TWO EXCEPTIONAL 3-ADIC AFFINE BUILDINGS

1. INTRODUCTION

This note contains constructions of some discrete chamber-transitive automorphism groups of affine buildings for certain 5- and 6-dimensional orthogonal groups over the field \mathbb{Q}_3 of 3-adic numbers. Such groups are very rare. Similar constructions can be found in [4], [7], [9] and [17], and the groups obtained by such constructions have been classified in [6] in the case of Witt index ≥ 2 in arbitrary dimension for an arbitrary local field.

One motivation for such constructions arises from the fact that, upon passage modulo suitable normal subgroups, they produce finite building-like geometries having chamber-transitive automorphism groups. Such geometries have, in turn, been characterized group-theoretically (cf. [8], [11], [12], [13] and their references).

We have described the examples in a very concrete manner as arithmetic groups. Consequently, all finite homomorphic images can be immediately obtained, in view of the results in [5].

2. Affine buildings of 5- and 6-dimensional orthogonal groups

We will need descriptions of two affine buildings. These are based on [3] and [14].

Consider a vector space V over \mathbb{Q}_3 . Let \mathbb{Z}_3 denote the ring of 3-adic integers. If S is any basis of V let $L = \langle S \rangle_{\mathbb{Z}_3}$ be the lattice (\mathbb{Z}_3 -module) generated by S. Write $[L] = \{aL | 0 \neq a \in \mathbb{Q}_3\}$. Note that all members of a lattice-class [L] have the same stabilizer in GL(V).

Now assume that V has dimension 6, with basis $e_1, e_2, f_1, f_2, u_5, u_6$, and is equipped with the inner product f = (,) defined by $(e_i, e_j) = (f_i, f_j) = 0$, $(e_i, f_j) = \delta_{ij}, (e_i, u_k) = (f_i, u_k) = (u_5, u_6) = 0, (u_5, u_5) = 1$ and $(u_6, u_6) = 3$ for all i, j, k. Then the *affine building* of the corresponding orthogonal group O(f, Q₃) is the simplicial complex Δ whose vertices (of respective *types* 0, 1 and 2) are the

Geometriae Dedicata 33: 1-11, 1990.

^{*} This research was supported in part by NSF Grants DMS 87-01794 and INT 85-12644.

^{© 1990} Kluwer Academic Publishers. Printed in the Netherlands.

lattice-classes $[\Lambda_0]^g, [\Lambda_1]^g, [\Lambda_2]^g, g \in O(f, \mathbb{Q}_3)$, where Λ_i is defined by

$$\Lambda_{0} = \langle e_{1}, e_{2}, f_{1}, f_{2}, u_{5}, u_{6} \rangle_{\mathbb{Z}_{3}}$$

$$\Lambda_{1} = \langle e_{1}/3, e_{2}, f_{1}, f_{2}, u_{5}, u_{6}/3 \rangle_{\mathbb{Z}_{3}}$$

$$\Lambda_{2} = \langle e_{1}/3, e_{2}/3, f_{1}, f_{2}, u_{5}, u_{6}/3 \rangle_{\mathbb{Z}_{3}}.$$

One chamber (i.e., maximal simplex) of Δ is $\{[\Lambda_0], [\Lambda_1], [\Lambda_2]\}$, with all others obtained by applying elements of $O(f, \mathbb{Q}_3)$. Note that the transformation θ taking

$$e_1 \rightarrow 3f_2 \rightarrow -3e_1$$
$$e_2 \rightarrow -3f_1 \rightarrow -3e_2$$
$$u_5 \rightarrow u_6 \rightarrow -3u_5$$

sends Λ_1 to its dual lattice

$$\Lambda_1^{\#} := \{ x \in V \mid (x, \Lambda_1) \subseteq \mathbb{Z}_3 \} = \langle e_1, e_2, 3f_1, f_2, u_5, u_6 \rangle_{\mathbb{Z}_3}, \| e_1, e_2, h_1, h_2, h_3, h_4 \rangle_{\mathbb{Z}_3} \}$$

and sends $\Lambda_2 \to \Lambda_0 \to 3\Lambda_2$. Here, θ satisfies $(u^{\theta}, v^{\theta}) = 3(u, v)$ for all $u, v \in V$, and $\theta^2 = -3$. Note that the stabilizer of $[\Lambda_1]$ in $O(f, \mathbb{Q}_3)$ coincides with that of $[\Lambda_1^{\pm}]$.

The building Δ has the diagram $\underbrace{0}_{0}$ $\underbrace{1}_{1}$ $\underbrace{2}_{2}$ (or, more precisely, $\underbrace{0}_{1}$ $\underbrace{1}_{2}$; cf. [14]). This has, among others, the following meaning. Star($[\Lambda_0]$), the star of $[\Lambda_0]$, is the finite building of the orthogonal group O(5, 3). Namely, the bilinear form $(u + 3\Lambda_0, v + 3\Lambda_0) \mod 3$ induced on the GF(3)-space $\overline{\Lambda}_0 := \Lambda_0/3\Lambda_0$ has radical $\overline{\Lambda}_0^{\perp}$ generated by $u_6 + 3\Lambda_0$. Moreover,

(#) If Λ is a lattice in V, then $[\Lambda]$ represents a vertex of Δ_6 adjacent to $[\Lambda_0]$ if and only if some member of $[\Lambda]$, say Λ itself, satisfies the following conditions: $3\Lambda_0 \subset \Lambda \subset \Lambda_0$, $\Lambda/3\Lambda_0 \supset \overline{\Lambda}_0^{\perp}$, and $\Lambda/3\Lambda_0$ is totally singular.

(In fact, $3\Lambda_1/3\Lambda_0$ and $3\Lambda_2/3\Lambda_0$ are the totally singular subspaces spanned by $e_1 + 3\Lambda_0$, $u_6 + 3\Lambda_0$ and $e_1 + 3\Lambda_0$, $e_2 + 3\Lambda_0$, $u_6 + 3\Lambda_0$, respectively.) Similarly, Star($[\Lambda_1]$) and Star($[\Lambda_2]$) are a generalized digon and the O(5, 3) building, respectively. (In fact, Star($[\Lambda_2]$) = Star($[\Lambda_0]$)^{θ}.)

Clearly, $O(f, \mathbb{Q}_3)$ acts on Δ_6 with induced automorphism group $PO(f, \mathbb{Q}_3) = O(f, \mathbb{Q}_3)/\langle -1 \rangle$.

The second building Δ' we will consider is that of the commutator subgroup $\Omega(f', \mathbb{Q}_3)$ of the orthogonal group $O(f', \mathbb{Q}_3)$ of the form f' obtained by restricting f to the orthogonal complement $V' := \langle e_1, e_2, f_1, f_2, u_5 \rangle$ of u_6 . This building is defined as above, this time using the three lattices

$$\begin{split} \Lambda'_{0} &= \langle e_{1}, e_{2}, f_{1}, f_{2}, u_{5} \rangle_{\mathbb{Z}_{3}} \\ \Lambda'_{1} &= \langle e_{1}/3, e_{2}/3, f_{1}, f_{2}, u_{5} \rangle_{\mathbb{Z}_{3}} \\ \Lambda'_{2} &= \langle e_{1}/3, e_{2}, 3f_{1}, f_{2}, u_{5} \rangle_{\mathbb{Z}_{3}}. \end{split}$$

The diagram is $\underbrace{0}_{0}$ $\underbrace{1}_{1}$, (or, more precisely, $\underbrace{0}_{0}$ $\underbrace{1}_{1}$), with respective stars the O(5, 3) building, a generalized digon, and the O(5, 3) building. This time O(f', \mathbb{Q}_3) is not type-preserving: the reflection in $(e_1 - 3f_1)^{\perp}$ fixes $[\Lambda'_1]$ and interchanges $[\Lambda'_0]$ and $[\Lambda'_2]$.

3. The 6-dimensional discrete groups

Let V_6 be the 6-dimensional vector space \mathbb{Q}^6 , with standard basis u_1, u_2, u_3 , u_4, u_5, u_6 , equipped with the bilinear form f defined by $(u_i, u_j) = \delta_{ij}$ except that $(u_6, u_6) = 3$. Let V_6 be embedded in $V = \mathbb{Q}_3^6$ in the natural manner, and let f also denote the form induced on V.

We begin by relating the present notation to that of Section 2. Namely, let $\alpha \in \mathbb{Z}_3$ be the root of the equation $x^2 + 2 = 0$ such that $1 + \alpha \notin 3\mathbb{Z}_3$ (i.e., $1 + \alpha$ is a unit) and $1 - \alpha \in 3\mathbb{Z}_3$. Let $e_1, e_2, f_1, f_2, u_5, u_6$ be the basis of V defined by

$$e_{1} = \frac{1}{2}(1 + \alpha)(u_{1} + u_{2} + \alpha u_{3})$$

$$f_{1} = \frac{1}{2}(1 + \alpha)^{-1}(u_{1} + u_{2} - \alpha u_{4})$$

$$e_{2} = \frac{1}{2}(u_{1} - u_{2} + \alpha u_{4})$$

$$f_{1} = \frac{1}{2}(u_{1} + u_{2} - \alpha u_{4}).$$

Then these basis vectors behave exactly as described in Section 2. In particular, V has witt index 2 – while, clearly, V_6 is anisotropic.

Let Δ_6 denote the building for the group $\Omega(f, \mathbb{Q}_3)$, and define $[\Lambda_0]$, $[\Lambda_1], [\Lambda_2]$ using the vectors $e_1, e_2, f_1, f_2, u_5, u_6$ just as in Section 2. The radical of $\overline{\Lambda}_0 = \Lambda_0/3\Lambda_0$ is spanned by $u_6 + 3\Lambda_0$.

PROPOSITION 1. $G_6 := O(f, \mathbb{Q}_3) \cap GL(6, \mathbb{Z}[\frac{1}{3}])$ is discrete and chambertransitive on Δ_6 .

Proof. By a simple calculation, $\Lambda_0 = \langle u_1, \ldots, u_6 \rangle_{\mathbb{Z}_3}$. The stabilizer $(G_6)_0$ of the vertex $[\Lambda_0]$ consists of rational transformations preserving the \mathbb{Z} -lattice $\langle u_1, \ldots, u_6 \rangle_{\mathbb{Z}}$, and hence preserves its set $\{\pm u_1, \ldots, \pm u_5\}$ of squared length 1 vectors, so that $(G_6)_0$ is a monomial group of the form $2^6 S_5$. In particular, this group induces a chamber-transitive group on Star($[\Lambda_0]$).

Now consider the transformation θ defined by the matrix

/	0	-1	1	-1	0	0 \
	1	0	-1	-1	0	0
-	-1	1	0	-1	0	0
	1	1	1	0	0	0
	0	0	0	0	0	1
	0	0	0	0	-3	0/

Then $(u^{\theta}, v^{\theta}) = 3(u, v)$ for all $u, v \in V$, and $\theta^2 = -3$. It follows easily that $[\Lambda_0^{\theta}]$ has the properties in (#) (cf. Section 2; in fact, $\Lambda_0^{\theta}/3\Lambda_0 = 3\Lambda_2/3\Lambda_0$ is the totally singular 3-space spanned by $(1, 1, 1, 0, 0, 0) + 3\Lambda_0$, $(1, -1, 0, 1, 0, 0) + 3\Lambda_0$ and $u_6 + 3\Lambda_0$), and hence is a vertex of Δ_6 of type 2 adjacent to $[\Lambda_0]$. Moreover, θ normalizes G_6 (since θ^{-1} has all entries in $\mathbb{Z}[\frac{1}{3}]$). Now $(G_6)_0^{\theta}$ is chamber-transitive on the star of $[\Lambda_0]^{\theta}$. Connectedness of Δ_6 implies that the subgroup $\langle (G_6)_0, (G_6)_0^{\theta} \rangle$ of G_6 is chamber-transitive on Δ_6 . Finally, G_6 is discrete since the stabilizer of any vertex is finite.

Since we now have two chamber-transitive automorphism groups G_6 and $\langle (G_6)_0, (G_6)_0^{\theta} \rangle$ of Δ_6 having the same vertex stabilizer, namely $(G_6)_0$, we deduce the

COROLLARY. The stabilizer $(G_6)_0$ of the vertex $[\Lambda_0]$ is 2^6S_5 , and $G_6 = \langle (G_6)_0, (G_6)_0^{\theta} \rangle$.

The vertices of Δ_6 can all be represented by \mathbb{Z} -lattices, instead of by \mathbb{Z}_3 -lattices as was done in the above proof and in Section 2. Namely, it is straightforward to check that $[\Lambda_i] = [\Sigma_i \otimes_{\mathbb{Z}} \mathbb{Z}_3]$ for i = 1, 2, 3, where

$$\Sigma_0 := \langle u_1, \ldots, u_6 \rangle_{\mathbb{Z}}, \Sigma_2 := \Sigma_0^{\theta},$$

and

$$\Sigma_1 := \langle u_1 + u_2 - 2u_3, u_2 + u_3 - 2u_1 \rangle_{\mathbb{Z}} \perp \langle 3u_4, 3u_5 \rangle_{\mathbb{Z}} \perp \\ \perp \langle u_1 + u_2 + u_3, u_6 \rangle_{\mathbb{Z}}.$$

Here, $\Sigma_1/3\Sigma_0$ is the totally singular 2-space of $\Sigma_0/3\Sigma_0$ spanned by $u_1 + u_2 + u_3 + 3\Sigma_0$ and $u_6 + 3\Sigma_0$, while $\Sigma_2/3\Sigma_0$ is the totally singular 3-space spanned by $u_1 + u_2 + u_3 + 3\Sigma_0$, $u_1 - u_2 + u_4 + 3\Sigma_0$ and $u_6 + 3\Sigma_0$. Moreover, from the description of Σ_1 it follows that the stabilizer $(G_6)_1$ of the vertex $[\Lambda_1]$ is $D_{12} \times D_8 \times D_8$. Note that $(G_6)_0 \cap (G_6)_1 = S_3 \times D_8 \times 2$ and $(G_6)_1 = [(G_6)_0 \cap (G_6)_1 = S_3 \times D_8 \times 2)_1$.

 $(G_6)_1][(G_6)_2 \cap (G_6)_1]$. Since θ maps $(1/3)\Sigma_1$ onto the dual lattice $\Sigma_1^{\#} := \{v \in \mathbb{Q}^6 | (v, \Sigma_1) \subseteq \mathbb{Z}\}$ of Σ_1 it normalizes $(G_6)_1$.

Next we turn to a new basis for V_6 , as well as a new chamber-transitive automorphism group of Δ_6 .

Consider the following six vectors:

$$z_{1} = \frac{1}{2}(-u_{1} - u_{2} - u_{3} - u_{4} + u_{5} + u_{6})$$

$$z_{2} = u_{4} + u_{5}$$

$$z_{3} = u_{4} - u_{5}$$

$$z_{4} = u_{1} - u_{4}$$

$$z_{5} = u_{2} - u_{1}$$

$$z_{6} = u_{3} - u_{2}.$$

These vectors satisfy the relations \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_6 for a fundamental system of roots of a root system of type E_6 (cf. [2, p. 268]). Note that, with Λ_0 as before, we have $\Lambda_0 = \langle z_1, z_2, z_3, z_4, z_5, z_6 \rangle_{\mathbb{Z}_3}$.

Let H_6 denote the stabilizer of

$$L := \langle z_1, z_2, z_3, z_4, z_5, z_6 \rangle_{\mathbb{Z}} \begin{bmatrix} \frac{1}{3} \end{bmatrix}$$

in $O(f, \mathbb{Q}_3)$. (Alternatively, H_6 can be defined as $O(e_6, \mathbb{Q}_3) \cap GL(6, \mathbb{Z}[\frac{1}{3}])$, where e_6 denotes the quadratic form for the E_6 root lattice, and matrices are written with respect to the z_i .)

PROPOSITION 2. H_6 is a discrete chamber-transitive automorphism group of Δ_6 .

Proof. This time, $(H_6)_0 = W(E_6) \times \langle -1 \rangle$. The transformation θ sends L to itself, and hence normalizes H_6 . Thus, the argument in Proposition 1 can be repeated in the present situation.

COROLLARY. The stabilizer $(H_6)_0$ of the vertex $[\Lambda_0]$ is $W(E_6) \times \langle -1 \rangle$. Moreover, $H_6 = \langle (H_6)_0, (H_6)_0^{\theta} \rangle$.

As before, the vertices of Δ_6 can all be represented by \mathbb{Z} -lattices. This time $[\Lambda_i] = [\Gamma_i \otimes_{\mathbb{Z}} \mathbb{Z}_3]$ for i = 1, 2, 3, with $\Gamma_0 := \langle z_1, \ldots, z_6 \rangle_{\mathbb{Z}}, \Gamma_2 := \Gamma_0^{\theta}$, and $\Gamma_1 := \langle z_1, z_3 \rangle_{\mathbb{Z}} \perp \langle z_5, z_6 \rangle_{\mathbb{Z}} \perp \langle z_2, z_* \rangle_{\mathbb{Z}}$, where $-z_* = z_1 + 2z_2 + 2z_3 + 3z_4 + 2z_5 + z_6$ is the highest root in the E_6 root system generated by z_1, z_2, z_3, z_4 ,

*z*₅, *z*₆ [Bo, p. 268],

so that the following relations hold.

Note that $\Gamma_1/3\Gamma_0$ is the totally singular 2-space of $\overline{\Gamma}_0 = \Gamma_0/3\Gamma_0$ spanned by $z_5 - z_6 + 3\Gamma_0$ and $z_1 - z_3 + z_5 - z_6 + 3\Gamma_0$, while $\Gamma_2/3\Gamma_0$ is the totally singular 3-space spanned by $z_5 - z_6 + 3\Gamma_0$, $z_2 + z_3 + z_5 + 3\Gamma_0$ and $z_1 - z_3 + z_5 - z_6 + 3\Gamma_0$. Moreover, we see that the stabilizer $(H_6)_1$ of the vertex $[\Lambda_1]$ has the form $(3^3 \times 2^3)2^3S_3$. Note that $(H_6)_0 \cap (H_6)_1 = 2 \times (3^3(2 \times S_4))$ and $(H_6)_1 = [(H_6)_0 \cap (H_6)_1][(H_6)_2 \cap (H_6)_1]$.

There is another interesting graph automorphism φ . First, let t be the following product of reflections lying in $W(E_6)$: $t = r_1 r_3 \cdot r_5 r_6 \cdot r_2 r_*$ (where r_i denotes the reflection in z_i^{\perp}). Then t lies in the center of a Sylow 3-subgroup of $W(E_6)$ (namely, $\langle t \rangle$ is the long root group of O(5, 3) such that $[\overline{\Gamma}_0/\overline{\Gamma}_0^{\perp}, \langle t \rangle]$ is spanned by the projections of $z_5 - z_6$ and $z_2 + z_3 + z_5$ into $\overline{\Gamma}_0/\overline{\Gamma}_0^{\perp}$), and $t^2 + t + 1 = 0$. Write $\varphi = 1 + 2t$. Then $\varphi^2 = -3$, and $(u^{\varphi}, v^{\varphi}) = 3(u, v)$ for any vectors u and v. It is straightforward to check that $\Gamma_2 = \Gamma_0^{\varphi}$, and that $(\frac{1}{3})\Gamma_1^{\varphi} = \Gamma_1^{\#}$, so that φ normalizes $(H_6)_1$. Note also that θ normalizes $(H_6)_1$.

4. CONGRUENCE SUBGROUPS

In order to relate G_6 and H_6 , and at the same time construct some additional chamber-transitive automorphism groups of the building Δ_6 as well as to construct finite morphic images of Δ_6 , we introduce congruence subgroups of these two groups.

View H_6 as a group $O(e_6, \mathbb{Q}_3) \cap GL(6, \mathbb{Z}[\frac{1}{3}])$ of matrices. For any integer m > 1 not divisible by 3, let $H_6(m)$ (the 'level *m* congruence subgroup' of H_6) denote the normal subgroup consisting of those matrices $\equiv I \pmod{m}$. This is just the centralizer in H_6 of L/mL. Similarly, the group $G_6(m)$ is defined to be the centralizer in G_6 of M/mM, where $M := \langle u_1, \ldots, u_6 \rangle_{\mathbb{Z}[1/3]}$.

PROPOSITION 3. $H_6 = H_6(2) \cdot (H_6)_0$, where $H_6(2) \cap (H_6)_0 = \langle -1 \rangle$. Thus, $H_6(2)$ acts regularly on the set of vertices of Δ_6 of type 0. It also acts regularly on the set of vertices of type 2.

Proof. Obviously H_6 acts on L/2L, preserving the quadratic form $\frac{1}{2}(u + 2L)$, v + 2L) mod 2 induced on that GF(2)-space with respect to which L/2L is nondegenerate with Witt index 2. The group $(H_6)_0$ induces $W(E_6) \cong O^-(6, 2)$ on that space. This proves that $H_6 = H_6(2) \cdot (H_6)_0$. Since it is clear that $H_6(2) \cap (H_6)_0 = \langle -1 \rangle$, this proves the desired regularity on vertices of type 0.

Now note that θ normalizes $H_6(2)$ (since θ normalizes H_6 and L). This proves the last assertion.

Note that the graph automorphism $\varphi = 1 + 2t$ defined at the end of Section 3 centralizes L/2L and hence also $H_6/H_6(2)$.

We now determine the intersection $G_6 \cap H_6$. Let ${}^{\circ}G_6$ be the subgroup $\{G_6 \cap \Omega(f, \mathbb{Q}_3)\}\langle -1, (12)\rangle$, where (12) denotes the reflection in $(u_1 - u_2)^{\perp}$ acting as a transposition on u_1, \ldots, u_5 . Then ${}^{\circ}G_6$ has index 2 in G_6 , and is normalized by θ (by a straightforward calculation). Write $({}^{\circ}G_6)_0 = {}^{\circ}G_6 \cap (G_6)_0$.

LEMMA 4. ${}^{\circ}G_6 = G_6 \cap H_6 = H_6(2) \cdot ({}^{\circ}G_6)_0$.

Proof. Abbreviate $D := ({}^{\circ}G_6)_0$. Then $D = W(D_5) \times \langle -1 \rangle$, and D is chambertransitive on Star($[\Lambda_0]$). Moreover, $D < (H_6)_0$ (it is the $W(D_5) \times \langle -1 \rangle$ in $W(E_6) \times \langle -1 \rangle$ induced on the space $\langle z_2, \ldots, z_6 \rangle$). Thus, $\langle D, D^{\theta} \rangle$ is a chambertransitive subgroup of both ${}^{\circ}G_6$ and $G_6 \cap H_6$, since θ normalizes both of these groups.

We already know that H_6 induces O⁻(6, 2) on L/2L. Since $\langle D, D^{\theta} \rangle$ induces a proper subgroup of O⁻(6, 2) containing a parabolic subgroup 2^4S_5 , it is contained in $H_6(2)D$. However, $H_6(2)$ is regular on the vertices of Δ_6 of type 0, so that no proper subgroup of $H_6(2)D$ containing D can be chamber-transitive. Thus, $H_6(2)D = \langle D, D^{\theta} \rangle$.

In particular, $H_6(2)D \leq G_6 \cap H_6$. In fact, $H_6(2)D = G_6 \cap H_6$ since we have seen that $H_6(2)D$ is a maximal subgroup of H_6 . Finally, ${}^{\circ}G_6$ is a chambertransitive group with $({}^{\circ}G_6)_0 = (H_6(2)D)_0$, so that ${}^{\circ}G_6 = G_6 \cap H_6$.

We have just constructed a chamber-transitive subgroup (namely, $G_6 \cap H_6$) of H_6 . In order to construct even smaller chamber-transitive subgroups, consider a subgroup $\mathbf{X} = 2^4 A_5$ or $2^4 F_{20}$ of $G_6 \cap H_6 = 2^4 S_5$ (where F_{20} denotes a Frobenius group of order 20 in S_5 : the normalizer of a Sylow 5-subgroup). Then clearly $H_6(2)\mathbf{X}$ is chamber-transitive on Δ_6 . Note that $H_6(2)\mathbf{X} = \langle \mathbf{X}, \mathbf{X}^{\varphi} \rangle$, where φ is the graph automorphism defined at the end of Section 3. (For, since φ centralizes $H_6/H_6(2)$ the chamber-transitive groups $H_6(2)\mathbf{X}$ and $\langle \mathbf{X}, \mathbf{X}^{\varphi} \rangle$ project onto the same subgroup of $H_6/H_6(2)$, so that the intersection of each with $(H_6)_0$ is contained in \mathbf{X} .)

We now turn to the slightly more complicated case of G_6 in order to construct additional chamber-transitive groups. Let $M := \langle u_1, \ldots, u_6 \rangle_{\mathbb{Z}[\frac{1}{3}]}$, so that $G_6(2)$ is the centralizer in G_6 of M/2M. Here, M/2M inherits the quadratic form $x_1^2 + \cdots + x_5^2 + 3x_6^2 \mod 2$, which is the square of a linear form whose kernel is the projection mod 2M of the sublattice N of M defined by $\Sigma x_i \equiv 0 \pmod{2}$. Moreover, N/2M inherits the quadratic form $\frac{1}{2}(x_1^2 + \cdots +$ $x_5^2 + 3x_6^2 \mod 2$, whose radical is the singular 1-space with representative $\sum u_i$ satisfying $\frac{1}{2}(\sum u_i, \sum u_i) = 4 \equiv 0 \pmod{2}$. Thus, G_6 induces a subgroup G_6/K of the orthogonal group O⁻(4, 2) $\cong S_5$ of the resulting nonsingular 4-space (for a normal subgroup K of G_6). Since (° G_6)₀ has a subgroup S_5 acting faithfully on M/2M, it follows that $G_6/K \cong S_5$ and hence that $G_6 = K \cdot (°G_6)_0$.

LEMMA 5. $G_6 = \{K \cap {}^\circ G_6\} \cdot (G_6)_0$, where $K \cap {}^\circ G_6 = K \cap H_6$ contains $H_6(2)$ and is transitive on the vertices of type 0.

Proof. Note that $K = \{K \cap {}^{\circ}G_6\} \langle r_6 \rangle$ and $(G_6)_0 = ({}^{\circ}G_6)_0 \langle r_6 \rangle$, where r_6 denotes the reflection in u_6^{\perp} . Then $G_6 = K \cdot ({}^{\circ}G_6)_0 = \{K \cap {}^{\circ}G_6\} \cdot (G_6)_0$.

It remains only to show that $K \cap {}^{\circ}G_6$ contains $H_6(2)$. First note that $2(L + M) = \langle \Sigma u_i \rangle + 2M$ and $(L \cap M) + 2M = N$, in view of the definition of the z_i . Thus, $H_6(2)$ centralizes $N/(\langle \Sigma u_i \rangle + 2M)$, and hence lies in K. We already know that it lies in ${}^{\circ}G_6$.

We can now construct several groups acting chamber-transitively on Δ_6 . Let Y denote any of the following subgroups of $(G_6)_0 = 2^6 S_5$, each containing -1:

 $2^{5}S_{5}$ (two classes, one of which is $(^{\circ}G_{6})_{0}$ and hence contains the reflection

(12), while the other contains $(12)r_6$;

- 2^5A_5 (this is inside (° G_6)₀);
- $2^{6}A_{5};$
- $2^{6}F_{20};$

 $2^{5}F_{20}$ (two classes, one of which lies in (°G₆)₀).

Then $\{K \cap {}^{\circ}G_6\} \cdot Y$ is chamber-transitive on Δ_6 . Of course, some of these chamber-transitive groups were already encountered earlier, since $H_6(2) \leq K \cap {}^{\circ}G_6$.

Next, let *m* be an integer >2 not divisible by 3. Then $\Delta_6/G_6(m)$ is a finite morphic image of Δ_6 (cf. [15]), and is a geometry (by [1]) with chamber-transitive group $G_6/G_6(m)$ and diagram $\bullet \bullet \bullet \bullet \bullet$. If m = p is a prime >3 then $G_6/G_6(p)$ is a subgroup of $O^{\pm}(6, p)$ properly containing $\Omega^{\pm}(6, p)$ (by [16], since the group induced on the vector space M/pM is irreducible). The sign \pm is + if and only if -3 is a square in GF(p), i.e., if and only if $p \equiv 1 \pmod{3}$.

Similar remarks hold for $H_6/H_6(m)$ as well – and, for that matter, for each of the chamber-transitive automorphism groups of Δ_6 obtained above. However, all of the resulting finite quotients of Δ_6 are isomorphic for a given m. Namely, each inclusion map between two of these groups induces an isomorphism of finite geometries.

Incidentally, $G_6/G_6(2) \cong 2^4 S_5$. Namely, we saw above that $G_6/G_6(2)$ has S_5 as a homomorphic image. Also, θ acts nontrivially on N/2M. From this it follows readily that $\langle \theta \rangle G_6/G_6(2) \cong 2^5 S_5$.

Using the spinor norm, it is easy to see that $G'_6 = \langle (G_6)_0, (G_6)_0^{\theta} \rangle'$ is the chamber-transitive group generated by $((G_6)_0)'$ (isomorphic to 2^4A_5) and its image under θ . In particular, G'_6 is the intersection of G_6 with the kernel of the restriction of the spinor norm to SO(f, \mathbb{Q}_3). By [5], every finite homomorphic image of G'_6 is a homomorphic image of some group $G'_6/G'_6(m)$. Thus, all finite quotients of Δ_6 on which G'_6 induces a chamber-transitive group are obtained by factoring out suitable normal subgroups of $G'_6/G'_6(m)$. Similar statements hold if H'_6 is used in place of G'_6 .

Finally, we note that the group $\langle G_6, H_6 \rangle$ is chamber-transitive on Δ_6 but is not discrete. For, neither group G_6, H_6 contains the other; and $W(E_6)$ is a maximal finite subgroup of $O(f_6, \mathbb{Q})$ generated by reflections. In fact, the group $\langle (H_6)_0, r_6 \rangle$, which stabilizes $[\Lambda_0]$, is known to contain $O(e_6, \mathbb{Z}[\frac{1}{2}])'$ as a normal subgroup [7].

5. The 5-dimensional discrete groups

In this section we will briefly sketch results analogous to those of Sections 3 and 4 for the 5-dimensional subspace $V_5 := \langle u_1, u_2, u_3, u_4, u_5 \rangle$ of the space V_6 studied in those sections. Note that $V' := V_5 \otimes_{\mathbb{Q}} \mathbb{Q}_3$ is spanned by the vectors e_1, e_2, f_1, f_2, u_5 .

Let f' denote the restriction of f to V_5 or V'. The corresponding affine building Δ_5 of $\Omega(f', \mathbb{Q}_3)$ is defined in Section 2.

This time we will use the group G_5 consisting of all elements of $O(f', \mathbb{Q}_3) \cap$ GL(5, $\mathbb{Z}[1/3]$) having spinor norm in $\{\pm 1\}(\mathbb{Q}_3)^2$, where matrices are written with respect to the u_i . As in Section 2, let $\Lambda'_0 = \langle e_1, e_2, f_1, f_2, u_5 \rangle_{\mathbb{Z}_3}$, and note that $\Lambda'_0 = \langle u_1, u_2, u_3, u_4, u_5 \rangle_{\mathbb{Z}_3}$. Let *r* denote the reflection in $(u_1 + u_2 + u_3)^{\perp} = (e_1 - 3f_1)^{\perp}$.

Precisely as in Section 3, we find that G_5 is discrete and chamber-transitive on Δ_5 , and the stabilizer $(G_5)_0$ of $[\Lambda'_0]$ is the monomial group 2^5S_5 . Moreover $G_5 = \langle (G_5)_0, (G_5)_0^r \rangle$.

We have $[\Lambda'_i] = [\Sigma'_i \otimes_{\mathbb{Z}} \mathbb{Z}_3]$ for i = 1, 2, 3, where

$$\Sigma_0':=\langle u_1,\ldots,u_5\rangle_{\mathbb{Z}},\Sigma_2':=\Sigma_0'',$$

and

$$\Sigma'_1 := \langle u_1 + u_2 + u_3 \rangle_{\mathbb{Z}} \perp \langle u_1 - u_2 + u_4 \rangle_{\mathbb{Z}} \perp \langle u_1 - u_3 - u_4 \rangle_{\mathbb{Z}} \perp \\ \perp \langle u_2 - u_3 + u_4 \rangle_{\mathbb{Z}} \perp \langle 3u_5 \rangle_{\mathbb{Z}}.$$

Here, $(\Sigma'_0 + \Sigma'_2)/3\Sigma'_0$ is the totally singular 1-space of $\Sigma'_0/3\Sigma'_0$ spanned by $u_1 + u_2 + u_3 + 3\Sigma'_0$, while $\Sigma'_1/3\Sigma'_0$ is the totally singular 2-space spanned by

 $u_1 + u_2 + u_3 + 3\Sigma'_0$ and $u_1 - u_2 + u_4 + 3\Sigma'_0$. Moreover, $(G_5)_1 \cong (2^3S_4) \times 2$, while $(G_5)_0 \cap (G_5)_1 = GL(2,3) \times 2$ and $(G_5)_1 = [(G_5)_0 \cap (G_5)_1][(G_5)_2 \cap (G_5)_1]$. Since r fixes Σ'_1 it normalizes $(G_5)_1$.

Let $L' = \langle u_1, \ldots, u_5 \rangle_{\mathbb{Z}[1/3]}$. Then G_5 acts on L'/2L', and hence also acts on the kernel N' of the linear form $(u + 2L', u + 2L') \mod 2$. The quadratic form $\frac{1}{2}(u + 2L', u + 2L') \mod 2$ induced on N' is nondegenerate, with Witt index 1 and orthogonal group $O^-(4, 2) \cong S_5$ induced by $(G_5)_0$. It follows that $G_5 = G_5(2) \cdot (G_5)_0$, where $E := G_5(2) \cap (G_5)_0$ consists of 2^5 diagonal matrices. If $\mathbf{X} = A_5$ or $F_{20} < S_5$ then $G_5(2)\mathbf{X}$ is chamber-transitive on Δ_5 . Since $r \equiv I$ (mod 2) it centralizes $G_5/G_5(2)$, and hence $G_5(2)\mathbf{X} = \langle \mathbf{E}\mathbf{X}, (\mathbf{E}\mathbf{X})^r \rangle$. Note that $G'_5 \times \langle -1 \rangle = G_5(2)((G_5)_0)' = G_5(2)A_5$.

This time $\Delta_5/G_5(m)$ is a finite geometry with chamber-transitive automorphism group $G_5/G_5(m)$ and diagram • • • • • whenever m > 2 is not divisible by 3. If m = p is prime, then $G_5/G_5(p) \cong O(5, p)$. (Namely, $(12) \in G_5$, so that [16] applies.) Once again, by [5] this produces all finite quotients of Δ_5 on which G_5 induces a chamber-transitive group.

REFERENCES

- 1. Aschbacher, M., 'Flag Structures on Tits Geometries', Geom. Dedicata 14 (1983), 21-32.
- 2. Bourbaki, N., Groupes et algèbres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.
- Bruhat, F. and Tits, J., 'Groupes réductifs sur un corps local, I. Données radicielles valuées', Publ. Math. I.H.E.S. 41 (1972), 5-251.
- 4. Kantor, W. M., 'Some Exceptional 2-Adic Buildings', J. Algebra 92 (1985), 208-223.
- Kneser, M., 'Normalteiler ganzzahliger Spingruppen', J. reine angew. Math. 311/312 (1979), 191-214.
- Kantor, W. M., Liebler, R. A. and Tits, J., 'On Discrete Chamber-Transitive Automorphism Groups of Affine Buildings', Bull. AMS 16 (1987) 129–133.
- 7. Meixner, T., 'Klassische Tits Kammersysteme mit einer transitiven Automorphismengruppe', Habilitationsschrift, *Mitt. Math. Sem. Giessen* 174 (1986).
- 8. Meixner, T., 'Parabolic Systems: the GF(3)-Case' (in preparation).
- 9. Meixner, T. and Wester, M., 'Some Locally Finite Buildings Derived from Kantor's 2-Adic Groups', Comm. Alg. 14 (1986), 389-410.
- Seitz, G. M., 'Flag-Transitive Subgroups of Chevalley Groups', Ann. Math. 97 (1973), 27-56; correction (unpublished).
- 11. Stellmacher, B. and Timmesfeld, F. G., (in preparation).
- 12. Stroth, G., 'Parabolic Systems over GF(2) whose Diagrams Contain Double Bonds, I, II' (to appear).
- Timmesfeld, F. G., 'Tits Geometries and Parabolic Systems in Finitely Generated Groups, I, II', Math. Z. 184 (1983), 337-396, 449-487.
- 14. Tits, J., 'Reductive Groups over Local Fields', Proc. Symp. Pure Math. 33 (1979), 29-69.
- Tits, J., 'A Local Approach to Buildings', in The Geometric Vein. The Coxeter Festschrift, Springer, New York, Heidelberg, Berlin, 1981, pp. 519-547.
- Wagner, A., 'Determination of Finite Primitive Reflection Groups over an Arbitrary Field of Characteristic not Two, I, II, III', Geom. Dedicata 9 (1980), 239-253; 10 (1981), 191-203, 475-523.

17. Wester, M., 'Endliche fahnentransitive Tits-Geometrien und ihre universellen Überlagerungen', Mitt. Math. Sem. Giessen 170 (1985), 1-143.

Authors' addresses:

W. M. Kantor, University of Oregon, Department of Mathematics, *Eugene*, OR 97403, U.S.A.

Thomas Meixner, Universität Giessen, Mathematisches Institut, Arndtstr. 2, D-6300 Giessen, F.R.G.

M. Wester, Siemens AG, D-8000 Munich, F.R.G.

(Received, July 28, 1987)