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unital sub-homogeneous C*-algebra. Let ¢, : A — C be two almost
multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex.
When are they are approximately unitary equivalent? Most advanced

results are taken from a joint work with Gong and Niu.

Huaxin Lin Lecture 4 June 9th, 2015, 2/20



In this lecture, we will try to settle the following problem: Let A be a
unital sub-homogeneous C*-algebra. Let ¢, : A — C be two almost
multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex.
When are they are approximately unitary equivalent? Most advanced

results are taken from a joint work with Gong and Niu.
But first we will establish some Bott-map related existence theorems.
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Let A be a unital separable amenable residually finite dimensional
C*-algebra with UCT, let G = Z" @ Tor(G) C Ko(A) be a finitely
generated subgroup with [1a] € G and let Jy, J; > 0 be integers.
For any 6 > 0, any finite subset G C A and any finite subset P C K(A)
with P N Ko(A) C G, there exist integers No, N1, ..., Ny and unital
homomorphisms hj : A — My, j =1,2,..., k satisfying the following:
for any k € Homp(K(A), K(K)), with |k([14])] =4 and

i—1

—~—
Jo = max{|k(g)| : & =(0,...,0,1,0,...,0) € Z" : 1 < i< r}, (e0.1)

there exists a §-G-multiplicative contractive completely positive linear
map ® : A — Mpgiw([14]), Such that

[®]lp = (k + [M] + [h2] - - - + [Au]) |- (¢0.2)

v
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d-G-multiplicative contractive completely positive linear map
L : A= My (for integer n(x) > 1)
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Proof.

It follows from 6.1.11 of [Linbook] that, for each such k, there is a unital
d-G-multiplicative contractive completely positive linear map

L : A= My (for integer n(x) > 1) such that

[Lellp = (& + [hs]) |7, (¢0.3)

where h,, : A — My, is a unital homomorphism. There are only finitely
many different k|p so that (e0.1) holds. Say these are given by
K1, K2, ..., kK. Set hi = hy,, i =1,2,.. k.
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Let A be a unital C*-algebra as in 4.1 and let

[14] € G =Z" & Tor(G) C Ko(A) be a finitely generated subgroup.
There exists \; > 0, i = 1,2, ..., r, satisfying the following: For any 6 > 0,
any finite subset G C A and any finite subset P C K(A) with

P N Ko(A) C G, there exist integers N(6,G,P,i) >1,i=1,2,...r,
satisfying the following:

Let k € Homp(K(A), K(K)) and S; = k(gi), where

gi =(0,...,0,1,0,...,0) € Z", there exists a unital G-d-multiplicative
contractive completely positive linear map L: A — My, and a
homomorphism h: A — My, such that

[L]lp = (& + [A])|p, (e0.4)

where N1 = Z:‘:l(N(éagalp7l) :l:/\l) : ‘5”
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Proof: Let zbf : G — Z be a homomorphism defined by ¢ (g;) = 1,
V7 (g) =0, if j # i, and ¥ | po(g) = 0, and let 17 (g;) = —1 and

Vi (g) =0, if j # i, and ¥} |ror(e) = 0, i = 1,2, ..., r. Note that

Y ==yt i=1,2,..r Let Aj = | ([La])], i =1,2,...,r.

Let k", k; € Hompa(K(A), K(K) be such that ] |¢ = ¢ and k; =1},
i=1,2,...,r. Let No(i) > 1 (in place of Np) be required by ?? for 6, G,
Jo=1and J; = M;. Define N(6,G,P,i) = No(i), i =1,2,...;r.

Let k € Homp(K(A), K(K)). Then klg = >"I_; Siv;t, where S; = k(gi),
i=1,2,...,r.

By applying 4.1, one obtains G-d-multiplicative contractive completely
positive linear maps L?E A= MNo(i)—l—K,-i([lA]) and a homomorphism

h?t : A = Mpy(iy such that

(Ll = (57 + [ Dlps i =12, (€0.5)
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Define L= 3"7_, L™, where LIS 1 A — M, n (i) defined by

|Si]
[H151(2) = diag(LE(a), ..., LE(a))

for all a € A. One checks that L : A — My, where

Ny =301 |Si|(N;+ N(8,G, P, i) and A = o7 ([14]), if S; > 0, or
N = —¢f([1a]), if S; < 0, is a unital 5-G-multiplicative contractive
completely positive linear map and

[L]lp = (x + [A)]P

for some homomorphism h: A — My;,.
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Definition

Let F; and F;, be two finite dimensional C*-algebras.
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Definition

Let F1 and F, be two finite dimensional C*-algebras. Suppose that there
are two unital homomorphisms ¢g, ¢1 : F1 — F»>. Denote the mapping

torus My, 4, by

A= A(F1, F2, ¢0,$1) =
{(f,g) € C([0,1], F2) ® F1 : f(0) = do(g) and f(1) = ¢1(g)}-
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of all C*-algebras which are finite dimensional or the above form will be
denoted by C.
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Definition

Let F1 and F, be two finite dimensional C*-algebras. Suppose that there
are two unital homomorphisms ¢g, ¢1 : F1 — F>. Denote the mapping
torus My, 4, by

A= A(F1, F2, ¢0,$1) =
{(f,g) € C([0,1], F2) ® F1 : f(0) = do(g) and f(1) = ¢1(g)}-

These C*-algebras are called Elliott-Thomsen building block. The class
of all C*-algebras which are finite dimensional or the above form will be
denoted by C. A is said to be minimal, if ker¢g Nker¢y = {0}.

Huaxin Lin Lecture 4 June 9th, 2015, 6 /20



Definition

Let F1 and F, be two finite dimensional C*-algebras. Suppose that there
are two unital homomorphisms ¢g, ¢1 : F1 — F>. Denote the mapping
torus My, 4, by

A= A(F1, F2, ¢0,$1) =
{(f,g) € C([0,1], F2) ® F1 : f(0) = do(g) and f(1) = ¢1(g)}-

These C*-algebras are called Elliott-Thomsen building block. The class
of all C*-algebras which are finite dimensional or the above form will be
denoted by C. A is said to be minimal, if ker¢g Nker¢y = {0}.

For t € (0,1), define 7 : A — F» by m¢((f,g)) = f(t) for all (f,g) € A.
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at t.
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pair (f,g) € A. It is a surjective map.
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lim [|f|z 0s¢ — flsgll =0 for all f e C(X,F), (e0.7)
d—0
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compact subset such that X \ Z is connected, : B — C(Z,F) is a
unital homomorphism, B € Dj_1, where we assume that there is dx > 0
such that, for any 0 < d < dx, there exists sf : X9 — Z such that

sd(x) = x for all x € Z and (e0.6)

lim [|f|z 0s¢ — flsgll =0 for all f e C(X,F), (e0.7)
d—0

where X9 = {x € X : dist(x, Z) < d}.
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d—0

where X9 = {x € X : dist(x, Z) < d}. We also assume that, for any
0<d<dx/2and forany d > 6 >0,
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d—0

where X9 = {x € X : dist(x, Z) < d}. We also assume that, for any

0 < d < dx/2 and for any d > 6 > 0, there is a homeomorphism
ro X\ X970 = X\ X9
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compact subset such that X \ Z is connected, : B — C(Z,F) is a
unital homomorphism, B € Dj_1, where we assume that there is dx > 0
such that, for any 0 < d < dx, there exists sf : X9 — Z such that

sd(x) = x for all x € Z and (e0.6)

%

lim [|f|z 0s¢ — flsgll =0 for all f e C(X,F), (e0.7)
d—0
where X9 = {x € X : dist(x, Z) < d}. We also assume that, for any
0 < d < dx/2 and for any d > 6 > 0, there is a homeomorphism
r: X\ X979 — X\ X9 such that

dist(r(x),x) < for all x € X\ X97°. (e0.8)
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Examples: C C Dy (with X =1=10,1] and Z = 9(I) = {0} U {1}.).
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Examples: C C D; (with X =1=1[0,1] and Z = 0(I) = {0} U{1}.). Let
d > 1, X =19, the d-dimensional disk, Z = 9(X), F be a finite
dimensional C*-algebra and let B € Dy_1. Suppose that

[: B — C(9(X),F) is a unital homomorphism. Define

A={(f,b) € C(X,F)® B : flyx) = T()}.

Then A€ Dy,.
Note that C(Y, F) € Ds.

All theorems stated for PM,(C(X))P so far works for C*-algebras in Ay
for all d > 1. (Gong-L-Niu)
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We have a version of the following when A has the form PM,(C(X))P.
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We have a version of the following when A has the form PM,(C(X))P.

Lemma 4.3.

Let A € Ds be a unital C*-algebra and let A : Aj_’l \ {0} — (0,1) be a
positive map. For any e > 0 and any finite subset F, there exist a finite
subset H C AL\ {0} and an integer L > 1 satisfying the following: For
any unital homomorphism ¢ : A — My and any unital homomorphism
¥ A— Mg for some R > Lk such that

tro(h) > A(h) for all heH, (e0.9)

there exist a unital homomorphism ¢y : A — Mg_x and a unitary u € Mg
such that

|Ad u o diag(¢(f), ¢o(f)) —»(F)I| <€ (¢0.10)

for all f € F.
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Lemma 4.4.
Let A be a unital C*-algebra in Ds and let P C K(A) be a finite subset.
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Lemma 4.4.

Let A be a unital C*-algebra in Ds and let P C K(A) be a finite subset.
Suppose that G C K(A) be the group generated by P,

Gi=Gn Kl(A) =7"® TOI‘(Kl(A)).
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Let A be a unital C*-algebra in Ds and let P C K(A) be a finite subset.
Suppose that G C K(A) be the group generated by P,

G = GNKi(A) = Z" @ Tor(Ki(A)). Let F C A, let € > 0 and let

A Ai’l \ {0} — (0,1) be an order preserving map.
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i—1
—~
where g; = (0, ...,0,1,0,...,0) € Z".
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where gi = (0, ...,0,1,0,...,0) € Z". Then for any unital §-G
-multiplicative contractive completely positive linear map ¢ : A — Mg
such that
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where g; = (0, ...,0,1,0,...,0) € Z". Then for any unital 6-G

-multiplicative contractive completely positive linear map ¢ : A — Mg

~

such that R > N(K + 1) and tro ¢(h) > A(h) for all h € H,
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Suppose that G C K(A) be the group generated by P,

G = GNKi(A) = Z" @ Tor(Ki(A)). Let F C A, let € > 0 and let

A Aj’r’l \ {0} — (0, 1) be an order preserving map. There exists § > 0, a
finite subset G C A, a finite subset H C Ay \ {0} and an integer N > 1
satisfying the following: Let kK € KK(A® C(T),C) and put

K = max{|x(8(g))| : 1 <i<r}, (e0.11)
i—1
—~
where g; = (0, ...,0,1,0,...,0) € Z". Then for any unital 6-G
-multiplicative contractive completely positive linear map ¢ : A — Mg

~

such that R > N(K + 1) and tro ¢(h) > A(h) for all h € H, there
exists a unitary u € Mg such that
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G = GNKi(A) = Z" @ Tor(Ki(A)). Let F C A, let € > 0 and let

A Aj’r’l \ {0} — (0, 1) be an order preserving map. There exists § > 0, a
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satisfying the following: Let kK € KK(A® C(T),C) and put
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Lemma 4.4.

Let A be a unital C*-algebra in Ds and let P C K(A) be a finite subset.
Suppose that G C K(A) be the group generated by P,

G = GNKi(A) = Z" @ Tor(Ki(A)). Let F C A, let € > 0 and let

A Aj’r’l \ {0} — (0, 1) be an order preserving map. There exists § > 0, a
finite subset G C A, a finite subset H C Ay \ {0} and an integer N > 1
satisfying the following: Let kK € KK(A® C(T),C) and put

K = max{|x(8(g))| : 1 <i<r}, (e0.11)
i—1
—~
where g; = (0, ...,0,1,0,...,0) € Z". Then for any unital 6-G
-multiplicative contractive completely positive linear map ¢ : A — Mg

~

such that R > N(K + 1) and tro ¢(h) > A(h) for all h € H, there
exists a unitary u € Mg such that

I[6(f), ull| <€ for all f € F and (e0.12)
Bott(¢, u)|p = £ o Blp. (e0.13)
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Proof: To simplify notation, without loss of generality, we may assume
that F is a subset of the unit ball. Let A; = (1/8)A and Ay = (1/16)A.
Let eg > 0 and Gy C A be a finite subset satisfy the following: If

¢' : A— B (for any unital C*-algebra B) is a unital €p-Go-multiplicative
contractive completely positive linear map and v’ € B is a unitary such
that

16/ (g)u’ — u'¢'(g)Il < 4eo for all g € Go, (0.14)

then Bott(¢', u')|p is well defined. Moreover, if ¢’ : A — B is another
unital eg-Go-multiplicative contractive completely positive linear map then

Bott(¢', u')|p = Bott(¢”, u")|p, (e0.15)
provided that
l¢'(g) — ¢"(g)l] < 4eo and ||u' — u"| < 4eg for all g € Go. (e0.16)

We may assume that 14 € Gp. Let

Huaxin Lin Lecture 4 June 9th, 2015, 10 / 20



g6 ={g®f:ge€G and f = {1C(T),Z, z'}

where z is the identity function on the unit circle T. We also assume that
if W': A® C(T) — C (to some unital C*-algebra C) is a
Gg-co-multiplicative contractive completely positive linear map, then there
exist a unitary v’ € C such that

V(1 ®z)— | < 4e. (e0.17)

Without loss of generality, we may assume that Gy is in the unital ball of
A. Let ¢1 = min{e/64, ¢0/512) and F1 = F U Go.

Let Ho C A+ \ {0} (in place of H) be a finite subset and L > 1 be an
integer required by 4.3 for €; (in place of €) and F1 (in place of F) as well
as Ay (in place of A).

Let H1 C AL \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 91 > 0 (in place of §), P1 C K(A) (in place of P) be a finite
subset, Ho C As.a. be a finite subset and 1 > o > 0 be required by ?? for
e1 (in place of €), F1 (in place of F) and A;. We may assume that

[14] € P2, Hy is in the unit ball of A and Ho C Hj.
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Without loss of generality, we may assume that 61,0 < €1/16 and
F1 C Gy Let P, =P UP;.
Suppose that A has irreducible representations of rank ry, ra, ..., ri. Fix one
irreducible representation 7y : A — M,,. Let N(p) > 1 (in place of N(Py))
and Ho C AL\ {0} (in place of H) be a finite subset required by ?? for
{14} (in place of Py) and (1/3)A.
Let Go = G N Ko(A) and write Gy = Z* & Z* @ Tor(Gyp), where

PRI
7> @ Tor(Gg) C kerpa. Let x; = (0, ...,0,1,0,...,0) € Z* & Z*,
Jj=1,2,...,s. Note that A® C(T) € As and A® C(T) has irreducible
representations of rank ri, ra, ..., rg. Let

7 = max{|(mo)«0(xj)| : 0 <j < 51+ s}

Let P3 C K(A® C(T)) be a finite subset set containing P>,

{B(gj) : 1 <j < r} and a finite subset which generates 3(Tor(Gy)).
Choose d> > 0 and finite subset
June Oth, 2015, 10/ 20



G={g®f:g€Gy fe{l ,z,z'}}

in A® C(T), where Go C Ais a finite subset such that, for any unital
J>-G-multiplicative contractive completely positive linear map

¢’ : A® C(T) — C (for any unital C*-algebra C with T(C) # 0), [¢']|p,
is well defined and

(]| Tor(Go)B(Tor(61) = 0- (€0.18)

We may assume G D G1 U F1.
Let o1 = min{Ax(h) : h € H1}. Note Ko(A® C(T)) = Ko(A) @ B(K1(A))
and K(A® C(T)) = K(A) ® B(K(A)). Consider the subgroup of
Ko(A® C(T)) :
2 & 7% 7" @ Tor(Ko(A) @ B(Tor(Ki(A)).

Let 03 = min{d1,d2}. Let N(3,G,P3,i)and A;, i =1,2,....s1 + s, +r, be
required by 4.2. (for A® C(T)). Choose an integer n; > N(p) such that

(5= N(03,G, P3, i) + 1+ A)N(p)
ny — 1

< min{o/16,01/2}. (€0.19)
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Choose n > ny such that

n+2

< min{c/16,01/2,1/(L + 1)}. (0.20)

Let e2 > 0 and let > C A be a finite subset such that [V]|p, is well
defined.

Let e3 = min{e2/2, €1} and F3 = F1 U Fo.

Let 2 > 0 (in place of §), G3 C A (in place of G) be a finite subset and let
Hz C A\ {0} (in place of H2) required by Cor. 2.5 for €3 (in place of €),
F3UH; (in place of F), d3/2 (in place of €), G2 (in place of Gy), A, H;
(in place of H), min{c/16,01/2} (in place of &) and n? (in place of K)
required by Cor. 2.5 (with L; = Lp).

Let G = F3UG1 UGy UGs and let § = min{e3/16,04,03/16}. Let
Os={g®f:gels fe{lzz"}}

Let H = Hi U Hg. Define

No = (n+ 1)N(p)(Xh 2% N(33,Go, P3, i) + A; + 1) and define

N = No + Nor. Fix any k € KK(A® C(T), C) with

K = max{|(B(g)| : 1 <j < r}.
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Let R > N(K + 1). Suppose that ¢ : A — Mg is a unital
G-6-multiplicative contractive completely positive linear map such that

tro ¢(h) > A(h) for all he H. (e0.21)

Then, by Cor. 2.5, there exists mutually orthogonal projections

€0, €1, €2, ..., &n € Mg such that e, e, ..., e, are equivalent,

tr(ep) < min{o/64,01/4} and ey + Y i_; & = 1pp, and there exists a
unital d3/2-Go-multiplicative contractive completely positive linear map
Yo 1 A— eMgrey and a unital homomorphism v : A — e; Mre; such that

n?

l6(F) — (o(F) @ WY(F),(F), ..., v(F))|| < €3 for all f € F3 and(e0.22)
tr o ¢(h) > A(h)/3n for all he H{e0.23)

Let o € Homp(K(A @ C(T)), K(M,)) be define as follows: a|kay = [mo]
and alg(k(a) = Alak(ay- Let

max{|k o B(gi)| : i =1,2,....r,|mo(xj)| : 1 <j < 514+ s} < max{K,T}.

Applying we obtain a unital d3-G-multiplicative contractive completely
positive linear map ¥ : A® C(T) — My, where
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Np < Ny = Y257 N(83, Go, Ps, j) + Ai) max{K, 7}, and a
homomorphism Ho : A® C(T) — Ho(1a)Mp;Ho(14) such that such that

[W]p, = (o + [Ho]) |- (e0.24)
In particular, since [14] € P> C Ps,
rankW(1a) = r + rank(Hp).

Note that

N+ N(p) _ N1+ N(p)

R S WKTD <1/(n+1). (€0.25)

Let Ry = ranke;. Then Ry > R/(n+ 1). So, from (e 0.25)
R1 > Ni + N(p). In other words, Ry — Ni > N(p). Note that

tow(@) > (1/3)A(8) for all g € Ho,
where t is the tracial state on Mg,. By applying to the case that

¢ = mo @ Ho and Py = {[14]}, we obtain a unital homomorphism
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ho : A® C(T) — Mg, ;- Define ¢ : A® C(T) — egMgeo by
Pp(a® f) =1g(a) - f(1)- e for all ae Aand f € C(T), where 1 € T.
Define ' : A® C(T) — etMgey by ¢¥/(a® f) = (a) - (1) - e for all
ac€ Aand f € C(T). Let E; = diag(e1, €2, ..., €nny )
Define L1 A= ElMREl by

n(n1—1)
Li(a) = mo(a) @ Hola(a) @ ho(a ® 1) @ (¢(f),...,1(f)) for a € A and
define Ly : A— EyMRgE; by

n(ni—1)

—_——
Ly(a) =V(a®1)® ho(a® 1) ® ((f),...,(f)) for a € A. Note that

[Li]lp, = [L2]| P, (0.26)
tro Ly(h) > A1(h), troLy(h) > Aq(h) for all he H; afd0.27)
[tro Li(g) —troLx(g)| <o for all g € Ho. (e0.28)

It follows from ?7 that there exists a unitary wy € E; MgE; such that

llad wy o Lp(a) — L1(a)|| < €1 for all a € Fi. (e0.29)
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Define E; = (e1 + &2 + -+ - + e,2) and define ® : A — E;MgE; by

n2
A

®(f)(a) = diag(y(a), ¥ (a), ...,1(a)) for all a € A.

Then
tro ®(h) > Ay(h) for all he Hy
By (€0.20), -5 > L+ 1. By applying 4.3, we obtain a unitary
wy € EoMRE, and a unital homomorphism
Hi: A— (E2 — El)MR(E2 — El) such that
|lad wy o diag(L1(a), Hi(a)) — ®(a)|| < €1 for all a € Fi.

Put
w = (eo D w P (E2 — El))(eo D W2) € Mg.

Define Hi AR C(T) — (E2 — E]_)MR(E2 — El) by

(e0.30)

(€0.31)

(e0.32)

Hi(a® f) = Hi(a) - (1) - (E2 — Eq) for all a € A and f € C(T). Define
~ HuaxinLin | lectwed |
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\Ill:A—>MRby

ni—1

Vi) = Y1) & W(F) & ho & (7). (D) & H(F)  (039)
for all f € A® C(T). It follows from (e0.29), (¢0.32) and (e0.22) that
lp(a) — w*Vi(a®@ 1)w|| < €1+ €1 +e3 for all ae F. (e0.34)
Now let v € Mg be a unitary such that
[W1(1 ® z) — v < 4e. (e0.35)
Put u = w*vw. Then, we estimate that
I[¢(a), u]|] < min{e, ) for all a € Fi. (e0.36)

Moreover, by (e0.29),(e0.24) and (e0.15),

BOtt(¢, u)]p = KO B|7> (e 0.37)
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Theorem 4.5.
Let A € Dy for some integer d > 1.
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Theorem 4.5.
Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number
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Theorem 4.5.
Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Ai’l \ {0} — (0,1) be an order preserving map.

_4
Huaxin Lin Lecture 4 June 9th, 2015, 11 /20



Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive

number and let A : Ai’l \ {0} — (0,1) be an order preserving map.
There exists a finite subset H1 C A% \ {0},
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Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive

number and let A : Ai’l \ {0} — (0,1) be an order preserving map.
There exists a finite subset H1 C A}r \ {0}, 71 >0, >0,d >0,
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Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Ai’l \ {0} — (0,1) be an order preserving map.

There exists a finite subset H1 C AL\ {0}, 71 > 0,7 >0,0 >0, a
finite subset G C A
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Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Ai’l \ {0} — (0,1) be an order preserving map.
There exists a finite subset H1 C AL\ {0}, 71 > 0,7 >0,0 >0, a
finite subset G C A and a finite subset P C K(A), a finite subset Ho C A,
a finite subset U C U(My11(A))/ CU(Mk4+1(A)) (k depends on A)
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Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Ai’l \ {0} — (0,1) be an order preserving map.
There exists a finite subset H1 C AL\ {0}, 71 > 0,7 >0,0 >0, a
finite subset G C A and a finite subset P C K(A), a finite subset Ho C A,

a finite subset U C U(My11(A))/CU(Mk+1(A)) (k depends on A) for
which [U] C P,

_4
Huaxin Lin Lecture 4 June 9th, 2015, 11 /20



Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Ai’l \ {0} — (0,1) be an order preserving map.
There exists a finite subset H1 C AL\ {0}, 71 > 0,7 >0,0 >0, a
finite subset G C A and a finite subset P C K(A), a finite subset Hy C A,
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which [U] C P, and N € N satisfying the following:
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Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Aﬁ’r’l \ {0} — (0,1) be an order preserving map.

There exists a finite subset H1 C AL\ {0}, 71 > 0,7 >0,0 >0, a
finite subset G C A and a finite subset P C K(A), a finite subset Hy C A,
a finite subset U C U(My11(A))/CU(My11(A)) (k depends on A) for
which [U] C P, and N € N satisfying the following: For any unital
G-6-multiplicative contractive completely positive linear maps

¢, : A— C for some C € C such that

[¢ll» = [¥]lP,
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Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Aﬂ’r’l \ {0} — (0,1) be an order preserving map.

There exists a finite subset H1 C A}r \ {0}, 71 >0,7%>0,6>0, a
finite subset G C A and a finite subset P C K(A), a finite subset Hy C A,
a finite subset U C U(My11(A))/CU(My11(A)) (k depends on A) for
which [U] C P, and N € N satisfying the following: For any unital
G-6-multiplicative contractive completely positive linear maps

¢, : A— C for some C € C such that

[¢]lp = [¥]lP, (€0.38)
7(¢(a)) > A(a), 7(v(a)) > A(a), forallTe T(C), ac Hi,
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Theorem 4.5.

Let A € Dy for some integer d > 1. Let F C A, let € > 0 be a positive
number and let A : Aﬂ’r’l \ {0} — (0,1) be an order preserving map.

There exists a finite subset H1 C A}r \ {0}, 71 >0,7%>0,6>0, a
finite subset G C A and a finite subset P C K(A), a finite subset Hy C A,
a finite subset U C U(My11(A))/CU(My11(A)) (k depends on A) for
which [U] C P, and N € N satisfying the following: For any unital
G-6-multiplicative contractive completely positive linear maps

¢, : A— C for some C € C such that

[¢]lp = [¥]lP, (€0.38)
T(¢(a)) > A(a), 7(v(a)) > A(a), forallT e T(C), ac Hi,
(e0.39)
|70 ¢(a) — Top(a)] < y1, for all a € Hy, (e0.40)
and dist(¢(u), v (u)) < y2, for all ueld, (e0.41)

there exists a unitary W € C ® My such that

|W(o(f) @ Ipg )W* — ((F) @ Imy )| <€, for all f e F. (e0.42)
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Idea of the proof:
Let C = A(F1, F2, ho, h1) C C([0,1], F2) @ Fi.
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Idea of the proof:
Let C = A(Fl, F>, ho, hl) - C([O, ].], Fg) P Fi. Let
O=t<ti<---<th=1
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Idea of the proof:
Let C = A(Fy, Fa, ho, 1) € C([0,1], F2) & Fi. Let
O=t<ti<---<th=1
be a partition so that

T 0 p(g) = mp o ¢(g) and
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Let C = A(Fy, Fa, ho, 1) € C([0,1], F2) & Fi. Let
O=t<ti<---<th=1
be a partition so that

o d(g) = mv o ¢p(g) and mroY(g) = T 0 P(g) (e0.43)
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Idea of the proof:
Let C = A(F1, F2, ho, h1) C C([0,1], F2) & F1. Let
O=t<ti<---<th=1
be a partition so that

Tt o ¢(g) ~ Ty o ¢(g) and T o1p(g) & Ty o 1(g) (€0.43)
for all g € G, provided t,t' € [tj_1,t], i =1,2,...,n.
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Idea of the proof:
Let C = A(F1, F2, ho, h1) C C([0,1], F2) & F1. Let
O=t<ti<---<th=1
be a partition so that

o d(g) = mv o ¢p(g) and mroY(g) = T 0 P(g) (e0.43)

for all g € G, provided t,t' € [tj_1,t], i =1,2,...,n.
By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
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Idea of the proof:
Let C = A(Fl, F>, ho, hl) - C([O, ].], Fg) P Fi. Let

O=t<ti<---<th=1

be a partition so that

Tt o ¢(g) ~ Ty o ¢(g) and T o1p(g) & Ty o 1(g) (€0.43)
for all g € G, provided t,t' € [tj_1,t], i =1,2,...,n.

By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
wp € ho(Fl), if i =0,
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Idea of the proof:
Let C = A(Fl, F>, ho, hl) - C([O, ].], Fg) P Fi. Let

O=t<ti<---<th=1

be a partition so that

o d(g) ~ mp o p(g) and o Y(g) ~ w0 YP(g) (e0.43)
for all g € G, provided t,t' € [tj_1,t], i =1,2,...,n.
By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
Wy € ho(Fl), if i=0, and wy € hl(Fl), if i =1,
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Idea of the proof:
Let C = A(Fl, F>, ho, hl) - C([O, 1], Fg) P Fi. Let

O=t<ti<---<th=1

be a partition so that

o d(g) ~ mp o p(g) and o Y(g) ~ w0 YP(g) (e0.43)
for all g € G, provided t,t' € [tj_1,t], i =1,2,...,n.
By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
wp € ho(Fl), if i=0, and wy € hl(Fl), if i =1, such that

Wiy, 0 p(g)w; ~ Tr; 0 P(g). (e0.44)
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Idea of the proof:
Let C = A(F1, Fa, ho, h1) € C([0,1], F2) & Fy. Let
O=t<ti<---<t,=1
be a partition so that
Tt o ¢(g) = Ty o ¢(g) and 7 op(g) = w0 1h(g)

for all g € G, provided t, t' € [ti_1,t], i =1,2,....n.
By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
wp € ho(F1), if i =0, and wy € hi(Fy1), if i =1, such that
W, © (g)w; ~ r; 0 P(g).
We may also assume that there is a unitary w, € F; such that
ho(we) = wy and hy(we) = w,,.

(e0.43)

(e0.44)
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Idea of the proof:
Let C = A(F1, F2, ho, h1) C C([0,1], F2) & F1. Let
O=t<ti<---<t,=1
be a partition so that

mro P(g) = mp o Pp(g) and w0 )(g) = 7 0 Y(g) (e0.43)
for all g € G, provided t,t' € [tj_1,t], i =1,2,...,n.
By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
wp € ho(F1), if i =0, and wy € hi(Fy1), if i =1, such that

Wiy, o P(g)w; = my, 0 P(g). (e0.44)

We may also assume that there is a unitary w, € F; such that
ho(we) = wy and hy(we) = w,,.
Note that

(Wi wi)me, 0 d(g) (W wit1) = Wi me,, o Y(g)wis1
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Idea of the proof:
Let C = A(F1, F2, ho, h1) C C([0,1], F2) & F1. Let
O=t<ti<---<t,=1
be a partition so that

mro P(g) = mp o Pp(g) and w0 )(g) = 7 0 Y(g) (e0.43)
for all g € G, provided t,t' € [tj_1,t], i =1,2,...,n.
By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
wp € ho(F1), if i =0, and wy € hi(Fy1), if i =1, such that

Wiy, o P(g)w; = my, 0 P(g). (e0.44)

We may also assume that there is a unitary w, € F; such that
ho(we) = wy and hy(we) = w,,.
Note that

(Wi wi) e, 0 ¢(g) (W wiv1) = Wiy mr; 0 P(g)Wit1

~ ¢ir100(g) = ¢i o d(g). (e0.45)
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Idea of the proof:
Let C = A(F1, F2, ho, h1) C C([0,1], F2) & F1. Let
O=t<ti<---<t,=1
be a partition so that

me o d(g) ~ e o ¢(g) and 7o Y(g) ~ my 0 p(g) (e0.43)

for all g € G, provided t, t' € [ti_1,t], i =1,2,....n.
By applying Theorem 2.1, there exists a unitary w; € Fp, if 0 < i < n,
wp € ho(F1), if i =0, and wy € hi(Fy1), if i =1, such that

wite, 0 ¢(g)w; = Ty, © Y(g). (e0.44)
We may also assume that there is a unitary w, € F; such that
ho(we) = wy and hy(we) = w,,.
Note that
(Wi wi)me 0 ¢(8) (W) Wit1) = Wiy 7, 0 Y(g)Wit1
~ ¢ir10 ¢(g) = di o ¢(g). (e0.45)

We need to apply the Homotopy Lemma.
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Need to change w; to something z;w; to make “bott” element trivial,
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Need to change w; to something z;w; to make “bott” element trivial,
which is quite demanding.
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Need to change w; to something z;w; to make “bott” element trivial,
which is quite demanding. In order not to accumulate errors, the
condition (e0.41) is used.
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Need to change w; to something z;w; to make “bott” element trivial,
which is quite demanding. In order not to accumulate errors, the
condition (e0.41) is used. We also need to take care of “end points”.
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A).
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(Mk(A))/CU(M(A)).
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(Mk(A))/CU(Mk(A)). Or even

U1 (U(MA(A))/ CUMK(A)).
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(ML(A))/ CU(Mi(A)).
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(M(A))/CU(Mk(A)). Let us assume that A has stable rank < k.
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(M(A))/CU(Mk(A)). Let us assume that A has stable rank < k. C.
Thomsen, using de la Harp and Skandalis determinant, showed that there
is a splitting exact sequence
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(M(A))/CU(Mk(A)). Let us assume that A has stable rank < k. C.
Thomsen, using de la Harp and Skandalis determinant, showed that there
is a splitting exact sequence

0 — Aff(T(A))/pa(Ko(A)) = U(Mk(A))/CU(M(A)) — Ki(A) — 0.
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(M(A))/CU(Mk(A)). Let us assume that A has stable rank < k. C.
Thomsen, using de la Harp and Skandalis determinant, showed that there
is a splitting exact sequence

0 — Aff(T(A))/pa(Ko(A)) = U(Mk(A))/CU(M(A)) — Ki(A) — 0.

Let B is another unital C*-algebra of stable rank at most k.
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(M(A))/CU(Mk(A)). Let us assume that A has stable rank < k. C.
Thomsen, using de la Harp and Skandalis determinant, showed that there
is a splitting exact sequence

0 — Aff(T(A))/pa(Ko(A)) = U(Mk(A))/CU(M(A)) — Ki(A) — 0.

Let B is another unital C*-algebra of stable rank at most k. |If
¢ : A — B is a unital homomorphism
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(M(A))/CU(Mk(A)). Let us assume that A has stable rank < k. C.
Thomsen, using de la Harp and Skandalis determinant, showed that there
is a splitting exact sequence

0 — Aff(T(A))/pa(Ko(A)) = U(Mk(A))/CU(M(A)) — Ki(A) — 0.

Let B is another unital C*-algebra of stable rank at most k. |If
¢ : A — B is a unital homomorphism then
¢t : U(Mk(A))/ CU(Mk(A)) = U(M(B))/ CU(Mk(B)).
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Let A be a unital C*-algebra and let U(A) be the unitary group of A.
Denote by CU(A) the closure of the commutator subgroup of U(A).
When A has stable rank one CU(A) C Up(A). We will consider the group
U(A)/CU(A). Or U(M(A))/CU(M(A)). Or even

221 (U(Mi(A))/ CU(M(A))). There is a metric on
U(M(A))/CU(Mk(A)). Let us assume that A has stable rank < k. C.
Thomsen, using de la Harp and Skandalis determinant, showed that there
is a splitting exact sequence

0 — Aff(T(A))/pa(Ko(A)) = U(Mk(A))/CU(M(A)) — Ki(A) — 0.

Let B is another unital C*-algebra of stable rank at most k. |If
¢ : A — B is a unital homomorphism then
¢' . U(Mk(A))/ CU(Mk(A)) — U(Mk(B))/CU(M(B)). Slightly
modification, if ¢ is almost multiplicative, ¢t can also be defined.
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Definition

Let A be a unital C*-algebra and let C € C,
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Definition

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢, ¢1)
is a NCCW.
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Definition

Let A be a unital C*-algebra and let C € C, where C = C(Fq, Fz, ¢0, ¢1)
is a NCCW. Suppose that L : A — C is a contractive completely positive
linear map.
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Definition

Let A be a unital C*-algebra and let C € C, where C = C(Fq, Fz, ¢0, ¢1)
is a NCCW. Suppose that L : A — C is a contractive completely positive
linear map. Define L, = me o L.
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Definition
Let A be a unital C*-algebra and let C € C, where C = C(Fq, Fz, ¢0, ¢1)
is a NCCW. Suppose that L : A — C is a contractive completely positive

linear map. Define L =m0 L. Then L, : A — F; is a contractive
completely positive linear map such that
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Definition

Let A be a unital C*-algebra and let C € C, where C = C(Fq, Fz, ¢0, ¢1)
is a NCCW. Suppose that L : A — C is a contractive completely positive
linear map. Define L =m0 L. Then L, : A — F; is a contractive
completely positive linear map such that

¢ooLe =mgol and
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Definition

Let A be a unital C*-algebra and let C € C, where C = C(Fq, Fz, ¢0, ¢1)
is a NCCW. Suppose that L : A — C is a contractive completely positive
linear map. Define L =m0 L. Then L, : A — F; is a contractive
completely positive linear map such that

¢poole =mgolL and ¢y 0Le =m 0L (e0.46)

Moreover, if § >0and G C A
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Definition

Let A be a unital C*-algebra and let C € C, where C = C(Fq, Fz, ¢0, ¢1)
is a NCCW. Suppose that L : A — C is a contractive completely positive
linear map. Define L =m0 L. Then L, : A — F; is a contractive
completely positive linear map such that

¢poole =mgolL and ¢y 0Le =m 0L (e0.46)

Moreover, if 6 > 0 and G C A and L is §-G-multiplicative,
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Definition

Let A be a unital C*-algebra and let C € C, where C = C(Fq, Fz, ¢0, ¢1)
is a NCCW. Suppose that L : A — C is a contractive completely positive
linear map. Define L =m0 L. Then L, : A — F; is a contractive
completely positive linear map such that

¢poole =mgolL and ¢y 0Le =m 0L (e0.46)

Moreover, if 6 > 0 and G C A and L is -G-multiplicative, then L. is also
6-G-multiplicative.

v
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Lemma

Let A be a unital C*-algebra and let C € C,
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined.
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps,

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let ¢ > 0 and let 7 C A be a subset.

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let € > 0 and let F C A be a subset. Suppose that
there is a unitary wy € mo(C) C F

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let € > 0 and let F C A be a subset. Suppose that
there is a unitary wy € mo(C) C Fp and wy € m1(C) C Fy such that

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let € > 0 and let F C A be a subset. Suppose that
there is a unitary wy € mo(C) C Fp and wy € m1(C) C Fy such that

lwgmo o Li(a)wp — mo o La(a)]] < € and

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let € > 0 and let F C A be a subset. Suppose that
there is a unitary wy € mo(C) C Fp and wy € m1(C) C Fy such that

|lwgmo o Li(a)wp — mp o La(a)]] < € and (e0.47)

HW{‘moLl(a)Wl —7T10L2(3)H < € for all ae F. (80.48)

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let € > 0 and let F C A be a subset. Suppose that
there is a unitary wy € mo(C) C Fp and wy € m1(C) C Fy such that

|lwgmo o Li(a)wp — mp o La(a)]] < € and (e0.47)

HW{‘moLl(a)Wl —7T10L2(3)H < € for all ae F. (80.48)

Then there exists a unitary u € F1 such that

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let € > 0 and let F C A be a subset. Suppose that
there is a unitary wy € mo(C) C Fp and wy € m1(C) C Fy such that

|lwgmo o Li(a)wp — mp o La(a)]] < € and (e0.47)

|lwimioLi(a)ws —miola(a)]] < € for all ae F. (e0.48)
Then there exists a unitary u € F1 such that

“(ﬁo(u)*ﬂ'o o Ll(a)¢0(u) — 7o © Lg(a)H < € and (e 049)

v
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Lemma

Let A be a unital C*-algebra and let C € C, where C = C(F1, F2, ¢o, $1)
is a 1-dim NCCW as defined. Let Ly,L; : A— C be two unital completely
positive linear maps, let € > 0 and let F C A be a subset. Suppose that
there is a unitary wy € mo(C) C Fp and wy € m1(C) C Fy such that

”Wék’ﬂ'ool_l(a)W() —7rgoL2(a)H < € and (6047)

|lwimioLi(a)ws —miola(a)]] < € for all ae F. (e0.48)
Then there exists a unitary u € F1 such that

“(ﬁo(u)*ﬂ'o o L1(3)¢0(U) — 7o © Lg(a)H < € and (e 049)

lp1(u)*m o Li(a)p1(u) — w0 La(a)|| < € for all a € F.(e0.50)

v
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Proof:

Write Fi =M, & M,, &--- &M, and b =M, &M, &--- & M,. We
may assume that, ker¢g Nkerg; = {0}.
We may assume that ¢o|u, is injective, i = 1,2, ..., k(0) with k(0) < k,
¢olm, = 0if i > k(0), and ¢1|m,. is injective, i = k(1), k(1) +1,....k
with k(1) < k, ¢1lm, =0, if i < k(1). Write Fio = @S My, and
F1.1 = @/ (1) Mn;- Note that k(1) < k(0) + 1, ¢o|, and ¢1lF, , are
injective. Note ¢o(F1,0) = ¢o(F1) = mo(C) and
P1(F11) = ¢1(F1) = m1(C). Let o = (¢olr ) and 1 = (f1]F,) 7t
For each fixed a € A,, since Lj(a) € C (i = 0,1), there are elements

8a,i = 8a,i,1 D 8a)i2® D Laiko) D D &aik € F1,
such that ¢o(gsi) = mo o Li(a) and ¢1(gsi) = m1 0 Li(a), i = 1,2., where
8aij € M, j=1,2,....k and i = 1,2. Note that such g ; is unique since
kergg N kergy = {0}. Since wy € mo(C) = ¢o(F1), there is a unitary

Ug = ug,1 D U2 D -+ - D Up k(o) D -+ D Uok

such that ¢0(UO) = wp.
e e



Note that the first k(0) components of ug is uniquely determined by wy
(since ¢g is injective on this part) and the components after k(0)'s
components can be chosen arbitrarily (since ¢o = 0 on this part). Similarly
there exist

up =u11 D u12 D - DUy ) DD urk

such that gi)l(ul) = wi
Now by €0.47 and €0.48, we have

[¢o(uo)"Po(ga,1)Po(uo) — ¢o(ga2)| < € and (e0.51)
lo1(u1)*p1(gan)P1(ur) — d1(ga2))|| < € for all a e F.(e0.52)

Since ¢y is injective on F{ for i < k(0) and ¢; is injective on F] for
i > k(0) (note that we use k(1) < k(0) + 1), we have

|(uo,i)*(ga1,i)o,i — (ga2,i)ll < € V i<k(0) and (e0.53)

[(u1,i)"(8a1,i)uni — (Ba,i)l| < € Vi>k(0) (e0.54)

for all a € F.
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Let u=up1 @ - D Ugk(0) D Uk(0)+1 D - B urk € Fr—that is for the
first k(0)'s components of u, we use ug's corresponding components, and
for the last k — k(0) components of u, we use u;'s. From €0.53 and

e0.53. we have
|u*gaiu—gapll <€ for all ae F.

Apply ¢g and ¢ to the above inequality, we get €0.49 and €0.50 as
desired.
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Proof of Theorem 4.5. There is ng such that ngx = 0 for all

x € Ki(A® C(T)), i =0,1. Set N = ng!. Put A; be defined above for the
given A.

Let #} C Ay \ {0} (in place of H;1) for €/32 (in place of €) and F
required by 3.5.

Let 01 > 0 (in place of §), G1 C A (in place of G) be a finite subset and let
Po C K(A) (in place of P) be a finite subset required by 3.5 for €/32 (in
place of €), F and A;. We may assume that 01 < ¢/32 and (201,G1) is a
KK-pair.

Moreover, we may assume that 7 is so small that if ||uv — vu|| < 361,
then the Exel formula

1
21y —1

holds for any pair of unitaries u and v in any unital C*-algebra C with
tracial rank zero and any 7 € T(C) (see Theorem 3.6 of [?]). Moreover if
lvi — va|| < 301, then

T(botty(u, v)) = (T(log(u*vuv™))

botti(u, vi) = botty(u, v2).
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Let g1, 82, -, 8k(A) € U(Mm(a)(A)) (m(A) > 1 is an integer) be a finite
subset such that {£1, &, ..., 8k(a)} C Jc(K1(A)) and such that

{lg1]; [&2]; -+, [gk(a)]} forms a set of generators for Ki(A). Let
U=1{81,8; 8k} C Jc(Ki(A)) be a finite subset.

Let Uy C A be a finite subset such that

{g1,82, - gy} = {(aij) - aij € Uo}-

Let §, = min{1/256m(A)?,61/16m(A)?}, G, = F UGy Uldp and let
Pu = Po.
Let 92 > 0 (in place of ¢), let Go C A (in place of G) and let
H5 C Ax \ {0} (in place of ) and let N; > 1 (in place of N) be an
integer required by 4.4 for ¢, (in place of €), G, (in place of F), P, (in
place of P) and A and with gj (in place of g;), j = 1,2, ..., k(A) (with
k(A) =r).
Let d = min{A(h) : h € Hj}. Let 63 > 0 and let G3 € A® C(T) be finite
subset satisfying the following: For any d3-Gs-multiplicative contractive
completely positive linear map L' : A® C(T) — C’ (for any unital
C*-algebra C" with T(C") #0),

IT([L1(B(g)))| < d/8, j=1,2,...,k(A). (e0.55)
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Without loss of generality, we may assume that
G3={g®z:ge€G; and z € {1,2,z*}},

where G5 C A'is a finite subset (by choosing a smaller §3 and large G}).
Let €/ = min{d/27m(A)?,6,/2,62/2m(A)?,63/2m(A)?} and let € > 0 (in
place of §) and G4 C A (in place of G) be a finite subset required by ?? for
€] (in place of €) and G, U G. Put

€1 = min{e}, €], e}

Let gS - gu U gé U g4-

Let H5 C AT (in place of H1), da > 0 (in place of §), G C A (in place of

G), H} C As.a. (in place of Ha), P1 C K(A) (in place of P) and 04 >0

(in place of 07) be the finite subsetc and constants required by Theorem

2.1 €1/4 (in place €) and Gs (in place of F) and A.

Let N > Ny such that (k(A) +1)/N> < d/8. Choose Hi C Ay \ {0} and

05 > 0 and a finite subset G; C A such that, for any M,;, and unital

d5-G7-multiplicative contractive completely positive linear map

L'":A— Mp, if troL’(h) >0 for all h e Hg, then m > Np((8/d) + 1).
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Let § = min{e1/16,304/4m(A)?,65/4m(A)?}, let G = G5 U Gg U G7 and let

Hi1=HyUH, UH,UH, UH
and let Ho = Hj. Let 71 = 04 and let
0 < v2 < min{d/16m(A)?,6,/9m(A)?,1/256m(A)?}.
Now suppose that C € C and ¢, : A — C be two unital
6-G-multiplicative contractive completely positive linear maps satisfying
the assumption for the above given A, Hi, 8, G, P, Ho, 1, 72 and U.
Let

O=to<ti < ---<t,=1

be a partition so that

|me 0 d(g) — 7 0 d(g)]| < €1/16 and (e0.56)
|7t 0 p(g) — mw o b(g)] < €1/16 (€0.57)
for all g € G, provided t, t' € [ti_1,t], i =1,2,....n.
We write C = A(Fy, Fa, ho, h), F1 = My, ® My, @ - - ® My, and
Fo =My & My, ® -+ @ My, ,,. By the choice of s,

nj > Np(8/d + 1) and ms > Ny(8/d + 1), (0.58)
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1<j<F(2), 1 <s<F(1). By applying Theorem 2.1,there exists a
unitary w; € Fp, ifo<i< n, wo € ho(Fl), if i = 0, and wy € hl(Fl), if
i =1, such that

|wime, o p(g)wi — 7, 0 YP(g)]| < €1/16 for all g € Gs.  (e0.59)

It follows from 0.8 that we may assume that there is a unitary w, € F;
such that hg(we) = wp and hy(we) = wp,.

By (€0.41), let w; € My,4)(C) be a unitary such that

wj € CU(Mm(A)(C)) and

(¢ © idm, 0 (87 ))((¥ @i, )(8))) = Wil <720 J=1,2,.. k(A).
Write
e(j)
wj = Hexp(\/—laj(./))
I=1

for some selfadjoint element aj(-l) € Mma)(C), 1 =1,2,...,e(j),
j=1,2, ..., k(A). Write

A = (a(-l’l), a(-l’z),. a(.l’nF(2))) and wj = (wj,1,Wj 2, -, Wj F(2))

ey
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in C([0,1], F2) = C([0, 1], Mp,) & - - - & C([0, 1], Mpy,)), where
Wjs = exp(\/—laj(-l’s)), s=1,2,...,F(2). Then

D) ng(ts © Trmeay) (a2 (1))

J
> = eZ, telo,1],
=1
where ts is the normalized trace on M,,., s = 1,2, ..., F(2). In particular,
e(j) e(j) ()
> ns(t® Trm(A))( (1)) = > ns(t @ Trpmeay)(a; (') (e0.60)
I=1 I=1

for all t, t"” € [0, 1].
Let W; = w; ®ide(A), i=0,1,....,nand We = we ® idp,,(F,)- Then

177 ((D @ idwm,a )87 ))) Wilmi((d @ idm, . )(g))) Wi — wj(t)[|(e 0.61)

< 3m(A)?e; + 292 < 1/32. (e0.62)

We also have
[{Pe @ idm,, ) )(8&F)) We({de @ idm,, )(8j))) We (€0.63)
—7e(wj)|| < 3m(A)?e1 + 272 < 1/32. (e0.64)
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It follows from (e0.61) that there exists selfadjoint elements
b,"j S Mm(A)(Fg) such that

exp(v=1b;j) = (e0.65)
wj(ti)"(mi{¢ @ idm, . ) (8")) Wilmi((¢ @ idm,,, )(8))) Wi, (e0.66)
and be j € M) (F1) such that

exp(v/—1bej) = (e0.67)
o) (76 © i) (& ) Welel {6 © i Y @)W (e0.68)

and
Ibijll < 2arcsin(3m(A)%e1/4+272), j=1,2,...k(A), (e0.69)
i=0,1,...,n,e
We write
1 2 F(2
by = (b6 .. b[P) e F and
bey = (B, 62, ... bFEM) e F. (£0.70)

e’ e )" Ye
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We also have that
ho(beJ) = b(),j and hl(be’j) = an. (e 0.7].)
Note that

(mi((¢ @ idm, ) (& )))Wilmi((¢ © idm,,, )(8)))) Wi (€0.72)
= Wf(wj) exp(\/ —1b,"j), (e 0.73)
Jj=12,..,k(A)and i =0,1,....n,e.
Then,
ns
S (t® Teu, ) (67) € Z, (0.74)
where ts is the normalized trace on M,,., s = 1,2, ..., F(2),
j=1,2,...,k(A), and i =0,1,...,n. We also have
Ms
2w

where ts is the normalized trace on M,,,_, s = 1,2, ..., F(1),
j=1,2, ..., k(A). Let

(ts ® Trp, ) )(BS)) € Z (e0.75)

S nS S
A = 22 (£ ® Trw, , )(B) € Z,

]
11
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where ts is the normalized trace on M,,., s =1,2,....n, j =1,2,..., k(A)

and i =0,1,2,...,n.

Let
ms

2w

where t; is the normalized trace on M,,_, s =1,2,..., F(1) and
J=1,2,..,k(A). Let

’\(es,} = (ts ® TrMm(A))(bz(:J)) €Z

F
Ay = (AR AP € 2F@) ang

INEAYNEN
ey = (OGN e zFO), (e0.76)
We have

A

| ,;Jy < d/4, s=1,2,...F(2), and (e0.77)
S

AL

|ﬁy < d/4, s=1,2,.. F(1), (e0.78)
S

Jj=12,..,k(A),i=0,1,2,...,n.
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Define al(-o’l) . K1(A) = ZF () by mapping [gi] to Aij, j=1,2,..., k(A)
and i =0,1,2,...,n, and define o : K1 (A) = ZF() by mapping [g;] to
Xejs J =1,2,..., k(A). We write Ko(A® C(T)) = Ko(A) ® B(K1(A))) (see
?7? for the definition of 3). Define a; : K,(A® C(T)) — Ki(F2) as follows:
On Ko(A® C(T)), define

0,1
ailko(a) = [mi © Dllko(ays @ilpky(ay) = @i o Blkya) = o (e0.79)
and on K1(A® C(T)),

ailk (awc(T)) = 0, (e0.80)

i=0,1,2,....,n, and define ae € Hom(K,(A® C(T)), K«(F1)), by

Qelko(a) = [Te © Pllko(a)ys Qelg(ki(a)y) = @i o Bli,(a) = o™ (e0.81)

on Ko(A® C(T)) and (ae)|k,(axc(t)) = 0. Note that

(ho)x 0 e = g and (h1)« 0 e = tpy. (e0.82)
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Since A® C(T) satisfies the UCT, the map . can be lifted to an element
of KK(A® C(T), F1) which is still denoted by ae. Then define

ap = ae X [ho] and a, = ae X [h1] (e0.83)

in KK(A® C(T), Fp). For i =1,...,n—1, also pick a lifting of «; in
KK(A® C(T), F2), and still denote it by a;. We estimate that

(Wi wit1)me, 0 p(g) — 71, 0 p(g)(w; wit1)|| < e1/4 for all g € Gs,

i=0,1,....,n—1 Let Ajj11 : C(T) ® A — F5 be a unital contractive
completely positive linear map given by the pair w/wj 1 and ¢, o ¢ (by
77, see 2.8 of [?]). Denote V; = (m 0 ¢ ® idm, . (87)), j = 1,2, ..., k(A)
and i =0,1,2,....n— 1.

Write

V’d = (\/,-11-7]_7 \/,'11'727 vy ‘/iJ,F(Z)) c Fz7 J = ]_,2, ey /((A)7 | = O, 1,2,...,".
Similarly, write

Wi = (W1, Wia,... Wi p2)) € F2, i=0,1,2,...,n.
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We have

WAV Wy Vi Vi Waaa Vig Wy — 1] <1/16 (€0.84)
WiV Wy Vi Vi jWisa Vi Wiy — 1 < 1/16 (e0.85)

and there is a continuous path Z(t) of unitaries such that Z(0) = V;; and
Z(1) = Vij1. Since

[Vij = Vil < 61/12, j=1,2,.... k(A),
we may assume that || Z(t) — Z(1)|| < 01/6 for all t € [0,1]. We also write
Z(t) = (Zu(t), Z2(t), -+, ZF(2)(t)) € F2 and t €[0,1].
We obtain a continuous path
W, Vig Wi Vi Z(t)* Wisa Z(£) Wiy
which is in CU(Mppm(a)) for all t € [0,1] and

Wi VEWE VG Z () Wi Z(E)Wiy — 1)) < 1/8 for all t € [0,1].

i i
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It follows that
(1/27V/ =1)(ts @Trpm, 5 Mlog(Wis ViTj sWis Vij s Zs(8)" Wis1,s Zs(£) Wiy )]
is a constant, where t; is the normalized trace on M,_. In particular,

(1/27v/ =1)(ts @ Trm,, ) )(log(Wi s Vij Wi Wit1 s VijsWith))
= (1/27v =1)(ts © Trm, ) )(log(Wis Vi sWis Vi j Vi j s Wisa Vijs Wiia))-

Also

W:V,t, WiV, V‘ilg Wit1Vip1 jWiy (e0.86)

= (wj(tr) exp(v=1b; ) wj(ti) exp(v~1bir1;)  (e0.87)
= exp(—ﬁbu)wj(t,-)*wj(t,-+1) exp(leb;+1J). (e 088)

Note that, by (??) and (e0.56), for t € [t;, ti+1],
lwj(ti)*wj(t) — 1]| < 3(3€] + 272) < 3/32, (e0.89)

j=1,2,...k(A),i=0,1,...,n—1.
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By Lemma 3.5 of [?],

(ts @ Trppa))(log(wj,s(ti) wj,s(ti+1))) = 0. (€0.90)
It follows that (by the Exel formula, using (??), (¢0.88) and (e0.90))
t @ Trp(a))(botta(Vij, W Wii1)) (e0.91
1 * * * -
= (ﬁ)(t(gTrm(A))('Og(VuWi Wit Vi Wi, W) (0.9
1 * * *
= (m)(f@) Trmay) (log(W; Vi Wi Wi Vi jWiL)
1 " *
= (r\/_—l)(t@)Tl‘m(A))('Og(WV WV Vi Wi Vigr j W)
1 " |
= (r\/_—l)(t ® Tr () (log(exp(—V —1b; j)w;(ti) wj(ti+1) exp(v/ —1bit1 ;)
1
— (e o)/ Tb1) + (¢ & Tra)(oB(e (8" y510)
+(t @ Try(m) ) (V—1bj )] (0.9
1
= —(t® Try(m)(—bij + biy1;) (e0.94

2
/]
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for all t € T(F2). In other words,
botty (Vij, Wi Wit1)) = —Aij + A, (0.95)

j=1,2,...,m(A),i=01,...n— 1.
Consider ay, ..., an € KK(A® C(T), F2) and ae € KK(A® C(T), F1).
Note that

|i(gi)l = il
and by (e0.77), one has

ms, n; > N2(8/d + 1).

By applying 4.4 (using (€0.78), among other items), there are unitaries
zi€e F,i=1,2,...,n—1, and z. € F; such that

I[zi, ¢, © d(g)]|| < 6y for all g € G, (e0.96)
Bott(zj, 7, © ¢) = aj and Bott(ze, me 0 ¢) = cte.  (€0.97)

Put
zo = ho(ze) and z, = hi(ze).
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One verifies (by (e0.83)) that
Bott(zg, 74, © ¢) = ap and Bott(zp, w1, 0 @) = ap. (e0.98)
Let U;i+1 = zi(w;)*wit1(zit1)*, i =0,1,2,...,n — 1. Then
I[Uii+1, 7 0 @(g)]]| < min{d1,02}, g€ Gy, i=0,1,2,...,n—1e0.99)
Moreover, for i =0,1,2,....,.n—1,

bott1(Uj i1, 7y 0 ¢) = botti(z;, m, 0 ¢)) + botty ((w; wit1, 7, 0 ¢))
+botty((z 1, ¢ 0 @)
(Aij) + (=Aij + Aing) + (i)
= 0.

Note that for any x € @,_q; @iy Ki(A® C(T),Z/KZ), one has
Nx = 0. Therefore

BOtt((Ui,i+17 ceey Ui,i+1)7 (7Tt,' o ¢7 vy Tt © ¢))|'P = NBOtt(Ui,i+la 7Tt,-®¢)|7) =0
N N

(0.100)
Ty



i=0,1,2,..,n—1.
Note that, by the assumption (e0.39),

ts om0 p(h) > A(h) for all he ), (e0.101)

where t; is the normalized trace on M, , 1 <s < F(2).

By applying ??, using (e0.101), (e0.99) and (e0.100), there exists a
continuous path of unitaries, {U; ;41(t) : t € [t;, tir1]} € F2 @ My(C)
such that

U;,i+1(ti) = ldremy(), Di,i+1(ti+1) = (ziw; wit121) ® Luy(c),

(e0.102)
and
||Ui,i+1(t)(7rti o ¢(f)7 ey ¢ti © ¢(f))0i,i+1(t)**(7rti o ¢(f)a ey ¢ti © ¢(f))|| <e€
N N
(e0.103)

for all f € F and for all t € [t;, ti11]. Define W € C @ My by

W(t) = (wizf @ 1, )Uiira(t) for all t € [ti, tirq],  (e0.104)
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i=0,1,...,n—1. Note that W(t;) = w;zf ® 1p,, i = 0,1,..., n. Note also
that
W(O) = W()ZEJk & ]‘MN = hO(WeZ:) X 1MN

and
W(1) = whz, ® 1y, = h1(wezl) @ 1p,.

So W € C ® Mp. One then checks that, by (¢0.56), (€0.103) , (e0.96)
and (e0.59), for t € [t;, tit1],

[W(t)((me 0 9)(F) @ Lmy )W (£)" — (e 0 ¥)(F) @ Lmyy || (0.105)
< W()((me 0 @)(F) @ Iy )W ()" — W(t)((mre; © 9)(F) @ Ly )W (1)
HW(t)(me, 0 9)(F)W(t)" — W(ti)my, 0 o) (F)W(5i)"
W () (e 0 9)(F) @ Lmy )W (8i)" — (wily; 0 9)(F)w}") @ 1y ||
+wi(me, 0 @) (F)w;" — e, 0 h(F)
Fme; 0 (F) — e 0 G(F)||
< €/164+¢€/32+0,+€1/16+€1/16 < €

for all f € F.
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