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If q 3 2 (mod 3), a generalized quadrangle with parameters q, q2 is constructed 
from the generalized hexagon associated with the group G,(q). 

1. INTRODUCTIVE 

In addition to the generalized quadrangles arising naturally from small- 
dimensional symplectic, unitary, or orthogonal geometries, the only known 
finite examples are the following quadrangles and their duals: ones with 
parameters 4, 4 (where 4 = 2e > 8) or q*, 4 (where q = 22e+l > 8) due to Tits 
[4, p. 3041; and others with parameters q - 1, q + 1 (for prime powers q) 
due to Hall [5] and Ahrens and Szekeres [l]. In this note we will discuss a 
procedure for constructing all but the last of the above examples, and others 
as well. In particular, we will prove the following result. 

THEOREM 1. If q is a prime power such that q = 2 (mod 3) and q > 2, 
then there exists a general quadrangle with parameters q, q2 not isomorphic 
to any of the aforementioned ones. 

The only surprising feature of these quadrangles is that they arise from the 
groups G*(q), which are themselves associated with generalized hexagons. 
The automorphism group of each quadrangle is isomorphic to the stabilizer 
in Aut G,(q) of a line of the corresponding hexagon. 

The precise relationship between the generalized quadrangles and hex- 
agons is given in Section 2. In view of the restrictions forced on q, there does 
not seem to be any geometric proof of the theorem (cf. (#) in Section 2). 

The algebraic proof of the theorem occupies Sections 3-5. In particular, 
Section 3 contains an elementary construction procedure. Analogous 
procedures can be easily obtained for generalized hexagons and octagons, 
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although they involve many more axioms. However, we have not yet been 
able to use them to construct any examples other than the known ones. 

2. GEOMETRIC DESCRIPTION 

Suppose that 4 = 2 (mod 3), and fix a line L of the generalized hexagon 
8 associated with G,(q). (There are two dual choices for Z. The relevant 
one has L a line of an O(7,q) geometry; cf. Tits [6].) We use the metric 
defined on the union of the sets of points and lines of R. 

Now define Points and Lines as follows. 

Points: points of L; lines at distance 4 from L. 

Lines : L; lines at distance 6 from L; points at distance 3 from L. 

A Point of L is defined as being on L and all Lines at distance 2 from it. 
A Point not on L is on all Lines at distance 1 or 2 from it. 

This defines a generalized quadrangle with parameters 4, 4’. When q = 2, 
it is the unique quadrangle with these parameters. For 4 > 2, it is the 
quadrangle mentioned in Theorem 1. 

Remark, Starting with a line L of a generalized hexagon with parameters 
s, s, an incidence structure of Points and Lines can be defined as above. This 
produces a generalized quadrangle with parameters s, .s2, provided that the 
following condition (#) holds in the hexagon. 

(#) There is no configuration of 12 points and 10 lines as in the figure 
(where L has been drawn as a circle for reasons of symmetry). 

It seems likely that (54~) characterizes the G,(q) hexagons, where q zc 2 
(mod 3). 

3. CONSTRUCTION PROCEDURE 

Let Q be a finite group, and R a family of subgroups of Q. With each 
A E F is associated another subgroup A*. 
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AXIOMS. For every three-element subset {A, B, C} of .F, and some 
integers s and t, 

(i) )QI=st’, ]XJ=s+l, JA)=t, (A*/=st,A(A*; 
(ii) Q=A*B, A*nB= 1; and 
(iii) AB n C = 1. 

Construction. Let A E X and q E Q be arbitrary. 

Point. Symbol [A]; coset Aq. 

Line. ;T, coset A*q; element q. 

Incidence. [A] is on jr and A*q; all other incidences are obtained via 
inclusion. 

Notation. %(Q,R) is the geometry of points and lines just constructed. 

THEOREM 2. %(Q, m is a generalized quadrangle with parameters s, t. 

The proof is just a straightforward check. 
All classical examples (and their duals) arise from Theorem 2; so do Tits’ 

examples. Before discussing this, we will need some notation concerning 
automorphism groups. 

Consider any generalized quadrangle % with parameters s, t. If L is a line, 
let U, denote the group of a11 automorphisms fixing each line meeting L. 
Then ( U, ( < s (since U, acts semiregularly on the points outside L of each 
such line). 

If x is a point, U, is defined in a dual manner. 
For distinct intersecting lines L, M, let U,, denote the group of all 

automorphisms fixing every point of L, every point of M, and every line on 
L f7 M. Then [ U,, ( < t. (An element of U,, fixing a line not on L r7 M 
must fix pointwise a subquadrangle with parameters s, t, and hence must be 
1.1 

We now turn to examples of Theorem 2. 

EXAMPLE 1. s = t = q, Q is a three-dimensional vector space over GF(q), 
X is an oval, and A* is the tangent line to F at A. This example is due to 
Tits [4, p. 3041. 

Note that A = UrAl . If q is even then U, is the knot of .E 

EXAMPLE 2. s=q2, t = q, Q is a four-dimensional vector space over 
GF(q), X is an ovoid, and A* is the tangent plane to R at A. This example 
is also due to Tits [4, p. 3041. Z?(Q,X) is the SU(4, q) quadrangle if and 
only if jr is a quadric. 

Note that A = Ural again. Suppose that F is not a quadric. Then Aut 
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Z(Q,X) fixes the line R and acts on the group Q generated by the groups 
UrAl. Certainly, Q is its own centralizer in Aut Dz(Q, F). Also, R produces 
an inversive plane from which the vector space Q can be reconstructed 14, 
pp. 265-2681. Thus, Aut -2(Q, X) is a semidirect product of Q with the 
subgroup of TL(4, q) stabilizing .F. 

Remark. The Sp(4, q) and SU(4, q) quadrangles arose in Examples 1 
and 2. The 0(5, q), O-(6, q), SW, d, and dual SU(5, q) quadrangles all 
arise as examples of Theorem 2. A description of the O-(6, q) quadrangle 
will be of use in Theorem 1. 

EXAMPLE 3. s = q, t = q*. The O-(6, q) quadrangle can be obtained as 
follows. Let Q consist of all triples (a, c,/?) with a, p E GF(q*) and 
c E GF(q), and define 

(a, c, /3)(a’, c’, p’) = (a + cd, c + c’ + Tr pa’, p + p’) 

(where fl= p4 and Tr y = y + p). Then Q is a group of order q’, with center 
consisting of all (0, c, 0), c E GF(q). Let F consist of the groups 
Ata) = {CO, %P) I P E GFtq’)l and A(t) = ((a, a&t, at) } a E GF(q2)j for 
t E GF(q). If A E F, write A* = AZ(Q). Then Theorem 2 applies. 

If a and /I are restricted to GF(q), the result is a subgroup R of Q of order 
q3. The groups A n R and A* n R produce a subquadrangle with parameters 
q, q, namely, the 0(5, q) quadrangle. 

The maps (a,c,/3)-+ (a, c-afib, ,B-ab), bE GF(q), and (a,~,@)-+ 
(-P, c - Tr iEp, a) g enerate a subgroup of Aut Q isomorphic to SL(2, q). 
They map Y to itself (inducing A(t) + A(t t b) and A(t) --f A(--l/t), respec- 
tively). Note that this SL(2, q) normalizes R. (In fact, the SL(2, q) 
normalizes q + 1 subgroups of Q of order q3). Let S’ denote the commutator 
subgroup of a group S, and write S” = (S’)‘. Then 

(*) If q > 3 and S is the stabiliier of the line F of the O-(6, q) 
quadrangle, then S” E Q ~1 SL(2, q) with 1 Q ) = q’, and S” has a normai 
subgroup of order q3. 

For further information concerning groups Q arising as above, as weli ar 
their normalizers, see [3, Sect. 31. 

4. G,(q) 

Let q be a prime power. Since the generalized quadrangle allegedl: 
constructed in Section 2 has the stabilizer of L in G,(q) acting on it, it wil 
be necessary to study that stabilizer. The required information is o 
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pp. 244-245 of Tits [7]. However, we will make this somewhat more explicit 
in order to facilitate later calculations. 

Let Q consist of all quintuples (a, p, y, S, E) E GE;($), this time with 
GF(q)’ the operation 

(a, P, Y? 4 &)(a’, p’, Y’, 6’5 &‘I 
= (a + a’, p + p’, y + y’ + a’& - 38’6, 6 + 8, & + E’). 

Let xi denote the element with ith coordinate x and all others 0, and let Xi 
denote the set of all such elements xi. Then Xi g GF(q)’ via x -+ xi. Also, 
Q = X,X,x,x,X, and X3 = Q’ < Z(Q). If 3114 (which is the situation we will 
eventually have), then Q’ = Z(Q). 

Define the following functions on Q: 

X6 : (a, P, Y, 4 &) --f (a, P + ax, y - 3p2x - 3a;Ox2 - a2x3, 

6 + 2px + ux2, E + 36x + 3/3x2 + ax3), 

j: (a, P, y, 6, s) -+ (6 -4 y - a& + 3@, P, -a>, 
h a,b : (a, /I, y, 6, E) -+ (ab3, pub’, p3b3, da%, m3), 

s, : (a, P, 7, 4 ~1 --t (aa, Pa, w2, au, &a). 

Each of these is in Aut Q. Let X, = (x, 1 x E GF(q)}. Then X, z Gl;(q)+, 
and (X,,j) z SL(2, q). Note that Aut GF(q) acts on Q componentwise. Let 
G* be the subgroup of Aut Q generated by X, , j, and all automorphisms h,,, 
and s,, and set G = (G*, Aut GF(q)). Then QG’ is the stabilizer in G,(q) of 
the line L appearing in Section 2, while QG is the stabilizer of L in Aut 
G,(q). Moreover, G* z GL(2, q), while G g TL(2, q). 

All of these properties of G may be verified by direct computation. The 
action of G* on Q/X, is given on p. 497 of [2], so only the X3 component 
needs to be checked. 

However, a direct approach not assuming prior familiarity with G,(q) is 
as follows. In the next section we will define a family j3 of q + 1 subgroups 
of Q. It is straightforward to check that G sends jr to itself; in fact, G is the 
stabilizer of .F in Aut Q if q > 2 (cf. Section 5, Remark 2). 

5. PROOF OF THEOREM I 

Let Q and G be as in Section 4. Define A(co), A(t), A*(co) and A*(t) as 
follows, for t E GF(q): 

A(t) = {(a, at, -a2t3, at*, at3)(0, /3, -3p2t, 2Pt, 3j?t*) 1 a, /I E GF(q)}, 

A*(a) = X3A(co), A”(t) =X,&t). 
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Note that A (0) = X,X,, Let .Y = {A (co), A (ti) ] t E Gl;(q) i. Then G maps 
F to itself, and acts on it as it does on the projective line. For example, x6 
induces the map A(t) --t A(t + x) and j induces A(t) -+ A(-i/t), for 
tE {oo}UGF(q). 

We must verify the axioms of Section 3. Axiom (i) is obvious. For the 
remaining ones, we can use G in order to assume that A = A(O), B = A(w), 
and C = A(l). Then (ii) is obvious. A typical element of A(1) has the form 

(a, a + p, -a* - 3a/? - 3p2, a + 2& a + 3/3). 

The requirement AB r? C = 1 then states that -a* - 3a,8 - 3/?’ f 0 unless 
a = p = 0. ‘Thus, we must require that the polynomial (x J,- l)* $ (x $ 1) + 1 
is irreducible. 

It remains to show that the resulting quadrangle is new if q > 2. First of 
all, the duals of the quadrangles constructed in Section 3, Example 2, using 
nonquadric avoids do not contain a group such as QG in their 
automorphism groups. 

Now note that (QG)” g Q x SL(2, q), where SL(2, q) acts irreducibly on 
Q/Z(Q). Thus, (QG)” has no normal subgroup of order q3. In view of (*) in 
Section 3, this completes the proof of Theorem 1. 

Remark 1. It is well known that (up to isomorphism) there is only one 
generalized quadrangle with s = 2 and t = 4. Mere, S/Q s S, x S, ~ 

Remark 2. We will show that, if q > 2, then Aut %(Q, ,9-) = 
QG z Q x TL(2, q). 

First of all, UY,A* &A, while ] A ] = q > ( UF,A*I. Thus, vF,A* = A, so that 
Q is generated by those groups U, L , such that L is a line meeting the line .ji- 
once. Also, U, = Z(Q). 

Let J denote the stabilizer of the line fl in I = Aut 9(Q, .Y-), and let J, 
denote the stabilizer of the line 1 in J. By the preceding paragraph, Q U J* 
Also, J = QJ,, J, > G and J, is the stabilizer of ST in Aut Q. It is easy to 
check that (for q > 2) G already contains all element of J, inducing GF(q)- 
semilinear transformations on Q = Q/Z(Q). 

In order to show that J = Q M G, it thus’ suflices to prove the purely group 
theoretic fact that Aut Q acts G$‘(q)-semilinearly on Q. If u E Q, let u* 
denote ‘the preimage in Q of the l-space of Q spanned by !i = uZ(Q), Note 
that ($5) = fu, v] defines a nonsingular alternating GF(q)-bilinear form on 
p9 if q is even, @-+ u2 defines a quadratic form on Q, associated with ( ) ), 
Thus, 8 is equipped with a symplectic or orthogonal geometry. If [u, ir] = 1 
then [u*, u*] = 1. Thus, the maximal elementary abelian subgroups of Q art 
preimages of the totally isotropic (or singular) 2-spaces of 0. Consequently 
Aut Q acts on the aforementioned geometry, and hence acts G&(q) 
semilinearly, as asserted. 
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Finally, we must show that I= J. If I > J, then I has an element moving 
jT to A* =A*(co). In particular, ( U,, I= 4. Here, U,, <J, = G = TL(2, q), 
so that U, * n X, # 1. However, if x # 0 then xs fixes only 4 + 1 lines on the 
point A (namely, the lines A* and yZ, y E GF(q)). This contradiction 
completes the proof that I = J = Q M G. 

Remark 3. In view of Remark 2, it is straightforward to reconstruct the 
G,(q) hexagon from the quadrangle .Z(Q, X). 

Remark 4. The groups Q used in Theorem I and Example 3 are 
isomorphic. To see this, start with the group Q in Example 3, write 
a = a, + a,8 with ai E GF(q) and a suitable, fixed 19 in GF(q’), and compute. 

When q is even, the groups A*/Z(Q) arising in Theorem 1 and Example 3 
form a regulus of Q/Z(Q). 

Remark 5. G2(q) has a class of subgroups S = SU(3, q), each of which 
has an orbit of q3 + 1 lines. In the context of Section 2, let L be one of those 
lines. Then the remaining q3 lines are Lines of the quadrangle. This yields a 
family of q3 + 1 Lines which partition the Points of the quadrangle. Note 
that S n Q has order q3 and is transitive on the aforementioned set of q3 
Lines. 

The lines of the unital for S correspond to reguli of the underlying O(7, q) 
geometry, but do not seem to have a nice interpretation in the quadrangle. 

Remark 6. There do not appear to be subquadrangles with parameters q, 
q arising in the following manner: for some subgroup R of Q of order q3, the 
family {A n R ( A E X} satisfies the conditions of Theorem 2. Equivalently, 
there is probably no subgroup R of order q3 such that the points [A] and Ar 
(A E: ;T, r E R) are the points of a subquadrangle. This should be compared 
to the situation in Example 3. 

If q is an odd prime, an elementary computation reveals that no such R 
exists. 

Remark 7. Infinite analogs of our constructions obviously exist. If K is 
a field, then G,(K) produces a generalized quadrangle as in Section 2 
precisely when K does not have characteristic 3 and the map x + x3, x E K, 
is bijective. 

Remark 8. It would be interesting to have a geometric relationship be- 
tween the generalized quadrangles constructed here and the translation 
planes discussed in [2, Theorem 21. 
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