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ABSTRACT

Automorphism groups of Hadamard matrices are related to automorphism groups
of designs, and the automorphism groups of the Paley-Hadamard matrices are de-
termined.

According to Hall [3], an automorphism of a Hadamard matrix H of
size n is a pair (P, Q) of n X n monomial matrices such that PHQ = H.
The automorphisms of H form a group I\ 1 = (I, I) and ¢ = (—I, — I)
are in the center of I'. I' = I'/{¢) acts faithfully as a permutation group
on the union of the sets of rows and columns of H.

If & is a Hadamard design and M a (—1, 1) incidence matrix of &,
then H = M+ is the Hadamard matrix obtained from M by adjoining
a column ¢ and a row r of I’s.

2 determines a design £+ as follows. The points of &+ are the points
of & together with a new point r; the blocks of @+ are (i) the blocks of &
with r adjoined, and (ii) the complements €8 of the blocks B of Z.
(BU {r}, ¢B) is called a parallel class of blocks. A (—1, 1) incidence
matrix of Z+ may be obtained from the n x 2n matrix (M+, — M™)
by removing the columns ¢ and —¢. This implies the following

THEOREM 1. The automorphism group of 9+ is isomorphic to I, .
If M is symmetric, and y € I", moves r, then there is an element ¢’ € I,
moving ¢. Then yy' moves r and c:

THEOREM 2. If @ admits a polarity, and I', has an element moving r,
then I' has an element moving both r and c.
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Tueorem 3. If I is 2-transitive on rows but not faithful on columns,
then & is a projective space.

Proor: The subset X' of elements of I" fixing all columns is a normal
subgroup of I', and 2 = X/{¢) acts regularly on rows. It follows from the
2-transitivity of I” that X is row-transitive and elementary Abelian. & may
be regarded as an automorphism group of &+ transitive on points and
fixing each parallel class. Then the stabilizer of a block in 2 has index <2,
so that the blocks correspond to the cosets of subgroups of index 2,
and &+ is an affine space.

If y eI fixes all rows of H and 8 € I" fixes all columns of H, then
y~18-1y6 fixes all rows and columns and thus =1 or o. This implies the
following:

THEOREM 4. If 9 = PG(d, 2) then I is a semidirect product of PSL(d, 2)
with an elementary Abelian group of order 229,

Let ¢ > 3 be a prime power = 3 (mod 4). The Paley design #(q) is
the Hadamard design defined by the difference set of squares in GF(g).
Let 2 = Z(q), so that H = M+ is the Paley-Hadamard matrix [6].
Hall [3] has shown that I' has a subgroup /I containing o such that
IT = I1/{o) acts faithfully on both the rows and columns of H as the
group of all permutations of GF(g) U {co} of the form x — (ax® + b)/
(ex? 4+ d), a, b, c, de GF(g), ad — bc = 1, and 8 € Aut GF(q); moreover
I, =1I,.

TeeorREM 5 (Hall [3]). If @ = P(11), then I acts on both rows and
columns as the Mathieu group M, .

Proor: By Hughes [4] and Todd [7], the full automorphism group of
9+is My, . By Theorem 1, I', is My, . Since I', is transitive on the columns
=*c, My, is thus represented as a group transitive on these 11 columns.
By Theorems 2 and 3, I’ acts faithfully on columns as a 2-transitive
group of degree 12 such that the stabilizer of a column is isomorphic to
M, . Tt is now easy to see that " is M, .

THEOREM 6. If Z = P(q), q > 11, then I' = II.
Special cases of this result are found in [1].

ProOF: Assume that I' > IT. T,, acts as an automorphism group of
#gq), and thus I',, = I1,, by [5, Theorem $.1]. Then I", > [T, = IT,,
implies that I', moves  and thus is 2-transitive on rows. By Theorem 3,
T, acts faithfully on rows as a 2-transitive permutation group such that the
stabilizer of a row r acts on the remaining rows as II,, . It is then not
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difficult to show that I, is isomorphic to /7 (cf. Zassenhaus [8]; Bender [o]).
Since I', has a faithful transitive representation of degree ¢ on the
columns =~c, this readily contradicts a classical result of Galois and
Dickson [2, p. 286].
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