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Abstract

We address the graph isomorphism problem and
related fundamental complexity problems of computa-
tional group theory.

The wmain results are these:

Al, A polynomial time algorithm to test simpli-
city and gind cogggsition factors of a given permu-

tation iroug COM . . .

A2, polynomial time algorithm to find elements
of given prime order p in a permutation group of
order divisible by p. R

A3, A polynomial time reduction of the problem

f finding "Sylow subgroups of permutation groups
SYLFIND} to finding th? intersection of two cosets
of permutation groups (INT). As a consequence, one
can find Sylow subgroups of solvable groups and of
groups wi¥h bounded nonabelian composition factors
in Kolynomlal time. .
4,” A polynomial time algorithm to solve SYLFIND
for finite simple groups.

A5. An ncd/los d algorithm for isomorphism
(1S0) of graphs of valency less than d and a_conse-

uent improved moderately exponentjal general graph
gsomorphgsm test in explcym %bg“ﬁ steps.

A6. A moderately exponential, n°'" algorithm

for INT. Combined with A3, we obtain an 2"t algo-
rithm for SYLFIND as well.

All these problems have strong links to each
other. 180 easily reduces to INT. A subcase of SYL-
FIND was solved 1in golygom1a1 t}me and applied to
bounded valence IS0 "in [Lull, Now, FIND is
reduced to INT. Interesting special cases of SYL-
FIND belong to NP coNP and are not known to have
subexponential solutions. .

All the resultg stated depend on the classifica-
tion of finite simple groups. We note that no pre-
vious IS0 test had no(d) worst case_ behavior for
graphs of valency less than d. It appears that
unless there is another radical breakthrough in
IS0, independent of  the previous one, the s1m¥1e

roups classification is an 1nd13pensab1e tool for
%urt er developments.
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1. The classification
The final success of a major joint effort by a
large number of mathematicians is the recent com
pletion ?f the clasgsification of finite 31mp}e
ﬁroups apart from the uniqueness of the Monster).
or non-technical information on this achievement
fee Col. A more detailed account cam be found in
There is no doubt that this result, the proof of
which involves several thousand pages, will have an
enormous impact on large sections of mathematics.

The solutions of many old Eroblems in group theor
are known to follow, such as the nonexistence o
6-transitive permutation groupe and indeed  an
essentlallg complete list of doubly transitive
groups; Schreier”s conjecture that the outer auto-
morphism group of a finite simple group is solv-
able; the conjecture that every finjte TlTEI frou~
is generated by two elements {cf Call, .eT, Ka2
for surveys of more consequgncesi. Combinatorics

as Tlre?dg ?rfat1¥ benefited from these results

{caz], {cPssT,[Ka2]l,[wWe],[Pa2 f af h? e other
fields, such ?s model theory éul, Temy f number
theory (see [Fel) and universal algebra [Pall.

,The aim of the present paper is fo discuss algo-
rithmic consequences of the clasgification, At the
present time, we are umable to give a polynomial
time algorithm to solve such a seemingly harmless
problem as finding an element of order p im a_ per-
mutation group of order divisible by p, without
invoking detailed knowledge of the classification,

The fundamental information about finite simple

roups ? shall need is the following (see
fCal ,[Goy . Apart from a finite number f
‘sporadic”" groups (these shall never concern ugg,

the finite simple groups fall into the following
categories: cgcllc grougs of prime order, alternat-
ing groups and groups of Lie type, The _groups of
Lie type are matrix groups over finite fields. They
are divided into a finite number of infinite fami-
lies. Each family is parametrized by the dimension
of the m?trlces andfthe order qfllt ef flelg. hThe
classical groups form essentially four of these
families (projective special }inear, symplectic,
orthogonal and unitary groups). The remaining ten
families of groups of ie type, the so-called
exceptional groups , have bounded dimensions and
%geltﬁus parametrized by only the order of the
ield.

Statements depending on the

, ot e . classificatjon of
finite simple groups will be marked by g.

CFsSG

2. Complexity problems in computational group theory

The two basic tools in analyzing group structure
are composition factors and S{low subgroups. Both
can be regarded as building blocks of a group.
Finding them is a problem analogous to factoring
integers; we are ";aklng the group apart to see
what makes it tick",

It may be of particular

interest to note that
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some natgral subproblems of SYLFIND (finding Sylow
wbiroups belong to NP~ coNP while no subexponen-—
tial solution is known for them. An example : Does
4 given permutation group G have an element of
order p* where p is a given prime and p’ is the
largest power of p dividing the order of G ?

Easy reductions show that the following problems
ere polynomial time equivalent: finding the cen-
tralizer of a permutation_in a given group, finding
the stabilizer of a given subset, f nding the
intersection of two permutation groups %glven by
generators), finding the 1gtefsec ion of two cosets
of.permutatﬁog groups (INT Lu2l. Graph isomor-
phism (ISO) is easily feducgd to these. SYLFIND is
also reducible to them (Section 8).

—Sememls o 2 DNk

. The results depend on the classification in vary-
1n%hways. . . . L.

e polynomial time simplicity test gnd the
determination of the composition factors (Section

5) uses the classification through Schreier”s con-
Jecture stated in the previous section.

Finding elements of given prime order p, and more

generally  finding Sylow p-subgroups of simple
ﬁroups in polynomial " time, present { relies on
etailed knowledge of properties o§ all families of
finite simple groups (Sections 6,7). Part of this

result, combined with the composition factors algo-
rithm, yields a polynomial time algorithm for find-
ing eiements of given prime order in arbitrary per-
mutation groups. A

The reduction of SYLFIND to INT (Section 8) usss
the Sylow subgroups of finite simple groups (A4).
However, restricting the reduction to solvable
groups and groups with bounded nonabelian composi-
tion factors, we find .Sylow subgroups of such
groups in polynomial time without using the clas-
ification., (This relies on_the INT alg?rlt of
f%E%T ) combined with estimates from [Pal] and

The  timing analysis of the INT algorithm
described in Sectlon 10 requires estimates on the
orders of primitive permutatjon Trfupa Uslng the
recent elementary bounds of [Ba2], Ba4], we obtain

an exp(cv/n 10g2n) time bound for INT. Using _the
classification, one can essentially list all primi-
tive permutation groups of order greater than

nl°8 “[cal], bringing down the INT running time to

nc/H. More significantly, this list provides a tool
that might eventually lead to a subexponential

(i,e. exp(go(lb) INT alEorithm and thereby to
subexponential ISO and SYL IND algorithms.,

Due to an n to n2 blowup in the ISO to INT reduc-
tion, the current INT algorithms do not yield a
better than brute force ISO test, Notwithstanding,
there is a moderately exponential,

exp(c/n 1og5/2n) IS0 test which refefs i the ele-
mentary bounds mentioned above (see |BL g.. A naive

se of those consequences of the classification
Cal mentioned in the previous faragraph reduces
the exponent of 105 n from 5/2 to 1. A further _in-
depth analysis, details of which will be outlined
in Section results in the best current bound,
exp(c/n log n), (It may be curious to note that the
current bound for factoring n-digit integers looks

precisely like this Djl; tge constant c
was recently improved tSch]. It 1is actu-
ally the underlyin nCd/lOg d ISO bound for graphs

of “valency less than
of the classification.
Finally we mention that
the moderately exponential ISO and INT algorithms
both serve as ~subroutines in a polynomial time
algorithm. Namely, isomorphism of distributive
lattices can be tested in 93+°€1)
that isomorphism of distributive
f;cently been brought

.

d that makes significant use

somewhat surprisingly,

steps [Ba6].(Note
lattices has only
down to polynomial time
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4. Notation and preliminaries

Bagic group theory. We assume .that the
reader 1s familiar with some of the_bas1c‘notton7
f group theory such as that contained in [Ro
?simple groups, composition factors, Sylow p-
subgroups, center, conjugate elements and subgroups
(notation: for H a subgroup and g an element of G,

4.1,

P= —IH ), commutator subgroup = derived subgroup
(degoteﬁ c'?, derived series, solvability, direct
products, the grojectlve linear groups)., [Ro]l con-
tains some of the basic material] on permutation
groups as well (orbits giablllzers ;s we shall also
need the beginning of twil, .

We briefly review some standard notation.

An action of a group G on a set X is a homomor—

phism g+—> of G onto a subgroup G> of Sym(X),
the group of all permutations of X. The orbit of

xeX is xC={x8: geG}, where x® is the image of x
under g . Here, le|=lG:Gx| where G_ is the stabi-
lizer {geG: xB=x}. Let ny denote er\Gy.

If xC=x then G is said to be transitive on X, In

this situation, one looks for G-invariant parti-
tions of X. If there_is no such nontrivial parti-

tion then G 1is called ¥r1m1tive ; ,othervise G is
imprimitive., The blocks of a_G-invariant partition
are calle locks of imprimitivity. G acts transi-

tively on them, This ?ctlon is  primitive igf the
partition is minimal (the blocks are maximal).
the cosets

For H<G (H a subgroug of G) and g¢G,
gl and Hg of H will be called subcosets of G. The
empty set will also be regarded as a subcoset of G.

With™ this convention, the intersection of subcosets
is always a subcoset. Right and left cosets make no
difference since a left coset of H is a right coset
to H. For every

of another subgroup, conjugate

subgroup H<G there 1s a natural G-action on the set
G/H of %left) co?egs.

If ¢: 6=> Sym(X) and ¥: G-> Sym(Y) are two
actions _of : is

3 ;2 Ehgfsgﬁs §rgup G then a ma f: X->Y
a G-map i = or every g in G.
Our I:end gfgproof"gmark is i#Y
paper, X will

4.2, Algorithms. Throughout this i
denote ~an n-set. The inputs of our algorithms will
be_permutation groups, usuall{ acting on X.

Every permutation group will be given by a set of
gen rating permutations. A nonempty subcoset Hg of
ym(X) can be represented by specifying a set of
generators of H and a representative %. .

Given a permutation group G the following can be
found in polynomial "time; the order of G, the
pointwise stabllizer of a given subset, the derived

series the orbits of a _minima artition into
blocks of imprimitivity %[Si] tAt],iFﬁLTg.

Our complexity estimates viil be given in terms
of n (the degree of the input group rather thamn
in terms of the input length. Of course, if an

an uqreasonaﬁly large

input group is represented b
time required to

number of generators, then the

engv edyndant generators has to be added
fSl?,fFHLi. ?It 18 easy to see that any set of
n log n permutations’ contains redundant ones. A
more 'nvo}vgd argument shows that even 2n is too

much [Ba5 ..
Let Kﬁbe a class of finite groups closed under

isomorphisms taking subgroups and factor groups.
For any such we shall be interested in the Tol-
lowing four problems.

Finding Sylow subgroups (SYLFIND(K)) )
INPUT: a” permutation group GeK and a prime p.
OUTPUT: a Sylow p-subgroup of G.

Sylow conjugacy (SYLCONJ(K)) .
¥NPUT: a permutation grou? GeK , a g ime 8 and
two Sylow p-subgroups P{1) and P(2) of G.

OUTPUT: geG such that P(1)5 = p(2).

Coset intersection (INT(K))

INPUT: a set X, tw gubgroups G,H and two ele-
ments §,h of Sym(X) where at feast ome of
G,H belongs to .

OUTBUT: the subcoset GgAHh of Sym(X).



Color automorphism (CAUT(K))
INPUT: a set X, a coloring : X->{colors}, a
group acting on X, and a permutation

eSym(X .
OU§PU¥T the set of Gé—auto?orphlsms of the
coloring, i.e. AUT(Gg,d) =

{heGg: $(x)=¢(x®) for all xeX}.

CAUT(K) is cleagl{ a subcase of INT(K). They are
ctu 11¥ olynomia time _equivalent _for an
?LuZ? t follows from [Pa

y
i nd [BCP] that ~the
INT(K) algorithm given by [Lull works in polynomial
time when K

is the class of solvable groups or more
generally a class of grqups with bounded nonabelian
composition factors. This result will b? crucial
for applications of the SYLFIND(K) to_ INT(K) reduc-

tion (see Cor. 8.2).(The gctual restriction on K is
even weaker, cf.Cor. 8.2.

4.3. Complexity classes. By a moderatel
exgonentlag function of u we mean a function

1- -
bounded by O(exp(u °) for some positive constant

Ce . .

An algorithm is moderately exponential if its
running time is a mogerate{y exponential function
of u=log b where b is the running time of the
natural brute force algorithm associated with the
problem. If b=n! (as in our examples) then log b
can be replaced by n in this definition. .

An algorithm is” subexponential if its running

time is exp(No(p) where N is the input length. This
class is invariant under polynomial reductioms, in
countrast to the moderately exponential class.

The best known algorithms for factoring integers
[Dil,[Sch], graph isomorphism (section 9), Sylow
gsubgroups and coset intersection for general groups

sections ?,103 are moderately exponential. Pri-
malit ?Pom . isomorghlsm of projective planes [Mil
and of tournaments [BL] are subeXponential.

5. Simplicity test and composition factors

We show

Theorem 5.1. (CFSG) Testing simplicity of permuta-
tion groups is in P.

Proof. We describe a polynomial-time algorithm
REDUCE which accepts, as 1n§ut, generators of a
subgroup, G, of Sym(X), where 15 a set of size
n and outputs exactly one of the following:
(i) "6 1is simple.
(1i) Generators of a proper normal sub%rogp of G.
(iii) A faithful action of G on a set of size < n.

repeated application  of
guarantees a polynomial-time

It is then clear  how
REDUCE in case (iii
simplicity test. . L

At several points in REDUCE it is useful to
sider induced representations of G, In the fol-
lowing procedure, is a_set, with ¥l > 1, on
which E acts transitively. (G,X,n are globai.)

con-

procedure TEST_ACTION(Y) .
Y" <- a minimal G-block system in Y .
N <= the kernel of the G-action on Y
if SN # 1) then (ou%put N; stop)
if (J¥7I < n) then (output Y’; stop)
return

REDUCE has seven major steps: .
Step 1. Let Y be any non-trivial orbit
Call TEST_ACTION(Y)

Step 2. If (G # G*) Shen .
if (G7 # 1) then (output G7; sﬁop)
else (output "Simple {abelian)™; stop)

Step 3. Let W be ang subset of G of size n+l

for each g,h in W -
N <~ normal closure of <gh™ >
if (¥ # G) then (output K; stop)
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<- the set of fixed points of G
for each z in z
if (for some g in G,
then fix such
Y < (x,y,z,...J, the cycle of g
containing x . .
Y? <- the set of G-images og Y (iden-
tif 1¥§ cyclic B rmutations
ST ?

Step 4. Choose any x,¥ in X with x #y
Z zf

x® = Ys yg = z)

cal _ACTION(Y")
Step 5. Choose any x in
for each "y in X-{x} ]
Y <- G-orbit of {x,y} (in the set of
unordered

Ra1rs
call TEST_ACTION(Y)
Step 6. Choose any “x in X
for each "y,z,w in X
H <- <G_,G
xy’ zw
if (H # G) th%n call TEST ACTION{(G/RH)
Step 7. Output "Simple (non-abelian)™

Comments on proving the correctness f REDUCE:
It is easy to check that, if REDUCE(G) outputs a
subgroup then it has correctly identified a proper
normal subgroup of G and if it outputs a set then
it has constructed a smaller permutation domain.

Jt is necessary to show that, if the output is
"Simple" then is, indeed, "simple. Step 1
to the primitive case {(now a

reduces the prob}em e .
standard technique), Hence, if G 1is abelian, it
necessarily has prime order, easily justifying the
proclamation "Simple” within Step 2. The problem,
then, is to prove that, if the algorithm reaches
Step 7 then G is simple. Passing Step 2 also means
that G = G/. This was a natural test to perform
since thf dei1ved group is normal and 1is easy to
compute (FHL]. However, when all is said and done,
we"ll see that this step played a more subtle role.
Step 3 detects the presence of a normal subgroup of
small index (< n), covering a few special cases.

Steps.  4,5,6 are motivated by (non-
classification-dependent) results on primitive per-
mutation grou*s Tge, especially the 0’Nan-Scott
Theorem 1in [Cal]).’ Such resuits establish rela-
tions between the structure of a primitive action
of G and the nature of N _ where N is the socle
of G Since. N is necessarily transitive, n =
INI/TNXI. If we can force an action in which the

point stabilizers in N
reduce the size of the domain.

pose N =1, We show, in_ such
algorithm terminates in Step 4.

are increased, we _thereby
For example, sug—

case, that the
The reason is:

h

There is a unique element h in N such that x° = y

and then 2z = yh is left fixed by ny. When we

process z, g will exist. Though we ma
= h, one can show that the cycle, Y, o

taining x is also a cycle of  h,

not have
con-
The set Y" will

then consist of cycles of elements of N. Since
the action of h on ., has a fixed point (namely
Y), TEST_ACTION(Y") will either output a kernel or

?Ngrimitive action on a set of size less than n =

Steps 5> and 6 play analogous roles in reducing
the domain for other possible actions of N.
. Without reference to the classification, one ver-
ifies that the algorithm can get to Step 7 only if
N is simple, which puts between N _ “and
Aut(N), and G = G° (recall, we passed Step 2), At
that point the classification-dependent

- : Schreier”s
conjecture” is invoked. It implies, in such case,
that G.= N,

The simplicity test is more than the languaﬁe
recognition algorithm announced in Theorem 5.1, n

the non-simple case a witness, a proper normal sub-
group, 1s output. We can expiolt this observation.

Theorem 5.2 (CFSG) Given generators for a permuta-

tion group, G, a composition series for G, includ~
ing permutation representations of the quotients,
can be constructed in polynomial time.

Proof, It suffices to be able to exhibit a maximal
norma subgroup, N, of and a representation of



is simple, then N = 1. Otherwise, the
simplicity test returns a proper (not necessarily
maxxmal} normal subgroup, N, of G. One can con-
struct a non-trivial action of G whose kernel
containg N: TLet be the least index such that
Clit)N < G(isy %herg G(j) denotes the point sta-
bjlizer of the first j points in X); tggn G =
th_ acts on the _laft coset space G/G(i+l)N, N
acting trivially, f the kernmel of this action is

G/N. If G

larger than N then replace N by the kernel and
repeat. Otherwise, we hav7 constructed a_ faithful
action of G}N. £f G/N

18 not s?mgle, find a
proper normal ggbgroup, replace N by (the pullback
o

in  Sym(X) that subgroup and repeat. Other-
vise, we have the required N and representation
of G/N.#

We remark on three other applications of the
above methods and results which are needed else—

vhere in this paper.

In some instances, it is useful to go beyond the
ermutation representations guaranteed bZ.Theorem
g.Z and construct the "natural™ representation of a
simple group. For example, the improved graph
isomorphism test (section 9), requires the natural
action of a permutation grou% which is isomorphic
to the full alternating group {on some other set).
This can be done efficiently:

Propogition 5.3. Given a germutagion group, G <
SKmEX§, it is possible to detect %n polynomial time
whether G is isomorphic to Alt(Y), for some Y,
and, if so, to construct such Y.

Proof. The algorithm employs reductions to smaller
sets as _in REDUCE. As usual, we ma¥ ?s ume that G
is primitive. Suppose that G = Alt(Y). Then X

Y
must be G-isomorphic either to ( x) » for some k,

or to the set of partitions of Y into m_equal
parts. We indicate the procedure for detecting and
converting the former; the other case is similar.
If i

k =1, then we k?ow it and take Y = X, Assume
then that > 1 (and we may suppose n > 5 and
k <n/2). It is not difficult to s OY that there
exist  k-tuples a,b,c in Y equivalently,
points in X) such that H = <G,16,.,6,,> is pre-
cisely the stablilizer in Alt(Y) of a (k-1)-set.
Thus,"G/H is G-isomorphic to the set of all unor-
dered (k—1§7tup1es in Y. Hence, trying all tri-
ples a,? ¢ in X, we should find "an instance
vhere &/u1 < 1X), 80 that G/H is a smaller per—

i X by G/H and start

mutatlin domain; replace
over, ##

More generally, see Theorem 6.1. .

The graph isomorphism test also requires the pro-
duction of the socle of a_ certain permutation
group. It happemns, at that point, that the socle
1s known to be non-abelian and to be the unique
minimal normal subgroup of G. In such a case, it
is precisely the normal closure of the last term in
a composition series of G and so it is computable
in polynomial time. However, more gemerally

Proposition 5.4 (CFSG) Given a permutation Erogp,
G, . the sub%roug genergted by the non-abelian
minimal normal subgroups (the "non-abelian part™ of
the socle) can be found in_ polynomial time.

Proof. The following algorithm car be shown to pro-
duce the desired subgroup:

procedure NA_S0C(G)
N <- a maximal normal subgroup of G |
K <~ the last term in the derived series of the
centralizer in G of N
if (K is simple) then output <K,NA SOC(N)>
else output NA SOC(N)

The complexity of finding the abelian factor of
the socle is open (see 11.I). We do note, however,
that techniques like those in the simplicity test
can be used for

Proposition 5.5. Given

%enerators for a permutation
gEoug G, the presence o
0

an abelian normal subgroup

can be detected in polynomial time. In
fact, if such exist, then generators for at least
one can be determined.
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There is a reduction to the primitive case (a bit
trickier than_ usual whereupon the algorithm
proceeds much like Steg 4 of REDUCE, We note that
this result is independent of the classification,

Complete proo E g% the results in this i

u

. X section
will appear in

6. The Replacement Theorem

In many situations, ome actually reduces to the
case of a simple subgroup G of Sym(X), (Examples
are found in Sections 7,8,9.) The following theorem
can be used to switch to the most natural permuta-
tion representation of G in that case.

Theorem 6,1 ( Replacement Theorem )(CFSG). There is
a polynomial-time algori which, when given a
36, produces a

simple group G<Sym(X) with IG| > n
set W with |WI< n on which G acts such that one of
the fg}low;ng_holds S,
1) G is isomorphic to the alternating group on
W, ?gq acts on W as that group; or
(ii) G is isomorphic to a
defined on_a_ vector space V,
exactly as it does on the set of

+

Thus, if G ® PSL(d,q), PSp(d,q) PQ7(d,q) or
PSU(d,q) then W is the set gf ﬁgiﬁts of a ﬁgojec—
tive space PG(d-1,q).

classical grou
and G acts on
all l-spaces of V.

Qutline of the proof. As usual, we may assume that

is primitive on the n-set X. We may also assume
that G is not a sporadic simple group,” and there-
fore is an alternating group or a group of Lie

tyBe. .
et xcX, Snge IGI>n
(see [Wi,p.41]) and in [Ral
that for some k,m,d,q either
(a) G=A , and G 'is the of
subs?t of the k-set; or
. (b) G=A", and G is the stabilizer of a parti-
tion into m equal parts of the k-set; or
.{c) G is a classical group (ct, Ssection 1)
defined on a vector space V of dimension d over the
field of order q, and G is the of an
r-subspace of V, . .
us, we can identify X with a very natural
X. Name1¥, in case "(a
subsets of the k-set; in_case (b) X is the set of
gagtkt;ons of the k-set into m equal parts; in case
c
v

due to Bochert
lead to the conclusion

results

stabilizer an r-

stabilizer

: set
18 the set of all r-

is an orbit of the set of all r-subspaces of
. These cases can be dealt with independ nsly of
assumption on the order of G. In cases ?a and
.we have to replace X.bg_the k-gset. An algorithm
achieving this has been indicated in Prop. 5.3. In
case (c) we have to replace r by r=l.
has been done, the new set X might onl
one of the G-orbits of l-spaces o
case the remaining orbits of l-spaces also must
feco?stigcted. etails of (c
Ka3].

It seems likily that, in the near future, analo-
gues of [Kall “will ﬁe proved for the exceptional
groups of Lie type. This would produce a signifi~-
cant reduction  of the exponent 36 in Theorem 6.1
(and , consequently, of the exponent 37 in the
proof of Theorem 7.1).

an

Once this
consist of
V, in which
be
can be found in

1. Elements of prime order

The following result is an algorithmic version of
an elementary theorem of Cauchy:

Theorem 7.1, Given a group G<Sym(X) and a prime p
1viding I, an element of order p can be found in

polynomial time.

Proof. We begin with a reduction to the case of a

simple group G. Use Theorem 5.1 to find & set X°

which G acts such that ¢X is

let M be the gointwi e stabilizer of X’. If p| |M],
. (By

reglace G by Ba5], suc? a replacement can
take place at most 2n times. Thus, we may assume

on

simple and |X"[<n;




-

that p divides the order of GX + If geG and
lgx l=p then some power of g has order p. Conse-

quently, we can replace G by GX and assume that G
is_a nonabelian simple group. .
In this situation, much more can be said [Ka3]:

G<Sym(X) and .a

Theorem 7.2. Given a simple gtoug c X 4
cah be foun

prime p, a_ Sylow p-subgroup o
polynomial time.

However, we will continue the proof of Theorem

7.1. If IGI<n 30 then the order of each element of G
can be found. (This part of the algorithm rums in

time O(n37). The remainder of the algorithm is much

6

faster.) Now assume that |G|>n3 and apgly the
Replacement Theorem in order to replace X by a new
set, which we will again call X. At this point, G
acts on X in an_esgeg1a11y natural manner. .
. For example, if is an.alterngtln% group then it
%s now AB. If we identify X with {l,...,n}, then
1 ...,E) as order

muc mor? ty icag.example is provided by the
group G=PSL(d,q). Here, X can be regarded as the
set of (qd-1)/{q-1) 1-spaces of the vector space V

used to define G. Use

e 8 Prop. 5.5 to find a mon-
trivial elementary abelian

normal subgroup Q of G

.. d-1
for some xecW. This is a froup of order gq . If
divides q, any nontrivial element of Q has order P.
Now_suppose 5 does not divide q. ]
First fin x=x1,...,xdsx corresponding to an

of V. Then find ¢ G

independent set l-spaces
i }. Then

o
inducing the cycle Exl,...,xd) on {X;,..0,x,
the coset Qc consists of all elements of G arising

. . -1 .
from comg nion matrices of all the qd ,monic poly-
nomials ?t} of degree d over GF(q) having constant

term (-1)%. (Note that chl*_=qd 1<JWl<n2, so that
all elements of Qc can be listed. T?en some power
of an element of Qc has order p. Namely, when
m(t) is the minimal polynomial of a matrix of mul-
tiplicative order p, th? §1ement of Qc correspond-
ing to the polynomial f£(t)=

m(t)(e-1)9-de8 © has order divisible bK p.) ..
The_ar%ument used in the case of the remaining
classica groups is fairly similar. However,
instead of linear algebra, it "depends on results
goggirging algebraic groups [St, Thms. 9.4, 9.5,
Note, that, in fact, in the case of G=PSL{(d,q),
every element of G of order relatively prime to q
is a conjugate in G to a power of an element of Qc.
Simllgrli strong results ho}d for the remaining
f%ag?}ca groups (again using [St]; see (1I.4) in
a .

8. Sylow subgroups

In this section we reduce the Sylow subgroup
problems to coset intersection., K denotes an arbi-
trary class of finite groups, closed under isomor-
phisms, taking subgroups .and factor groups. For
the definitions see subsection 4.2.
Theorem 8.1. (i) SYLCONJ(K) is polynomial time
reducible to INT(K). . .

. (ii) (CFsG) SY%FIND(K) is polynomial
time reducible to SYLCONJ(K).

.In fact we shoz that if we have an 0(T(n)) algo-
rithm for INT(K) (n is the degree of the input
8 oups, c¢f, 4.2), then SYLCONJ?K; can be s?l ed in

fnT n}+nC) steps, and an O(T’(n)) SYLC?NJ K) algo-
rithm can be turned into an O(aT”{n)+nC) algorithm
for SYLFIND(K). In particular, moderately exponen—
tial INT algorithms result in moderately exponen-—
tial SYLFIND (see Cor, 10,9), in contrast to the

is replaced

IS0 to,INT reduction [Lul] where T(n
by T{(n°).
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%;%gi;_(i) We are given a subgroup G of Sym(X),
elonging %o K, "a grlme number p, and Sylow 8-
subgroups P(1) and P(2) of G ; we want to find fc

with P(l)f=?(2). The algorithm will proceed in five

steps and will refer to an INT(K% subroutine.
1>?or S5SG let Orb S denote the set of orbits of
I. If orb P(1)#0rb P(2), use INT(K) to find g=G

such that (0rb P(1))® = orb P(2).
Comments. It is straightforward to determine the

group H of all elements of Sym(X) sendjng Orb P(i)
to itself, and also to  find g’eSym%X sending
Orb P(1) to Orb P(2).Now find geGNHg™, i

E This 1n§er-
section 1s nonempty because of Sylow s theorem.

Then Orb P(1)% = orb P(2).
2. Replace P(1l) by P(1)8 and then replace G b
BUi5e2)3.> P Y
Comment. Now Orb P(1) = Orb P(2) = Orb G.
3. If G is intransitive, divide and conquer.
Comment. If Y is an orbit of G, find g G such

that (P(I)Y)g = P(2)Y and return to 2. Repeat this
for al]l Y.

4. (We may now assume that G, P(1) and P(2) are
transitive on X.)
Find Z%P%lig the center of P(i). Pick
z(l)ﬁZEP(l J-{1}.
Use INT(K) to test each z(2) Z(P(2)) to see

if there is a g¢G such that z(1)¥=z(2).
Find such a and return to 2.

Comment. Since P(2) is tramsitive, 2(P(2)) is
semlregular and so it has order <n. It is straight-
forward to find the centralizer W of z(1§ in Sym(X)

and to find g% Sym(X) such that z(1® =z(2) for an
z(2Xx 2(P(2))7 Fizglly, GAHg” consists of those -~

e%e?en s of g of G for which z(1®=2(2). For some
z(2)e2(2) this intersection must be nonempty by
Sylow’s theorem ~

5. Let z=z(2) and X=0rb 2. Find f G such that

P(DXE = p(2)% -
Commeétg.)B; 4, zézszl§§$PZ 5%%))2;%&5, so that

G acts on X. Then f can be found recursively. The

kernel of the homomorghism > is a -group,
ngrgfore, the second sentence of 5 impfies tge
third,

Timigﬁ. SteE 1 is invoked at most once. At step 3,
we add up the time needed to handle each orbit. For
each recursive call at step 5, P(i) remaine transi-
tiv gnd the value of n changes to n/p or less. The
INT(K) subroutine is invoked once in step 1; and in
step 4 at most m times for each orbit of size m.
Thus, there are a total of < m + m/g +m/p + ... <
2m calls in the case of an orbit of size m, total-
ling at < 1 + 2n calls to Inthg.

(ii) This time we are given G and p, and we w ns
to find a Sylow p-subgroup of G, using a SYLCONJ(K
subroutine.

1. Find a set Y such that G acts on Y, |Y|<n,

and GY is simple. Let M be the kernel

of G—>GYZ
Comment. Use Theorem 5.2.

2. If p does not divide |G/M|, replace G bg .
3. If E#IG M|, find a SZIOV p-subgroup of G/M
and find its complete inverse image
H in G. Then replace G by H.

Comments. Since G/MEGY
be used. Note that H

is simple, Theorem 7.2 can
contains a Sylow p-subgroup of

4. Recursively find a Sylow p—subgroup P of M.

5. Let gcG-M. Find meM such that (P5)"=p.
Comments, At least one of the generators of G is

outside M, so let one of them be g. To find m, use
the SYLCONj(Kg subroutine. & ?



6. Let <g”> be a Sylow p-subgroup of the cyclic

group <gm>. Then <P,g”> is a Sylow
g-sT<§rog§ of G
Comment . ,g > = plpl.

Timing. Since p" does not divide n!, there ase
ewer _than n recu ssvg calls for syLFinD (step 4).
Each time, SYLCONJ{K ig invoked once. This gives
the stated time bound.

For more detailed proofs, see [KT

In subsection 4,2 we noted that can be

]iNT(K)

solved in Eolynomla} time for certain classes K. In
fact, by [Lul, p.61] and [BCP], we have the follow-
ing

K is the class of groups
all of whose noncyclic composition factors are of
bounded order or of Lie type of bounded dimensiom.

Corollary 8,2, SYLFIND(K) and SYLCONJ(K) have poly-
nomial time algorithms i

Note that this corollary does not depend on CFSG,
since the use of the COMP subroutine and the refer-
ence to finding Sylow subgoups in_simple groups
(steps 1 and 3° in the SYLFIND(K) algorithm) are
restrjcted to groups from the class K. | .

In tKTT it is shown that, for G restricted as in
Cor. 8.2, a given p-subgroup can be embedded in a
Sylow  p—subgroup in polynomial time and
polynomial-time versions of other group—tﬁeoret1c
theorems are also obtained. For example, for such

roups G the largest normal p-subgroup of G is
%ound in polynomial time. Even this problem remaing
opgn[xgﬁr general G, in spite of attempts in [Ka2]
an .

9. Graph isomorphism
The main result is

Theorem 9.1 (CFSG) Isomorphism of n-vertex, d-

cd/log d

valent graphs can be tested in n steps.,

i Ngge, in particular, that the expoment is o(d) as

For general graph isogorphism, a_ Zeplyachenko-
valencg— reduc%iog ([zkTl, gee also [Ba3T} breaks
the problem into n4 n/log nproblems on vn log n—-
valent graphs. Hence

Corollary 9.2 (CFSG) Graph isomorphism can be

tested in n cn/log d steps.

In [Lull, the isomorphism gfob em for d-valent
graphs was reduced to CAUI(T, where T, is the
class of groups all of whose composition factors
lie in sd—lg' It would appear that the cost associ-

ated with that approach is already_ prohibitive,
considering the above goal, for it involves a set
blow-up from n to n¢, Nevertheless, it is instruc-
tive to comsider an improved CAUT(r,) algorithm

cd/log d
which achieves the time bound /Log n gets of
size n. We refer the reader to [BL] for an indica-
tion on how to avoid the set blow-up. We point out
below that a similar trick yields am applicatiom to

We refer the reader to [Lull for the basic pro-

cedure. fundamental observation is that avail-
able permutation Eroup procedures = [FHL] make it
feasible to work "locally", stabilizing colors on
one orbit at a time. Thus, a natural and efficient

divide-and-conquer reduces the problem to the case
when the group, G, acts trangitively on the set, X.

At that point, the idea is to restore intransi-
%ivit by rop£1ng down to a suitable subgroup.
Cf. Lemma 10,4.) This subgroup reduction is guided

by the induced primitive action on a minimal G-
bIock system, B, in X, There is a constructible
subgroup, P, of “small”’ index which acts

as a

p-
roup on B (the efficacy of p~groups having been
gstaglished in the  trivalent pcgse prul,sec.ZT?.
The size of this index governs thT timing of the
algorithm, For the purposes of [Lull it was suffi-

cient and easy to observe that, for some function
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f(d
f, [G:P] < m () (m =|B|= the number of blocks),

. . c+f(d
for this implies an n (@ bound on color automor~
phism. A 'review of the construction of f, citing
only elementary %rgup theo;Y and number theory,
reveals that "£(d) = 0(d’log d). We can now show
that estimates available only th oug? the classifi-
cation reduce this to f(dg= O(ds. Note: the

. . cd < s
latter implies an upper bound of n~ on the origi-
nal d-valent graph isomorphism test.) Furthermore,
digging a little deeper into classification—
dependent results, one can show that the index of P
cd .
oo/ 108 d in_ all but Tone

case has sufficient combina-
allow one more divide-and-

i8 agtuallz bounded b
case”, That specia{
torial structure to
conquer trick.

Lemma 9.3. (CFSG) Let G be a
Sym(B), |Bl=m, with G in L, .

(i) G has a p-subgroup, P, of index <
m2d/log d

primitive subgroup of
Then either P

. (ii) the socle, N, of G is isgmorphic to a
direct ?toduct of ¢t copies of A;t%pg, for some t,D
(with D] < d) Moreover, with this identification,

there is an N-isomorphism B -> ( i)t.

The proof of Lemma 9.3 involves analyses of each
ff jhe cases of the O0“Nan-Scott Theorem (as in
Call, but taking into _consideration _ number-
theoretic consequences of the restriction to
groups). (We conjecture that a much smaller bound
1s possible in "case (i); see 11.3). For algo-
rithmic purposes, it is necessary to comstruct the
aforementioned subgrougs,an? isgmorphisms. The p-
subgroup was constructed in Lul? in time [G:Plm
nd, as mentioned, the problem was decomposed into
G:3) pfobl s for P. We now avoid this rouie for
large 1G:P], decomposing instead into [G:N] prob-
ems for N. One can find N in polynomial " time
Erggos1t10n 5.4) Again, number-theoretic estimates
yie

Lemma 9.4. Let G,N be as in case(ii) in Lemma 9.3.

[G:N] <m© 1084,

Then
Thus, it is not particularly costly to pass to N.
Now, although N is still transitive on B, it has,

by virtue of the observed bijection B -> ( E)t, a
gagtxcularly transparent structure, Furthermore,
his structure is available. Extending Proposition
5.3, the following holds.
Lemma 9.5. Let N be as in Lemma 9.3(ii). A suita-
ble set D and K-isomorphism B -> ( DY is con-
structible in polynomial time. k
.The additional divide~and-conquer exploits this
identification. We describe the idea in the case
k=t=l and then outljne the extension.
Divide the set B (# D) in half arbitrarily, B =
Let N1 be the stabilizer in N of B¥. Then

Blu B2.
the number of steps needed to find generators for
N1 is bounded by a i N:Nl]. Note

rolynomlal times
that [N:N1] < ZIB . We have again restored
intransitivity and we exploit the fact, treating
the orbits (which are, at most, half as large as
the original set) serially., In_ focusing on an
orbit, once again we split tze set in half, etec.,
continuing wuntil the target subset has carainality
1. The end result is the replacemept of a problem
on a union of a set of m (= ?B < d) equal-sized

blocks by less than 4" (X p 24/1og d
the individual blocks.

For general k,t we make use
action of N = Alt (DY

)} problems on

of the naturally

induced . on a set, C, formed
by the dlﬁgOLnt union of t copies of D. Each ele-
ment of () is a subset of D and so the bijection



of Lemma 9.5 induces a G-map V:B -2 {subsets of
As in the special case, the goal is to cut the

down so as to shrink orbits, zeroing in on_a
single element of B. Simply halving B appears, 1in
the general case, inefficient. Imstead, we look to
the N-orbits in ¢ (Gin the first round, wi h the
full group N, these are just the copies of D). For
purposes of recursion, we extract some essential
aspects of the present problem. The present §roup
N acts transitively on a collection, B, of blocks
(the wunderl 1n§ target set, X, is_ the union of
these blocks¥; acts also on an auxiliary set, c,
and there is an N-injection, ¥, from B to the set
of subsets of C. We proceed as follows, Fix x 1in

B an? defipe f: {N-or is n, C} => {natural
numbers} by f?c’) = |[Cn ¥(a 1 ts1nce N is tran-
sitive omn ?ﬁ|f>is independent of the choice of Xx).

As long as 1, there must be some N-orbit, C°
¢ 0 <#c%) < TC'E. We choose any such

8.

grou

such that 0

orbit, halve it, pass to cosets of the stablilize
of the _halves then treat N-orbits (for the new N
in B serially., One shows, inductively, that the
effect of this recursive procedure is to replace
the problem for N on B by 1less than

individual blocks

|B|r1(4f(c'))[C’|prob1ems on in

B, where the pr2du§t iT tﬁken over all orbits, C
for which 0 < £(¢”) < Ic”]. Thus, the initial ,ﬁ
problem leads to less than (4k)dF Eroblems on the
m blocks, where d = |D| < d. Finally, one shows
that (4k)%" S_mza/log afor i>6 (m=( i)t and
we assume k < d/2). Hence, the problem on X
involves less than mZdllog dte problems on sets of
size |X|/m ##

We remark, finally that the abov? tgchniqugs are
T
d

incorporable, also, into the INT algorithm of

tLul,p.61 , resulting in

Theorem 9.6 (CFSG) Given subgroups G,H and ele-

ments g,h of Sym(X) with G in Td the intersection
cd/log d

of the cosets Gg and Hh can be found in n
Details will appear in [Lu4].

10. Coset intersection

In the Erev;ous section we gave an outlipe of an
INT?K algorithm for certain classes K of groups.
The methods described there do not appear to yield
a %eneral INT algorithm faster than c .

n this section we give a modesately exponential

algoritim (cf. 4.3) for INT(K) where K comprises
a1§ finite ﬁroups and will therefore be omitted.
First we HRave to treat CAUT, an important subcase

of INT, separately.
Let G be a tr?nsitive
Al

girmutation groug acting on
a set X. Let B= s.ee,At} be a system o blocks of
ipprimitivity for G with block size b ; bt=n. Let
L(1§. denote the restriction to Ai of the (setwise)
stabilizer of Ai. These groups are isomorphic as
ermutstion groups. There is a natural actiom f:
>S ?B%. Let K denote the kernel and R the image
of . Thus, B) and K is a

R is a subgroup of ?
8 bgroug f the direct product L x cee x
RO )
of [Lull don’t
exponential CAUT
property that b

The situation where the methods
immediately give a moderatelz
algorithm is characterized by the

) and R contains the alternating
We begin with the structure theorem
We refer to

is small (m
group Alt(B). h
that enables us to handle this case.
[Ba6] for the proofs of 10.2 and 10.3.

Definition 10,1, A subgroup H of G is a strong
com] ent to K if
i =G ;
(ii) for any’h in

. H and any block A in B, if A
is invariant under h

then it is fixed pointwise.
{1}

Remark. (ii) clearly implies that HnK = and

thus = R.
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Lemma 10.2. If R = Alt(B) and t > 4b, then K has a
strong complement H. Such an H can be constructed
in polynomial time.

Note that a strong complement does mnot neces-
sarl}g exist if R = Sym(B), even if t is as large
as n/2. )

Before stating the structure
some more notation. Let G
strong complement H of K has been selected.

theorem, we need
be as above, Assume a
Then H

defines a _unique_ bijection between each pair of
blocks. This permits us to identify X with the
gr duct s?t A _¥ T for some set ?, where
={l,000estf, A x {i}=Ai and the_ sets a} x T
(acA} gre the .grblts of H., For a permutation
geSym(A), let g(i) denote the correspondln% permu-

and for a group F<Syp(A), let

#5520 (35 28
F(i)={£(i):fcF}, Note that our groups L(1) do arise
from some LijmzA) in this way. For a subset S of

? g?e.digect power FS will mean the product of
F(i):icS}, acting on W{Ai:icS}. Now we can say,

that K is a subgroup of the direct power LT.
By the restriction of the group G_to a subset Y
of "X we mean the restriction to Y of the setwise

stabilizer of Y in G.

Let G and K denote the restrictions of G and K,
resp., to X-Al,

Theorem 10.3. Let G be ag above and let S=T-{l}.
Agsume R contains Alt(B) and a strong complement H
gg K is given. Then L has a normal subgroup M such
a ~
Ei) ¥> is a normal subgroup of G , and

s PR BN .
(ii) R/M” is isomorphic to a gubgroup of L/M,
M can be constructed in polynomial time.

We shall use INT(G,H) to denote the coset inter-
section problem restricted to those cases where the

iggut groups are G and H. The following two tricks
will be used frequently.

Lemma 10.4, Climbing Down. If K is_a subgroup of
index  k of then a? 1n§t?nce of INT(G,H) reduces
to k instances of INT(K,H).(We climb down to K.g
Lemma 10.5. Climbing Up. If G is _a subgroup of
index k of then an  instance of INT(G,H§ reguces

lus a number of steps,

to one instance of INTég,H Blu S
e climb up to K.

polynomial in n and k.

Proof. 10.4 follows by representing a coset of G as
a union of k cosets of K. As for 10.5, let the
instance be the determination of the intersection
of the subcosets Gg and Hh of Szm(X). Find Kgn Hh;
this is either emptﬁ or of the form Dd where
D=KnH. Find C=GNnH, a recognizable subgroup of
index at most k in D, and represent D as CR where R
is a_ set of (r1ght§ coset representatives of C in
?. This can be done in time, polynomial in n and k
FHL)}. If rd Gg for some reﬁ.then GgNHh=Crd. Check
this for ; ch r. If every r is rejected then GgnEh
is empty.

We start with an important subcase, involving
wreath products.
Definition 10.6. Let P<Sym(A), Q<8ym(T). Let wus

roduct A x T

think of Q as acting on the Cartesian
The wreath

by permuting the second components.
product (cf.[Ro]) P wr Q is defined as PlQ, acting
on A x T.(Both P' and Q act on A x T.)

Lemma 10.7, If C,D<Sym{(A), G = C wr Sym(T), H =
D wr Sym(T), g,h Sym(X) where X = A x T then the

determination of GgN Hh reduces to t2
INT(C,D).

Qutline of the proof. This situation is
to the reduction of the i
disconnected graphs

instances of

analogous
_isomorphism problem of
to pairwise comparisons of



-1
thejr connected compoments. If gh ¢ Sym(A) wr

Sym(T) _then GgHh is empty. So we may assume g=l
h{gymZA) wr Syg(T§ Ve ahall use the Y1an uage of
b-ary relation subsets of the b-th Cartesian

power, where b=TA|). Let w be the list of elements

of A x {1} in any order, and let R(1) = wG, R(2) =

w8, s(1)= W, s(2)= Wi, It is easy to see that G
is the aytomor gism group of the Tar{ relational
structure (X;R(1)) and her?fgge Gg is the sgt of
isomorphisms between (X;R(1 and _(X;R(2)) and

similarly for Hh. It follows that Gﬁf\Hh is the set
i i t structures

f isqgmorphisms etween e

?X;R(l),S?lgspand (X;R?2§,$?2)). Both structures
are discomnected and_ their connected components
share the same underlying sets Al,...,At. A pair-

wise compar1so? o§ ;wo such components 1is an
instance of INT(C,D).#

The main procedure has two ha?eg. In the first
phase, we solve the subcase CAUT(G). The input is a
subcoset Gg of Sym(X) and a coloring f of X,

Procedure CAYT(G) .. .

1. If G is intransitive, divide an? conquer.

2, Find a minimal block system B. (We shall use
the notation of Lemma 10.2,

3. If t<4b or R does not contain Alt(B) then

4,

I?ligg d?gg :oeK.
ima eygf Alt?Bg

G->R. .
(Now R=A1t(B) and t>4b, so 10.2 apglles.)
Find a strong comglement H to K. Find M
as in Theorem 10.3. | L.

Climb down to the setwise stabilizer of Al
G.(This group has two orbits: Al and X-Al.
(Divide and conquer; first solve on X-Al.

This is an instance of CAUT(&).) Let H be

climb down to the inverse
under the homomorphism

%n

the restriction of H to X-Al and H*=H
(s=T-{1}). Climb down to H¥*,

ogment . The index of H* in G is mnot mgre than
IL?M , by Theorem 10.3, and H* = M wr Alt(S).
8. Climb up to M wr S¥m S).
9. Use Lemma 10.7 to finish on X-Al.
10. Use brute force on Al.

Timing. Let m= [2/n]. Let p(n) denote the maximum
order of primitive germuta§1on groups of degree n
not containing the alternating group A . Set p(n)=

exist. Let

i no such roups
q(n)=max{m!,p(1),.., Y(n) . It is easy to see tha
the run?ing time will be less than qlcn). By [Ba2
and [Ba4], 2
q(n)<exp(4/n log“n) .

for large n.This estimate does not require CFSG.
Using CFSG one obtains

Vi

q(n)<n (for large n) .

[Cal]. Moreover, it follows from CFSG that in_ the

bottleneck case, R has to be essentially an induce
alternating group. More Yrec1§e1y, Lemma 9.3(ii
must hold %or R. This well defined structure raises
the hope of a possible improvement.

Now we turn to_  the actual INT glgorithm.  The
inpyt is a pair of subcosets Gi.g?1§ %1=1,2) of

sym(X).

Procedure INT(Gl,G2)

1. Use CAUT(Gi) to reduce to the case when the
orbits of Gl and G2 coincide. Then, by
divide-and-conquer, reduce to the case
when both groups are tramsitive. =

2. Find minima% block systems Bi for Gi (i=1,2).
%We shall use the notation of Lemma 10.2
for both groups, augmenting each gymbol to
indjcate ?h corrgsgond1ug group.)

3. If tgi <4b 13 or Ri does not contain
A1t(BiJ th n_sllmb d?vg to K(1) (i=1,2).,

4, (Now RigAlt?Bl and S i)>4b(i). Our_goal is
to align Bl and B2.) View Bl and B2 as
equivalence relations. Consider the graphs

W=(X;B1,82) and W =(x;B18¢1) 328(2)), (The
edges of these grapﬁs have colors 1,2 or
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both. Isomorphisms_ pregerve colors defi-

nition, Clearly. ClotiSe e5g(2)<kaoty, 55

where the right side denotes the set of

W-o" 1sogorph1sms.§

Use CAUT(Gi) to reduce Gi.g(i) unless every
component of W and W has equal size,

5. (Now each componment of W and W’ has the same
size w, These components are unious of
blo%kg of Gi,)

If b(i)<w<n then reduce Gi.g(i) to the sub-
coset s?nd;ng components 9% W _to components
of W'. (This can be done _in linear time by
adjusting g(i) and reducing Ri.g

6. If b(1)=b(2)=w (i.e. Bl=B2 and BE(!) -p2(?))
then grf?rm steps 4 to 8 of CAUT(Gi)
(i=1,2). (These steps of CAUT(Gi) do not
refer to the coloring f.) Use Lemma 10.7
finish on X-Al (Al=All=A]2).

Use brute force on Al,

7. If wen (i.e, W, W are connected) then choose
xeX and climb down to Gi . Let us_define the
quduct relations Pj by setting P1l=Bl;

j*1)=PjB2 if j is odd and Pjgl if i
even. Find j such that x has

vn_and n/2 in th iﬁr%peﬁ§§’§jLét gi’hbg the
i by W,

to

exists because b
?orresgond1ng relation defined
Clearly, the.}nSersection of our cosets
sends Pj to Pj”.
Let i=j mod 2."Reduce Gi.g(i) to its subcoset
sending xPj to x“Pj” where xPj is the set of

E*Epeighbors of x, and x’-xg(l).
is takes linear time.)

. Comment, This k takes us back to the
intransitive Gi, Observe, however
of Gi have lengths < n-/p.
be repeated more than 0
tor of n each time,
stabilizer of x.

of
.that the orbits
Hence this step will not

times. It costs a fac-
because of climbing down to the

case

Timing, Sim%lasly to CAUT, the number of steps is
bounded by q(cn).” The effect of step 7 is onfy a

We thus conclude:
of

factor of n'"® (see the Comment).

Theorem 10.8. The intersection of two subcosets

ym 1s computable in
El exp(c/ﬁ'logzn) steps;
(ii)(cFse) nC/E steps.

Combining this result with Theorem 8.1 we obtain
Corollary 10.9. (CFSG) SYLFIND and SYLCONJ are

solvable for genmeral groups in nC/E steps.

1l. Problems and comments.

in

11.1. In Section 5 we indicated how to find,
non-abelian part of the socle

polynomial time, the

as well as how to test for the non-triviality of
the abelian Bart. .. In [Ka3] it is shown that the
algorithm for Propogitiom 5.5 can be extended to
produce, in i (if

: olynomial-time a normal p-subgrou
one exists) gor any %iven . Ehe ¥
o

plexity of —the P. However the com-

plexi lowing related proﬁlems remain
{i Find the abelian part of the socle.
((;; g;ng a mln;ma% normal p—suggroup. (
. \111) Find a maximal normal] p-s . (8 is~
ingly, this is reducible to %il) ?Kggﬁg? arpris
1v) Find the maximal solvable normal subgroup.

11.2 Investigations of 11,1

2 (ii) lead naturall
matrix group problems assume we already

for we may assume we already

have an elementary abelian normal p-subgroup),
whence the containing group acts on it via linear
transformations. suspect 11.1(ii) 1is

0 ThouEh we
actually eagier than the following, we wonder about
the complexity of

i) Find an irreducible ?ubspace of a linear
group over a finite field (given again by genera-
tors). In fact, test irreducibility.




This problem and 11.1 inspire

. (ii) Find the radical of a matrix ring over a
finite field.

d/log d . .
11.3 The estimate n® flog 4, Lemma 9.3(i) comes
from bounding the product of all prime factors < d

. 2 d . .

in (p~1)(p"-1)...(p°=1) where ©p _is prime and
n= P seg [lul,3.2]1). It seems.likelyf however,
that a smaller bound can be established

(m© 1087 dyy, Note,that this would still leave one

n€d/108 dportteneck in d—va%ggg graEh isomorphism,
but that corresponds to case(ii emma 9.3 where
we already know a lot about the group.

11.4 We pointed out (section 2) that the following
problem is in NP~ coNP.

Let pr be

Does G have

highest p-power dividing IGl.

alio-
8 roblem
Another problem in NP~ coNP

. e the Sglow p-sgb§roups are
abelian. Can this be done subexponentially?

11.5 An oracle for SYLCONJ does mot, in itself,
seem to gffer mgch hﬁlg in finding 11 coniggatln
e%ements if P(1) = P(2), this is the normalizer o
P(1)). This appears unusual for permutation group
problems. Are Sylow normalizers computable, say,

given an oracle for INT?

the

an  element of order pt ?
Is there a subexponential deterministic
rithm?  Suppose r 1s not maximal. Is the
still in NP~ coNP?
is testing whether

11.6 Problems put in P only through CFSG are can-
didates for future investigation. Is there a more
elementary approach to findi a p-element? The
sxmgllclty test seems awfully close to avoiding
CFSG. Can one bypass Schreier”s conjecture?
tool in

11.7 An essential studying permutation

groups is the use of representations for quotient
groups, G/N. These are available if N is maxima]l
normal  (Theorem 5 Can one find a ‘small”

2
representation for G]N.in
interpretation of this gquestion clearly must be
preceded by the theoretical one. This, we ~editori-
alize, 1is typical of what is now golng om in this
subject, Complexity concerns have motivated new
t?goretical problems as well as new perspectives on
old tools.

general? The algorithmic
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