Lecture 4

Huaxin Lin

June 9th, 2015,

In this lecture, we will try to settle the following problem:

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^* -algebra.

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C*-algebra. Let $\phi, \psi : A \to C$ be two almost multiplicative c.c.p. maps,

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^* -algebra. Let $\phi, \psi : A \to C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex.

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^* -algebra. Let $\phi, \psi : A \to C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent?

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^* -algebra. Let $\phi, \psi : A \to C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent?

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^* -algebra. Let $\phi, \psi : A \to C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent? Most advanced

results are taken from a joint work with Gong and Niu.

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^* -algebra. Let $\phi, \psi : A \to C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent? Most advanced

results are taken from a joint work with Gong and Niu. But first we will establish some Bott-map related existence theorems.

Let A be a unital separable amenable residually finite dimensional C^* -algebra with UCT,

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G = \mathbb{Z}^r \oplus \text{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G = \mathbb{Z}^r \oplus \text{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers. For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$

Let A be a unital separable amenable residually finite dimensional C^* -algebra with UCT, let $G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers. For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$,

Let A be a unital separable amenable residually finite dimensional C^* -algebra with UCT, let $G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers. For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N_0, N_1, ..., N_k$ and unital homomorphisms $h_j : A \to M_{N_i}, j = 1, 2, ..., k$

Let A be a unital separable amenable residually finite dimensional C^* -algebra with UCT, let $G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers. For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N_0, N_1, ..., N_k$ and unital homomorphisms $h_j : A \to M_{N_j}, j = 1, 2, ..., k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $|\kappa([1_A])| = J_1$

Let A be a unital separable amenable residually finite dimensional C^* -algebra with UCT, let $G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers. For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N_0, N_1, ..., N_k$ and unital homomorphisms $h_j : A \to M_{N_j}, j = 1, 2, ..., k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $|\kappa([1_A])| = J_1$ and

$$J_0 = \max\{|\kappa(g_i)| : g_i = (\overbrace{0,...,0}^{i-1}, 1, 0, ..., 0) \in \mathbb{Z}^r : 1 \le i \le r\}, \quad (e \ 0.1)$$

Let A be a unital separable amenable residually finite dimensional C^* -algebra with UCT, let $G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers. For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N_0, N_1, ..., N_k$ and unital homomorphisms $h_j : A \to M_{N_j}, j = 1, 2, ..., k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $|\kappa([1_A])| = J_1$ and

$$J_0 = \max\{|\kappa(g_i)| : g_i = (\overbrace{0,...,0}^{i-1}, 1, 0, ..., 0) \in \mathbb{Z}^r : 1 \le i \le r\}, \quad (e\,0.1)$$

there exists a δ -*G*-multiplicative contractive completely positive linear map $\Phi : A \to M_{N_0+\kappa([1_A])}$,

Let A be a unital separable amenable residually finite dimensional C^* -algebra with UCT, let $G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup with $[1_A] \in G$ and let $J_0, J_1 \ge 0$ be integers. For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N_0, N_1, ..., N_k$ and unital homomorphisms $h_j : A \to M_{N_j}, j = 1, 2, ..., k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $|\kappa([1_A])| = J_1$ and

$$J_0 = \max\{|\kappa(g_i)| : g_i = (\overbrace{0,...,0}^{i-1}, 1, 0, ..., 0) \in \mathbb{Z}^r : 1 \le i \le r\}, \quad (e\,0.1)$$

there exists a δ -G-multiplicative contractive completely positive linear map $\Phi : A \to M_{N_0+\kappa([1_A])}$, such that

$$[\Phi]|_{\mathcal{P}} = (\kappa + [h_1] + [h_2] \cdots + [h_k])|_{\mathcal{P}}.$$
 (e0.2)

It follows from 6.1.11 of [Linbook] that,

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$)

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism.

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa}: A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa}: A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds.

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$.

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}, i = 1, 2, ..., k$.

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}, i = 1, 2, ..., k$. Let $N_i = N_{\kappa_i}, i = 1, 2, ...k$.

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}, i = 1, 2, ..., k$. Let $N_i = N_{\kappa_i}, i = 1, 2, ...k$. Note that $N_i = J_1 + n(\kappa_i)$, if $\kappa([1_A]) = J_1$,

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa}: A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}, i = 1, 2, ..., k$. Let $N_i = N_{\kappa_i}, i = 1, 2, ...k$. Note that $N_i = J_1 + n(\kappa_i)$, if $\kappa([1_A]) = J_1$, and $N_i = -J_1 + n(\kappa_i)$,

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}$, i = 1, 2, ..., k. Let $N_i = N_{\kappa_i}$, i = 1, 2, ..., k. Note that $N_i = J_1 + n(\kappa_i)$, if $\kappa([1_A]) = J_1$, and $N_i = -J_1 + n(\kappa_i)$, if $\kappa([1_A]) = -J_1$.

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}$, i = 1, 2, ..., k. Let $N_i = N_{\kappa_i}$, i = 1, 2, ..., k. Note that $N_i = J_1 + n(\kappa_i)$, if $\kappa([1_A]) = J_1$, and $N_i = -J_1 + n(\kappa_i)$, if $\kappa([1_A]) = -J_1$. Define

$$N_0 = \sum_{i=1}^{\kappa} N_i$$

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}$, i = 1, 2, ..., k. Let $N_i = N_{\kappa_i}$, i = 1, 2, ..., k. Note that $N_i = J_1 + n(\kappa_i)$, if $\kappa([1_A]) = J_1$, and $N_i = -J_1 + n(\kappa_i)$, if $\kappa([1_A]) = -J_1$. Define

$$N_0=\sum_{i=1}^{n}N_i.$$

If $\kappa = \kappa_i$, define $\Phi : A \to M_{N_0 + \kappa([1_A])}$ by

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}$, i = 1, 2, ..., k. Let $N_i = N_{\kappa_i}$, i = 1, 2, ..., k. Note that $N_i = J_1 + n(\kappa_i)$, if $\kappa([1_A]) = J_1$, and $N_i = -J_1 + n(\kappa_i)$, if $\kappa([1_A]) = -J_1$. Define

$$N_0=\sum_{i=1}^{n}N_i.$$

If $\kappa = \kappa_i$, define $\Phi : A \to M_{N_0 + \kappa([1_A])}$ by

$$\Phi = L_{\kappa_i} + \sum_{j \neq i} h_j.$$

It follows from 6.1.11 of [Linbook] that, for each such κ , there is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $L_{\kappa}: A \to M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$[L_{\kappa}]|_{\mathcal{P}} = (\kappa + [h_{\kappa}])|_{\mathcal{P}}, \qquad (e \, 0.3)$$

where $h_{\kappa} : A \to M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\kappa|_{\mathcal{P}}$ so that (e0.1) holds. Say these are given by $\kappa_1, \kappa_2, ..., \kappa_k$. Set $h_i = h_{\kappa_i}$, i = 1, 2, ..., k. Let $N_i = N_{\kappa_i}$, i = 1, 2, ..., k. Note that $N_i = J_1 + n(\kappa_i)$, if $\kappa([1_A]) = J_1$, and $N_i = -J_1 + n(\kappa_i)$, if $\kappa([1_A]) = -J_1$. Define

$$N_0=\sum_{i=1}^{n}N_i.$$

If $\kappa = \kappa_i$, define $\Phi : A \to M_{N_0 + \kappa([1_A])}$ by

$$\Phi = L_{\kappa_i} + \sum_{j \neq i} h_j.$$

Lemma **4.2.** Let A be a unital C*-algebra as in 4.1
Let A be a unital C^{*}-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \text{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup.

Let A be a unital C*-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \text{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \ge 0$, i = 1, 2, ..., r, satisfying the following:

Let A be a unital C*-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \ge 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$

Let A be a unital C*-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \ge 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$,

Let A be a unital C*-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \ge 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \ge 1$, i = 1, 2, ..., r, satisfying the following:

Let A be a unital C^* -algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \geq 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1$, i = 1, 2, ..., r, satisfying the following: Let $\kappa \in \operatorname{Hom}_{\Lambda}(K(A), K(\mathcal{K}))$ and $S_i = \kappa(g_i)$,

Let A be a unital C*-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \geq 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1$, i = 1, 2, ..., r, satisfying the following: Let $\kappa \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_i = \kappa(g_i)$, where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$,

Let A be a unital C*-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \operatorname{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \geq 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1$, i = 1, 2, ..., r, satisfying the following: Let $\kappa \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_i = \kappa(g_i)$, where i-1 $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$, there exists a unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $L : A \to M_{N_1}$

Let A be a unital C^{*}-algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \text{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \geq 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset K(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i = 1, 2, ..., r$, satisfying the following: Let $\kappa \in Hom_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_i = \kappa(g_i)$, where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$, there exists a unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $L: A \rightarrow M_{N_1}$ and a homomorphism $h: A \rightarrow M_{N_1}$ such that

Let A be a unital C^* -algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \text{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \geq 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset K(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i = 1, 2, ..., r$, satisfying the following: Let $\kappa \in Hom_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_i = \kappa(g_i)$, where $g_i = (\widetilde{0,...,0},1,0,...,0) \in \mathbb{Z}^r, \,$ there exists a unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $L: A \rightarrow M_{N_1}$ and a homomorphism $h: A \rightarrow M_{N_1}$ such that

$$[L]|_{\mathcal{P}} = (\kappa + [h])|_{\mathcal{P}}, \qquad (e \, 0.4)$$

Let A be a unital C^* -algebra as in 4.1 and let $[1_A] \in G = \mathbb{Z}^r \oplus \text{Tor}(G) \subset K_0(A)$ be a finitely generated subgroup. There exists $\Lambda_i \geq 0$, i = 1, 2, ..., r, satisfying the following: For any $\delta > 0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset K(A)$ with $\mathcal{P} \cap K_0(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i = 1, 2, ..., r$, satisfying the following: Let $\kappa \in Hom_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_i = \kappa(g_i)$, where $g_i = (\widetilde{0,...,0},1,0,...,0) \in \mathbb{Z}^r, \ there \ exists \ a \ unital \ \mathcal{G} extsf{-}\delta extsf{-}multiplicative$ contractive completely positive linear map $L: A \rightarrow M_{N_1}$ and a homomorphism $h: A \rightarrow M_{N_1}$ such that

$$[L]|_{\mathcal{P}} = (\kappa + [h])|_{\mathcal{P}}, \qquad (e 0.4)$$

where $N_1 = \sum_{i=1}^{r} (N(\delta, \mathcal{G}, \mathcal{P}, i) \pm \Lambda_i) \cdot |S_i|$

Proof: Let $\psi_i^+: G \to \mathbb{Z}$ be a homomorphism defined by $\psi_i^+(g_i) = 1$, $\psi_i^+(g_j) = 0$, if $j \neq i$, and $\psi_i^+|_{\text{Tor}(G)} = 0$, and let $\psi_i^-(g_i) = -1$ and $\psi_i^-(g_j) = 0$, if $j \neq i$, and $\psi_i^-|_{\text{Tor}(G)} = 0$, i = 1, 2, ..., r. Note that $\psi_i^- = -\psi_i^+$, i = 1, 2, ..., r. Let $\Lambda_i = |\psi_i^+([1_A])|$, i = 1, 2, ..., r. Let $\kappa_i^+, \kappa_i^- \in Hom_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K})$ be such that $\kappa_i^+|_G = \psi_i^+$ and $\kappa_i^- = \psi_i^-$, i = 1, 2, ..., r. Let $N_0(i) \ge 1$ (in place of N_0) be required by ?? for δ, \mathcal{G} , $J_0 = 1$ and $J_1 = M_i$. Define $N(\delta, \mathcal{G}, \mathcal{P}, i) = N_0(i)$, i = 1, 2, ..., r. Let $\kappa \in Hom_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$. Then $\kappa|_G = \sum_{i=1}^r S_i \psi_i^+$, where $S_i = \kappa(g_i)$, i = 1, 2, ..., r.

By applying **4.1**, one obtains \mathcal{G} - δ -multiplicative contractive completely positive linear maps $L_i^{\pm} : A \to M_{N_0(i) + \kappa_i^{\pm}([1_A])}$ and a homomorphism $h_i^{\pm} : A \to M_{N_0(i)}$ such that

$$[L_i^{\pm}]|_{\mathcal{P}} = (\kappa_i^{\pm} + [h_i^{\pm}])|_{\mathcal{P}}, \quad i = 1, 2, ..., r.$$
 (e0.5)

Define $L = \sum_{i=1}^{r} L_i^{\pm,|S_i|}$, where $L^{\pm,|S_i|} : A \to M_{|S_i|N_0(i)}$ defined by

$$L^{\pm,|S_i|}(a) = \operatorname{diag}(\overbrace{L_i^{\pm}(a),...,L_i^{\pm}(a)}^{|S_i|})$$

for all $a \in A$. One checks that $L : A \to M_{N_1}$, where $N_1 = \sum_{i=1}^r |S_i| (\Lambda'_i + N(\delta, \mathcal{G}, \mathcal{P}, i) \text{ and } \Lambda'_i = \psi_i^+([1_A]), \text{ if } S_i > 0, \text{ or}$ $\Lambda'_i = -\psi_+^+([1_A]), \text{ if } S_i < 0, \text{ is a unital } \delta - \mathcal{G}$ -multiplicative contractive completely positive linear map and

$$[L]|_{\mathcal{P}} = (\kappa + [h])|_{\mathcal{P}}$$

for some homomorphism $h: A \to M_{N_1}$.

Let F_1 and F_2 be two finite dimensional C^* -algebras.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$egin{aligned} &\mathcal{A}=\mathcal{A}(F_1,F_2,\phi_0,\phi_1)=\ &\{(f,g)\in C([0,1],F_2)\oplus F_1:f(0)=\phi_0(g) \ \ ext{and} \ \ f(1)=\phi_1(g)\}. \end{aligned}$$

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$egin{aligned} & A = A(F_1,F_2,\phi_0,\phi_1) = \ & \{(f,g) \in C([0,1],F_2) \oplus F_1: f(0) = \phi_0(g) \ \ ext{and} \ \ f(1) = \phi_1(g) \}. \end{aligned}$$

These C^* -algebras are called Elliott-Thomsen building block.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$\begin{aligned} &A = A(F_1, F_2, \phi_0, \phi_1) = \\ &\{(f,g) \in C([0,1], F_2) \oplus F_1 : f(0) = \phi_0(g) \text{ and } f(1) = \phi_1(g)\}. \end{aligned}$$

These C^* -algebras are called Elliott-Thomsen building block. The class of all C^* -algebras which are finite dimensional or the above form will be denoted by C.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$\begin{aligned} &A = A(F_1, F_2, \phi_0, \phi_1) = \\ &\{(f,g) \in C([0,1], F_2) \oplus F_1 : f(0) = \phi_0(g) \ \text{and} \ f(1) = \phi_1(g)\}. \end{aligned}$$

These C^* -algebras are called Elliott-Thomsen building block. The class of all C^* -algebras which are finite dimensional or the above form will be denoted by C. A is said to be *minimal*, if ker $\phi_0 \cap \text{ker}\phi_1 = \{0\}$.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$\begin{aligned} &A = A(F_1, F_2, \phi_0, \phi_1) = \\ &\{(f,g) \in C([0,1], F_2) \oplus F_1 : f(0) = \phi_0(g) \ \text{and} \ f(1) = \phi_1(g)\}. \end{aligned}$$

These C*-algebras are called Elliott-Thomsen building block. The class of all C*-algebras which are finite dimensional or the above form will be denoted by C. A is said to be *minimal*, if $\ker \phi_0 \cap \ker \phi_1 = \{0\}$. For $t \in (0, 1)$, define $\pi_t : A \to F_2$ by $\pi_t((f, g)) = f(t)$ for all $(f, g) \in A$.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$\begin{aligned} & A = A(F_1, F_2, \phi_0, \phi_1) = \\ & \{(f,g) \in C([0,1], F_2) \oplus F_1 : f(0) = \phi_0(g) \text{ and } f(1) = \phi_1(g) \}. \end{aligned}$$

These *C**-algebras are called Elliott-Thomsen building block. The class of all *C**-algebras which are finite dimensional or the above form will be denoted by *C*. *A* is said to be *minimal*, if $\ker \phi_0 \cap \ker \phi_1 = \{0\}$. For $t \in (0, 1)$, define $\pi_t : A \to F_2$ by $\pi_t((f, g)) = f(t)$ for all $(f, g) \in A$. If t = 0, define $\pi_0 : A \to \phi_0(F_1) \subset F_2$ by $\pi_0((f, g)) = \phi_0(g)$ for all $(f, g) \in A$.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$\begin{aligned} &A = A(F_1, F_2, \phi_0, \phi_1) = \\ &\{(f, g) \in C([0, 1], F_2) \oplus F_1 : f(0) = \phi_0(g) \ \text{and} \ f(1) = \phi_1(g)\}. \end{aligned}$$

These *C**-algebras are called Elliott-Thomsen building block. The class of all *C**-algebras which are finite dimensional or the above form will be denoted by *C*. *A* is said to be *minimal*, if ker $\phi_0 \cap$ ker $\phi_1 = \{0\}$. For $t \in (0, 1)$, define $\pi_t : A \to F_2$ by $\pi_t((f, g)) = f(t)$ for all $(f, g) \in A$. If t = 0, define $\pi_0 : A \to \phi_0(F_1) \subset F_2$ by $\pi_0((f, g)) = \phi_0(g)$ for all $(f, g) \in A$. If t = 1, define $\pi_1 : A \to \phi_1(F_1) \subset F_2$ by $\pi_1((f, g)) = \phi_1(g))$ for all $(f, g) \in A$.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$\begin{aligned} &A = A(F_1, F_2, \phi_0, \phi_1) = \\ &\{(f, g) \in C([0, 1], F_2) \oplus F_1 : f(0) = \phi_0(g) \ \text{and} \ f(1) = \phi_1(g)\}. \end{aligned}$$

These *C**-algebras are called Elliott-Thomsen building block. The class of all *C**-algebras which are finite dimensional or the above form will be denoted by *C*. *A* is said to be *minimal*, if ker $\phi_0 \cap$ ker $\phi_1 = \{0\}$. For $t \in (0, 1)$, define $\pi_t : A \to F_2$ by $\pi_t((f, g)) = f(t)$ for all $(f, g) \in A$. If t = 0, define $\pi_0 : A \to \phi_0(F_1) \subset F_2$ by $\pi_0((f, g)) = \phi_0(g)$ for all $(f, g) \in A$. If t = 1, define $\pi_1 : A \to \phi_1(F_1) \subset F_2$ by $\pi_1((f, g)) = \phi_1(g))$ for all $(f, g) \in A$. In what follows, we will call π_t as point-evaluation of *A* at *t*.

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$egin{aligned} &A = A(F_1,F_2,\phi_0,\phi_1) = \ &\{(f,g) \in C([0,1],F_2) \oplus F_1: f(0) = \phi_0(g) \ \ ext{and} \ \ f(1) = \phi_1(g)\}. \end{aligned}$$

These C*-algebras are called Elliott-Thomsen building block. The class of all C*-algebras which are finite dimensional or the above form will be denoted by C. A is said to be *minimal*, if ker $\phi_0 \cap$ ker $\phi_1 = \{0\}$. For $t \in (0,1)$, define $\pi_t : A \to F_2$ by $\pi_t((f,g)) = f(t)$ for all $(f,g) \in A$. If t = 0, define $\pi_0 : A \to \phi_0(F_1) \subset F_2$ by $\pi_0((f,g)) = \phi_0(g)$ for all $(f,g) \in A$. If t = 1, define $\pi_1 : A \to \phi_1(F_1) \subset F_2$ by $\pi_1((f,g)) = \phi_1(g))$ for all $(f,g) \in A$. In what follows, we will call π_t as point-evaluation of A at t. There is a canonical map $\pi_e : A \to F_1$ defined by $\pi_e(f,g) = g$ for all pair $(f,g) \in A$. It is a surjective map.

Huaxin Lin

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Denote the mapping torus M_{ϕ_1,ϕ_2} by

$$egin{aligned} &A = A(F_1,F_2,\phi_0,\phi_1) = \ &\{(f,g) \in C([0,1],F_2) \oplus F_1: f(0) = \phi_0(g) \ \ ext{and} \ \ f(1) = \phi_1(g)\}. \end{aligned}$$

These C*-algebras are called Elliott-Thomsen building block. The class of all C*-algebras which are finite dimensional or the above form will be denoted by C. A is said to be *minimal*, if ker $\phi_0 \cap$ ker $\phi_1 = \{0\}$. For $t \in (0,1)$, define $\pi_t : A \to F_2$ by $\pi_t((f,g)) = f(t)$ for all $(f,g) \in A$. If t = 0, define $\pi_0 : A \to \phi_0(F_1) \subset F_2$ by $\pi_0((f,g)) = \phi_0(g)$ for all $(f,g) \in A$. If t = 1, define $\pi_1 : A \to \phi_1(F_1) \subset F_2$ by $\pi_1((f,g)) = \phi_1(g))$ for all $(f,g) \in A$. In what follows, we will call π_t as point-evaluation of A at t. There is a canonical map $\pi_e : A \to F_1$ defined by $\pi_e(f,g) = g$ for all pair $(f,g) \in A$. It is a surjective map.

Huaxin Lin

C^* -algebras in C are also called 1-dimensional NCCW.

 C^* -algebras in C are also called 1-dimensional NCCW. Denote by \mathcal{D}_0 the class of all finite dimensional C^* -algebras.

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected,

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$,

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_X > 0$ such that, for any $0 < d \leq d_X$, there exists $s_*^d : \overline{X^d} \to Z$ such that

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_X > 0$ such that, for any $0 < d \leq d_X$, there exists $s_*^d : \overline{X^d} \to Z$ such that

$$s^d_*(x) = x$$
 for all $x \in Z$ and (e0.6)

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_X > 0$ such that, for any $0 < d \leq d_X$, there exists $s_*^d : \overline{X^d} \to Z$ such that

$$s^d_*(x) = x \text{ for all } x \in Z \text{ and}$$
(e0.6)
$$\lim_{d \to 0} \|f\|_Z \circ s^d_* - f\|_{\overline{X^d}} \| = 0 \text{ for all } f \in C(X, F),$$
(e0.7)

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_X > 0$ such that, for any $0 < d \leq d_X$, there exists $s_*^d : \overline{X^d} \to Z$ such that

$$s^d_*(x) = x \text{ for all } x \in Z \text{ and}$$
(e0.6)
$$\lim_{d \to 0} ||f|_Z \circ s^d_* - f|_{\overline{X^d}}|| = 0 \text{ for all } f \in C(X, F),$$
(e0.7)

where $X^d = \{x \in X : \operatorname{dist}(x, Z) < d\}.$

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_X > 0$ such that, for any $0 < d \leq d_X$, there exists $s_*^d : \overline{X^d} \to Z$ such that

$$s^d_*(x) = x \text{ for all } x \in Z \text{ and}$$
(e0.6)
$$\lim_{d \to 0} ||f|_Z \circ s^d_* - f|_{\overline{X^d}}|| = 0 \text{ for all } f \in C(X, F),$$
(e0.7)

where $X^d = \{x \in X : dist(x, Z) < d\}$. We also assume that, for any $0 < d < d_X/2$ and for any $d > \delta > 0$,
C^* -algebras in C are also called 1-dimensional NCCW. Denote by \mathcal{D}_0 the class of all finite dimensional C^* -algebras. For $k \ge 1$, denote by \mathcal{D}_k the class of all C^* -algebras with the form:

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_X > 0$ such that, for any $0 < d \leq d_X$, there exists $s_*^d : \overline{X^d} \to Z$ such that

$$s^d_*(x) = x \text{ for all } x \in Z \text{ and}$$
(e0.6)
$$\lim_{d \to 0} \|f\|_Z \circ s^d_* - f\|_{\overline{X^d}} \| = 0 \text{ for all } f \in C(X, F),$$
(e0.7)

where $X^d = \{x \in X : \operatorname{dist}(x, Z) < d\}$. We also assume that, for any $0 < d < d_X/2$ and for any $d > \delta > 0$, there is a homeomorphism $r : X \setminus X^{d-\delta} \to X \setminus X^d$

 C^* -algebras in C are also called 1-dimensional NCCW. Denote by \mathcal{D}_0 the class of all finite dimensional C^* -algebras. For $k \ge 1$, denote by \mathcal{D}_k the class of all C^* -algebras with the form:

$$A = \{(f, a) \in C(X, F) \oplus B : f|_Z = \Gamma(a)\},\$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \setminus Z$ is connected, $\Gamma : B \to C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_X > 0$ such that, for any $0 < d \leq d_X$, there exists $s_*^d : \overline{X^d} \to Z$ such that

$$s^d_*(x) = x \text{ for all } x \in Z \text{ and}$$
(e0.6)
$$\lim_{d \to 0} \|f\|_Z \circ s^d_* - f\|_{\overline{X^d}} \| = 0 \text{ for all } f \in C(X, F),$$
(e0.7)

where $X^d = \{x \in X : \operatorname{dist}(x, Z) < d\}$. We also assume that, for any $0 < d < d_X/2$ and for any $d > \delta > 0$, there is a homeomorphism $r : X \setminus X^{d-\delta} \to X \setminus X^d$ such that

dist
$$(r(x), x) < \delta$$
 for all $x \in X \setminus X^{d-\delta}$. (e0.8)

Examples: $\mathcal{C} \subset \mathcal{D}_1$ (with $X = \mathbb{I} = [0, 1]$ and $Z = \partial(\mathbb{I}) = \{0\} \cup \{1\}$.).

Examples: $C \subset D_1$ (with $X = \mathbb{I} = [0, 1]$ and $Z = \partial(\mathbb{I}) = \{0\} \cup \{1\}$.). Let $d \ge 1, X = \mathbb{I}^d$, the *d*-dimensional disk, $Z = \partial(X)$,

Examples: $\mathcal{C} \subset \mathcal{D}_1$ (with $X = \mathbb{I} = [0, 1]$ and $Z = \partial(\mathbb{I}) = \{0\} \cup \{1\}$.). Let $d \ge 1, X = \mathbb{I}^d$, the *d*-dimensional disk, $Z = \partial(X)$, *F* be a finite dimensional C^* -algebra and let $B \in \mathcal{D}_{d-1}$.

$$A = \{(f, b) \in C(X, F) \oplus B : f|_{\partial(X)} = \Gamma(b)\}.$$

$$A = \{(f, b) \in C(X, F) \oplus B : f|_{\partial(X)} = \Gamma(b)\}.$$

Then $A \in \mathcal{D}_d$.

$$A = \{(f, b) \in C(X, F) \oplus B : f|_{\partial(X)} = \Gamma(b)\}.$$

Then $A \in \mathcal{D}_d$. Note that $C(Y, F) \in \mathcal{D}_1$.

$$A = \{(f, b) \in C(X, F) \oplus B : f|_{\partial(X)} = \Gamma(b)\}.$$

Then $A \in \mathcal{D}_d$. Note that $C(Y, F) \in \mathcal{D}_1$.

$$A = \{(f, b) \in C(X, F) \oplus B : f|_{\partial(X)} = \Gamma(b)\}.$$

Then $A \in \mathcal{D}_d$. Note that $C(Y, F) \in \mathcal{D}_1$.

All theorems stated for $PM_r(C(X))P$ so far

$$A = \{(f, b) \in C(X, F) \oplus B : f|_{\partial(X)} = \Gamma(b)\}.$$

Then $A \in \mathcal{D}_d$. Note that $C(Y, F) \in \mathcal{D}_1$.

All theorems stated for $PM_r(C(X))P$ so far works for C^* -algebras in A_d for all $d \ge 1$. (Gong-L-Niu)

We have a version of the following when A has the form $PM_r(C(X))P$.

We have a version of the following when A has the form $PM_r(C(X))P$.

Lemma 4.3.

Let $A \in \mathcal{D}_s$ be a unital C^* -algebra and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a positive map. For any $\epsilon > 0$ and any finite subset \mathcal{F} , there exist a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}$ and an integer $L \ge 1$ satisfying the following: For any unital homomorphism $\phi : A \to M_k$ and any unital homomorphism $\psi : A \to M_R$ for some $R \ge Lk$ such that

$$\mathrm{tr}\circ\psi(h)\geq\Delta(\hat{h})$$
 for all $h\in\mathcal{H},$ (e0.9)

there exist a unital homomorphism $\phi_0:A\to M_{R-k}$ and a unitary $u\in M_R$ such that

$$\|\operatorname{Ad} u \circ \operatorname{diag}(\phi(f), \phi_0(f)) - \psi(f)\| < \epsilon \qquad (e \, 0.10)$$

for all $f \in \mathcal{F}$.

Let A be a unital C^{*}-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset.

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} ,

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A)).$

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map.

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$,

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following:

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$K = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e \ 0.11)$$

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$\mathcal{K} = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e0.11)$$

where
$$g_i = (\overbrace{0,...,0}^{i-1}, 1, 0, ..., 0) \in \mathbb{Z}^r$$
.

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$\mathcal{K} = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e \ 0.11)$$

where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$. Then for any unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $\phi : A \to M_R$ such that

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$\mathcal{K} = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e \ 0.11)$$

where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$. Then for any unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $\phi : A \to M_R$ such that $R \ge N(K+1)$ and

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$\mathcal{K} = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e \ 0.11)$$

where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$. Then for any unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $\phi : A \to M_R$ such that $R \ge N(K+1)$ and $\operatorname{tr} \circ \phi(h) \ge \Delta(\hat{h})$ for all $h \in \mathcal{H}$,

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$\mathcal{K} = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e \ 0.11)$$

where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$. Then for any unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $\phi : A \to M_R$ such that $R \ge N(K + 1)$ and $\operatorname{tr} \circ \phi(h) \ge \Delta(\hat{h})$ for all $h \in \mathcal{H}$, there exists a unitary $u \in M_R$ such that

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$\mathcal{K} = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e0.11)$$

where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$. Then for any unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $\phi : A \to M_R$ such that $R \ge N(K+1)$ and $\operatorname{tr} \circ \phi(h) \ge \Delta(\hat{h})$ for all $h \in \mathcal{H}$, there exists a unitary $u \in M_R$ such that

$$\|[\phi(f), u]\| < \epsilon \text{ for all } f \in \mathcal{F} \text{ and}$$
 (e0.12)

Let A be a unital C*-algebra in \mathcal{D}_s and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P} , $G_1 = G \cap K_1(A) = Z^r \oplus \operatorname{Tor}(K_1(A))$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_+ \setminus \{0\}$ and an integer $N \ge 1$ satisfying the following: Let $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$\mathcal{K} = \max\{|\kappa(\beta(g_i))| : 1 \le i \le r\}, \quad (e \ 0.11)$$

where $g_i = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^r$. Then for any unital δ - \mathcal{G} -multiplicative contractive completely positive linear map $\phi : A \to M_R$ such that $R \ge N(K+1)$ and $\operatorname{tr} \circ \phi(h) \ge \Delta(\hat{h})$ for all $h \in \mathcal{H}$, there exists a unitary $u \in M_R$ such that

$$\begin{split} \|[\phi(f), u]\| &< \epsilon \text{ for all } f \in \mathcal{F} \text{ and} \\ & \text{Bott}(\phi, u)|_{\mathcal{P}} = \kappa \circ \beta|_{\mathcal{P}}. \end{split} \tag{e0.12}$$

Proof: To simplify notation, without loss of generality, we may assume that \mathcal{F} is a subset of the unit ball. Let $\Delta_1 = (1/8)\Delta$ and $\Delta_2 = (1/16)\Delta$. Let $\epsilon_0 > 0$ and $\mathcal{G}_0 \subset A$ be a finite subset satisfy the following: If $\phi' : A \to B$ (for any unital C^* -algebra B) is a unital ϵ_0 - \mathcal{G}_0 -multiplicative contractive completely positive linear map and $u' \in B$ is a unitary such that

$$\|\phi'(g)u'-u'\phi'(g)\|<4\epsilon_0 \text{ for all } g\in\mathcal{G}_0, \tag{e0.14}$$

then $Bott(\phi', u')|_{\mathcal{P}}$ is well defined. Moreover, if $\phi' : A \to B$ is another unital ϵ_0 - \mathcal{G}_0 -multiplicative contractive completely positive linear map then

$$Bott(\phi', u')|_{\mathcal{P}} = Bott(\phi'', u'')|_{\mathcal{P}}, \qquad (e\,0.15)$$

provided that

$$\|\phi'(g) - \phi''(g)\| < 4\epsilon_0 \text{ and } \|u' - u''\| < 4\epsilon_0 \text{ for all } g \in \mathcal{G}_0.$$
 (e0.16)

We may assume that $1_A \in \mathcal{G}_0$. Let

Huaxin Lin	Lecture 4	June 9th, 2015,	10 / 20
------------	-----------	-----------------	---------

$$\mathcal{G}_0' = \{g \otimes f : g \in \mathcal{G}_0 \text{ and } f = \{1_{C(\mathbb{T})}, z, z^*\}.$$

where z is the identity function on the unit circle \mathbb{T} . We also assume that if $\Psi' : A \otimes C(\mathbb{T}) \to C$ (to some unital C^* -algebra C) is a $\mathcal{G}'_0\text{-}\epsilon_0\text{-multiplicative contractive completely positive linear map, then there exist a unitary <math>u' \in C$ such that

$$\|\Psi'(1 \otimes z) - u'\| < 4\epsilon_0.$$
 (e0.17)

Without loss of generality, we may assume that \mathcal{G}_0 is in the unital ball of A. Let $\epsilon_1 = \min\{\epsilon/64, \epsilon_0/512\}$ and $\mathcal{F}_1 = \mathcal{F} \cup \mathcal{G}_0$.

Let $\mathcal{H}_0 \subset A_+ \setminus \{0\}$ (in place of \mathcal{H}) be a finite subset and $L \ge 1$ be an integer required by **4.3** for ϵ_1 (in place of ϵ) and \mathcal{F}_1 (in place of \mathcal{F}) as well as Δ_2 (in place of Δ).

Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ), $\mathcal{P}_1 \subset \underline{K}(A)$ (in place of \mathcal{P}) be a finite subset, $\mathcal{H}_2 \subset A_{s.a.}$ be a finite subset and $1 > \sigma > 0$ be required by ?? for ϵ_1 (in place of ϵ), \mathcal{F}_1 (in place of \mathcal{F}) and Δ_1 . We may assume that $[1_A] \in \mathcal{P}_2, \mathcal{H}_2$ is in the unit ball of A and $\mathcal{H}_0 \subset \mathcal{H}_1$. Without loss of generality, we may assume that $\delta_1, \sigma < \epsilon_1/16$ and $\mathcal{F}_1 \subset \mathcal{G}_1$. Let $\mathcal{P}_2 = \mathcal{P} \cup \mathcal{P}_1$.

Suppose that A has irreducible representations of rank $r_1, r_2, ..., r_k$. Fix one irreducible representation $\pi_0 : A \to M_{r_1}$. Let $N(p) \ge 1$ (in place of $N(\mathcal{P}_0)$) and $\mathcal{H}_0 \subset A^1_+ \setminus \{0\}$ (in place of \mathcal{H}) be a finite subset required by **??** for $\{1_A\}$ (in place of \mathcal{P}_0) and $(1/3)\Delta$.

Let $G_0 = G \cap \mathcal{K}_0(A)$ and write $G_0 = \mathbb{Z}^{s_1} \oplus \mathbb{Z}^{s_2} \oplus \operatorname{Tor}(G_0)$, where

 $\mathbb{Z}^{s_2} \oplus \operatorname{Tor}(G_0) \subset \ker \rho_A$. Let $x_j = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{Z}^{s_1} \oplus \mathbb{Z}^{s_2}$, $j = 1, 2, ..., s_2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$ and $A \otimes C(\mathbb{T})$ has irreducible representations of rank $r_1, r_2, ..., r_k$. Let

$$\bar{r} = \max\{|(\pi_0)_{*0}(x_j)| : 0 \le j \le s_1 + s_2\}.$$

Let $\mathcal{P}_3 \subset \underline{K}(A \otimes C(\mathbb{T}))$ be a finite subset set containing \mathcal{P}_2 , $\{\beta(g_j) : 1 \leq j \leq r\}$ and a finite subset which generates $\beta(\operatorname{Tor}(G_1))$. Choose $\delta_2 > 0$ and finite subset

Huaxin Lin

$$\overline{\mathcal{G}} = \{g \otimes f : g \in \mathcal{G}_2, \ f \in \{1, z, z^*\}\}$$

in $A \otimes C(\mathbb{T})$, where $\mathcal{G}_2 \subset A$ is a finite subset such that, for any unital $\delta_2 - \overline{\mathcal{G}}$ -multiplicative contractive completely positive linear map $\Phi' : A \otimes C(\mathbb{T}) \to C$ (for any unital C^* -algebra C with $T(C) \neq \emptyset$), $[\Phi']|_{\mathcal{P}_3}$ is well defined and

$$[\Phi']|_{\operatorname{Tor}(G_0)\oplus\beta(\operatorname{Tor}(G_1)}=0.$$
 (e 0.18)

We may assume $\mathcal{G}_2 \supset \mathcal{G}_1 \cup \mathcal{F}_1$. Let $\sigma_1 = \min\{\Delta_2(\hat{h}) : h \in \mathcal{H}_1\}$. Note $K_0(A \otimes C(\mathbb{T})) = K_0(A) \oplus \beta(K_1(A))$ and $\underline{K}(A \otimes C(\mathbb{T})) = \underline{K}(A) \oplus \beta(\underline{K}(A))$. Consider the subgroup of $K_0(A \otimes C(\mathbb{T}))$:

 $\mathbb{Z}^{s_1} \oplus \mathbb{Z}^{s_2} \oplus \mathbb{Z}^r \oplus \operatorname{Tor}(K_0(A) \oplus \beta(\operatorname{Tor}(K_1(A))).$

Let $\delta_3 = \min{\{\delta_1, \delta_2\}}$. Let $N(\delta_3, \overline{\mathcal{G}}, \mathcal{P}_3, i)$ and $\Lambda_i, i = 1, 2, ..., s_1 + s_2 + r$, be required by **4.2.** (for $A \otimes C(\mathbb{T})$). Choose an integer $n_1 \ge N(p)$ such that

$$\frac{(\sum_{i=1}^{s_1+s_2+r} N(\delta_3, \overline{\mathcal{G}}, \mathcal{P}_3, i) + 1 + \Lambda_i)N(p)}{n_1 - 1} < \min\{\sigma/16, \sigma_1/2\}. \ (e\,0.19)$$

Choose $n > n_1$ such that

$$\frac{n_1+2}{n} < \min\{\sigma/16, \sigma_1/2, 1/(L+1)\}.$$
 (e0.20)

Let $\epsilon_2 > 0$ and let $\mathcal{F}_2 \subset A$ be a finite subset such that $[\Psi]|_{\mathcal{P}_2}$ is well defined.

Let
$$\epsilon_3 = \min\{\epsilon_2/2, \epsilon_1\}$$
 and $\mathcal{F}_3 = \mathcal{F}_1 \cup \mathcal{F}_2$.

Let $\delta_4 > 0$ (in place of δ), $\mathcal{G}_3 \subset A$ (in place of \mathcal{G}) be a finite subset and let $\mathcal{H}_3 \subset A_+ \setminus \{0\}$ (in place of \mathcal{H}_2) required by Cor. 2.5 for ϵ_3 (in place of ϵ), $\mathcal{F}_3 \cup \mathcal{H}_1$ (in place of \mathcal{F}), $\delta_3/2$ (in place of ϵ_0), \mathcal{G}_2 (in place of \mathcal{G}_0), Δ , \mathcal{H}_1 (in place of \mathcal{H}), min $\{\sigma/16, \sigma_1/2\}$ (in place of σ) and n^2 (in place of \mathcal{K}) required by Cor. 2.5 (with $L_1 = L_2$). Let $\mathcal{G} = \mathcal{F}_3 \cup \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3$ and let $\delta = \min\{\epsilon_3/16, \delta_4, \delta_3/16\}$. Let $\mathcal{G}_5 = \{g \otimes f : g \in \mathcal{G}_4, f \in \{1, z, z^*\}\}$. Let $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_0$. Define $N_0 = (n+1)N(p)(\sum_{i=1}^{s_1+s_2+r} N(\delta_3, \mathcal{G}_0, \mathcal{P}_3, i) + \Lambda_i + 1)$ and define $N = N_0 + N_0\overline{r}$. Fix any $\kappa \in KK(A \otimes C(\mathbb{T}), \mathbb{C})$ with

$$K = \max\{|\kappa(\beta(g_i)| : 1 \le j \le r\}.$$

Let R > N(K + 1). Suppose that $\phi : A \to M_R$ is a unital \mathcal{G} - δ -multiplicative contractive completely positive linear map such that

$$\operatorname{tr} \circ \phi(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}$. (e0.21)

Then, by Cor. 2.5, there exists mutually orthogonal projections $e_0, e_1, e_2, ..., e_n \in M_R$ such that $e_1, e_2, ..., e_n$ are equivalent, $\operatorname{tr}(e_0) < \min\{\sigma/64, \sigma_1/4\}$ and $e_0 + \sum_{i=1}^n e_i = 1_{M_R}$, and there exists a unital $\delta_3/2$ - \mathcal{G}_2 -multiplicative contractive completely positive linear map $\psi_0 : A \to e_0 M_R e_0$ and a unital homomorphism $\psi : A \to e_1 M_R e_1$ such that

$$\|\phi(f) - (\psi_0(f) \oplus \widetilde{\psi(f), \psi(f), ..., \psi(f)})\| < \epsilon_3 \text{ for all } f \in \mathcal{F}_3 \text{ and}(e0.22)$$

$$\operatorname{tr} \circ \psi(h) \ge \Delta(\hat{h})/3n \text{ for all } h \in \mathcal{H}(e0.23)$$

Let $\alpha \in Hom_{\Lambda}(\underline{K}(A \otimes C(\mathbb{T})), \underline{K}(M_r))$ be define as follows: $\alpha|_{\underline{K}(A)} = [\pi_0]$ and $\alpha|_{\beta(\underline{K}(A))} = \kappa|_{\beta(\underline{K}(A))}$. Let

 $\max\{|\kappa \circ \beta(g_i)| : i = 1, 2, ..., r, |\pi_0(x_j)| : 1 \le j \le s_1 + s_2\} \le \max\{K, \overline{r}\}.$

Applying we obtain a unital δ_3 - \mathcal{G} -multiplicative contractive completely positive linear map $\Psi : A \otimes C(\mathbb{T}) \to M_{N'_1}$, where

Huaxin Lin

 $N'_1 \leq N_1 = \sum_{j=1}^{s_1+s_2+r} N(\delta_3, \mathcal{G}_0, \mathcal{P}_3, j) + \Lambda_i) \max\{K, \overline{r}\}, \text{ and a}$ homomorphism $H_0: A \otimes C(\mathbb{T}) \to H_0(1_A) M_{N'_1} H_0(1_A)$ such that such that

$$[\Psi]|_{\mathcal{P}_3} = (\alpha + [H_0])|_{\mathcal{P}_3}.$$
 (e0.24)

In particular, since $[1_A] \in \mathcal{P}_2 \subset \mathcal{P}_3$,

$$\operatorname{rank}\Psi(1_A)=r_1+\operatorname{rank}(H_0).$$

Note that

$$\frac{N_1' + N(p)}{R} \le \frac{N_1 + N(p)}{N(K+1)} < 1/(n+1).$$
 (e0.25)

Let $R_1 = \operatorname{rank} e_1$. Then $R_1 \ge R/(n+1)$. So, from (e0.25) $R_1 \ge N_1 + N(p)$. In other words, $R_1 - N'_1 \ge N(p)$. Note that

$$t\circ\psi(\hat{g})\geq(1/3)\Delta(\hat{g}) \ ext{for all} \ g\in\mathcal{H}_0,$$

where t is the tracial state on M_{R_1} . By applying to the case that $\phi = \pi_0 \oplus H_0$ and $\mathcal{P}_0 = \{[\mathbf{1}_A]\}$, we obtain a unital homomorphism
$$h_{0}: A \otimes C(\mathbb{T}) \to M_{nR_{1}-N'_{1}}. \text{ Define } \psi'_{0}: A \otimes C(\mathbb{T}) \to e_{0}M_{R}e_{0} \text{ by}$$

$$\psi'_{0}(a \otimes f) = \psi_{0}(a) \cdot f(1) \cdot e_{0} \text{ for all } a \in A \text{ and } f \in C(\mathbb{T}), \text{ where } 1 \in \mathbb{T}.$$
Define $\psi': A \otimes C(\mathbb{T}) \to e_{1}M_{R}e_{1}$ by $\psi'(a \otimes f) = \psi(a) \cdot f(1) \cdot e_{0}$ for all $a \in A$ and $f \in C(\mathbb{T}).$ Let $E_{1} = \text{diag}(e_{1}, e_{2}, ..., e_{nn_{1}}).$
Define $L_{1}: A \to E_{1}M_{R}E_{1}$ by
$$L_{1}(a) = \pi_{0}(a) \oplus H_{0}|_{A}(a) \oplus h_{0}(a \otimes 1) \oplus (\psi(f), ..., \psi(f)) \text{ for } a \in A \text{ and } define \ L_{2}: A \to E_{1}M_{R}E_{1}$$
 by
$$L_{2}(a) = \Psi(a \otimes 1) \oplus h_{0}(a \otimes 1) \oplus (\psi(f), ..., \psi(f)) \text{ for } a \in A. \text{ Note that}$$

$$\begin{split} & [L_1]|_{\mathcal{P}_1} = [L_2]|_{\mathcal{P}_1} & (e\,0.26) \\ & \operatorname{tr} \circ L_1(h) \ge \Delta_1(\hat{h}), \ \operatorname{tr} \circ L_2(h) \ge \Delta_1(\hat{h}) \text{ for all } h \in \mathcal{H}_1 \text{ an(d0.27)} \\ & |\operatorname{tr} \circ L_1(g) - \operatorname{tr} \circ L_2(g)| < \sigma \text{ for all } g \in \mathcal{H}_2. \end{split}$$

It follows from **??** that there exists a unitary $w_1 \in E_1 M_R E_1$ such that

$$\|ad w_1 \circ L_2(a) - L_1(a)\| < \epsilon_1 \text{ for all } a \in \mathcal{F}_1.$$
 (e 0.29)
Lin Lecture 4 June 9th, 2015, 10 / 20

Huaxin Lin

Define $E_2 = (e_1 + e_2 + \dots + e_{n^2})$ and define $\Phi: A \to E_2 M_R E_2$ by

$$\Phi(f)(a) = \operatorname{diag}(\overbrace{\psi(a), \psi(a), \dots, \psi(a)}^{n^2}) \text{ for all } a \in A.$$
 (e0.30)

Then

$$\mathrm{tr}\circ\Phi(h)\geq\Delta_2(\hat{h})$$
 for all $h\in\mathcal{H}_0$ (e0.31)

By (e0.20), $\frac{n}{n_1+2} > L + 1$. By applying **4.3**, we obtain a unitary $w_2 \in E_2 M_R E_2$ and a unital homomorphism $H_1 : A \rightarrow (E_2 - E_1) M_R (E_2 - E_1)$ such that

$$\|\operatorname{ad} w_2 \circ \operatorname{diag}(L_1(a), H_1(a)) - \Phi(a)\| < \epsilon_1 ext{ for all } a \in \mathcal{F}_1.$$
 (e0.32)

Put

$$w=(e_0\oplus w_1\oplus (E_2-E_1))(e_0\oplus w_2)\in M_R.$$

Define $H'_1 : A \otimes C(\mathbb{T}) \to (E_2 - E_1)M_R(E_2 - E_1)$ by $H'_1(a \otimes f) = H_1(a) \cdot f(1) \cdot (E_2 - E_1)$ for all $a \in A$ and $f \in C(\mathbb{T})$. Define $\Psi_1: A o M_R$ by

$$\Psi_1(f) = \psi'_0(f) \oplus \Psi(f) \oplus h_0 \oplus \underbrace{\psi'(f), ..., \psi'(f)}^{n_1-1} \oplus H'_1(f) \quad (e0.33)$$

for all $f \in A \otimes C(\mathbb{T})$. It follows from (e0.29), (e0.32) and (e0.22) that

$$\|\phi(a) - w^* \Psi_1(a \otimes 1) w\| < \epsilon_1 + \epsilon_1 + \epsilon_3$$
 for all $a \in \mathcal{F}$. (e0.34)

Now let $v \in M_R$ be a unitary such that

$$\|\Psi_1(1 \otimes z) - v\| < 4\epsilon_1.$$
 (e0.35)

Put $u = w^* v w$. Then, we estimate that

$$\|[\phi(a), u]\| < \min\{\epsilon, \epsilon_0\} \text{ for all } a \in \mathcal{F}_1.$$
(e0.36)

Moreover, by (e0.29), (e0.24) and (e0.15),

Huaxin Lin

$$Bott(\phi, u)|_{\mathcal{P}} = \kappa \circ \beta|_{\mathcal{P}}.$$
 (e 0.37)
Lecture 4 June 9th, 2015, 11 / 20

Theorem 4.5. Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$.

Let $A \in D_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map.

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$,

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \gamma_2 > 0, \ \delta > 0$,

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0, \ a$ finite subset $\mathcal{G} \subset A$

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0, \ a$ finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$,

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0, \ a$ finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$,

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0, \ a$ finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A)

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$,

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following:

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$ for some $C \in \mathcal{C}$ such that

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$, $\gamma_1 > 0$, $\gamma_2 > 0$, $\delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$ for some $C \in \mathcal{C}$ such that

 $[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}},$

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$ for some $C \in \mathcal{C}$ such that

$$[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}}, \qquad (e\,0.38)$$

 $au(\phi(a)) \ge \Delta(a), \ au(\psi(a)) \ge \Delta(a), \ \ for \ all \ au \in T(\mathcal{C}), \ a \in \mathcal{H}_1,$

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$ for some $C \in \mathcal{C}$ such that

$$[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}}, \qquad (e\,0.38)$$

 $\begin{aligned} \tau(\phi(a)) \geq \Delta(a), \ \tau(\psi(a)) \geq \Delta(a), \quad \text{for all } \tau \in T(C), \ a \in \mathcal{H}_1, \\ (e \, 0.39) \\ |\tau \circ \phi(a) - \tau \circ \psi(a)| < \gamma_1, \ \text{for all } a \in \mathcal{H}_2, \end{aligned}$

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$ for some $C \in \mathcal{C}$ such that

$$[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}}, \qquad (e\,0.38)$$

$$\begin{split} \tau(\phi(a)) &\geq \Delta(a), \ \tau(\psi(a)) \geq \Delta(a), \quad \textit{for all } \tau \in \mathcal{T}(\mathcal{C}), \ a \in \mathcal{H}_1, \\ & (e\,0.39) \\ & |\tau \circ \phi(a) - \tau \circ \psi(a)| < \gamma_1, \ \textit{for all } a \in \mathcal{H}_2, \\ & \text{and } \operatorname{dist}(\phi^{\ddagger}(u), \psi^{\ddagger}(u)) < \gamma_2, \ \textit{for all } u \in \mathcal{U}, \end{split}$$

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$ for some $C \in \mathcal{C}$ such that

$$[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}}, \qquad (e\,0.38)$$

$$\begin{split} \tau(\phi(\mathbf{a})) &\geq \Delta(\mathbf{a}), \ \tau(\psi(\mathbf{a})) \geq \Delta(\mathbf{a}), \ \text{ for all } \tau \in T(\mathcal{C}), \ \mathbf{a} \in \mathcal{H}_1, \\ & (e0.39) \\ & |\tau \circ \phi(\mathbf{a}) - \tau \circ \psi(\mathbf{a})| < \gamma_1, \ \text{ for all } \mathbf{a} \in \mathcal{H}_2, \\ & \text{and } \operatorname{dist}(\phi^{\ddagger}(u), \psi^{\ddagger}(u)) < \gamma_2, \ \text{ for all } u \in \mathcal{U}, \\ \end{split}$$

there exists a unitary $W \in C \otimes M_N$ such that

Let $A \in \mathcal{D}_d$ for some integer $d \ge 1$. Let $\mathcal{F} \subset A$, let $\epsilon > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}, \ \gamma_1 > 0, \ \gamma_2 > 0, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_2 \subset A$, a finite subset $\mathcal{U} \subset U(M_{k+1}(A))/CU(M_{k+1}(A))$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear maps $\phi, \psi : A \to C$ for some $C \in \mathcal{C}$ such that

$$[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}}, \qquad (e\,0.38)$$

 $\begin{aligned} \tau(\phi(\mathbf{a})) \geq \Delta(\mathbf{a}), \ \tau(\psi(\mathbf{a})) \geq \Delta(\mathbf{a}), & \text{for all } \tau \in \mathcal{T}(\mathcal{C}), \ \mathbf{a} \in \mathcal{H}_1, \\ & (e0.39) \\ |\tau \circ \phi(\mathbf{a}) - \tau \circ \psi(\mathbf{a})| < \gamma_1, \ \text{for all } \mathbf{a} \in \mathcal{H}_2, \\ & (e0.40) \\ & \text{and } \operatorname{dist}(\phi^{\ddagger}(u), \psi^{\ddagger}(u)) < \gamma_2, \ \text{for all } u \in \mathcal{U}, \end{aligned}$

there exists a unitary $W \in C \otimes M_N$ such that

$$\|W(\phi(f)\otimes 1_{M_N})W^* - (\psi(f)\otimes 1_{M_N})\| < \epsilon, \text{ for all } f \in \mathcal{F}.$$
 (e0.42)

Let $C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$.

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

 $\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g)$ and

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

 $\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$ (e0.43)

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

 $\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$ (e0.43) for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i], i = 1, 2, ..., n$.

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

$$\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$$
 (e0.43)

for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i]$, i = 1, 2, ..., n. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n,

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

 $\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g)$ and $\pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$ (e0.43) for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i], i = 1, 2, ..., n$. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0,

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

 $\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g)$ and $\pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$ (e0.43) for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i], i = 1, 2, ..., n$. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0, and $w_1 \in h_1(F_1)$, if i = 1,

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

$$\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$$
 (e0.43)

for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i]$, i = 1, 2, ..., n. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0, and $w_1 \in h_1(F_1)$, if i = 1, such that

$$w_i \pi_{t_i} \circ \phi(g) w_i^* \approx \pi_{t_i} \circ \psi(g). \tag{e0.44}$$

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

$$\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$$
 (e0.43)

for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i]$, i = 1, 2, ..., n. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0, and $w_1 \in h_1(F_1)$, if i = 1, such that

$$w_i \pi_{t_i} \circ \phi(g) w_i^* \approx \pi_{t_i} \circ \psi(g). \tag{e0.44}$$

We may also assume that there is a unitary $w_e \in F_1$ such that $h_0(w_e) = w_0$ and $h_1(w_e) = w_n$.

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

$$\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$$
 (e0.43)

for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i]$, i = 1, 2, ..., n. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0, and $w_1 \in h_1(F_1)$, if i = 1, such that

$$w_i \pi_{t_i} \circ \phi(g) w_i^* \approx \pi_{t_i} \circ \psi(g). \tag{e0.44}$$

We may also assume that there is a unitary $w_e \in F_1$ such that $h_0(w_e) = w_0$ and $h_1(w_e) = w_n$. Note that

$$(w_{i+1}^*w_i)\pi_{t_i}\circ\phi(g)(w_i^*w_{i+1})\approx w_{i+1}^*\pi_{t_{i+1}}\circ\psi(g)w_{i+1}$$

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

$$\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$$
 (e0.43)

for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i]$, i = 1, 2, ..., n. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0, and $w_1 \in h_1(F_1)$, if i = 1, such that

$$w_i \pi_{t_i} \circ \phi(g) w_i^* \approx \pi_{t_i} \circ \psi(g). \tag{e0.44}$$

We may also assume that there is a unitary $w_e \in F_1$ such that $h_0(w_e) = w_0$ and $h_1(w_e) = w_n$. Note that

$$(w_{i+1}^*w_i)\pi_{t_i} \circ \phi(g)(w_i^*w_{i+1}) \approx w_{i+1}^*\pi_{t_{i+1}} \circ \psi(g)w_{i+1}$$
$$\approx \phi_{i+1} \circ \phi(g) \approx \phi_i \circ \phi(g). \qquad (e\,0.45)$$

Let
$$C = A(F_1, F_2, h_0, h_1) \subset C([0, 1], F_2) \oplus F_1$$
. Let
 $0 = t_0 < t_1 < \cdots < t_n = 1$

be a partition so that

$$\pi_t \circ \phi(g) \approx \pi_{t'} \circ \phi(g) \text{ and } \pi_t \circ \psi(g) \approx \pi_{t'} \circ \psi(g)$$
 (e0.43)

for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i]$, i = 1, 2, ..., n. By applying Theorem **2.1**, there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0, and $w_1 \in h_1(F_1)$, if i = 1, such that

$$w_i \pi_{t_i} \circ \phi(g) w_i^* \approx \pi_{t_i} \circ \psi(g). \tag{e0.44}$$

We may also assume that there is a unitary $w_e \in F_1$ such that $h_0(w_e) = w_0$ and $h_1(w_e) = w_n$. Note that

$$(w_{i+1}^*w_i)\pi_{t_i} \circ \phi(g)(w_i^*w_{i+1}) \approx w_{i+1}^*\pi_{t_{i+1}} \circ \psi(g)w_{i+1}$$
$$\approx \phi_{i+1} \circ \phi(g) \approx \phi_i \circ \phi(g). \qquad (e\,0.45)$$

We need to apply the Homotopy Lemma.

ve need to upply the i	Tomotopy Lemma.		
Huaxin Lin	Lecture 4	June 9th, 2015,	12 / 20
Need to change w_i to something $z_i w_i$ to make "bott" element trivial,

Need to change w_i to something $z_i w_i$ to make "bott" element trivial, which is quite demanding.

Need to change w_i to something $z_i w_i$ to make "bott" element trivial, which is quite demanding. In order not to accumulate errors, the condition (e0.41) is used.

Need to change w_i to something $z_i w_i$ to make "bott" element trivial, which is quite demanding. In order not to accumulate errors, the condition (e0.41) is used. We also need to take care of "end points".

Let A be a unital C^* -algebra and let U(A) be the unitary group of A.

Let A be a unital C*-algebra and let U(A) be the unitary group of A. Denote by CU(A) the closure of the commutator subgroup of U(A). Let A be a unital C*-algebra and let U(A) be the unitary group of A. Denote by CU(A) the closure of the commutator subgroup of U(A). When A has stable rank one $CU(A) \subset U_0(A)$. We will consider the group U(A)/CU(A). Let A be a unital C*-algebra and let U(A) be the unitary group of A. Denote by CU(A) the closure of the commutator subgroup of U(A). When A has stable rank one $CU(A) \subset U_0(A)$. We will consider the group U(A)/CU(A). Or $U(M_k(A))/CU(M_k(A))$. Let *A* be a unital *C**-algebra and let U(A) be the unitary group of *A*. Denote by CU(A) the closure of the commutator subgroup of U(A). When *A* has stable rank one $CU(A) \subset U_0(A)$. We will consider the group U(A)/CU(A). Or $U(M_k(A))/CU(M_k(A))$. Or even $\cup_{k=1}^{\infty} (U(M_k(A))/CU(M_k(A)))$. Let *A* be a unital *C**-algebra and let U(A) be the unitary group of *A*. Denote by CU(A) the closure of the commutator subgroup of U(A). When *A* has stable rank one $CU(A) \subset U_0(A)$. We will consider the group U(A)/CU(A). Or $U(M_k(A))/CU(M_k(A))$. Or even $\bigcup_{k=1}^{\infty} (U(M_k(A))/CU(M_k(A)))$. There is a metric on $U(M_k(A))/CU(M_k(A))$. Let *A* be a unital *C**-algebra and let U(A) be the unitary group of *A*. Denote by CU(A) the closure of the commutator subgroup of U(A). When *A* has stable rank one $CU(A) \subset U_0(A)$. We will consider the group U(A)/CU(A). Or $U(M_k(A))/CU(M_k(A))$. Or even $\cup_{k=1}^{\infty} (U(M_k(A))/CU(M_k(A)))$. There is a metric on $U(M_k(A))/CU(M_k(A))$. Let us assume that *A* has stable rank $\leq k$.

$$0 \to \operatorname{Aff}(T(A))/\rho_A(K_0(A)) \to U(M_k(A))/CU(M_k(A)) \to K_1(A) \to 0.$$

 $0 \to \operatorname{Aff}(T(A))/\rho_A(K_0(A)) \to U(M_k(A))/CU(M_k(A)) \to K_1(A) \to 0.$

Let B is another unital C^* -algebra of stable rank at most k.

 $0 \to \operatorname{Aff}(T(A))/\rho_A(K_0(A)) \to U(M_k(A))/CU(M_k(A)) \to K_1(A) \to 0.$

Let B is another unital C*-algebra of stable rank at most k. If $\phi: A \rightarrow B$ is a unital homomorphism

$$0 \to \operatorname{Aff}(T(A))/\rho_A(K_0(A)) \to U(M_k(A))/CU(M_k(A)) \to K_1(A) \to 0.$$

Let *B* is another unital *C**-algebra of stable rank at most *k*. If $\phi : A \to B$ is a unital homomorphism then $\phi^{\ddagger} : U(M_k(A))/CU(M_k(A)) \to U(M_k(B))/CU(M_k(B)).$

$$0 \to \operatorname{Aff}(T(A))/\rho_A(K_0(A)) \to U(M_k(A))/CU(M_k(A)) \to K_1(A) \to 0.$$

Let *B* is another unital *C*^{*}-algebra of stable rank at most *k*. If $\phi : A \to B$ is a unital homomorphism then $\phi^{\ddagger} : U(M_k(A))/CU(M_k(A)) \to U(M_k(B))/CU(M_k(B))$. Slightly modification, if ϕ is almost multiplicative, ϕ^{\ddagger} can also be defined.

Let A be a unital C*-algebra and let $C \in C$,

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW.

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW. Suppose that $L : A \to C$ is a contractive completely positive linear map.

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW. Suppose that $L : A \to C$ is a contractive completely positive linear map. Define $L_e = \pi_e \circ L$.

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW. Suppose that $L : A \to C$ is a contractive completely positive linear map. Define $L_e = \pi_e \circ L$. Then $L_e : A \to F_1$ is a contractive completely positive linear map such that

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW. Suppose that $L : A \to C$ is a contractive completely positive linear map. Define $L_e = \pi_e \circ L$. Then $L_e : A \to F_1$ is a contractive completely positive linear map such that

$$\phi_0 \circ L_e = \pi_0 \circ L$$
 and

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW. Suppose that $L : A \to C$ is a contractive completely positive linear map. Define $L_e = \pi_e \circ L$. Then $L_e : A \to F_1$ is a contractive completely positive linear map such that

$$\phi_0 \circ L_e = \pi_0 \circ L \text{ and } \phi_1 \circ L_e = \pi_1 \circ L. \tag{e0.46}$$

Moreover, if $\delta > 0$ and $\mathcal{G} \subset A$

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW. Suppose that $L : A \to C$ is a contractive completely positive linear map. Define $L_e = \pi_e \circ L$. Then $L_e : A \to F_1$ is a contractive completely positive linear map such that

$$\phi_0 \circ L_e = \pi_0 \circ L \text{ and } \phi_1 \circ L_e = \pi_1 \circ L.$$
 (e0.46)

Moreover, if $\delta > 0$ and $\mathcal{G} \subset A$ and L is δ - \mathcal{G} -multiplicative,

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a NCCW. Suppose that $L : A \to C$ is a contractive completely positive linear map. Define $L_e = \pi_e \circ L$. Then $L_e : A \to F_1$ is a contractive completely positive linear map such that

$$\phi_0 \circ L_e = \pi_0 \circ L \text{ and } \phi_1 \circ L_e = \pi_1 \circ L.$$
 (e0.46)

Moreover, if $\delta > 0$ and $\mathcal{G} \subset A$ and L is δ - \mathcal{G} -multiplicative, then L_e is also δ - \mathcal{G} -multiplicative.

Let A be a unital C*-algebra and let $C \in C$,

Let A be a unital C^{*}-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined.

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps,

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset.

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_0 \in \pi_0(C) \subset F_2$

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_0 \in \pi_0(C) \subset F_2$ and $w_1 \in \pi_1(C) \subset F_2$ such that

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_0 \in \pi_0(C) \subset F_2$ and $w_1 \in \pi_1(C) \subset F_2$ such that

$$\|w_0^*\pi_0 \circ L_1(a)w_0 - \pi_0 \circ L_2(a)\| < \epsilon$$
 and

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_0 \in \pi_0(C) \subset F_2$ and $w_1 \in \pi_1(C) \subset F_2$ such that

$$\|w_0^*\pi_0 \circ L_1(a)w_0 - \pi_0 \circ L_2(a)\| < \epsilon \text{ and}$$
 (e0.47)

$$\|w_1^*\pi_1\circ L_1(a)w_1-\pi_1\circ L_2(a)\| < \epsilon$$
 for all $a\in \mathcal{F}$. (e0.48)

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_0 \in \pi_0(C) \subset F_2$ and $w_1 \in \pi_1(C) \subset F_2$ such that

$$\|w_0^*\pi_0 \circ L_1(a)w_0 - \pi_0 \circ L_2(a)\| < \epsilon \text{ and}$$
 (e0.47)

$$\|w_1^*\pi_1\circ L_1(a)w_1-\pi_1\circ L_2(a)\| < \epsilon$$
 for all $a\in \mathcal{F}$. (e0.48)

Then there exists a unitary $u \in F_1$ such that

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_0 \in \pi_0(C) \subset F_2$ and $w_1 \in \pi_1(C) \subset F_2$ such that

$$\|w_0^*\pi_0 \circ L_1(a)w_0 - \pi_0 \circ L_2(a)\| < \epsilon \text{ and}$$
 (e0.47)

$$\|w_1^*\pi_1\circ L_1(a)w_1-\pi_1\circ L_2(a)\| < \epsilon$$
 for all $a\in \mathcal{F}$. (e0.48)

Then there exists a unitary $u \in F_1$ such that

 $\|\phi_0(u)^*\pi_0 \circ L_1(a)\phi_0(u) - \pi_0 \circ L_2(a)\| < \epsilon \text{ and}$ (e0.49)
Lemma

Let A be a unital C*-algebra and let $C \in C$, where $C = C(F_1, F_2, \phi_0, \phi_1)$ is a 1-dim NCCW as defined. Let $L_1, L_2 : A \to C$ be two unital completely positive linear maps, let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_0 \in \pi_0(C) \subset F_2$ and $w_1 \in \pi_1(C) \subset F_2$ such that

$$\|w_0^*\pi_0 \circ L_1(a)w_0 - \pi_0 \circ L_2(a)\| < \epsilon \text{ and}$$
 (e0.47)

$$\|w_1^*\pi_1\circ L_1(a)w_1-\pi_1\circ L_2(a)\|$$
 < ϵ for all $a\in \mathcal{F}$. (e0.48)

Then there exists a unitary $u \in F_1$ such that

$$\|\phi_0(u)^*\pi_0 \circ L_1(a)\phi_0(u) - \pi_0 \circ L_2(a)\| < \epsilon \text{ and}$$
 (e0.49)

 $\|\phi_1(u)^*\pi_1\circ L_1(a)\phi_1(u)-\pi_1\circ L_2(a)\| < \epsilon \text{ for all } a\in\mathcal{F}.(\texttt{e0.50})$

Proof:

Write $F_1 = M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_k}$ and $F_2 = M_{r_1} \oplus M_{r_2} \oplus \cdots \oplus M_{r_l}$. We may assume that, $\ker \phi_0 \cap \ker \phi_1 = \{0\}$. We may assume that $\phi_0|_{M_{n_i}}$ is injective, i = 1, 2, ..., k(0) with $k(0) \le k$, $\phi_0|_{M_{n_i}} = 0$ if i > k(0), and $\phi_1|_{M_{n_i}}$ is injective, i = k(1), k(1) + 1, ..., kwith $k(1) \le k, \phi_1|_{M_{n_i}} = 0$, if i < k(1). Write $F_{1,0} = \bigoplus_{i=1}^{k(0)} M_{n_i}$ and $F_{1,1} = \bigoplus_{j=k(1)}^k M_{n_j}$. Note that $k(1) \le k(0) + 1$, $\phi_0|_{F_{1,0}}$ and $\phi_1|_{F_{1,1}}$ are injective. Note $\phi_0(F_{1,0}) = \phi_0(F_1) = \pi_0(C)$ and $\phi_1(F_{1,1}) = \phi_1(F_1) = \pi_1(C)$. Let $\psi_0 = (\phi_0|_{F_{1,0}})^{-1}$ and $\psi_1 = (\phi_1|_{F_{1,1}})^{-1}$. For each fixed $a \in A$,, since $L_i(a) \in C$ (i = 0, 1), there are elements

$$g_{a,i} = g_{a,i,1} \oplus g_{a,i,2} \oplus \cdots \oplus g_{a,i,k(0)} \oplus \cdots \oplus g_{a,i,k} \in F_1,$$

such that $\phi_0(g_{a,i}) = \pi_0 \circ L_i(a)$ and $\phi_1(g_{a,i}) = \pi_1 \circ L_i(a)$, i = 1, 2, where $g_{a,i,j} \in M_{n_j}$, j = 1, 2, ..., k and i = 1, 2. Note that such $g_{a,i}$ is unique since $\ker \phi_0 \cap \ker \phi_1 = \{0\}$. Since $w_0 \in \pi_0(C) = \phi_0(F_1)$, there is a unitary

 $u_0 = u_{0,1} \oplus u_{0,2} \oplus \cdots \oplus u_{0,k(0)} \oplus \cdots \oplus u_{0,k}$

such that $\phi_0(u_0) = w_0$.

Note that the first k(0) components of u_0 is uniquely determined by w_0 (since ϕ_0 is injective on this part) and the components after k(0)'s components can be chosen arbitrarily (since $\phi_0 = 0$ on this part). Similarly there exist

$$u_1 = u_{1,1} \oplus u_{1,2} \oplus \cdots \oplus u_{1,k(1)} \oplus \cdots \oplus u_{1,k}$$

such that $\phi_1(u_1) = w_1$ Now by e0.47 and e0.48, we have

$$\|\phi_0(u_0)^*\phi_0(g_{a,1})\phi_0(u_0) - \phi_0(g_{a,2})\| < \epsilon \text{ and } (e0.51) \\ \|\phi_1(u_1)^*\phi_1(g_{a,1})\phi_1(u_1) - \phi_1(g_{a,2}))\| < \epsilon \text{ for all } a \in \mathcal{F}. (e0.52)$$

Since ϕ_0 is injective on F_1^i for $i \le k(0)$ and ϕ_1 is injective on F_1^i for i > k(0) (note that we use $k(1) \le k(0) + 1$), we have

$$\|(u_{0,i})^*(g_{a,1,i})u_{0,i} - (g_{a,2,i})\| < \epsilon \quad \forall i \le k(0) \text{ and} (e0.53)$$

$$\|(u_{1,i})^*(g_{a,1,i})u_{1,i} - (g_{a,2,i})\| < \epsilon \quad \forall i > k(0)$$
 (e0.54)

for all $a \in \mathcal{F}$.

Let $u = u_{0,1} \oplus \cdots \oplus u_{0,k(0)} \oplus u_{1,k(0)+1} \oplus \cdots \oplus u_{1,k} \in F_1$ —that is for the first k(0)'s components of u, we use u_0 's corresponding components, and for the last k - k(0) components of u, we use u_1 's. From e 0.53 and e 0.53. we have

$$\|u^*g_{a,1}u-g_{a,2}\|<\epsilon$$
 for all $a\in\mathcal{F}.$

Apply ϕ_0 and ϕ_1 to the above inequality, we get e0.49 and e0.50 as desired.

Proof of Theorem 4.5. There is n_0 such that $n_0x = 0$ for all $x \in K_i(A \otimes C(\mathbb{T})), i = 0, 1$. Set $N = n_0!$. Put Δ_1 be defined above for the given Δ .

Let $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ (in place of \mathcal{H}_1) for $\epsilon/32$ (in place of ϵ) and \mathcal{F} required by **3.5**.

Let $\delta_1 > 0$ (in place of δ), $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset and let $\mathcal{P}_0 \subset \underline{K}(A)$ (in place of \mathcal{P}) be a finite subset required by **3.5** for $\epsilon/32$ (in place of ϵ), \mathcal{F} and Δ_1 . We may assume that $\delta_1 < \epsilon/32$ and $(2\delta_1, \mathcal{G}_1)$ is a KK-pair.

Moreover, we may assume that δ_1 is so small that if $\|uv-vu\|<3\delta_1,$ then the Exel formula

$$\tau(\text{bott}_1(u,v)) = \frac{1}{2\pi\sqrt{-1}}(\tau(\log(u^*vuv^*)))$$

holds for any pair of unitaries u and v in any unital C^* -algebra C with tracial rank zero and any $\tau \in T(C)$ (see Theorem 3.6 of [?]). Moreover if $||v_1 - v_2|| < 3\delta_1$, then

$$\operatorname{bott}_1(u, v_1) = \operatorname{bott}_1(u, v_2).$$

Let $g_1, g_2, ..., g_{k(A)} \in U(M_{m(A)}(A))$ $(m(A) \ge 1$ is an integer) be a finite subset such that $\{\overline{g_1}, \overline{g_2}, ..., \overline{g_k}_{(A)}\} \subset J_c(K_1(A))$ and such that $\{[g_1], [g_2], ..., [g_{k(A)}]\}$ forms a set of generators for $K_1(A)$. Let $\mathcal{U} = \{\overline{g_1}, \overline{g_2}, \dots, \overline{g_{k(A)}}\} \subset J_c(K_1(A))$ be a finite subset. Let $\mathcal{U}_0 \subset A$ be a finite subset such that

$$\{g_1, g_2, ..., g_{k(A)}\} = \{(a_{i,j}) : a_{i,j} \in U_0\}.$$

Let $\delta_{\mu} = \min\{1/256m(A)^2, \delta_1/16m(A)^2\}, \mathcal{G}_{\mu} = \mathcal{F} \cup \mathcal{G}_1 \cup \mathcal{U}_0 \text{ and let}$ $\mathcal{P}_{\mu} = \mathcal{P}_{0}$

Let $\delta_2 > 0$ (in place of δ), let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) and let $\mathcal{H}'_2 \subset A_+ \setminus \{0\}$ (in place of \mathcal{H}) and let $N_1 \geq 1$ (in place of N) be an integer required by **4.4** for δ_{μ} (in place of ϵ), \mathcal{G}_{μ} (in place of \mathcal{F}), \mathcal{P}_{μ} (in place of \mathcal{P}) and Δ and with \bar{g}_i (in place of g_i), i = 1, 2, ..., k(A) (with k(A) = r).

Let $d = \min{\{\Delta(\hat{h}) : h \in \mathcal{H}'_2\}}$. Let $\delta_3 > 0$ and let $\mathcal{G}_3 \subset A \otimes C(\mathbb{T})$ be finite subset satisfying the following: For any δ_3 - \mathcal{G}_3 -multiplicative contractive completely positive linear map $L' : A \otimes C(\mathbb{T}) \to C'$ (for any unital C^{*}-algebra C' with $T(C') \neq \emptyset$),

$$|\tau([L](\beta(\bar{g}_j))| < d/8, \ j = 1, 2, ..., k(A).$$
 (e 0.55)

Without loss of generality, we may assume that

$$\mathcal{G}_3 = \{g \otimes z : g \in \mathcal{G}'_3 \ \text{and} \ z \in \{1, z, z^*\}\},$$

where $\mathcal{G}'_3 \subset A$ is a finite subset (by choosing a smaller δ_3 and large \mathcal{G}'_3). Let $\epsilon''_1 = \min\{d/27m(A)^2, \delta_u/2, \delta_2/2m(A)^2, \delta_3/2m(A)^2\}$ and let $\overline{\epsilon}_1 > 0$ (in place of δ) and $\mathcal{G}_4 \subset A$ (in place of \mathcal{G}) be a finite subset required by **??** for ϵ''_1 (in place of ϵ) and $\mathcal{G}_u \cup \mathcal{G}'_3$. Put

$$\epsilon_1 = \min\{\epsilon'_1, \epsilon''_1, \overline{\epsilon}_1\}.$$

Let $\mathcal{G}_5 = \mathcal{G}_u \cup \mathcal{G}'_3 \cup \mathcal{G}_4$. Let $\mathcal{H}'_3 \subseteq A^+$ (in place of \mathcal{H}_1), $\delta_4 > 0$ (in place of δ), $\mathcal{G}_6 \subset A$ (in place of \mathcal{G}), $\mathcal{H}'_4 \subset A_{s.a.}$ (in place of \mathcal{H}_2), $\mathcal{P}_1 \subset \underline{K}(A)$ (in place of \mathcal{P}) and $\sigma_4 > 0$ (in place of σ_2) be the finite subsetc and constants required by Theorem $2.1 \epsilon_1/4$ (in place ϵ) and \mathcal{G}_5 (in place of \mathcal{F}) and Δ . Let $N_2 \geq N_1$ such that $(k(A) + 1)/N_2 < d/8$. Choose $\mathcal{H}'_5 \subset A_+ \setminus \{0\}$ and $\delta_5 > 0$ and a finite subset $\mathcal{G}_7 \subset A$ such that, for any M_m and unital δ_5 - \mathcal{G}_7 -multiplicative contractive completely positive linear map $L': A \to M_m$, if $\operatorname{tr} \circ L'(h) > 0$ for all $h \in \mathcal{H}'_5$, then $m \geq N_2((8/d) + 1)$. Let $\delta = \min\{\epsilon_1/16, \delta_4/4m(A)^2, \delta_5/4m(A)^2\}$, let $\mathcal{G} = \mathcal{G}_5 \cup \mathcal{G}_6 \cup \mathcal{G}_7$ and let $\mathcal{P} = \mathcal{P}_{\mu} \cup \mathcal{P}_{1}$. Let

$$\mathcal{H}_1 = \mathcal{H}_1' \cup \mathcal{H}_2' \cup \mathcal{H}_3' \cup \mathcal{H}_4' \cup \mathcal{H}_6'$$

and let $\mathcal{H}_2 = \mathcal{H}'_4$. Let $\gamma_1 = \sigma_4$ and let $0 < \gamma_2 < \min\{d/16m(A)^2, \delta_u/9m(A)^2, 1/256m(A)^2\}.$ Now suppose that $C \in C$ and $\phi, \psi : A \to C$ be two unital δ -G-multiplicative contractive completely positive linear maps satisfying the assumption for the above given Δ , \mathcal{H}_1 , δ , \mathcal{G} , \mathcal{P} , \mathcal{H}_2 , γ_1 , γ_2 and \mathcal{U} . Let

$$0 = t_0 < t_1 < \cdots < t_n = 1$$

be a partition so that

$$\begin{aligned} \|\pi_t \circ \phi(g) - \pi_{t'} \circ \phi(g)\| &< \epsilon_1/16 \text{ and} \\ \|\pi_t \circ \psi(g) - \pi_{t'} \circ \psi(g)\| &< \epsilon_1/16 \end{aligned} \tag{e0.56}$$

for all $g \in \mathcal{G}$, provided $t, t' \in [t_{i-1}, t_i], i = 1, 2, ..., n$. We write $C = A(F_1, F_2, h_0, h_1), F_1 = M_{m_1} \oplus M_{m_2} \oplus \cdots \oplus M_{m_{F(1)}}$ and $F_2 = M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_{F(2)}}$. By the choice of \mathcal{H}'_5 ,

$$n_j \ge N_2(8/d+1)$$
 and $m_s \ge N_2(8/d+1)$, (e 0.58)

 $1 \leq j \leq F(2), 1 \leq s \leq F(1)$. By applying Theorem 2.1,there exists a unitary $w_i \in F_2$, if 0 < i < n, $w_0 \in h_0(F_1)$, if i = 0, and $w_1 \in h_1(F_1)$, if i = 1, such that

$$\|w_i\pi_{t_i}\circ\phi(g)w_i^*-\pi_{t_i}\circ\psi(g)\|<\epsilon_1/16 ext{ for all }g\in\mathcal{G}_5.$$
 (e0.59)

It follows from 0.8 that we may assume that there is a unitary $w_e \in F_1$ such that $h_0(w_e) = w_0$ and $h_1(w_e) = w_n$. By (e0.41), let $\omega_j \in M_{m(A)}(C)$ be a unitary such that $\omega_j \in CU(M_{m(A)}(C))$ and

 $\|\langle (\phi \otimes \operatorname{id}_{M_{m(A)}}(g_j^*) \rangle \langle (\psi \otimes \operatorname{id}_{M_{m(A)}})(g_j) \rangle - \omega_j \| < \gamma_2, \ j = 1, 2, ..., k(A).$ Write

$$\omega_j = \prod_{l=1}^{e(j)} \exp(\sqrt{-1}a_j^{(l)})$$

for some selfadjoint element $a_j^{(l)} \in M_{m(A)}(C), \ l = 1, 2, ..., e(j), j = 1, 2, ..., k(A)$. Write

$$a_{j}^{(l)} = (a_{j}^{(l,1)}, a_{j}^{(l,2)}, ..., a_{j}^{(l,n_{F(2)})}) \text{ and } \omega_{j} = (\omega_{j,1}, \omega_{j,2}, ..., \omega_{j,F(2)})$$
Huaxin Lin Lecture 4 June 9th, 2015, 19 / 20

in
$$C([0,1], F_2) = C([0,1], M_{n_1}) \oplus \cdots \oplus C([0,1], M_{n_{F(2)}})$$
, where
 $\omega_{j,s} = \exp(\sqrt{-1}a_j^{(l,s)}), s = 1, 2, ..., F(2)$. Then

$$\sum_{l=1}^{e(j)} \frac{n_s(t_s \otimes \operatorname{Tr}_{m(A)})(a_j^{(l,s)}(t))}{2\pi} \in \mathbb{Z}, \quad t \in [0,1],$$

where t_s is the normalized trace on M_{n_s} , s = 1, 2, ..., F(2). In particular,

$$\sum_{l=1}^{e(j)} n_s(t \otimes \operatorname{Tr}_{m(A)})(a_j^{(l,s)}(t)) = \sum_{l=1}^{e(j)} n_s(t \otimes \operatorname{Tr}_{m(A)})(a_j^{(l,s)}(t')) \quad (e \ 0.60)$$

for all $t, t'' \in [0, 1]$. Let $W_i = w_i \otimes \operatorname{id}_{M_m(A)}, i = 0, 1, ..., n$ and $W_e = w_e \otimes \operatorname{id}_{M_m(F_1)}$. Then $\|\pi_i(\langle \phi \otimes \mathrm{id}_{M_m(4)})(g_i^*)\rangle)W_i(\pi_i(\langle \phi \otimes \mathrm{id}_{M_m(4)})(g_i)\rangle)W_i^* - \omega_i(t_i)\|(e\,0.61)$ $< 3m(A)^2\epsilon_1 + 2\gamma_2 < 1/32.$ (e 0.62)

We also have

$$\begin{aligned} \|\langle \phi_e \otimes \mathrm{id}_{M_{m(A)}})(g_j^*) \rangle W_e(\langle \phi_e \otimes \mathrm{id}_{M_{m(A)}})(g_j) \rangle) W_e^* & (e\,0.63) \\ & -\pi_e(\omega_j) \| < 3m(A)^2 \epsilon_1 + 2\gamma_2 < 1/32. & (e\,0.64) \end{aligned}$$
Huaxin Lin Lecture 4 June 9th, 2015, 19 / 20

It follows from (e0.61) that there exists selfadjoint elements $b_{i,j} \in M_{m(A)}(F_2)$ such that

$$\exp(\sqrt{-1}b_{i,j}) = (e\,0.65)$$

$$\omega_j(t_i)^*(\pi_i\langle\phi\otimes \mathrm{id}_{M_m(A)})(g_j^*)\rangle)W_i(\pi_i(\langle\phi\otimes \mathrm{id}_{M_m(A)})(g_j)\rangle)W_i^*, \quad (e\,0.66)$$

and $b_{e,j} \in M_{m(A)}(F_1)$ such that

$$\exp(\sqrt{-1b_{e,j}}) = (e\,0.67)$$
$$\pi_e(\omega_j)^*(\pi_e\langle\phi\otimes \mathrm{id}_{M_{m(A)}})(g_j^*)\rangle)W_e(\pi_e(\langle\phi\otimes \mathrm{id}_{M_{m(A)}})(g_j)\rangle)W_e^*, (e\,0.68)$$

$$\|b_{i,j}\| < 2 \arcsin(3m(A)^2 \epsilon_1/4 + 2\gamma_2), \ j = 1, 2, ..., k(A),$$
 (e0.69)

i = 0, 1, ..., n, e.We write

and

$$b_{i,j} = (b_{i,j}^{(1)}, b_{i,j}^{(2)}, ..., b_{i,j}^{F(2)}) \in F_2 \text{ and}$$

$$b_{e,j} = (b_{e,j}^{(1)}, b_{e,j}^{(2)}, ..., b_{e,j}^{(F(1))}) \in F_1.$$
(e0.70)

We also have that

$$h_0(b_{e,j}) = b_{0,j}$$
 and $h_1(b_{e,j}) = b_{n,j}$. (e0.71)

Note that

$$(\pi_i(\langle \phi \otimes \mathrm{id}_{M_{m(A)}}(g_j^*) \rangle))W_i(\pi_i(\langle \phi \otimes \mathrm{id}_{M_{m(A)}})(g_j) \rangle)W_i^* \qquad (e\,0.72)$$
$$= \pi_i(\omega_j)\exp(\sqrt{-1}b_{i,j}), \qquad (e\,0.73)$$

j = 1, 2, ..., k(A) and i = 0, 1, ..., n, e. Then,

$$\frac{n_s}{2\pi}(t_s \otimes \operatorname{Tr}_{M_{m(A)}})(b_{i,j}^{(s)}) \in \mathbb{Z}, \qquad (e\,0.74)$$

where t_s is the normalized trace on M_{n_s} , s = 1, 2, ..., F(2), j = 1, 2, ..., k(A), and i = 0, 1, ..., n. We also have

$$\frac{m_s}{2\pi}(t_s \otimes \operatorname{Tr}_{M_{m(A)}})(b_{e,j}^{(s)}) \in \mathbb{Z}$$
 (e0.75)

where t_s is the normalized trace on M_{m_s} , s = 1, 2, ..., F(1), j = 1, 2, ..., k(A). Let

$$\lambda_{i,j}^{(s)} = rac{n_s}{2\pi} (t_s \otimes \operatorname{Tr}_{M_{m(A)}})(b_{i,j}^{(s)}) \in \mathbb{Z},$$

where t_s is the normalized trace on M_{n_s} , s = 1, 2, ..., n, j = 1, 2, ..., k(A)and i = 0, 1, 2, ..., n. Let

$$\lambda_{e,j}^{(s)} = \frac{m_s}{2\pi} (t_s \otimes \operatorname{Tr}_{M_{m(A)}})(b_{e,j}^{(s)}) \in \mathbb{Z}$$

where t_s is the normalized trace on M_{m_s} , s = 1, 2, ..., F(1) and j = 1, 2, ..., k(A). Let

$$\lambda_{i,j} = (\lambda_{i,j}^{(1)}, \lambda_{i,j}^{(2)}, ..., \lambda_{i,j}^{(F(2))}) \in \mathbb{Z}^{F(2)} \text{ and} \lambda_{e,j} = (\lambda_{e,j}^{(1)}, \lambda_{e,j}^{(2)}, ..., \lambda_{e,j}^{(F(1))}) \in \mathbb{Z}^{F(1)}.$$
(e0.76)

We have

$$\begin{aligned} |\frac{\lambda_{i,j}^{(s)}}{n_s}| &< d/4, \ s = 1, 2, ..., F(2), \text{ and} \end{aligned} (e0.77) \\ |\frac{\lambda_{e,j}^{(s)}}{m_s}| &< d/4, \ s = 1, 2, ..., F(1), \end{aligned} (e0.78)$$

$$j = 1, 2, ..., k(A), i = 0, 1, 2, ..., n.$$

Define $\alpha_i^{(0,1)} : \mathcal{K}_1(A) \to \mathbb{Z}^{F(2)}$ by mapping $[g_j]$ to $\lambda_{i,j}, j = 1, 2, ..., k(A)$ and i = 0, 1, 2, ..., n, and define $\alpha_e^{(0,1)} : \mathcal{K}_1(A) \to \mathbb{Z}^{F(1)}$ by mapping $[g_j]$ to $\lambda_{e,j}, j = 1, 2, ..., k(A)$. We write $\mathcal{K}_0(A \otimes C(\mathbb{T})) = \mathcal{K}_0(A) \oplus \mathcal{B}(\mathcal{K}_1(A)))$ (see ?? for the definition of β). Define $\alpha_i : \mathcal{K}_*(A \otimes C(\mathbb{T})) \to \mathcal{K}_*(F_2)$ as follows: On $\mathcal{K}_0(A \otimes C(\mathbb{T}))$, define

$$\alpha_i|_{\mathcal{K}_0(\mathcal{A})} = [\pi_i \circ \phi]|_{\mathcal{K}_0(\mathcal{A})}, \ \alpha_i|_{\mathcal{B}(\mathcal{K}_1(\mathcal{A}))} = \alpha_i \circ \mathcal{B}|_{\mathcal{K}_1(\mathcal{A})} = \alpha_i^{(0,1)} \quad (e\,0.79)$$

and on $\mathcal{K}_1(\mathcal{A} \otimes \mathcal{C}(\mathbb{T})),$

$$\alpha_i|_{\mathcal{K}_1(\mathcal{A}\otimes \mathcal{C}(\mathbb{T}))} = 0, \qquad (e\,0.80)$$

i = 0, 1, 2, ..., n, and define $\alpha_e \in \operatorname{Hom}(K_*(A \otimes C(\mathbb{T})), K_*(F_1))$, by

$$\alpha_{e}|_{\mathcal{K}_{0}(\mathcal{A})} = [\pi_{e} \circ \phi]|_{\mathcal{K}_{0}(\mathcal{A})}, \ \alpha_{e}|_{\mathcal{B}(\mathcal{K}_{1}(\mathcal{A}))} = \alpha_{i} \circ \mathcal{B}|_{\mathcal{K}_{1}(\mathcal{A})} = \alpha_{e}^{(0,1)} \ (e\,0.81)$$

on $K_0(A \otimes C(\mathbb{T}))$ and $(\alpha_e)|_{K_1(A \otimes C(\mathbb{T}))} = 0$. Note that

$$(h_0)_* \circ \alpha_e = \alpha_0$$
 and $(h_1)_* \circ \alpha_e = \alpha_n$. (e 0.82)

Since $A \otimes C(\mathbb{T})$ satisfies the UCT, the map α_e can be lifted to an element of $KK(A \otimes C(\mathbb{T}), F_1)$ which is still denoted by α_e . Then define

$$\alpha_0 = \alpha_e \times [h_0] \text{ and } \alpha_n = \alpha_e \times [h_1]$$
 (e0.83)

in $KK(A \otimes C(\mathbb{T}), F_2)$. For i = 1, ..., n - 1, also pick a lifting of α_i in $KK(A \otimes C(\mathbb{T}), F_2)$, and still denote it by α_i . We estimate that

$$\|(w_i^*w_{i+1})\pi_{t_i}\circ\phi(g)-\pi_{t_i}\circ\phi(g)(w_i^*w_{i+1})\|<\epsilon_1/4 \text{ for all } g\in\mathcal{G}_5,$$

i = 0, 1, ..., n - 1. Let $\Lambda_{i,i+1} : C(\mathbb{T}) \otimes A \rightarrow F_2$ be a unital contractive completely positive linear map given by the pair $w_i^* w_{i+1}$ and $\pi_{t_i} \circ \phi$ (by ??, see 2.8 of [?]). Denote $V_{i,j} = \langle \pi_{t_i} \circ \phi \otimes \operatorname{id}_{M_{m(A)}}(g_j) \rangle$, j = 1, 2, ..., k(A)and i = 0, 1, 2, ..., n - 1. Write

$$V_{i,j} = (V_{i,j,1}, V_{i,j,2}, ..., V_{i,j,F(2)}) \in F_2, \ j = 1, 2, ..., k(A), \ i = 0, 1, 2, ..., n.$$

Similarly, write

$$W_i = (W_{i,1}, W_{i,2}, ..., W_{i,F(2)}) \in F_2, i = 0, 1, 2, ..., n.$$

Huaxin Lin

Lecture 4

June 9th, 2015, 19 / 20

We have

$$\| W_i V_{i,j}^* W_i^* V_{i,j} V_{i,j}^* W_{i+1} V_{i,j} W_{i+1}^* - 1 \| < 1/16$$
 (e0.84)
$$\| W_i V_{i,j}^* W_i^* V_{i,j} V_{i+1,j}^* W_{i+1} V_{i+1,j} W_{i+1}^* - 1 \| < 1/16$$
 (e0.85)

and there is a continuous path Z(t) of unitaries such that $Z(0) = V_{i,j}$ and $Z(1) = V_{i+1,j}$. Since

$$\|V_{i,j} - V_{i+1,j}\| < \delta_1/12, \ j = 1, 2, ..., k(A),$$

we may assume that $\|Z(t) - Z(1)\| < \delta_1/6$ for all $t \in [0, 1]$. We also write

$$Z(t) = (Z_1(t), Z_2(t), ..., Z_{F(2)}(t)) \in F_2 \text{ and } t \in [0, 1].$$

We obtain a continuous path

$$W_i V_{i,j}^* W_i^* V_{i,j} Z(t)^* W_{i+1} Z(t) W_{i+1}^*$$

which is in $CU(M_{nm(A)})$ for all $t \in [0, 1]$ and

$$\|W_i V_{i,j}^* W_i^* V_{i,j} Z(t)^* W_{i+1} Z(t) W_{i+1}^* - 1\| < 1/8 ext{ for all } t \in [0,1].$$

Huaxin Lir

Lecture 4

June 9th, 2015, 19 / 20

It follows that

$$(1/2\pi\sqrt{-1})(t_s \otimes \operatorname{Tr}_{M_{m(A)}})[\log(W_{i,s}V_{i,j,s}^*W_{i,s}^*V_{i,j,s}Z_s(t)^*W_{i+1,s}Z_s(t)W_{i+1,s}^*)]$$

is a constant, where t_s is the normalized trace on M_{n_s} . In particular,

$$(1/2\pi\sqrt{-1})(t_{s}\otimes \operatorname{Tr}_{M_{m(A)}})(\log(W_{i,s}V_{i,j,s}^{*}W_{i,s}^{*}W_{i+1,s}V_{i,j,s}W_{i+1}^{*}))$$
$$=(1/2\pi\sqrt{-1})(t_{s}\otimes \operatorname{Tr}_{M_{m(A)}})(\log(W_{i,s}V_{i,j,s}^{*}W_{i,s}^{*}V_{i,j}V_{i+1,j,s}^{*}W_{i+1}V_{i,j,s}W_{i+1}^{*})).$$
Also

$$W_{i}V_{i,j}^{*}W_{i}^{*}V_{i,j}V_{i+1,j}^{*}W_{i+1,j}W_{i+1,j}W_{i+1,j}^{*}$$
(e0.86)

$$= (\omega_j(t_i) \exp(\sqrt{-1}b_{i,j}))^* \omega_j(t_i) \exp(\sqrt{-1}b_{i+1,j})$$
 (e 0.87)

$$= \exp(-\sqrt{-1}b_{i,j})\omega_j(t_i)^*\omega_j(t_{i+1})\exp(\sqrt{-1}b_{i+1,j}). \quad (e\,0.88)$$

Note that, by (??) and (e0.56), for $t \in [t_i, t_{i+1}]$,

$$\|\omega_j(t_i)^*\omega_j(t) - 1\| < 3(3\epsilon'_1 + 2\gamma_2) < 3/32,$$
 (e0.89)

$$j = 1, 2, ..., k(A), i = 0, 1, ..., n - 1.$$

By Lemma 3.5 of **[?]**,

1

$$(t_s \otimes \operatorname{Tr}_{m(A)})(\log(\omega_{j,s}(t_i)^*\omega_{j,s}(t_{i+1}))) = 0.$$
 (e0.90)

It follows that (by the Exel formula, using (??), (e0.88) and (e0.90))

$$t \otimes \operatorname{Tr}_{m(A)})(\operatorname{bott}_1(V_{i,j}, W_i^* W_{i+1}))$$
(e0.91)

$$= (\frac{1}{2\pi\sqrt{-1}})(t \otimes \operatorname{Tr}_{m(A)})(\log(V_{i,j}^*W_i^*W_{i+1}V_{i,j}W_{i+1}^*W_i)) \quad (e\,0.92$$

$$= (\frac{1}{2\pi\sqrt{-1}})(t \otimes \operatorname{Tr}_{m(A)})(\log(W_iV_{i,j}^*W_i^*W_{i+1}V_{i,j}W_{i+1}^*))$$

$$= (\frac{1}{2\pi\sqrt{-1}})(t \otimes \operatorname{Tr}_{m(A)})(\log(W_iV_{i,j}^*W_i^*V_{i,j}V_{i+1,j}^*W_{i+1}V_{i+1,j}W_{i+1}^*))$$

$$= (\frac{1}{2\pi\sqrt{-1}})(t \otimes \operatorname{Tr}_{m(A)})(\log(\exp(-\sqrt{-1}b_{i,j})\omega_j(t_i)^*\omega_j(t_{i+1})\exp(\sqrt{-1}b_{i+1,j})))$$

$$= \left(\frac{1}{2\pi\sqrt{-1}}\right)\left[\left(t\otimes \operatorname{Tr}_{k(n)}\right)\left(-\sqrt{-1}b_{i,j}\right) + \left(t\otimes \operatorname{Tr}_{k(n)}\right)\left(\log(\omega_{j}(t_{i})^{*}\omega_{j}(t_{i+1})\right)\right]\right]$$

$$+(t\otimes \operatorname{Tr}_{k(n)})(\sqrt{-1}b_{i,j})] \tag{e0.93}$$

$$= \frac{1}{2\pi} (t \otimes \operatorname{Tr}_{k(n)}) (-b_{i,j} + b_{i+1,j})$$
 (e 0.94)

for all $t \in T(F_2)$. In other words,

$$bott_1(V_{i,j}, W_i^* W_{i+1})) = -\lambda_{i,j} + \lambda_{i+1,j}$$
(e0.95)

j = 1, 2, ..., m(A), i = 0, 1, ..., n - 1.Consider $\alpha_0, ..., \alpha_n \in KK(A \otimes C(\mathbb{T}), F_2)$ and $\alpha_e \in KK(A \otimes C(\mathbb{T}), F_1).$ Note that

$$|\alpha_i(\mathbf{g}_j)| = |\lambda_{i,j}|,$$

and by (e0.77), one has

$$m_s, n_j \geq N_2(8/d+1).$$

By applying **4.4** (using (e0.78), among other items), there are unitaries $z_i \in F_2$, i = 1, 2, ..., n - 1, and $z_e \in F_1$ such that

$$\begin{aligned} \|[z_i, \pi_{t_i} \circ \phi(g)]\| &< \delta_u \text{ for all } g \in \mathcal{G}_u \end{aligned} \tag{e0.96} \\ \text{Bott}(z_i, \pi_{t_i} \circ \phi) &= \alpha_i \text{ and } \text{Bott}(z_e, \pi_e \circ \phi) = \alpha_e. \end{aligned}$$

Put

$$z_0 = h_0(z_e)$$
 and $z_n = h_1(z_e)$.

One verifies (by (e0.83)) that

Bott
$$(z_0, \pi_{t_0} \circ \phi) = \alpha_0$$
 and Bott $(z_n, \pi_{t_n} \circ \phi) = \alpha_n$. (e0.98)
Let $U_{i,i+1} = z_i(w_i)^* w_{i+1}(z_{i+1})^*$, $i = 0, 1, 2, ..., n - 1$. Then
 $\|[U_{i,i+1}, \pi_{t_i} \circ \phi(g)]\| < \min\{\delta_1, \delta_2\}, g \in \mathcal{G}_u, i = 0, 1, 2, ..., n - (e0.99)$
Moreover, for $i = 0, 1, 2, ..., n - 1$,
bott₁ $(U_{i,i+1}, \pi_{t_i} \circ \phi) = bott_1(z_i, \pi_{t_i} \circ \phi)) + bott_1((w_i^* w_{i+1}, \pi_{t_i} \circ \phi))$
 $+ bott_1((z_{i+1}^*, \pi_{t_i} \circ \phi)) = (\lambda_{i,j}) + (-\lambda_{i,j} + \lambda_{i+1,j}) + (-\lambda_{i+1,j}))$
 $= 0.$

Note that for any $x \in \bigoplus_{*=0,1} \bigoplus_{k=1}^{\infty} K_*(A \otimes C(\mathbb{T}), \mathbb{Z}/k\mathbb{Z})$, one has Nx = 0. Therefore

$$\operatorname{Bott}(\underbrace{(\bigcup_{i,i+1},...,\bigcup_{i,i+1})}_{N},\underbrace{(\underbrace{\pi_{t_i}\circ\phi,...,\pi_{t_i}\circ\phi}_{N})}_{N}|_{\mathcal{P}} = N\operatorname{Bott}(\bigcup_{i,i+1},\pi_{t_i}\circ\phi)|_{\mathcal{P}} = 0$$

$$(e \ 0.100)$$
Huaxin Lin
Lecture 4
June 9th, 2015, 19 / 20

i = 0, 1, 2, ..., n - 1.

Note that, by the assumption (e0.39),

$$t_{\mathsf{s}} \circ \pi_t \circ \phi(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}_1'$, (e0.101)

where t_s is the normalized trace on M_{n_s} , $1 \le s \le F(2)$. By applying **??**, using (e0.101), (e0.99) and (e0.100), there exists a continuous path of unitaries, $\{\tilde{U}_{i,i+1}(t) : t \in [t_i, t_{i+1}]\} \subset F_2 \otimes M_N(\mathbb{C})$ such that

$$\tilde{U}_{i,i+1}(t_i) = \mathrm{id}_{F_2 \otimes M_N(\mathbb{C})}, \quad \tilde{U}_{i,i+1}(t_{i+1}) = (z_i w_i^* w_{i+1} z_{i+1}^*) \otimes 1_{M_N(\mathbb{C})},$$
(e 0.102)

and

$$\|\tilde{U}_{i,i+1}(t)(\underbrace{\pi_{t_i}\circ\phi(f),...,\phi_{t_i}\circ\phi(f)}_{N})\tilde{U}_{i,i+1}(t)^* - \underbrace{(\underline{\pi_{t_i}\circ\phi(f),...,\phi_{t_i}\circ\phi(f)}_{N})}_{N}\| < \epsilon$$
(e0.103)

for all $f \in \mathcal{F}$ and for all $t \in [t_i, t_{i+1}]$. Define $W \in C \otimes M_N$ by

$$W(t) = (w_i z_i^* \otimes 1_{M_N}) \tilde{U}_{i,i+1}(t) \text{ for all } t \in [t_i, t_{i+1}], \quad (e0.104)$$
Huaxin Lin
Lecture 4
June 9th, 2015, 19 / 20

i = 0, 1, ..., n-1. Note that $W(t_i) = w_i z_i^* \otimes 1_{M_N}, i = 0, 1, ..., n$. Note also that

$$W(0)=w_0z_0^*\otimes 1_{M_N}=h_0(w_ez_e^*)\otimes 1_{M_N}$$

and

$$W(1) = w_n z_n^* \otimes 1_{M_N} = h_1(w_e z_e^*) \otimes 1_{M_N}.$$

So $W \in C \otimes M_N$. One then checks that, by (e0.56), (e0.103) , (e0.96) and (e0.59), for $t \in [t_i, t_{i+1}]$,

$$\begin{split} \|W(t)((\pi_{t} \circ \phi)(f) \otimes 1_{M_{N}})W(t)^{*} - (\pi_{t} \circ \psi)(f) \otimes 1_{M_{N}}\| & (e\,0.105) \\ < \|W(t)((\pi_{t} \circ \phi)(f) \otimes 1_{M_{N}})W(t)^{*} - W(t)((\pi_{t_{i}} \circ \phi)(f) \otimes 1_{M_{N}})W^{*}(t)\| \\ + \|W(t)(\pi_{t_{i}} \circ \phi)(f)W(t)^{*} - W(t_{i})\pi_{t_{i}} \circ \phi)(f)W(t_{i})^{*}\| \\ + \|W(t_{i})((\pi_{t_{i}} \circ \phi)(f) \otimes 1_{M_{N}})W(t_{i})^{*} - (w_{i}(\pi_{t_{i}} \circ \phi)(f)w_{i}^{*}) \otimes 1_{M_{N}}\| \\ + \|w_{i}(\pi_{t_{i}} \circ \phi)(f)w_{i}^{*} - \pi_{t_{i}} \circ \psi(f)\| \\ + \|\pi_{t_{i}} \circ \psi(f) - \pi_{t} \circ \phi(f)\| \\ < \epsilon_{1}/16 + \epsilon/32 + \delta_{u} + \epsilon_{1}/16 + \epsilon_{1}/16 < \epsilon \end{split}$$

for all $f \in \mathcal{F}$.

_	 		
_	 		
-			