, KUF is transitive on F1-, and 
hence on L,1- IL'. 

Some plane contains lines from both of the orbits L K and L,K (cf. (2.13)). In view 
of the transitivities we have found, K must be transitive on planes, which is not the 
case. 

This completes the proof of (6.2). 

THEOREM 6.4. Let K be a subgroup of f(V), where V has rank n ;;" 3. If K is 
transitive on points, lines and planes, then either K;;" Chev(V) or K is A7 or S7 inside 
0+ (6,2). 

PROOF. By (5.15,5.17,5.21), we may assume that n;;" 4 and that V does not have 
type Q + (8, q). By (6.1), we may also assume that V is not unitary. 

By Table IV, a suitable prime divisor r of the number of planes can be used in 
(6.2), except for cases listed in (6.3), and except when a candidate for r already 
divides the number of lines. A straightforward check shows that we must only 
consider the cases Q± (10, q), Q± (12, q), Sp(8, q), Q(9, q), Q- (14, q) and Q- (18, q). 

For m = 5 and 6, the number of planes of an Q+ (2m, q) space is divisible by 
(qm-3 + 1)2. Thus, (6.2) applies, except in the case of Q+ (12, 2). 

Similarly, in the cases Sp(8, q), Q(9, q), and Q- (14, q), (q2 + 1)211 K I ; while for 
Q - (18, q), (q3 + 1 )211 K I . Thus, (6.2) applies, except in the case Q - (18, 2). 

For Q- (12, q), the number of planes is divisible by (q2 + 1)2. Let r be a primitive 
divisor of q2 + 1, and let R E SylrKL' Define Wand C as usual. Since R =1= 1, W 

has type Q- (6, q) or Q+ (8, q). The first possibility is dealt with exactly as in (6.2). If 
W has type Q+ (8, q), let r* be a primitive divisor of q3 - l. Then N contains an 
element of order r*. Since r* II N W~ I ' we can apply (6.2) with r* in place of r. 

For Q- (10, q), the number of lines is divisible by (q3 - l)/(q - 1). Let d be a 
primitive divisor of q3 - l. If DE SyldK, then Cv(D) has type Q- (4, q). Let r be a 
primitive divisor of q2 + l. Since NK(D) is point-transitive on Cv(D), its order is 
divisible by r. An element of order r in NK(D) must centralize C v(D)1- = [V, D] 

(since r II NK(D)[V,Dll). Consequently, (6.2) applies. 
Similarly, in the case Q+ (12, 2) we find that I K I is divisible by d = 24 + l. If 

DE SyldK, then Cv(D) has type Q- (4, 2), and an element of order r = 5 in NK(D) 

centralizes C v(D)1-. If E is a plane of C v(D)1-, then r II CK(E) I. Let 
R E SylrCK(E), and define W, Nand C as usual. Then W has type Q- (8, 2). By 
(2.12), K is (1,3)-transitive. Thus, N W is (1,3)-transitive. By (5.17) and Table II, 
N w;;" Q- (8, 2). Then also C W ;;" Q- (8, 2), and (2.4) applies. 
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In the case of n- (18, 2) set d = 27 - 1 and r = 22 + 1. If D E SyldK, then 
C v(D) has type n- (4,2). Once again, some element of order r centralizes C v(D)-i . 

Let R E SylrKL. Then W has type n+ (6, 2), n- (10, 2) or n+ (14, 2), and N W is 
transitive on lines and planes (by Table IV). In the second and third cases, N W is 
also transitive on points (since °2 :J OJ by Table II); then N W ;;;. n(W), and we can 
proceed as usual. Suppose that dim W = 6. Then N W .;;; 0+ (6, 2) ~ Ss. It follows 
that C W ;;;. A7 or As, and we can proceed as in steps (II) and (VI) of (6.2) in order to 
obtain a contradiction. 

Finally, in the case of Sp(10, 2), K is (1, 2)-transitive by (2.12). Let R E SyI3CK( L). 

Then R has index 32 in a Sylow 3-subgroup of K, and R =1= 1 since 33 divides the 
number of planes. Note that dim W is 4, 6 or 8. If dim W > 4 then N W is transitive 
on points, lines and planes; but then NW;;;' Sp(W), and we obtain the usual 
contradiction. Thus, dim W = 4 and N W is flag-transitive. It follows that C W ;;;. A 6 , 

and we can again proceed as in steps (II) and (VI) of (6.2) in order to complete the 
proof of (6.4). 

REMARK. By Tables II and III, if n ;;;. 5 then plane-transitivity implies both point
and line-transitivity. 

THEOREM 6.5. Let V have rank n ;;;. 3. If K is a subgroup off(V) which is transitive 

on points, lines and n-spaces (of at least one type, when V has type n + (2 n, q)), then 

either K;;;. Chev(V) or K is A7 or S7 inside 0+ (6,2). 

LEMMA 6.5'. Let V have rank n ;;;. 4, but not have type n+ (8, q). Then f(V) has no 

subgroup K having the following properties: 

(i) K is transitive on points and n-spaces (of each type, when V has type n+ (2n, q)); 

(ii) K has 2 orbits of lines, at most 3 orbits of (1, 2)-flags, and at most 2 orbits of 

planes and (1, n)-flags (for each type on n-space, when V has type n+ (2n, q)); and 

(iii) if K has more than 3 orbits of (2, 3)-flags, then it has 4 such orbits, as well as 2 

orbits of planes and (1, n )-flags (of each type); if, in addition, n = 4, then there are 7 

orbits of (1, 2, 3)-flags and 9 orbits of flags. 

PROOF OF (6.5) AND (6.5'). The proof parallels that of (6.4). By (5.15,5.17,5.21), 
we may assume that n ;;;. 4 and that V does not have type n + (8, q). By (2.18) and 
Table IV, we can use the number of n-spaces in order to find a prime r required in 
(6.2), except for cases occurring in (6.3), or cases in which a candidate for r already 
divides the number of lines. Thus, this time we must consider the cases n ± (10, q), 
n+ (12, q), SU(8, q), SU(10, q), Sp(lO, 2), n- (12,2), Sp(8, q) and n(9, q). 

For n+ (10, q), q =1= 2, use primitive divisors d of q3 + 1 and r of q2 + 1. If 
D E SyldK then Cv(D) has type n- (4, q), and hence NK(D) has an element of 
order r. That element cannot act nontrivially on Cv(D)-i. Thus, (6.2) applies. 

The case SU(8, q), q =1= 2, is handled in the same manner, using primitive divisors 
d of q5 + 1 and r of q3 + 1. Also, for SU(lO, q) we find that (q3 + 1)2 divides I KI 

(Table IV), so that (6.2) applies when q =1= 2. 
For SU(2n, 2), n = 4 or 5, let M be an n-space. By (2.12), K tf is point-transitive if 

n = 4, and has order divisible by 25 - 1 if n = 5. By hypothesis, Ktf has at most 2 
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point-orbits. Now (S.l, S.2) imply that Kt: is transitive unless n = Sand 
K t: :? SL(S, 2). If n = Sand 711 K I, then (6.2) applies. Thus, we may assume that 
K is (1, n)-transitive. By (6.1) and (6.S' ii, iii), there is a line L such that KL is 
point-transitive on L ~ / L. If n = 4, then 22 + 111 CK(L) I by (S.12); if n = S then 
25 + 111 K[, I. In either case, (6.2) yields a contradiction. 

For ~- (10, q), assume first that K is line-transitive. Then primitive divisors of 
q3 - 1 and q2 + 1 can be used as before. Now assume that we are in the situation of 
(6.5'). Then K has 2 orbits of (1, 4)-flags, and hence also 2 of (3, 4)-flags and at most 
2 of planes. If K is plane-transitive then it is also line-transitive (by Table II), and 
(6.4) applies. If K has 2 plane-orbits, then KflE is point-transitive for each plane 
E; thus, q2 + 1 divides IKE I, and (6.2) applies. 

In the cases ~-t (10, 2), ~- (12, 2) and Sp(10, 2), K is (1, S)-transitive (by Table IV 
and (2.12)). Let M be a S-space. If I Kt: I is even, then Kt: = SL(S, 2) by (S.S). Thus, 
I K t: I is odd. However, I K I is even. (A Sylow 31-subgroup S fixes exactly two 
S-spaces, which NK(S) permutes transitively.) Let t be an involution in K. Then we 
may assume that t fixes M, and hence centralizes M. But now it is easy to find 
another fixed S-space of t not in C v( t). 

For ~+ (12, q), let d and r be primitive divisors of q4 + 1 and q2 + 1, respectively. 
Using a Sylow d-subgroup of K, we find (as earlier in the present proof) an element 
of order r centralizing a subspace W of type ~- (8, q). Let R E Sy1rCK(W), If 
R E SylrK, then N W is transitive on the (q4 + 1)(q3 - l)/(q - 1) points of W, and 
(6.2) applies with s = q3 - 1. Thus, we may assume that R is not Sylow in K (and 
that N W is not point-transitive). 

If K is line-transitive, then r II N}! I for every line L of W. Then also r II CN(L)w I. 
Fix x E W, and set N* = NxJ. n wlx. Each point of (x~ n W)/x is fixed by an 
element of N* of order r. By (S.lO), N*(oo) = ~- (6, q) or 2 . PSL(3, 4). In the former 
case, (2.14) produces long root elements in K; while in the latter case, (6.2) applies 
with s = q3 + 1. 

Thus, we must now consider (6.5') for ~+ (12, q). Here, N W has at least 2 
point-orbits and at most 4 orbits of (1, 3)-flags. As in the preceding paragraph, we 
find that there are 2 point-orbits and 4 orbits of (1, 3)-flags, both for N wand for K. 
In particular, each plane-orbit of K has a member in W. Since q2 + q + 1 divides 
the number of points of V but not the number of planes, there is a plane E such that 
I K i"1 is divisible by a primitive divisor r* of q2 + q + 1. We may assume that 
E C W. By the Frattini argument, Kff = Ni"- Thus, r* II NE~ I. An element of order 
r* in NE centralizes W~ , and hence also centralizes a line of V. Once again, (6.2) 
applies with s = q3 - 1, and finishes the case ~+ (12, q). 

The cases Sp(8, q) and ~(9, q) are somewhat different from the preceding ones, in 
that a suitable prime is harder to find. Suppose first that we are in (6.5'). If L is a 
line, we may assume that q2 + 1 II K L I, as otherwise (6.2) applies. In particular, 
Kf IL is intransitive on both points and lines. Thus, we must be in (6.S' iii). Let 
(x,, LJ, i = 1,2,3, be representatives of the orbits of (1,2)-flags; let Ki be the 
corresponding group induced on Lt / L i • Since K has 7 orbits of (1,2, 3)-flags, we 
may assume that K\ and K2 have 2 point-orbits, while K3 has 3 point-orbits. Since 
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K] has at least 2 line-orbits, it has at least 3 flag-orbits; and so does K 2. Thus, K3 

has at most 3 flag-orbits. Then (K3 )y is transitive on y-L /y for each point y of 
Lt / L 3· Consequently, K3 is line-transitive, which is not the case. 

Thus, we must be in the situation of (6.5): K is transitive on the 
(q4 + 1)(q3 + 1)(q2 + 1)(q2 + q + 1) lines of V. By (2.12), if F is a 4-space then 
q2 + q + 1 divides the length of each line-orbit of KJ. Since K is not flag-transitive, 
K J fixes a point or a plane (by (5.1 )). In either case, there is a plane E C F such that 
Kf~ is transitive. By Sylow's theorem, KJ is transitive on the set of such planes. 
Hence, K r / E is also transitive. 

Consequently, there is an orbit of 1 L K 1 a( q + 1) = 1 FK 1 e( q2 + q + 1) triples 
(L, E, F), where a and e are the numbers of planes E containing L and contained in 
F, respectively. Here, e is I or q3 (cf. (2.7 i) and (2.14)), and hence so is a (by Table 
IV). Then a = 1. (For, if a = q3, a Sylow p-subgroup of KL acts transitively on the 
corresponding q3 points of L -L / L. Then these are the points not in some line of 
L -L / L. Thus, K L fixes a 4-space containing L, and this contradicts (2.12).) 

Note that Ki * SL(3, q) if q > 2. For, suppose that Ki;;. SL(3, q) and q =1= 2. 
Then CK(E-L /E)E;;. SL(3, q). By (2.14), KE has a subgroup S ~ SL(3, q) fixing 
two planes. Then Sx has an element of order p centralizing x-L / x. This is impossible 
by (2.1) and (2.4). 

N ow suppose that q =1= 2, 8. Recall that K L = K LE' and that K t;/ E is transitive. 
There is a prime r =1= 3 dividing q + 1 but not dividing logp q. Let R E SylrKL. Then 
RE = 1 by the pr!!ceding paragraph and (2.7 i), so that dim W = 6 or 7, N W is a 
line-transitive subgroup of fSp(6,q), fO+(6,q) or fO(7,q), q2+ IIINwl, and 
hence (6.2) applies. 

Thus, q is 2 or 8. Let d be a primitive divisor of q3 - 1, and let D E Syl dK E. Then 
NK(D) is transitive on the 2(q + 1) fixed 4-spaces of D. Thus, 1 KI is even, and 

hence so is 1 K Z 1 = 1 K ZE I· Then K:;;. SL(3, q). A Sylow 3-subgroup of KEF 
centralizes a line. If R E SyI3CK(L), we obtain the same contradiction as before. 

This completes the proof of (6.5) and (6.5'). 
The remainder of this section degenerates into those types of technical results 

which dominated §5 (and resemble (6.5')). They appear here only because they will 
be needed in (8.3): there, (6.6) and (6.8) are used to deal with (n - 212), while (6.7) 
and (6.9) are used for (n - 313). 

LEMMA 6.6. Suppose that n ;;. 4 but V does not have type n+ (8, q). Then f(V) has 

no subgroup K with the following properties: 

(i) K is point-transitive; 

(ii) K has 2 orbits of lines, planes and (1, 2)-flags; 

(iii) K has 3 orbits of (1, 3)- and (2, 3)-flags; and 

(iv) if n = 8 then K has 2 plane-orbits and 3 orbits of (3, 4)-flags. 

PROOF. By (ii) and (iii), there is a line L such that K L is transitive on L -L / L. By 
Table IV and (2.18),1 KL 1 is divisible by a prime required in (6.2), unless V has type 
Sp(10, 2), n+ (12, 2) or n- (18, 2) (cf. (6.3)). Thus, by (6.2) we only need to consider 
these three cases. 
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If V has type Sp( 10,2), then 711 K f / L I ' and the proof of (6.2) can be repeated in 
order to obtain a contradiction. 

If V has type n+ (12, 2), set d = 24 - 1 and r = 3. Since dll KL I, a Sylow 
d-subgroup of K centralizes a subspace Wo of type n+ (4, 2). There is then a group of 
order 9 centralizing Wo..l . Let E be a plane of wt ; if possible, choose E so that K ff is 
transitive (such planes exist in V, by (ii) and (iii)). Let R E SyI3CK( E). Then 
W = Cv(R) = wt. If 7 divides I N W I, then an element of order 7 in N centralizes 
W..l, and (6.2) applies. Since Kff = Nf by the Frattini argument, Kff cannot be 
transitive. Thus (by (ii)), all planes of W lie in the same W-orbit. Consequently, N W 

is transitive on planes; but then 7 again divides I N wI. 
If V has type n- (18,2), then (iv) provides us with a plane E such that K E is 

point-transitive on E..l IE. Then 26 + 111 KE I, and (6.2) yields a contradiction. 

LEMMA 6.7. Suppose that n ;;. 4 but V does not have type n+ (8, q). Then f(V) has 

no subgroup K with the following properties: 
(i) K is (1, 2)-transitive; 
(ii) K has 2 orbits of planes, (1,2, 3)-flags and 4-spaces; and 
(iii) K has 3 orbits of (1, 4)- and (3, 4)-flags. 

PROOF. By (6.1), V is not unitary. Set K* = K:~/x. Then K* is tranSitive on 
points and has 2 orbits of lines and of (1, 2)-flags. Clearly, (6.2) applies to neither K 
nor K*. However, by (ii) and (iii) there is a plane E such that K E is point-transitive 
on E..l IE. By Table IV and (2.18), the failure of (6.2) implies that V has type 
Sp(12,2), n-' (12,2), n+ (14, 2), Sp(8, q), n(9, q), n+ (10, q), n(2n + 1,3) or 
n- (2n + 2,2). 

If V has type n+ (14,2), then r = 22 + 111 KE I. Let R E SylrKL' Then N W is a 
(1,2)-transitive subgroup of fO- (10, 2), fO+ (8, 2) or fO+ (6,2). In the first case, 
24 + 1 divides the number of lines of W, and (6.2) applies to K. In the remaining 
cases, N W contains n+ (W) or A7 (by (5.15), (5.21)), and we can proceed exactly as 
in steps (II) and (VI) of the proof of (6.2). 

If V has type Sp(12, 2), a Sylow 3-subgroup of K E has all its point-orbits on E..l IE 
of length at least 9. Thus, there is a 3-group centralizing E but fixing no point of 
E..l IE. Let R E Syl3KxL for x E L. Then N W is a (1,2)-transitive subgroup of 
Sp(4, 2) or Sp(6, 2). Either N W or (Nx)(x~nw)/x contains Sp(2,4), and we can again 

proceed exactly as in (6.2). 
If V has type n(2n + 1,3), n ;;. 5, let r be a primitive divisor of 3n - 3 + 1, and 

note that rll CK(E) I. Let R E SylrCK(L). Then N W is a (1,2)-transitive subgroup 
of fO(7, 3). By (6.3 i), it is even flag-transitive, and we obtain a contradiction from 
(2.6) just as in step (II) of (6.2). 

If V has type n- (2n + 2,2), n =1= 5, let r be a primitive divisor of 2n - 2 + 1, and 
let R E SylrCK(L). Then N W is a (1,2)-transitive subgroup of fO-(8, 2). By (6.3 i) 
and (2.1), I 03(Nxw ) I;;. 27. Thus, Nxw fixes a second point y, and is point-transitive 
on < x, y)..l . Then y is uniquely determined, and {x, y} is an imprimitivity block for 
the action of N on the points of W. Since W has an odd number of points, this is 
impossible. 
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Consider the remaining cases. If E is any plane then Ki is flag-transitive. Thus, by 
(2.7 i), CK(E.L IE)E is transitive on E. Let F be any 4-space. If E C F then KiF is 
transitive. Thus, K:: is transitive. This contradicts (ii) and (iii). 

LEMMA 6.8. fO+ (10, q) has no subgroup transitive on points and having 2 orbits of 
each type of 5-spaces, 3 orbits of planes and of each type of (1, 5)-flags, and 4 orbits of 
(1,3)-flags. 

PROOF. Let K be such a subgroup. Let r be a primitive divisor of q3 - 1. There are 
two plane-orbits E,K, i = 1,2, such that KE is transitive on E,. In particular, 
r II K E , I· Let R E SylrK; note that a Sylow r-s'ubgroup of fO+ (10, q) is cyclic, and 
fixes exactly 2 planes. 

We may assume that R fixes El and E 2 • Clearly, R centralizes E,.L IE,. Let M be a 
5-space containing E 1• Since R fixes only one plane of M, Sylow's theorem shows 
that M contains no member of Er But there are only 2 orbits of 5-spaces having the 
same type as M. Thus, we can choose El so that Ktf is transitive (recall that there 
are 3 orbits of each type of (1, 5)-flags). Now (5.5) implies that Ktf ;;", SL(5, q). 

Set Q = Op(fO+ (V)M)' Then Q is elementary abelian of order qlO, and Ktf acts 
on Q as it does on skew-symmetric 2-tensors. Hence K M acts irreducibly. Since Q 
contains long root groups, we have Q n K = 1 by (2.4). Since Hl(SL(5, q), Q) = ° 
(Jones and Parshall [30]), KM must fix a second 5-space. But then KM contains long 
root groups, which is not the case. 

LEMMA 6.9. If K is a (1, 2)-transitive subgroup of fO+ (14, q), then K;;", [2+ (14, q). 

PROOF. Let d and r be primitive divisors of q5 + 1 and q2 + 1, respectively. Note 
that d divides the number of lines. If DE SyldK, then Cv(D) has type [2- (4, q). By 

Sylow's theorem, r II NK(D) I. An element of order r in NK(D) cannot act non trivially 
on [V, D]. Thus, r II K L I for some line L. 

Let R E SylrKv and define Wand N as usual. Then W has type [2+ (6, q) or 
[2 - (10, q), and N W is (1, 2)-transitive. The first possibility for N W is handled as in 
(6.2) (cf. (5.15)). If Whas type [2- (1O, q) then (q3 - 1)/(q - 1) divides the number 
of lines of W, so that (6.2) applies with s = q3 - 1. 

REMARK. A similar argument deals with (I, 2)-transitive subgroups of [2 C (2m, q) 

whenever m is relatively small. 

7. Theorem 1.1: Reductions. Let G and K be as in (1.1), but assume that the pair 
G, K is not listed in that theorem. We will assume, until §9, that G actually acts on 
the vector space V as a group of semilinear maps. We may also assume that 
rad V = 0. The case of V of type [2+ (6, q) will be postponed until §1O. 

Note that K is a maximal subgroup of G. 
Write cp = l~ = 1 + X + ~ with X and ~ irreducible characters. 
Let B be a Borel subgroup of G. To each irreducible character (0: I 13) or (0: I 0:)" 

of the Weyl group of G there naturally corresponds an irreducible constituent of 1~, 
also called (0: I 13) or ( 0: I 0:) ± , as explained in §4. 
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Throughout §§7 -9, frequent reference will be made to Tables II and III of §3. 
Recall from §4 the fact that, for example, the permutation character 1(12; n - 2) 
appearing in Table II is just the permutation character 012 of G on the set of 
(1,2)-flags of V. The proof of (1.1) will involve computing inner products of cp with 
several such permutation characters. Some such characters not explicitly listed in a 
table are implicitly in the table, because of (4.4); for example, 023 = 0\3. Most 
relevant inner products for Dn are in Table II, not Table III, because of (3.5, 6, 7); 
consequently, we will be able to deal with Q+ (2n, q) and 0+ (2n, q) simultaneously 
in most situations. 

LEMMA 7.1. Every noncentral normal subgroup of K is irreducible on V. 

PROOF. Let N be a noncentral reducible normal subgroup, and let Wbe a minimal 
proper N-subspace. Then rad W = 0 or W. If N = K, it is straightforward to check 
whether G has rank 3 on WG; only instances on our list can occur (namely, (1.1 i, ii, 
iii, iv) arise in the present context). Thus, K is irreducible and (by Clifford's theorem) 
V = WI EB ... EB w,. with WI = Wand each Jt'; an N-subspace conjugate to WI 
under K. The maximality of K forces K to be the stabilizer of the set {Wi' ... ' w,.}. 
Once again it is easy to check whether G has rank 3 on WG. 

LEMMA 7.2. If n ;;;. 2 and K is transitive on points then K contains no long root 
element. 

PROOF. Deny! Then the subgroup N of K generated by long root elements is 
irreducible by (7.·1), and N = (t N ) for some long root element t by (2.3). Thus, (2.4) 
applies. (This time, (1.1 viii, ix, x) arise.) 

LEMMA 7.3. We may assume that X E I~. 

PROOF. If (cp, I~) = 1, then Seitz's result (2.6) applies if n ;;;. 2. If n = 1, then K is 
transitive on points, so that (2.7), (2.8) and Dickson [12, Chapter 12] can be used to 
find K. In all cases, it is straightforward to check whether or not K is maximal and G 
has rank 3 on G / K. (The cases (1.1 v, vi, vii) occur here.) 

LEMMA 7.4. ~ tt. I~, except perhaps if G is Sp(2n,2) and ~ is (n - 1,110), 
(n - 1 11) or (0 In). 

PROOF. Suppose cp C I~. Then, excluding the stated possibilities for ~ in the case 
Sp(2n, 2), we have I G: K I = cp(1) == 1 (mod p) by (4.7). By (2.2), K is then reducible 
on V. (The cases (1.1 i, ii) appear here.) 

Convention. Throughout §§7, 8, we will assume that ~ tt. l~. The inevitable 
Sp(2n, 2) case will be dealt with in §9. 

LEMMA 7.5. n > 2. 

PROOF. By (7.3, 4), K has 2 point-orbits, so that (2.8b) applies when n = 1. If 
n = 2, then X E 01 or °2 , or X = l~ - °1 - O2 + IG (by 4.5(i) and Table II). Then 
using Table II in order to compute (cp, l~), we find that (5.13) or (5.14) applies. The 
rank on G / K is straightforward but tedious to check geometrically. (The cases (1.1 v, 

vi, vii) occur here.) 
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8. Transitivity. The most enjoyable part of the proof of (1.1) is the following 
crucial fact. 

THEOREM 8.1. K is transitive on points. 

PROOF. Assume that K is not point-transitive. Then (X,OI)= 1, so that x= 
(n - 1, e 11 - e) for e = 0 or 1, and K has just (<p, ( 1)= 2 point-orbits g, g'. By 
(4.5) and the argument following it, we have (<p, 0n-e)= 2 and (<p, 0l,n-e)= 3. 
Thus, K has 2 orbits on (1, n - e)-flags (of each type if G has Weyl group W(Dn))' 
There must then be an n - e-space whose stabilizer is transitive on its points; we 
may assume that g contains this n - e-space. By (2.13) there is an n - e-space W 
not in g which contains an n - e - I-space of g. 

Since flags behave differently for types Bn and Dn, we will consider these cases 
separately. 

Type Bn' Each flag has the form (VI' V2, ... , v,,), and there is an i with V, C g, 
V,+ I q; g. Flags having different values of i cannot be in the same K-orbit. Every 
value of i between 0 and dim W = n - e can occur (using an i-space inside W n g if 
i < n - e). However, by (4.5) we have (<p, 1 ~) = 1 + n - e, so any two flags with 
the same i are in the same K-orbit. Set i = 0, and apply (2.16) with x = VI in g', in 
order to see that K is listed in (1.1). 

Type Dn- Each flag has the form (VI"'" v,,-2' v", V~), where v" and V~ are 
n-spaces on an n - I-space v,,-I :J v,,-2, and are in different G-orbits. 

Once again, K has (<p, 1 ~) = 1 + n - e flag-orbits. As above, at least n - 2 of 
these are accounted for by flags having v,,-2 1: g. We will exhibit 3 - e orbits of 
flags having v,,-2 C g. 

By (4.5), there are (<p, ( 2 ) = 2 orbits of lines: those contained in g and those 
meeting both g and g' (the latter type can be seen in W). In particular, g' contains 
no n - I-space. By (4.5), there are (<p, 0n-I)= 3 - e orbits of n - I-spaces and 
(<p, 0l,n-I)= 4 - e orbits of (1, n - I)-flags. There are thus 2 - e orbits of 
n - I-spaces contained in g, and one further orbit of n - I-spaces. One of the latter 
n - I-spaces contains an n - 2-space in W n g. Thus, each of the 3 - e orbits of 
n - I-spaces has a member containing a v,,-2 contained in g. This produces at least 
3 - e further flag-orbits. 

As before, (2.16) applies, and completes the proof of (8.1). 
REMARK. Cases (iii)-(v) of (2.16) clearly cannot occur in (1.1). Also, g(7,3) has 

rank 4 on the cosets of W(E7 )" with 4 distinct subdegrees (Fischer [17, (15.3.16)]). 

LEMMA 8.2. X E O2 or °3 , 

PROOF. If X f£ °2 ,03 then (by Tables II and III) K is transitive on points, lines and 
planes, so that (6.4) applies. (Recall that the case of g+ (6, q) has been postponed 
until §10.) 

LEMMA 8.3. Either n .;;; 3 or V has type g+ (8, q). 

PROOF. Assume that n ;;;. 4 and V does not have type g+ (8, q). Suppose first that 
X =1= (n - 212), (n - 313). By Tables II and III, X f£ On' so that K is transitive on 
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n-spaces (of each type, if G has type Dn)' Again by those tables, K has at most 2 
orbits of lines and 3 orbits of (1, 2)-flags. Then by (6.5), K has 2 line-orbits. Thus, X 
is (n - 2,21 0) or (n - 2, 1 11). By Tables II and III, K has at most 2 orbits of 
planes and (1, n)-flags (for each type of n-spaces in the case of n+(2n, q)). If 
X = (n - 2,210) then K has 3 orbits of (2, 3)-flags. If X = (n - 2, Ill) then K has 2 
orbits of planes and (1, n )-flags (for each type of n-spaces), 4 orbits of (2,3)-flags 
and 7 orbits of (1,2, 3)-flags; moreover, if n = 4, there are 9 orbits of flags by Table 
II and (4.5 i). Thus, (6.5') eliminates this possibility for K. 

Now suppose that X = (n - 212). Again by Tables II and III, K is point-transitive, 
has 2 orbits of lines, planes and (1, 2)-flags, and 3 orbits of (2, 3)-flags (except when 
G has Weyl group WeDs)' in which case there are 4 such orbits); and if n = 8, then 
K has 2 orbits of planes and 3 of (3,4)-flags. By (6.6), G must have Weyl group 
WeDs). But here, Table III implies that K has 2 orbits of each type of 5-spaces, 3 
orbits of planes and each type of (1, 5)-flags, and 4 orbits of (1, 3)-flags. Thus, (6.8) 
eliminates this case. 

Finally, suppose that X = (n - 313). We may assume that G does not have Weyl 
group W( Ds) (as otherwise we are back in the case (3 I 2) by Table III). This time, K 

is (1, 2)-transitive, has 2 orbits of planes, (1,2, 3)-flags and 4-spaces, and 3 orbits of 
(3,4)-flags (except that there are 4 such orbits if G has Weyl group WeD?)). Now 
(6.7) and (6.9) eliminate this case. 

LEMMA 8.4. n =1= 3. 

PROOF. Suppose that n = 3. By (8.1), (8.2) and Table II, X = (1, Ill), (112) or 
(01 3). 

If X = (1, Ill), then (by Table II) K is transitive on points and planes, has 2 
orbits of lines and (1, 3)-flags and 3 orbits of (1, 2)-flags. This is impossible by (5.16). 

If X = (1 12), then K is transitive on points, has 2 orbits of lines, planes and 
(l,2)-flags, 3 orbits of (1, 3)-flags and 4 orbits of flags. Then (5.19) describes all 
possible groups K, and (5.20) discusses which produce rank 3 permutation 
representations. 

Finally, if X = (013), then K is (1,2)-transitive and has 2 orbits of planes, 
(1,3)-flags and flags. This is impossible by (5.18). 

LEMMA 8.5. V does not have type n+ (8, q). 

PROOF. Suppose that V has type n+ (8, q). Define G+ = n+ (8, q), K+ , cp+ and 
X+ as in (4.1). Then (cp+ -1 - X+, If>= O. 

If (X+ ,°2> = 0, then K+ is transitive on points and lines. This contradicts (5.21). 
Thus, X + c °2 , If X + EO" the proof of (8.1) applies with K+ in place of K. 

Consequently,x+ ~ 02 - 0,. 
Suppose that X+ = (212)'" . Let T denote a triality automorphism of pn+ (8, q), 

and consider (K+ ( -1> / ( -1> r. This group behaves as in the preceding paragraph, 
if X+ T = (3, 110). 

Thus, X+ = (2,210), (2, Ill) or (212). 
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If X+ = (2,210) then (by Table III) K+ is transitive on each class of (1, 4)-flags, 
and has 2 orbits of lines, (1,2)-, (1,3)- and (2,3)-flags and 3 of flags. Since X+ is 
'T-invariant, K+ also has 2 orbits of each class of (2,4)- and (1,2, 4)-flags. By (5.22), 
K+ is W(E8 )" embedded in 0+ (8, 3). Then G has rank at least 4 on the cosets of K 

(Fischer [17, (18.3.12)]). 
If X+ = (2,111) then X+ is again 'T-invariant. Now Table III and (5.23) yield a 

contradiction. 
Finally, if X+ = (212) then G has type B4 , and X = (212). This time, Table II and 

(5.25) yield a contradiction. 

9. Proof of Theorem 1.1: Conclusion. In view of §§7, 8, the proof of (1.1) is 
complete except for two situations: (A) G = Sp(2n, 2) and cp C; 1~; and (B) G has 
elements not arising from semilinear transformations of V. (Recall however, that the 
case of Vof type 0+ (6, q) has been postponed until §1O.) 

(A) G = Sp(2n,2), n;;;' 3. (Of course, Sp(4,2) ~ S6') By (2.2), I G: KI is even. 
Thus, by (4.7), cp = 1 + X + t with t = (n - 1, 1 I 0), (n - 1 11) or (0 In). 

LEMMA 9.1. 22n - 3 1 cp(I). Inparticu/ar, 
(i) 2n - 1 is the highest power of 2 dividing x(1) if t is (n - 1, 1 I 0) or (n - 1 11), and 
(ii) 4 is the highest power of 2 dividing X( 1) if t = (0 In). 

PROOF. Set Q = CG(x-L Ix), and consider its action on the cp(1) cosets of K. The 
orbit of K has length I Q: K n Q I. By (7.1), (2.3) and [33], K n Q does not contain 
long root elem~nts of O(2n + 1,2). By (2.1), I K n Q I..; 4. Thus, I Q 1/4 = 22n- 3 

divides cp(l) = 1 + x(1) + t(1). By (4.7), cp(l) = 2n-l(2n ± 1) + x(1) or 
4(22n- 3 + 2n- 2 + 2n- 3 + 1)/3 + x(1). Assertions (i) and (ii) are now immediate. 

LEMMA 9.2. If n ;;;. 4 then X E 023 , 

PROOF. Suppose that X fl °23 , If t = (0 I n) then (6.4) applies (by Table II). Thus, 
t = (n - 1,110) or (n - 111). By Table II, K has 2 orbits of points, lines and 
planes, and 3 orbits of (1,2)-, (1,3)- and (2, 3)-flags. Call the point-orbits 0 and 0'. 
We may assume that 0 contains a plane. Then each line meets 0' in 0 or k points, 
for some k ;;;. 1. By (2.11), k = 1. 

Let x E 0\ Then Kx is transitive on the planes through x. If r is a primitive 

divisor of 2n- 2 + 1 (use r = 23 - 1 if n = 5), then rll Kx I. Let R E SY/rKx' and 
set W = Cv(R), N = NK(R) and C = CN(W-L) as in §6. Then N W is a subgroup of 
Sp( 4,2) having at most 2 orbits of points and lines. Since k = 1, it follows that 
I W nO 1= 5 and NW[> 0- (4, 2). Then C w [> 0- (4, 2) as well. 

Set Q= CG(x-Llx). Then Icn QI=4. Since K;-'-jX is point-transitive, (2.1) 
implies that K ;;;. Q, which is ridiculous. 

LEMMA 9.3. n ..; 4. 

PROOF. Suppose that n;;;' 5. Using Mayer [35, (1.1)], we find that 013 has 15 
irreducible constituents, 12 of which have even degree. Of these, only the character 
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(n - 313), n ;;;;. 6, has degree == 4 (mod 8), by (4.8). Suppose that K = (0 In). By 
(9.1), X = (n - 313). By (4.8), 

IG: KI = 4(22n - 3 + 2n- 2 + 2n- 3 + 1)/3 + 4(22n - 1)(22n - 2 - 1)(2n- 2 + 1)/3lS 

is not divisible by 22n - 3• Thus, K =1= (0 I n) by (9.1). 
By (9.2), X E °23 , and by (9.1), x(l) == 2n - 1 (mod2n). By (4.8), X must be 

(3,1112), (3, 1211) or (212,1). However, 1 + K(l) + X(l) + I G I in each of these cases. 

PROPOSITION 9.4. There is no counterexample to (Ll) when G = Sp(2n, 2). 

PROOF. We must eliminate the cases n = 3,4. Let n = 4. As in (9.3), we find that 
cp is (41 0) + (3, 1 I 0) + (2, 121 0) or (41 0) + (3 11) + (2, 121 0). In neither case is 
there a divisor d of IGI such that cp(1)d(cp(l)-d-l)/X(l)K(1) is a square, 
contrary to Frame's theorem [62, (30.1 )]. 

Similarly, if n = 3, a routine calculation shows that there are only 3 characters 
cp <: l~ such that (cp, 1) = 1, (cp, cp) = 3 and cp(l) II G I. Once again, none of these 
satisfies Frame's theorem. This proves (9.4). 

(B) Graph automorphisms. There are two cases to consider: Sp(4,2e) and 
pn+ (8, q). (The graph automorphisms of n+ (2n, q), n > 4, of order 2 were already 
considered when we discussed 0+ (2n, q).) 

As usual, we have cp = 1 + X + r Define K+ , cp+ , X+ , K+ and B as in (4.1). By 
(2.6), we may assume that (cp + ,If) > 1. By (4.1 d), we may assume that X + <: If. 
If cp+ <: If then (2.2) applies by (4.7), except in the easy case Sp(4, 2). We may thus 
also assume that (K+ , If) = o. 

Suppose that Sp(4, 2e) < G,;;;; Aut Sp(4, 2e). If X+ is irreducible, use (S.6). If X+ is 
reducible then X+ = (1,1 10) + (012). Here, K+ has 3 point-, line- and flag-orbits. 
No such group exists. (If L is any line then (K+)f: would be transitive, and hence 
K+ would be point-transitive.) 

Next suppose that pn+ (8, q) < G,;;;; Aut pn+ (8, q). If X+ is irreducible, the 
arguments in §§7, 8 apply with K+ replacing K. We may thus assume that X+ is 
reducible. By Table III, O2 is G-invariant, so X+ <: O2 by (S.22). Again by Table III, 
X+ must be a sum of 2 or 3 of the characters (3, 11 0), (212)+ and (212)- . 

By (S.2S), the case X+ = (3,110) + (212)+ +(212)- is impossible. If X+ has just 
2 irreducible constituents, we can use Aut pn+ (8, q) in order to assume that 
X+ = (21 2)+ +(21 2)- . In this case, G ,;;;; PfO+ (8, q), and G has type B4 • Thus, this 
case was handled in §§7, 8. 

This completes the proof of (l.l). 

10. Proof of Theorem 1.2. The more complicated results appearing in §§2-S are 
not required for (1.2), as the following remarks indicate. 

REMARK 10.1. We will require (3.8) when 0, is regarded as the permutation 
character on i-spaces of a group lying between SL(n, q) and fL(n, q), and when OIl' 
etc., are viewed similarly. The assertions in (3.8) can then be proved directly and 
easily as follows. For (i), consider (0,-1' 0,-1)' (0,,0'_1) and (0,,0,). Statements (ii) 
and (iii) are especially easy. For (iv)-(vi), proceed as in the following example. In 
order to compute (03 - °2 ,°34 ), calculate the number of orbits of the stabilizer of a 
(3, 4)-flag in its actions on both 3-spaces and 2-spaces, and subtract. 
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REMARK 10.2. From §2, we will require the relatively elementary results (2.7, 2.15). 
All transitivity results in §5 will be avoided. Instead, we will refer to [23], [58], [46], 
[31], [32] for transitivity statements. It should be noted that the results quoted from 
[32] are merely simple cases of Perin's method, and should be straightforward 
exercises for anyone who has read [46] or examined (6.1,2). 

We now begin the proof of (l.2). We are given PSL(n, q) ~ G ~ Aut PSL(n, q) 
and K ~ G. Define G+ = G n PfL(n, q), K+ , cp, cp+ , X, X+ , f, f+ and B as in 
(4.1). 

If (cp + ,If) = 1 then K+ is flag-transitive. Thus, Higman [23] can be applied if 
n > 2, while Dickson [12, Chapter 12] provides a short list to check if n = 2. 

Similarly, if n = 2 and (cp, 1~)~ 1 then (cp, 1~)= 2 and K has exactly 2 
point-orbits. This time a longer list of possibilities for K n SL(2, q) can be obtained 
from Dickson [12, Chapter 12]. In most cases there are elementary geometric 
arguments showing that the rank of G on G / K is greater than 3. The remaining ones 
are dealt with by arithmetic arguments. (For example, I G: K I -1 - q is divisible by 
the degree of an irreducible character of PSL(2, q), namely, q ± 1 or i( q ± 1).) 

If cp+ C If, then I G+ : K+ 1== 1 (mod p) by (4.7). (This simple case of (4.7) is 
implicit in Steinberg [55]; cf. [9, (5.9)].) Thus, (2.2) applies. 

In view of (4.1), we may assume that X+ C If and (f+ , If) = O. Note that X+ 
is irreducible. For, by (4.1 c), X+ is a sum of characters conjugate in G, while each 
irreducible constituents of If is G-invariant. (In order to see this, note that the 
permutation character of G+ on (i" ... ,i{)- and (n - il'" .. ,n - i,)-flags coincide, 
as in (4.3). Since every constituent of If is a linear combination of such permutation 
characters by Steinberg [55] or (4.2), this implies the desired invariance.) 

At this stage, we no longer require information of a rank 3 nature. All that is 
needed is the following more general result (in which our notation has been altered 
somewhat). 

THEOREM 10.3. Let SL(n, q) ~ G ~ fL(n, q), where n > 2. Let B be a Borel 
subgroup of G, and let K < G. Assume that 1~ and 1~ have a common nonprincipal 
irreducible constituent X such that (1~ - 1 - X, 1~) = O. Then one of the following 
holds (with the obvious embedding): 

(i) K fixes a point or hyperplane; 
(ii) K 1> 3 . A 6 , inside f L(3,4); 
(iii) K I> Sp(4, q), inside fL(4, q); 
(iv) K = A 6 , inside fL(4, 2); or 
(v) K I> SL(2, q2), inside fL(4, q). 

REMARK. In the context of (l.2), only (ii), Sp(4,2) and Sp(4,3) can arise, 
corresponding to (1.2 iv, v, vi). For, (i) and (iv) clearly cannot occur, by primitivity. 
Examples (iii) and (v) are best viewed by passing to fO+ (6, q), where they 
correspond to subgroups of the stabilizer of an anisotropic 1- or 2-space; from this 
perspective, it is easy to check for the rank 3 property. 

PROOF OF (l0.3). We will proceed in several steps. Let V denote the underlying 
vector space. 
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(I) Suppose that X = 0, - 1 is the reflection character. By (3.8), K then has 2 
orbits of points and hyperplanes, and 3 orbits of (1, n - I)-flags. Thus, K has a 
point-orbit n containing a hyperplane. By (4.5) (or a simple argument as in (10.2)), 
there are 1 + (n - 1) flag-orbits. Each flag has the form (V" . .. , v,,-,) with V, C n 
and v,+, g: n, for some i. This accounts for n possibilities, one for each i between 0 
and n - l. Thus, if x f/:. n then K x is flag-transitive on V / x. By (2.15), (i) or (ii) 
holds. 

(II) From now on, we may assume that K is transitive on points. By (2.7 i), n ~ 4. 
Assume that X =1= O2 - 0,. Then K is line-transitive. By Kantor [31], [32], K is 

2-transitive on points and n ~ 10. (The only possible counterexample given in [31] is 
a Sylow 3 I-normalizer in SL(5, 2), which has 7 orbits of (1, 3)-flags.) By Perin [46], K 
is intransitive on 4-spaces, and even on planes if q > 2. Thus, X is 03 - O2 or 04 - 03' 

Suppose X = 03 - 02' By (3.8), K has 2 plane-orbits and 3 orbits of (3,4)-flags. 
Thus, there is a plane E such that KE is transitive on the (qn-3 - l)/(q - 1) points 
of V / E. By (2.18), qn-3 - 1 has a primitive divisor. Thus, K ~ SL(V) by [32, (5.2)]. 

Similarly, if X = 04 - 03 and q = 2 then 2n - 4 - 111 K I , and [32] again shows that 
K ~ SL(V). 

(III) Thus, X = O2 - 0,. 
Suppose n = 4. By (3.8) and (5.5), (iii), (iv) or (v) holds. 
This completes the proof of(Ll) when K,;;;; ro+ (6, q). 
REMARK 10.4. In view of remarks (10.1, 2), it seems desirable to outline a more 

direct argument when n = 4, in order to avoid using (5.5). Note that K is transitive 
on points and 'planes, has 2 orbits of lines, (1,2)- and (1, 3)-flags, and 3 orbits of 
flags. Let E be a plane. By (2.7), Ki fixes a point, line or (if q = 4) a hyperoval. If 
K i fixes a hyperoval, then I Z( K ff) 1= 3, and Wagner [60] applies. 

Suppose that K i fixes a point x. Then K E = K x' Here, x - E defines a symplectic 
polarity. (For, Kx is transitive on the q + 1 lines of E through x, and on the 
remaining q2 lines through x. Let <x, y> be one of the latter lines. Then K x,(x,y) is 
still transitive on the aforementioned q + 1 lines, by (2.12). Thus, K xy cannot fix any 
plane on both x and y.) Since K; has just 2 line-orbits, it contains all transvections 
with direction x. Thus, if x E LeE then K; is transitive on L - x. Now 
Kf ~ SL(2, q). Also, q II CK(L) I. Applying (2.1) to rO(5, q), we find that 
CK(L) ~ Op(GL ) if q > 2. Thus, (iii) or (iv) holds. 

Next suppose that Ki fixes a line L. Then Ki is transitive on the remaining lines 
of E, so that L is the only member of L K lying in E. Consequently, ILK I = q2 + 1, 
and L K partitions the points of V. Note that 0/ CK(L )E) is transitive on E - L, and 
hence on L K - {L}. It follows that L K is uniquely determined up to 
GL(4, q)-conjugacy [10, pp. l30-l3l]. Hence, (v) holds. 

(IV) From now on we will assume that n ~ 5 in order to eventually obtain a 
contradiction. 

Since X = 02 - 0" (3.8) implies that there are 2 orbits of lines, planes and 
(1,2)-flags, 3 orbits of (2, 3)-flags and 4 orbits of (1, 2, 3)-flags. Thus, there is a plane 
E such that Ki is transitive, and a plane E' such that Kf has 2 point-orbits. Then 
Kf has at least 3 flag-orbits, and hence Ki is flag-transitive. 
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There is a line L contained in E' but contained in no member of EK. Then KL is 
transitive on the points and hyperplanes of VI L. Consequently, if H is a hyperplane, 
then KH is transitive on those members of LK lying in H. 

Similarly, there are 2 orbits of (1,2, 3)-flags on the form (x, L, E'), and hence also 
2 of the form (x, L, H). Thus, KZH has 2 point-orbits. 

By (3.8), KJf has 2 point-orbits (called 0 and 0'), 3 line-orbits and 4 orbits of 
(1,2)-flags. Thus, L n 0 and L n 0' are the orbits of KZH , and only lines in LK can 
meet both 0 and 0'. 

Again by (3.8), K has 3 orbits of (1, 3)-flags and at most 5 orbits of (1,3, 4)-flags. 
Thus, KxT is point-transitive on V IT for some (1, 3)-flag (x, T). 

(V) Assume that Kx fixes a proper subspace U(x) ::J x. Since KL is transitive on 
VI L, U( x) is either a line or a hyperplane. 

If U(x) is a line, then U(x) = L and no two members of U(X)K meet nontrivially. 
Then T meets q2 or q2 + q + 1 members of LK in just one point, and KxT has a 
point-orbit on V IT of length at most q2. Since KxT is transitive on V IT, this is 
impossible. 

Thus, U(x) is a hyperplane. As in (10.4), x - U(x) defines a symplectic polarity. 
However, K{/T cannot be transitive in a symplectic geometry. 

Thus, K;/x is irreducible. Dually, so is KJf. 
(VI) That n oF 5 follows from (5.5). 
Alternatively, since K i is flag-transitive, K iH is transitive whenever H ::J E (by 

(2.7 i)). Thus, (2.15) shows that KJf cannot be irreducible. 
(VII) Thus; n ~ 6. By (3.8), KJf has 3 plane-orbits, 5 orbits of (1, 3)-flags and 7 

orbits of (1,2, 3)-flags. By (2.7 iii), two of these plane-orbits produce subgroups of 
fL(3, q) having 2 point-orbits and 3 flag-orbits, while the third produces a 
flag-transitive subgroup. 

We may assume that LeE' c H. By (2.7 ii), KZE'H has orbit lengths 1 and q, 
except perhaps if q = 4 and the lengths are 2 and 3. 

(VIII) If I L n 0 1= 1, then any line meeting 0 twice must be contained in O. (For, 
we have seen that KJf has a unique orbit of lines meeting both 0 and 0'.) Thus, 0 is 
a subspace, and this contradicts (V). 

Consequently, q = 4 and Kff,' C> 3 ·A6• Also, Ki ~ SL(3,4). Let r be a primitive 
divisor of 4n- 3 - 1, and let R E SylrKxT. Then R centralizes T, and NK(Rl = Kf 
by the Frattini argument. It follows that Kd[V, R]l contains transvections, and 
hence so does K, which is ridiculous. 

This contradiction completes the proof of (10.3), and hence also of (1.2). 

11. Remarks concerning Theorems 1.1 and 1.2. 
(A) Just as in the case of (1.2) and (10.1), the proof of (1.1) did not make full use 

of the rank 3 hypothesis. The crux of the argument was the following companion to 
Seitz's flag-transitive theorem (2.6). 

THEOREM 11.1. Suppose that V has rank at least 2, but is not of type 0 + (4, q) or 
0+ (6, q). Let Chev(V) .;;; G.;;; f(V), and let K < G. Assume that there is an irreducible 

character X common to I~ and I~ such that <I~ - X, I~) = 1, where B is a Borel 
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subgroup of G. Then one of the following holds, with K embedded in f(V) in the natural 
manner: 

(i) K;;;. Chev(H), for a nonsingular hyperplane H, where V is orthogonal or unitary 
and X = (n - Ill) or (n - 1,110); 

(ii) V, K and X are given in Table V; or 
(iii) K arises from Table V via one of the isomorphisms PSp(4, q) ~ PQ(5, q), 

PSU(4, q ) ~ PQ- (6, q), or Q(2n + 1, 2') ~ Sp(2n, 2i). 

The proof proceeds exactly as in §§7, 8. However, more care is needed in checking 
the examples occurring in the course of the proof. This is accomplished as follows. K 
has (1~, 8\) ,,;;; 2 point-orbits; this eliminates most instances. In order to then verify 
that a prospective example behaves as desired, one computes the number of 
flag-orbits geometrically. If K is not point-transitive, (4.5 i) is used; for example, 
(1l.l i) is checked by reversing the proof of (8.1). 

(B) Imprimitive rank 3 groups. In order to underscore the previous remark we 
observe that Theorems 1.1 and 1.2 can now be generalized to include imprimitive 
rank 3 groups. For example, if G,,;;; f( V) as in (l.l) and G acts on G / K as an 
imprimitive rank 3 group, then one of (2.6), (ILl) or (2.2) applies depending upon 
the number of parabolic characters in the associated permutation character. 
Comparing the resulting list of groups with those in the main theorem of [9] (and 
using the fact that G acts 2-transitively on a system of imprimitivity) we have: 

THEOREM 11.2. Let G be as in (1l.l) and let K,,;;; G. Assume that G acts as an 
imprimitive ra~k 3 group on G / K. Then Q ± (2n, 2) = K < Sp(2n, 2) = G. 

In order to see that these are rank 3 representations, view Sp(2n,2) as the 
stabilizer of a nonsingular point in 0 ± (2n + 2,2) and let K be the centralizer of a 
nonsingular 2-space on x not in x-L . In a similar manner we obtain: 

THEOREM 1l.3. Let G be as in (10.1) and let K,,;;; G. Assume that G acts as an 
imprimitive rank 3 group on G / K. Then either K = A7 < Ss ~ Aut P SL( 4,2) or K 
has index 2 in the stabilizer of a point or hyperplane. 

(C) Other Chevalley groups. It would be worthwhile to extend the methods 
presented here to the other Chevalley groups. Clearly, transitivity questions would 
have to be handled somewhat differently, due to the seeming lack of a convenient 
module. The known examples of rank 3 representations are as follows: (i) E6(q) 

on either of two classes of parabolic subgroups; (ii) Gi2) = PSU(3, 3) ·2 as in 
(1.1 x); and (iii) G2(4) on a class of Hall-Janko subgroups (Suzuki [56]). 

(D) Although we have dealt primarily with f( V), it may be helpful to observe that 
our main theorems could have been proven by working entirely inside Chev(V). 
While we have chosen the present exposition hoping that some of our numerous 
intermediate technical results might find greater application, such "linearization" 
might be necessary to deal with the other Chevalley groups. This kind of restriction 
is facilitated by (4.1), (4.4) and the following lemma. 
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TABLE V 

Chev(V) A normal sub~rou~ of K X Reference 

0+(8,q) 0(7,q) or 2· 0 (7,q) (212) ± or (2.16) and 

A 9, q = 2 (3,110) triality 

2· 0+(8,2), q = 3 (2,210) (S.22) 

0(7,q) G 2(q)' 
(112) (S.19) 

prL(2,q3), q = 2 or 8 

Sp(6,2), q = 3 (2,110) (2.16) 

SU(6,2) 3·PSU(4,3) (211) (2.16) 

SU(S,2) zj ~A5 (111) (S.14) 

SU(4,q) Sp(4,q)' 

4·Zi-PSL(2,S) or 4·zi·A6 , q = 3 (111) (S.14) 

4·PSL (3,4), q = 3 (012) (S.13) 

Zi~A4,q=2 

SU(3,2)" ~ Zg, q = 2 (1,110) (S.13) 

Sp(4,q) SL (2,q) X SL (2,q) 

0+(4,q), q even 

SL (2,3), X SL (2,3)" q = 3 (111) (S.14) 

2·Zi-A 4 , q = 3 

Zl,q=3 

Sp(2,q2) 

2·zi ~ D IO , SL(2,S), q = 3 (012) (S.13) 

0-(4,q), q even (1,110) (S.13) 

LEMMA 11.4. Suppose G t> G+ and K+ = K n G+ for some K ~ G. Suppose X is an 

irreducible character of G such that <X, 1~) =1= o. If X-+: = X IG+ is irreducible then 

( G) _ (G+ +) IK'X - 1K+,X . 
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PROOF. By Frobenius reciprocity and the fact that I~ = (1fK)G, it suffices to 
consider the case G = G+ K. In this case, 

(I~:,x+)= (If,x)= (~w(l)wG,x)=~w(l)<W'XIH> 
where the summations range over the irreducible characters w of K with kernel 
containing K+ . The irreducible constituents of (X+)G are of the form X+ cp where cp 

is an irreducible character of K with kernel containing K+ (Isaacs [28, (6.17)]). Since 
X is an extension of X+ , Frobenius reciprocity implies X = X+ cp for some such cpo 
However, an easy calculation shows 

< X I K' W > = < X I K+ , 1 K+ > < cp, w > 
for any w as above, and 0=1= (X, I~)= (XIK' IK)(O, IK) by hypothesis and the 
preceding equation. Therefore cp = 1 K' and the same equation shows 

(X IK' w) = (X IK' IK )8W']H' Thus 

( I~: , X + ) = ~ w (1) < w, X IH > = (1 ~, x), 
as desired. 

12. Proof of (1.3). Since K is (1, 2)-transitive, by (2.6) and (5.15) we may assume 
that d:;;;, 7. Set Q = 0ifO(V)x); we may also assume that K n Q = 1, by (2.1) and 
(2.4). 

Let r be a primitive divisor of qm-2 ± 1, for V of type Q ± (2m, q) or 
Q(2m - 1, q); define R E SylrKx' W, Nand C as in §6. By (2.18), r exists except in 
the cases Q+ (l0, 2), Q- (16, 2), and Q- (8, q) with q a Mersenne prime, all of which 
we temporarily exclude. By Table IV, R =1= 1. 

Note that W contains no line, while N W is transitive on ordered pairs of points. 
Thus, N W r::: Q- (4, q) or Q(3, q), while N wJ. is isomorphic to a subgroup of 
fO± (2, qm-2). Consequently, unless N W I> Q(3, 3), we find that C W :;;;, Q- (4, q), 

and hence that C n Q =1= 1. 
Thus, K oS; fO(2m - 1,3). Here, I 02(C W ) I:;;;, 4. Let b be a nonsingular point of 

W whose corresponding reflection t fixes 2 points of W. Set H = (Kb' C)( t). Since 
I bro(V) n (x]' x2)1= 1 for any pair of nonperpendicular points x], X2' (t)Kb is 
transitive on the set of points not in b~ . Since C moves b, it follows that bh f1. b~ for 
some h E H. But then tt h E K, and tt h is in the conjugate 03(fO(V)x') of Q (where 
x' = rad( b, bh »), contrary to our assumption. 

We now turn to the excluded cases. If K oS; fO- (16, 2), use r = 7 and proceed as 
before. Note that R fixes a 6-space of W~, and hence that N wJ. is contained in 
fO+ (4, 23 ). However, (Nwyoo) = As is not contained in the latter group. 

If KoS;fO+(lO,2), let R] ESyI3Kx' Since x~/x has (24 -1)(23 + 1) points, 
I R] I:;;;, 33• However, fO+ (8, 2) has no element of order 33, so R] cannot be 
fixed-point-free on x~ Ix. Let R be a 3-group maximal with respect to having 
dim W > 2, where W = C v( R); define Nand C as usual. If W has type Q - (4,2), 
the usual approach works. Since an Q+ (6, 2) space has (23 - 1)(22 + 1) points, W 
cannot have type Q+ (4, 2). If dim W > 4, it follows similarly that W has type 
Q+ (6, 2) or Q- (8, 2). By Sylow's theorem, N W is then line-transitive, so that 
7 II N W I and we can proceed as in the preceding paragraph. 
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Finally, suppose that K..; ro- (8, q) with q Mersenne. If L is a line, clearly 
Kt;;" SL(2, q). We may assume that -1 E K. If R E Syl2 CK(L) n SL(8, q), then 
R =1= 1. Define W, Nand C as usual. Then N W is (1, 2)-transitive, and N/;;;" SL(2, q) 
by the Frattini argument. Clearly, dim W = 4, 5 or 6. If dim W = 6, then C n Q =1= I 
by (2.6) and (5.15). If dim W = 5 then q = 3 or C n Q =1= 1 by (2.6). If W has type 
g+ (4, q) then NW;;" 0+ (4, q) while N W"- normalizes the 2-group RW"-"; ro- (4, q); 

consequently, q = 3 (as otherwise, C W ;;" g+ (4, q) and C n Q =1= 1). We can now 
introduce a reflection as before in order to complete the proof of (1.3). 

REMARK. It should be noted that the linearity assumed by Perin was as superfluous 
for his arguments as it was for ours. 
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