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T W O  E X C E P T I O N A L  3 - A D I C  A F F I N E  B U I L D I N G S  

1. INTRODUCTION 

This note contains constructions of some discrete chamber-transitive auto- 
morphism groups of affine buildings for certain 5- and 6-dimensional 
orthogonal group~ over the field Qa of 3-adic numbers. Such groups are very 
rare. Similar constructions can be found in [4], [7], [9] and [17], and the 
groups obtained by such constructions have been classified in [6] in the case of 
Witt index ~> 2 in arbitrary dimension for an arbitrary local field. 

One motivation for such constructions arises from the fact that, upon 
passage modulo suitable normal subgroups, they produce finite building-like 
geometries having chamber-transitive automorphism groups. Such geo- 
metries have, in turn, been characterized group-theoretically (cf. [8], [11], 
[12], [13] and their references). 

We have described the examples in a very concrete manner as arithmetic 
groups. Consequently, all finite homomorphic images can be immediately 
obtained, in view of the results in [5]. 

2. A F F I N E  B U I L D I N G S  OF 5-  AND 6 - D I M E N S I O N A L  

O R T H O G O N A L  G R O U P S  

We will need descriptions of two affine buildings. These are based on [3] and 
[141. 

Consider a vector space V over Qa. Let Z a denote the ring of 3-adic integers. 
If S is any basis of V let L = (S)z 3 be the lattice (Z 3-module) generated by S. 
Write [L] = {aLl0 ¢ a t  Q3}. Note that all members of a lattice-class [L] 
have the same stabilizer in GL(V). 

Now assume that V has dimension 6, with basis el, e2, f l ,  f2, us, u6, and is 
equipped with the inner product f =  (,) defined by (ei ,ej)= ( f i , f~)= O, 
(ei, fj) = 6ij, (ei, Uk) = ( f i '  Uk) ~-- (/25' U6) = 0, (Us, / /5)  = 1 and (U6,/'/6) = 3 for all 
i,j, k. Then the afline building of the corresponding orthogonal group O(f, Q3) 
is the simplicial complex A whose vertices (of respective types 0, i and 2) are the 
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lattice-classes [Ao] °, [A1] g, [A2] g, g e O(f, Q3), where A i is defined by 

Ao = @1, e2, f l ,  f2, us, U 6 >Z3 

A 1 = <el/3,  e 2 , f l , f 2 ,  us ,u6 /3>z  3 

A 2 = ( e t / 3 ,  e 2 / 3 , f 1 , f 2 ,  Us,U6/3)z3. 

One chamber (i.e., maximal simplex) of A is {[Ao], [A1], [A2]}, with all others 
obtained by applying elements of O ( f  Q3). Note that the transformation 
0 taking 

e 1 --, 3f2 --, - 3 e  1 

e 2 --* _ 3fl ~ - 3 e  2 

U 5 ~ U  6- '+  - -3 / /5  

sends A 1 t o  its dual lattice 

A ~  :=  {X~ V I ( x ,  A1)  ~ 7/3} = <ex,e2,3ft,f2,us,u6>z3, 
and sends A 2 ~ A o --* 3A z. Here, 0 satisfies (u °, v °) = 3(u, v) for all u, v e V, and 
0 2 = - 3 .  Note that the stabilizer of [A1] in O(f, Q3) coincides with that of 

EA~']. 
The building D has the diagram - (or, more precisely, 

0 1 2 
t,===-e==~=~==~; cf. [14]). This has, among others, the following meaning. 
0 1 2 
Star([Ao]), the star of [Ao], is the finite building of the orthogonal group 
0(5, 3). Namely, the bilinear form (u + 3A o, v + 3Ao) mod 3 induced on the 
GF(3)-space/X, o ..= Ao/3A o has radical ~,~ generated by u 6 + 3A o. Moreover, 

(#)  IrA is a lattice in V, then [A] represents a vertex of A 6 adjacent to [Ao] 
if and only if some member of [A], say A itself, satisfies the follow- 
ing conditions: 3A o c A c Ao, A/3A o ~ *~, and A/3A o is totally 
singular. 

(In fact, 3A1/3Ao and 3Az/3Ao are the totally singular subspaces spanned 
by el + 3Ao, u6 + 3Ao and et + 3Ao, e2 + 3Ao, u6 + 3Ao, respectively.) 
Similarly, Star(JAil ) and Star([A/I) are a generalized digon and the 0(5, 3) 
building, respectively. (In fact, Star([A2]) = Star([Ao])°.) 

Clearly, O(f ,  Q3) acts on A 6 with induced automorphism group 

PO(f, ~3) = O(f, Q3)/< - 1). 
The second building A' we will consider is that of the commutator sub- 

group O(f ' ,  ~3) of the orthogonal group O( f ' ,  ~3) of the form f '  obtained 
by restricting f to the orthogonal complement 1/' := (el ,  e 2, f l ,  f2, us > of u6. 



TWO E X C E P T I O N A L  3-ADIC A F F I N E  B U I L D I N G S  3 

This building is defined as above, this time using the three lattices 

A'o = (e l , e2 ,  f l , f 2 , u 5 ) ~ 3  

Ai = @1/3, e2/3, f~, f2, us )z~ 

A'2 = <el /3 ,e2 ,3 f l , f2 ,us>z~ .  

The diagram is • _-- - (or, more precisely, ~ ) ,  with 
0 1 2'  

respective stars the 0(5, 3) building, a generalized digon, and the 0(5, 3) 
building. This time O( f ' ,Q3)  is not type-preserving: the reflection in 

(e 1 - 3fl) ± fixes [A'I] and interchanges [A~] and [A~]. 

3.  T H E  6 - D I M E N S I O N A L  DISCRETE GROUPS 

Let V 6 be the 6-dimensional vector space Q6, with standard basis u 1, u 2, u a, 

u4, us, u6, equipped with the bilinear form f defined by (u i, 1.9) -- 6 u except 
that (u6, u6) = 3. Let V 6 be embedded in V -- Q6 in the natural manner, and 

let f also denote the form induced on V. 
We begin by relating the present notation to that of Section 2. Namely, let 

~e 7/3 be the root of the equation x 2 + 2 = 0 such that 1 + ~ 37/3 (i.e., 1 + c~ 

is a unit) and 1 - cte 37/3. Let e l , e 2 , f l , f 2 , U s , U  6 be the basis of Vdefined by 

e l = ½ ( l + c 0 ( u  1 + u  2 +~u3) 

A = ½(1 + :,)-~(u~ + u2 - ~u~) 

ez = ½(Ua - uz + ~u~) 

f x  = ½(u~ + u~ - ~u~). 

Then these basis vectors behave exactly as described in Section 2. In particular, 
V has witt index 2 - while, clearly, V6 is anisotropic. 

Let A 6 denote the building for the group ~( f ,  Q3), and define [-Ao], 

[A1], [A2] using the vectors el ,  e2, f l ,  f2, us, u6 just as in Section 2. The 
radical of A,o = Ao/3Ao is spanned by u6 + 3Ao. 

P R O P O S I T I O N  1. G 6 := O(f ,  (~3) t") GL(6, 7/[½]) is discrete and chamber- 

transitive on A 6. 

Proof  By a simple calculation, A o = <ul . . . . .  u6 >~3' The stabilizer (G6) 0 of 
the vertex [Ao] consists of rational transformations preserving the 7/-lattice 
<ul . . . .  , u6 >z, and hence preserves its set {_+ u 1 , . . . ,  _+ u 5 } of squared length 
1 vectors, so that (G6) o is a monomial group of the form 26S5 . In particular, 
this group induces a chamber-transitive group on Star([Ao] ). 
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Now consider the transformation 0 defined by the matrix 

t 
[ 0 - 1  1 - 1  0 0 

1 0 - 1  - 1  0 0 

- 1  1 0 - 1  0 0 

1 1 1 0 0 0 

0 0 0 0 0 1 

\ 0 0 0 0 - 3  0 

Then (u °, v °) = 3(u, v) for all u, v • V, and 0 2 = - 3. It follows easily that [A ° ] 
has the properties in (#)  (cf. Section 2; in fact, A°o/3Ao = 3A2/3Ao is the 
totally singular 3-space spanned by (1, 1, 1, 0, 0, 0) + 3Ao, (1, - 1, 0, 1, 0, 0) + 
3Ao and u6 + 3Ao), and hence is a vertex of A 6 of type 2 adjacent to [Ao]. 
Moreover, 0 normalizes G 6 (since 0-1 has all entries in g[½]). Now (G6) 0 is 
chamber-transitive on the star of [Ao] °. Connectedness of A 6 implies that 
the subgroup <(Gr)o, (G6)°o) of  G 6 is chamber-transitive on A 6. Finally, G 6 
is discrete since the stabilizer of any vertex is finite. [] 

Since we now have two chamber-transitive automorphism groups G 6 and 
<(G6)o , (G6)°o)  o f  A 6 having the same vertex stabilizer, namely (G6)o,  we 

deduce the 

COROLLARY. The stabilizer (G6) o o f  the vertex [Ao] is 26S5, and G 6 = 

((G6)o, (G6)° >. 

The vertices of A6 can all be represented by Z-lattices, instead of by 
2~3-1attices as was done in the above proof and in Section 2. Namely, it is 
straightforward to check that [Ai-] = [Y-i ®z2~3] for i = 1, 2, 3, where 

and 

~0 := (1ll . . . . .  u6 ) z ,  ~2 := ~°0, 

Z I : =  ( U l  + U2 -- 2U3,U2 + U3 -- 2ul)z ± ( 3 u 4 , 3 u s ) z  ± 

~ ( u  1 + u 2 + u3, u6 )z .  

Here, Z1/3Zo is the totally singular 2-space of Zo/3Eo spanned by u I --[- u 2 -~- 
u3 + 3Zo and u6 + 3Zo, while E2/3Zo is the totally singular 3-space spanned 
by ul + u2 + u3 + 3Eo, u~ - u2 + u4 + 3Zo and u6 + 3Zo. Moreover, from 
the description of Z1 it follows that the stabilizer (G6) 1 o f  the vertex [A1] is 
D12 × D8 x D8. Note that-(G6)o n (G6)1 = S3 X D8 x 2 and (G6)1 = [(G6)o 
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( G 6 ) l ] [ - ( G 6 )  2 ( 3 ( G 6 ) 1 ] .  Since 0 maps (1/3)21 onto the dual lattice E~ := 
{v~Q6l(v, Z1) c_ 7/} of 21 it normalizes (G6)1. 

Next we turn to a new basis for V6, as well as a new chamber-transitive 

automorphism group of A 6. 
Consider the following six vectors: 

Z l  = ½ ( - - U l  - -  U2 - -  1/3 - -  /'/4- "[- / /5 " [ - U 6 )  

Z 2 = U 4 "Jr /A 5 

Z3 ~ /A4 - -  / /5 

Z4 = //1 - -  U4 

Z5 ~ /'/2 - -  U l  

Z6 ~ /d3 - -  /~2" 

2 

These vectors satisfy the relations ~ for a fundamental system 
1 3 4 5 6 

of roots of a root system of type E 6 (cf. ['2, p. 268]). Note that, with A o as before, 

we have A o = (z l , z2 ,z3 ,z4 ,zs ,z6)~s .  
Let H 6 denote the stabilizer of 

L := (z 1 , z 2, z 3, z 4, z 5, Z 6 ) Z [ ½ ]  

in O(f, Q3). (Alternatively, H 6 can be defined as O(e6,11)3) c3 GL(6,Z[½]), 
where e 6 denotes the quadratic form for the E 6 root lattice, and matrices 
are written with respect to the zi.) 

P R O P O S I T I O N  2. H 6 is a discrete chamber-transitive automorphism 9roup oJ 

A 6 • 

Proof This time, (H6)  o = W(E6) X ( --  1). The transformation 0 sends L to 
itself, and hence normalizes H 6. Thus, the argument in Proposition 1 can be 
repeated in the present situation. []  

COROLLARY.  The stabilizer (H6)  o of the vertex [Ao] is W ( E 6 )  × ( - - 1 ) .  
Moreover, n 6 = ( ( H 6 ) o , ( n 6 ) ° ) .  

As before, the vertices of A 6 c a n  all be represented by Z-lattices. This time 

[ A i ] =  [Fi ®~Z3]  for i =  1, 2, 3, with Fo.'= (z l  . . . .  , z6)z ,  F2.'= F~, and 

1"1 := (z l ,  z3)z ± (zs,  z6)z _1_ (zz ,  Z , )z ,  where - z ,  = zl + 2z2 + 2z3 + 3z4 + 
2z5 + z6 is the highest root in the E 6 root  system generated by zl ,  z2, z3, z4, 
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Z5,Z 6 [Bo, p. 268], 

so that the following relations hold. 
1 3 4 5 6 

Note that F1/3Fo is the totally singular 2-space of Fo = Fo/3Fo spanned by 

z5 - z6 + 3Fo and zt - z3 + z5 - z6 + 31-'o, while F2/3Fo is the totally 
singular 3-space spanned by z5 - z6 + 3Fo, z2 + z3 + z5 + 3Fo and zl - z3 + 

z5 - z6 + 3Fo. Moreover, we see that the stabilizer (H6) 1 of the vertex [Al l  
has the form (33 x 23)23S3 . Note that (H6) o ~ (H6) 1 = 2 x (33(2 x $4)) and 

( n 6 )  1 = [ ( n 6 )  0 ~ ( n 6 ) t ' ] l - ( n 6 )  2 ~ ( n 6 ) l ] .  

There is another interesting graph automorphism ~0. First, let t be the 

following product of reflections lying in W(Er): t = rl  r3" r5 r6" r2 r .  (where ri 
denotes the reflection in z{).Then t lies in the center of a Sylow 3-subgroup of 

W(E6) (namely, ( t )  is the long root group of 0(5, 3) such that [Fo/P~, ( t ) ]  is 

spanned by the projections of z5 - z6 and z2 + z3 + z5 into Fo/F~), and 
t 2 + t + 1 = 0. Write ~o = 1 + 2t. Then ~o 2 = - 3, and (u ~°, v ~) = 3(u, v) for 

any vectors u and v. It  is straightforward to check that F2 = F~, and that 

(½)F~ = F~, so that ~ normalizes (H6)1. Note also that 0 normalizes (H6h.  

4.  C O N G R U E N C E  S U B G R O U P S  

In order to relate G 6 and H6, and at the same time construct some additional 

chamber-transitive automorphism groups of the building A 6 as well as to 
construct finite morphic images of A6, we introduce congruence subgroups 
of these two groups. 

View H 6 as a group O(e6, ~3) ('~ GL(6, Z[½]) of matrices. For  any integer 
m > 1 not divisible by 3, let Hr(m ) (the 'level m congruence subgroup' of H6) 
denote the normal subgroup consisting of those matrices - I (mod m). This is 

just the centralizer in H 6 of L/mL. Similarly, the group G6(m) is defined to be 

the centralizer in G 6 of M/mM, where M.-= ( u l , . . . ,  U6)Z[1/3]. 

P R O P O S I T I O N  3. H 6 = H6(2)'(H6)o, where H6(2 ) c~ (H6) o = ( -  1). Thus, 
H6(2 ) acts regularly on the set of vertices of m 6 o f  type O. It also acts regularly 
on the set of vertices of type 2. 

Proof. Obviously H 6 acts on L/2L, preserving the quadratic form ½(u + 2L, 
v + 2L)mod 2 induced on that GF(2)-space with respect to which L/2L is 

nondegenerate with Witt index 2. The group (H6) o induces W(E6) ~ O - ( 6 ,  2) 

on that space. This proves that H 6 = H6(2 )- (H6) o. Since it is clear that 
H6(2 ) n (H6) o = ( - 1), this proves the desired regularity on vertices of type 0. 
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Now note that 0 normalizes H6(2 ) (since 0 normalizes H 6 and L). This 
proves the last assertion. []  

Note that the graph automorphism ~0 = 1 + 2t defined at the end of 

Section 3 centralizes L/2L and hence also H6/H6(2 ). 
We now determine the intersection G6 ~ H6 .  Let °G 6 be the subgroup 

{G 6 n ~ ( f , ~ 3 ) } < - - 1 , ( 1 2 ) ) ,  where (12) denotes the reflection in (ul -u2)  l 
acting as a transposition on ul . . . . .  u 5. Then °G 6 has index 2 in G 6, and 
is normalized by 0 (by a straightforward calculation). Write (o G6)o = o G6 n 

(G6)o. 

L E M M A  4. ° G  6 = G 6 ~ H 6 = H 6 ( 2 ) ' ( ° G 6 ) o  . 

Proof. Abbreviate D ..= (°G6) o. Then D = W(Ds) x < - 1>, and D is chamber- 
transitive on Star([Ao]). Moreover, D < (H6) 0 (it is the W(Ds) x < - 1 >  in 
W(E6)  × ( - 1 > induced on the space <z2,. . . ,  z 6 >). Thus, <D, D o > is a chamber- 
transitive subgroup of both o G6 and G 6 fh n 6 ,  since 0 normalizes both of 
these groups. 

We already know that n 6 induces O -  (6, 2) on L/2L. Since <D, D o > induces 
a proper subgroup of 0 - ( 6 ,  2) containing a parabolic subgroup 24S5, it is 
contained in H6(2)D. However, H6(2 ) is regular on the vertices of A 6 of type 0, 
so that no proper subgroup of n 6 (2)D containing D can be chamber-transitive. 
Thus, H6(2)D = (D, DO). 

In particular, H6(2)D <~ G 6 ~ / / 6 "  In fact, H6(2)D = G 6 N H 6 since we have 
seen that H6(2)D is a maximal subgroup of / /6"  F i n a l l y ,  °G  6 is a chamber- 

transitive group with (° G6) o --- (H6(2)D)o , so that °G 6 = G 6 ~ / / 6 .  [ ]  

We have just constructed a chamber-transitive subgroup (namely, G 6 ~ / / 6 )  of 
H 6. In order to construct even smaller chamber-transitive subgroups, consider 

a subgroup X = 24A5 or 24F2o of G 6 n / / 6  = 24S5 (where F2o denotes a 
Frobenius group of order 20 in $5: the normalizer of a Sylow 5-subgroup). 
Then clearly H6(2)X is chamber-transitive on  A 6. Note that H 6 ( 2 ) X  = <X, X~°), 

where q~ is the graph automorphism defined at the end of Section 3. (For, since 
q~ centralizes H6/H6(2) the chamber-transitive groups//6(2)X and <X, X ~°> 
project onto the same subgroup of H6/H6(2), so that the intersection of 
each with ( / /6 )0  is contained in X.) 

We now turn to the slightly more complicated case of G 6 in order to 
construct additional chamber-transitive groups. Let M..= <ul . . . .  , u6 >z[~], so 

that G6(2 ) is the centralizer in G6 of M/2M. Here, M/2M inherits the quadratic 
form x 2 + ... + x 2 + 3x 2 mod 2, which is the square of a linear form whose 
kernel is the projection rood 2M of the sublattice N of M defined by 
Ex i - 0(mod 2). Moreover, N/2M inherits the quadratic form ~- 2 2(Xl + . "  .q- 
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x 2 + 3x2)mod 2, whose radical is the singular 1-space with representative Eul 
satisfying ½(Eui, Eu~) = 4 -- 0(mod 2). Thus, G 6 induces a subgroup G6/K of 
the orthogonal group O-(4,  2) _-_ S 5 of the resulting nonsingular 4-space (for 

a normal subgroup K of G6). Since ( ° G6) o has a subgroup S 5 acting faithfully on 
M/2M, it follows that G6/K ~- S 5 and hence that G 6 = K.(°G6)o . 

LEMMA 5. G 6 = {K n °G6} .(G6)o, where K n °G 6 = K n H  6 contains H6(2 ) 

and is transitive on the vertices of type O. 
Proof Note that K = {K c~ ° G 6 } ( r 6 )  and (G6) 0 = ( ° G 6 ) o ( r 6 )  , where r 6 

denotes the reflection in u~. Then G 6 = K.(°G6)0 = (K n °G6)-(G6) o. 
It remains only to show that K n °G 6 contains H6(2 ). First note that 

2(L + M) = (Eu~) + 2M and (L n M) + 2M = N, in view of the definition 

of the z i. Thus, H6(2 ) centralizes N/((Eui) + 2M), and hence lies in K. We 
already know that it lies in o G6" [] 

We can now construct several groups acting chamber-transitively on A 6. Let 
Y denote any of the following subgroups of (G6) o --- 26S5, each containing-l:  

25S5 (two classes, one of which is (°G6) o and hence contains the reflection 
(12), while the other contains (12)r6); 

2SAs (this is inside (°G6)o); 

26A5; 

26F2o; 
25F2o (two classes, one of which lies in (°G6)o).  

Then {K n °G6}'Y is chamber-transitive on A 6. Of course, some of these 
chamber-transitive groups were already encountered earlier, since H6(2 ) ~< 

K n °G  6. 

Next, let m be an integer >2  not divisible by 3. Then A6/G6(m ) is a finite 
morphic image of A 6 (cf. [15]), and is a geometry (by I-1]) with chamber- 
transitive group G6/G6(m ) and diagram" = --. If m = p is a prime > 3 

then G6/G 6 (p) is a subgroup of O -+ (6, p) properly containing f2 -+ (6, p) (by [16], 
since the group induced on the vector space M/pM is irreducible). The sign 
___ is + if and only if - 3 is a square in GF(p), i.e., if and only if p = l(mod 3). 

Similar remarks hold for H6/H6(m ) as well - and, for that matter, for each 
of the chamber-transitive automorphism groups of A 6 obtained above. How- 
ever, all of the resulting finite quotients of A 6 are isomorphic for a given m. 
Namely, each inclusion map between two of these groups induces an iso- 

morphism of finite geometries. 
Incidentally, G6/G6(2) ~ 24S5. Namely, we saw above that G6/G6(2 ) has S s 

as a homomorphic image. Also, 0 acts nontrivially on N/2M. From this it 
follows readily that (O)G6/G6(2) ~ 25S5. 
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Using the spinor norm, it is easy to see that G~ = ((G6)o,(G6)o°) ' is the 
chamber-transitive group generated by ((G6)o)' (isomorphic to 24A5) and its 
image under 0. In particular, G~ is the intersection of G 6 with the kernel of the 
restriction of the spinor norm to SO(f, Q3). By [5], every finite homomorphic 
image of G~ is a homomorphic image of some group G'6/G'6(m). Thus, all finite 
quotients of A 6 on  which G~ induces a chamber-transitive group are obtained 
by factoring out suitable normal subgroups of G'6/G'6(m). Similar statements 
hold if H~ is used in place of G~. 

Finally, we note that the group (G6 ,  H 6) is chamber-transitive on  A 6 but is 
not discrete. For, neither group G6, H 6 contains the other; and W(E6) is 
a maximal finite subgroup of O(f6, Q) generated by reflections. In fact, the 
group ((H6)o, r 6), which stabilizes [Ao], is known to contain O(e6, 7/[½])' as 
a normal subgroup [7]. 

5. T H E  5 - D I M E N S I O N A L  DISCRETE GROUP S  

In this section we will briefly sketch results analogous to those of Sections 
3 and 4 for the 5-dimensional subspace Vs ,= (ul ,  u2, u3, u4, us)  of the space 
V 6 studied in those sections. Note that V' .'= V 5 ®Q Q3 is spanned by the 
vectors e 1, e:, f l , fz, Us. 

Let f '  denote the restriction o f f  to V s or V'. The corresponding affine 
building A 5 of ~ ( f ' ,  Q3) is defined in Section 2. 

This time we will use the group Gs consisting of all elements of O(f ' ,  Q3) n 
GL(5, Z[1/3]) having spinor norm in {_  1}(O3) 2, where matrices are written 
with respect to the u i. As in Section 2, let Ab = (el ,  e2, f l ,  f2, u5 )z3, and note 
that Ab = (ul ,  u2, u3, u4, us)z3. Let r denote the reflection in (ul + u 2 + u3) ± = 

(el - 3fl) I. 
Precisely as in Section 3, we find that G 5 is discrete and chamber-transitive 

on As, and the stabilizer (Gs) o of [A~] is the monomial group 2ss5 . Moreover 

G5 = ((Gs)o, (Gs)~). 
We have I-A~] = I-E~ ®~ 7/3] for i = 1, 2, 3, where 

and 

Y~ .'= (Ux . . . . .  us )x ,  ~ .'= y~r, 

~,t 1 ' =  (U 1 + U 2 "]- U3) Z-L (U 1 - -  U 2 -]- U4) Z_]_ (U 1 --  U 3 - -  U4) Z~_ 

_L (u2 - u3 + u4)~ -[- (3u5)~. 

Here, (Z~ + Z~)/3Z~ is the totally singular 1-space of Eb/3Eb spanned by 
ul + u2 + u3 + 3Eb, while E'l/3E~ is the totally singular 2-space spanned by 
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ul + U2 + Ua + 3E~ and ul - u2 + u4 + 3Eb. Moreover,  (G5)1 = (23S4) x 2, 

while (Gs)o c~ (Gs)l = GL(2, 3) x 2 and (G5)1 = I-(Gs)o c3 (Gs)l][(Gs)2 c~ (Gsh] .  
Since r fixes E~ it normalizes (G5)1. 

Let U = ( u l  . . . . .  us)gtl /3j .  Then G5 acts on U / 2 U ,  and hence also acts on 
the kernel N '  of  the linear form (u + 2L',  u + 2L')  m o d  2. The quadrat ic  

form ½(u + 2L', u + 2L') mod  2 induced on N '  is nondegenerate,  with Witt 

index 1 and or thogonal  group O -  (4, 2) g $5 induced by (G5)o. It follows that 

G5 = G5(2)" (Gs)o, where E ..= G5(2) c~ (Gs)o consists of  2 5 diagonal matrices. 

I f  X = A5 or F2o < $5 then Gs(2)X is chamber-transit ive on As. Since r = I 

(mod 2) it centralizes Gs/G5(2), and hence Gs(2)X = (EX, (EX)r). Note  that 

G~ x ( - 1 )  = Gs(2)((Gs)o)' = Gs(2)A5. 

This time A s / G s ( m  ) is a finite geometry  with chamber- t ransi t ive auto-  

morph ism group Gs/Gs(m ) and diagram - - whenever m > 2 is 

no t  divisible by 3. If  m = p is prime, then G s / G s ( p )  ~- O(5,p). (Namely, 

(12) ~ Gs, so that  1,16] applies.) Once again, by 1-5] this produces all finite 

quotients of  A s on which G~ induces a chamber-transit ive group. 
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