Lecture 4

Huaxin Lin

June 9th, 2015,

In this lecture, we will try to settle the following problem:

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^{*}-algebra.

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^{*}-algebra. Let $\phi, \psi: A \rightarrow C$ be two almost multiplicative c.c.p. maps,

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^{*}-algebra. Let $\phi, \psi: A \rightarrow C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex.

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^{*}-algebra. Let $\phi, \psi: A \rightarrow C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent?

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^{*}-algebra. Let $\phi, \psi: A \rightarrow C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent?

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^{*}-algebra. Let $\phi, \psi: A \rightarrow C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent? Most advanced
results are taken from a joint work with Gong and Niu.

In this lecture, we will try to settle the following problem: Let A be a unital sub-homogeneous C^{*}-algebra. Let $\phi, \psi: A \rightarrow C$ be two almost multiplicative c.c.p. maps, where C is an 1-dimensional NCCW complex. When are they are approximately unitary equivalent? Most advanced
results are taken from a joint work with Gong and Niu. But first we will establish some Bott-map related existence theorems.

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C*-algebra with UCT,

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers.

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers. For any $\delta>0$, any finite subset $\mathcal{G} \subset A$

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers. For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$,

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers. For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N_{0}, N_{1}, \ldots, N_{k}$ and unital homomorphisms $h_{j}: A \rightarrow M_{N_{j}}, j=1,2, \ldots, k$

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers. For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N_{0}, N_{1}, \ldots, N_{k}$ and unital homomorphisms $h_{j}: A \rightarrow M_{N_{j}}, j=1,2, \ldots, k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $\left|\kappa\left(\left[1_{A}\right]\right)\right|=J_{1}$

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers. For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N_{0}, N_{1}, \ldots, N_{k}$ and unital homomorphisms $h_{j}: A \rightarrow M_{N_{j}}, j=1,2, \ldots, k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $\left|\kappa\left(\left[1_{A}\right]\right)\right|=J_{1} \quad$ and

$$
J_{0}=\max \{\left|\kappa\left(g_{i}\right)\right|: g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}: 1 \leq i \leq r\}, \quad(\mathrm{e} 0.1)
$$

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers. For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N_{0}, N_{1}, \ldots, N_{k}$ and unital homomorphisms $h_{j}: A \rightarrow M_{N_{j}}, j=1,2, \ldots, k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $\left|\kappa\left(\left[1_{A}\right]\right)\right|=J_{1} \quad$ and

$$
J_{0}=\max \{\left|\kappa\left(g_{i}\right)\right|: g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}: 1 \leq i \leq r\}, \quad(\mathrm{e} 0.1)
$$

there exists a δ - \mathcal{G}-multiplicative contractive completely positive linear map $\Phi: A \rightarrow M_{N_{0}+\kappa\left(\left[1_{A}\right]\right)}$,

Lemma 4.1.

Let A be a unital separable amenable residually finite dimensional C^{*}-algebra with UCT, let $G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup with $\left[1_{A}\right] \in G$ and let $J_{0}, J_{1} \geq 0$ be integers. For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N_{0}, N_{1}, \ldots, N_{k}$ and unital homomorphisms $h_{j}: A \rightarrow M_{N_{j}}, j=1,2, \ldots, k$ satisfying the following: for any $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$, with $\left|\kappa\left(\left[1_{A}\right]\right)\right|=J_{1} \quad$ and

$$
J_{0}=\max \{\left|\kappa\left(g_{i}\right)\right|: g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}: 1 \leq i \leq r\}, \quad(\mathrm{e} 0.1)
$$

there exists a δ - \mathcal{G}-multiplicative contractive completely positive linear $\operatorname{map} \Phi: A \rightarrow M_{N_{0}+\kappa\left(\left[1_{A}\right]\right)}$, such that

$$
\begin{equation*}
\left.[\Phi]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{1}\right]+\left[h_{2}\right] \cdots+\left[h_{k}\right]\right)\right|_{\mathcal{P}} . \tag{e0.2}
\end{equation*}
$$

Proof.

It follows from 6.1.11 of [Linbook] that,

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$)

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism.

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds.

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$.

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$.

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{k}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}}, \tag{ee0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$.

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$. Note that $N_{i}=J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=J_{1}$,

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$. Note that $N_{i}=J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=J_{1}$, and $N_{i}=-J_{1}+n\left(\kappa_{i}\right)$,

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$. Note that $N_{i}=J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=J_{1}$, and $N_{i}=-J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=-J_{1}$.

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$. Note that $N_{i}=J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=J_{1}$, and $N_{i}=-J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=-J_{1}$. Define

$$
N_{0}=\sum_{i=1}^{k} N_{i}
$$

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$. Note that $N_{i}=J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=J_{1}$, and $N_{i}=-J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=-J_{1}$. Define

$$
N_{0}=\sum_{i=1}^{k} N_{i}
$$

If $\kappa=\kappa_{i}$, define $\Phi: A \rightarrow M_{N_{0}+\kappa\left(\left[1_{A}\right]\right)}$ by

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$. Note that $N_{i}=J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=J_{1}$, and $N_{i}=-J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=-J_{1}$. Define

$$
N_{0}=\sum_{i=1}^{k} N_{i}
$$

If $\kappa=\kappa_{i}$, define $\Phi: A \rightarrow M_{N_{0}+\kappa\left(\left[1_{A}\right]\right)}$ by

$$
\Phi=L_{\kappa_{i}}+\sum_{j \neq i} h_{j} .
$$

Proof.

It follows from 6.1.11 of [Linbook] that, for each such κ, there is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map $L_{\kappa}: A \rightarrow M_{n(\kappa)}$ (for integer $n(\kappa) \geq 1$) such that

$$
\begin{equation*}
\left.\left[L_{\kappa}\right]\right|_{\mathcal{P}}=\left.\left(\kappa+\left[h_{\kappa}\right]\right)\right|_{\mathcal{P}} \tag{e0.3}
\end{equation*}
$$

where $h_{\kappa}: A \rightarrow M_{N_{\kappa}}$ is a unital homomorphism. There are only finitely many different $\left.\kappa\right|_{\mathcal{P}}$ so that (e 0.1) holds. Say these are given by $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{k}$. Set $h_{i}=h_{\kappa_{i}}, i=1,2, \ldots, k$. Let $N_{i}=N_{\kappa_{i}}, i=1,2, \ldots k$. Note that $N_{i}=J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=J_{1}$, and $N_{i}=-J_{1}+n\left(\kappa_{i}\right)$, if $\kappa\left(\left[1_{A}\right]\right)=-J_{1}$. Define

$$
N_{0}=\sum_{i=1}^{k} N_{i}
$$

If $\kappa=\kappa_{i}$, define $\Phi: A \rightarrow M_{N_{0}+\kappa\left(\left[1_{A}\right]\right)}$ by

$$
\Phi=L_{\kappa_{i}}+\sum_{j \neq i} h_{j} .
$$

Lemma 4.2.
Let A be a unital C^{*}-algebra as in 4.1

Lemma 4.2.
Let A be a unital C^{*}-algebra as in 4.1 and let $\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let $\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup. There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following:

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let $\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup. There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$,

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i=1,2, \ldots, r$, satisfying the following:

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset K(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i=1,2, \ldots, r$, satisfying the following:
Let $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_{i}=\kappa\left(g_{i}\right)$,

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i=1,2, \ldots, r$, satisfying the following:
Let $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_{i}=\kappa\left(g_{i}\right)$, where
$g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$,

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i=1,2, \ldots, r$, satisfying the following:
Let $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_{i}=\kappa\left(g_{i}\right)$, where
$g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$, there exists a unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $L: A \rightarrow M_{N_{1}}$

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset K(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i=1,2, \ldots, r$, satisfying the following:
Let $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_{i}=\kappa\left(g_{i}\right)$, where
$g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$, there exists a unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $L: A \rightarrow M_{N_{1}}$ and a homomorphism $h: A \rightarrow M_{N_{1}}$ such that

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset K(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i=1,2, \ldots, r$, satisfying the following:
Let $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_{i}=\kappa\left(g_{i}\right)$, where
$g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$, there exists a unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $L: A \rightarrow M_{N_{1}}$ and a homomorphism $h: A \rightarrow M_{N_{1}}$ such that

$$
\begin{equation*}
\left.[L]\right|_{\mathcal{P}}=\left.(\kappa+[h])\right|_{\mathcal{P}}, \tag{e0.4}
\end{equation*}
$$

Lemma 4.2.

Let A be a unital C^{*}-algebra as in 4.1 and let
$\left[1_{A}\right] \in G=\mathbb{Z}^{r} \oplus \operatorname{Tor}(G) \subset K_{0}(A)$ be a finitely generated subgroup.
There exists $\Lambda_{i} \geq 0, i=1,2, \ldots, r$, satisfying the following: For any $\delta>0$, any finite subset $\mathcal{G} \subset A$ and any finite subset $\mathcal{P} \subset \underline{K}(A)$ with $\mathcal{P} \cap K_{0}(A) \subset G$, there exist integers $N(\delta, \mathcal{G}, \mathcal{P}, i) \geq 1, i=1,2, \ldots, r$, satisfying the following:
Let $\kappa \in \operatorname{Hom}_{\wedge}(\underline{K}(A), \underline{K}(\mathcal{K}))$ and $S_{i}=\kappa\left(g_{i}\right)$, where
$g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$, there exists a unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $L: A \rightarrow M_{N_{1}}$ and a homomorphism $h: A \rightarrow M_{N_{1}}$ such that

$$
\begin{equation*}
\left.[L]\right|_{\mathcal{P}}=\left.(\kappa+[h])\right|_{\mathcal{P}}, \tag{e0.4}
\end{equation*}
$$

where $N_{1}=\sum_{i=1}^{r}\left(N(\delta, \mathcal{G}, \mathcal{P}, i) \pm \Lambda_{i}\right) \cdot\left|S_{i}.\right|$

Proof: Let $\psi_{i}^{+}: G \rightarrow \mathbb{Z}$ be a homomorphism defined by $\psi_{i}^{+}\left(g_{i}\right)=1$,
$\psi_{i}^{+}\left(g_{j}\right)=0$, if $j \neq i$, and $\left.\psi_{i}^{+}\right|_{\operatorname{Tor}(G)}=0$, and let $\psi_{i}^{-}\left(g_{i}\right)=-1$ and $\psi_{i}^{-}\left(g_{j}\right)=0$, if $j \neq i$, and $\left.\psi_{i}^{-}\right|_{\operatorname{Tor}(G)}=0, i=1,2, \ldots, r$. Note that $\psi_{i}^{-}=-\psi_{i}^{+}, i=1,2, \ldots, r$. Let $\Lambda_{i}=\left|\psi_{i}^{+}\left(\left[1_{A}\right]\right)\right|, i=1,2, \ldots, r$.
Let $\kappa_{i}^{+}, \kappa_{i}^{-} \in \operatorname{Hom}_{\Lambda}\left(\underline{K}(A), \underline{K}(\mathcal{K})\right.$ be such that $\left.\kappa_{i}^{+}\right|_{G}=\psi_{i}^{+}$and $\kappa_{i}^{-}=\psi_{i}^{-}$, $i=1,2, \ldots, r$. Let $N_{0}(i) \geq 1$ (in place of N_{0}) be required by ?? for δ, \mathcal{G}, $J_{0}=1$ and $J_{1}=M_{i}$. Define $N(\delta, \mathcal{G}, \mathcal{P}, i)=N_{0}(i), i=1,2, \ldots, r$. Let $\kappa \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(\mathcal{K}))$. Then $\left.\kappa\right|_{G}=\sum_{i=1}^{r} S_{i} \psi_{i}^{+}$, where $S_{i}=\kappa\left(g_{i}\right)$, $i=1,2, \ldots, r$.
By applying 4.1, one obtains \mathcal{G} - δ-multiplicative contractive completely positive linear maps $L_{i}^{ \pm}: A \rightarrow M_{N_{0}(i)+\kappa_{i}^{ \pm}\left(\left[1_{A}\right]\right)}$ and a homomorphism $h_{i}^{ \pm}: A \rightarrow M_{N_{0}(i)}$ such that

$$
\begin{equation*}
\left.\left[L_{i}^{ \pm}\right]\right|_{\mathcal{P}}=\left.\left(\kappa_{i}^{ \pm}+\left[h_{i}^{ \pm}\right]\right)\right|_{\mathcal{P}}, \quad i=1,2, \ldots, r . \tag{e0.5}
\end{equation*}
$$

Define $L=\sum_{i=1}^{r} L_{i}^{ \pm,\left|S_{i}\right|}$, where $L^{ \pm,\left|S_{i}\right|}: A \rightarrow M_{\left|S_{i}\right| N_{0}(i)}$ defined by

$$
L^{ \pm,\left|S_{i}\right|}(a)=\operatorname{diag}(\overbrace{L_{i}^{ \pm}(a), \ldots, L_{i}^{ \pm}(a)}^{\left|S_{i}\right|})
$$

for all $a \in A$. One checks that $L: A \rightarrow M_{N_{1}}$, where $N_{1}=\sum_{i=1}^{r}\left|S_{i}\right|\left(\Lambda_{i}^{\prime}+N(\delta, \mathcal{G}, \mathcal{P}, i)\right.$ and $\Lambda_{i}^{\prime}=\psi_{i}^{+}\left(\left[1_{A}\right]\right)$, if $S_{i}>0$, or $\Lambda_{i}^{\prime}=-\psi_{+}^{+}\left(\left[1_{A}\right]\right)$, if $S_{i}<0$, is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map and

$$
\left.[L]\right|_{\mathcal{P}}=\left.(\kappa+[h])\right|_{\mathcal{P}}
$$

for some homomorphism $h: A \rightarrow M_{N_{1}}$.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}. A is said to be minimal, if $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}. A is said to be minimal, if $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$. For $t \in(0,1)$, define $\pi_{t}: A \rightarrow F_{2}$ by $\pi_{t}((f, g))=f(t)$ for all $(f, g) \in A$.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}. A is said to be minimal, if $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$. For $t \in(0,1)$, define $\pi_{t}: A \rightarrow F_{2}$ by $\pi_{t}((f, g))=f(t)$ for all $(f, g) \in A$. If $t=0$, define $\pi_{0}: A \rightarrow \phi_{0}\left(F_{1}\right) \subset F_{2}$ by $\pi_{0}((f, g))=\phi_{0}(g)$ for all $(f, g) \in A$.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}. A is said to be minimal, if $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$. For $t \in(0,1)$, define $\pi_{t}: A \rightarrow F_{2}$ by $\pi_{t}((f, g))=f(t)$ for all $(f, g) \in A$. If $t=0$, define $\pi_{0}: A \rightarrow \phi_{0}\left(F_{1}\right) \subset F_{2}$ by $\pi_{0}((f, g))=\phi_{0}(g)$ for all $(f, g) \in A$. If $t=1$, define $\pi_{1}: A \rightarrow \phi_{1}\left(F_{1}\right) \subset F_{2}$ by $\left.\pi_{1}((f, g))=\phi_{1}(g)\right)$ for all $(f, g) \in A$.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}. A is said to be minimal, if $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$. For $t \in(0,1)$, define $\pi_{t}: A \rightarrow F_{2}$ by $\pi_{t}((f, g))=f(t)$ for all $(f, g) \in A$. If $t=0$, define $\pi_{0}: A \rightarrow \phi_{0}\left(F_{1}\right) \subset F_{2}$ by $\pi_{0}((f, g))=\phi_{0}(g)$ for all $(f, g) \in A$. If $t=1$, define $\pi_{1}: A \rightarrow \phi_{1}\left(F_{1}\right) \subset F_{2}$ by $\left.\pi_{1}((f, g))=\phi_{1}(g)\right)$ for all $(f, g) \in A$. In what follows, we will call π_{t} as point-evaluation of A at t.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}. A is said to be minimal, if $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$. For $t \in(0,1)$, define $\pi_{t}: A \rightarrow F_{2}$ by $\pi_{t}((f, g))=f(t)$ for all $(f, g) \in A$. If $t=0$, define $\pi_{0}: A \rightarrow \phi_{0}\left(F_{1}\right) \subset F_{2}$ by $\pi_{0}((f, g))=\phi_{0}(g)$ for all $(f, g) \in A$. If $t=1$, define $\pi_{1}: A \rightarrow \phi_{1}\left(F_{1}\right) \subset F_{2}$ by $\left.\pi_{1}((f, g))=\phi_{1}(g)\right)$ for all $(f, g) \in A$. In what follows, we will call π_{t} as point-evaluation of A at t. There is a canonical map $\pi_{e}: A \rightarrow F_{1}$ defined by $\pi_{e}(f, g)=g$ for all pair $(f, g) \in A$. It is a surjective map.

Definition

Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two unital homomorphisms $\phi_{0}, \phi_{1}: F_{1} \rightarrow F_{2}$. Denote the mapping torus $M_{\phi_{1}, \phi_{2}}$ by

$$
\begin{aligned}
& A=A\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)= \\
& \left\{(f, g) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\phi_{0}(g) \text { and } f(1)=\phi_{1}(g)\right\} .
\end{aligned}
$$

These C^{*}-algebras are called Elliott-Thomsen building block. The class of all C^{*}-algebras which are finite dimensional or the above form will be denoted by \mathcal{C}. A is said to be minimal, if $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$. For $t \in(0,1)$, define $\pi_{t}: A \rightarrow F_{2}$ by $\pi_{t}((f, g))=f(t)$ for all $(f, g) \in A$. If $t=0$, define $\pi_{0}: A \rightarrow \phi_{0}\left(F_{1}\right) \subset F_{2}$ by $\pi_{0}((f, g))=\phi_{0}(g)$ for all $(f, g) \in A$. If $t=1$, define $\pi_{1}: A \rightarrow \phi_{1}\left(F_{1}\right) \subset F_{2}$ by $\left.\pi_{1}((f, g))=\phi_{1}(g)\right)$ for all $(f, g) \in A$. In what follows, we will call π_{t} as point-evaluation of A at t. There is a canonical map $\pi_{e}: A \rightarrow F_{1}$ defined by $\pi_{e}(f, g)=g$ for all pair $(f, g) \in A$. It is a surjective map.
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW.
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras.
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW.
Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW.
Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW.
Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected,
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$,
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_{X}>0$ such that, for any $0<d \leq d_{X}$, there exists $s_{*}^{d}: \overline{X^{d}} \rightarrow Z$ such that
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_{X}>0$ such that, for any $0<d \leq d_{X}$, there exists $s_{*}^{d}: \overline{X^{d}} \rightarrow Z$ such that

$$
\begin{equation*}
s_{*}^{d}(x)=x \text { for all } x \in Z \text { and } \tag{e0.6}
\end{equation*}
$$

C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_{X}>0$ such that, for any $0<d \leq d_{X}$, there exists $s_{*}^{d}: \overline{X^{d}} \rightarrow Z$ such that

$$
\begin{array}{r}
s_{*}^{d}(x)=x \text { for all } x \in Z \text { and } \\
\lim _{d \rightarrow 0}\left\|\left.f\right|_{Z} \circ s_{*}^{d}-\left.f\right|_{\overline{X^{d}}}\right\|=0 \text { for all } f \in C(X, F) \tag{e0.7}
\end{array}
$$

C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_{X}>0$ such that, for any $0<d \leq d_{X}$, there exists $s_{*}^{d}: \overline{X^{d}} \rightarrow Z$ such that

$$
\begin{array}{r}
s_{*}^{d}(x)=x \text { for all } x \in Z \text { and } \\
\lim _{d \rightarrow 0}\left\|\left.f\right|_{Z} \circ s_{*}^{d}-\left.f\right|_{\overline{X^{d}}}\right\|=0 \text { for all } f \in C(X, F) \tag{e0.7}
\end{array}
$$

where $X^{d}=\{x \in X: \operatorname{dist}(x, Z)<d\}$.
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_{X}>0$ such that, for any $0<d \leq d_{X}$, there exists $s_{*}^{d}: \overline{X^{d}} \rightarrow Z$ such that

$$
\begin{array}{r}
\qquad s_{*}^{d}(x)=x \text { for all } x \in Z \text { and } \\
\lim _{d \rightarrow 0}\left\|\left.f\right|_{Z} \circ s_{*}^{d}-\left.f\right|_{\overline{X^{d}}}\right\|=0 \text { for all } f \in C(X, F) \tag{e0.7}
\end{array}
$$

where $X^{d}=\{x \in X: \operatorname{dist}(x, Z)<d\}$. We also assume that, for any $0<d<d_{X} / 2$ and for any $d>\delta>0$,
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_{X}>0$ such that, for any $0<d \leq d_{X}$, there exists $s_{*}^{d}: \overline{X^{d}} \rightarrow Z$ such that

$$
\begin{array}{r}
s_{*}^{d}(x)=x \text { for all } x \in Z \text { and } \\
\lim _{d \rightarrow 0}\left\|\left.f\right|_{Z} \circ s_{*}^{d}-\left.f\right|_{\overline{X^{d}}}\right\|=0 \text { for all } f \in C(X, F) \tag{e0.7}
\end{array}
$$

where $X^{d}=\{x \in X: \operatorname{dist}(x, Z)<d\}$. We also assume that, for any $0<d<d_{X} / 2$ and for any $d>\delta>0$, there is a homeomorphism $r: X \backslash X^{d-\delta} \rightarrow X \backslash X^{d}$
C^{*}-algebras in \mathcal{C} are also called 1-dimensional NCCW. Denote by \mathcal{D}_{0} the class of all finite dimensional C^{*}-algebras. For $k \geq 1$, denote by \mathcal{D}_{k} the class of all C^{*}-algebras with the form:

$$
A=\left\{(f, a) \in C(X, F) \oplus B:\left.f\right|_{z}=\Gamma(a)\right\}
$$

where X is a connected metric space and $Z \subset X$ is a nonempty proper compact subset such that $X \backslash Z$ is connected, $\Gamma: B \rightarrow C(Z, F)$ is a unital homomorphism, $B \in \mathcal{D}_{k-1}$, where we assume that there is $d_{X}>0$ such that, for any $0<d \leq d_{X}$, there exists $s_{*}^{d}: \overline{X^{d}} \rightarrow Z$ such that

$$
\begin{array}{r}
s_{*}^{d}(x)=x \text { for all } x \in Z \text { and } \\
\lim _{d \rightarrow 0}\left\|\left.f\right|_{Z} \circ s_{*}^{d}-\left.f\right|_{\overline{X^{d}}}\right\|=0 \text { for all } f \in C(X, F) \tag{e0.7}
\end{array}
$$

where $X^{d}=\{x \in X: \operatorname{dist}(x, Z)<d\}$. We also assume that, for any $0<d<d_{X} / 2$ and for any $d>\delta>0$, there is a homeomorphism $r: X \backslash X^{d-\delta} \rightarrow X \backslash X^{d}$ such that

$$
\begin{equation*}
\operatorname{dist}(r(x), x)<\delta \text { for all } x \in X \backslash X^{d-\delta} \tag{e0.8}
\end{equation*}
$$

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.).

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X)$,

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$.

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$. Suppose that $\Gamma: B \rightarrow C(\partial(X), F)$ is a unital homomorphism.

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$. Suppose that $\Gamma: B \rightarrow C(\partial(X), F)$ is a unital homomorphism. Define

$$
A=\left\{(f, b) \in C(X, F) \oplus B:\left.f\right|_{\partial(X)}=\Gamma(b)\right\}
$$

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$. Suppose that $\Gamma: B \rightarrow C(\partial(X), F)$ is a unital homomorphism. Define

$$
A=\left\{(f, b) \in C(X, F) \oplus B:\left.f\right|_{\partial(X)}=\Gamma(b)\right\}
$$

Then $A \in \mathcal{D}_{d}$.

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$. Suppose that $\Gamma: B \rightarrow C(\partial(X), F)$ is a unital homomorphism. Define

$$
A=\left\{(f, b) \in C(X, F) \oplus B:\left.f\right|_{\partial(X)}=\Gamma(b)\right\}
$$

Then $A \in \mathcal{D}_{d}$. Note that $C(Y, F) \in \mathcal{D}_{1}$.

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$. Suppose that $\Gamma: B \rightarrow C(\partial(X), F)$ is a unital homomorphism. Define

$$
A=\left\{(f, b) \in C(X, F) \oplus B:\left.f\right|_{\partial(X)}=\Gamma(b)\right\}
$$

Then $A \in \mathcal{D}_{d}$. Note that $C(Y, F) \in \mathcal{D}_{1}$.

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$. Suppose that $\Gamma: B \rightarrow C(\partial(X), F)$ is a unital homomorphism. Define

$$
A=\left\{(f, b) \in C(X, F) \oplus B:\left.f\right|_{\partial(X)}=\Gamma(b)\right\}
$$

Then $A \in \mathcal{D}_{d}$.
Note that $C(Y, F) \in \mathcal{D}_{1}$.

All theorems stated for $P M_{r}(C(X)) P$ so far

Examples: $\mathcal{C} \subset \mathcal{D}_{1}$ (with $X=\mathbb{I}=[0,1]$ and $Z=\partial(\mathbb{I})=\{0\} \cup\{1\}$.). Let $d \geq 1, X=\mathbb{I}^{d}$, the d-dimensional disk, $Z=\partial(X), \quad F$ be a finite dimensional C^{*}-algebra and let $B \in \mathcal{D}_{d-1}$. Suppose that $\Gamma: B \rightarrow C(\partial(X), F)$ is a unital homomorphism. Define

$$
A=\left\{(f, b) \in C(X, F) \oplus B:\left.f\right|_{\partial(X)}=\Gamma(b)\right\}
$$

Then $A \in \mathcal{D}_{d}$.
Note that $C(Y, F) \in \mathcal{D}_{1}$.

All theorems stated for $P M_{r}(C(X)) P$ so far works for C^{*}-algebras in \mathcal{A}_{d} for all $d \geq 1$. (Gong-L-Niu)

We have a version of the following when A has the form $P M_{r}(C(X)) P$.

We have a version of the following when A has the form $P M_{r}(C(X)) P$.

Lemma 4.3.

Let $A \in \mathcal{D}_{s}$ be a unital C^{*}-algebra and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a positive map. For any $\epsilon>0$ and any finite subset \mathcal{F}, there exist a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$ and an integer $L \geq 1$ satisfying the following: For any unital homomorphism $\phi: A \rightarrow M_{k}$ and any unital homomorphism $\psi: A \rightarrow M_{R}$ for some $R \geq L k$ such that

$$
\begin{equation*}
\operatorname{tr} \circ \psi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \tag{e0.9}
\end{equation*}
$$

there exist a unital homomorphism $\phi_{0}: A \rightarrow M_{R-k}$ and a unitary $u \in M_{R}$ such that

$$
\begin{equation*}
\left\|\operatorname{Ad} u \circ \operatorname{diag}\left(\phi(f), \phi_{0}(f)\right)-\psi(f)\right\|<\epsilon \tag{e0.10}
\end{equation*}
$$

for all $f \in \mathcal{F}$.

Lemma 4.4.
Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset.

Lemma 4.4.
Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P},

Lemma 4.4.
Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset \underline{K}(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$.

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$,

Lemma 4.4.
Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following:

Lemma 4.4.
Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\} \tag{e0.11}
\end{equation*}
$$

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\}, \tag{e0.11}
\end{equation*}
$$

where $g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$.

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\}, \tag{e0.11}
\end{equation*}
$$

where $g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$. Then for any unital $\delta-\mathcal{G}$
-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{R}$ such that

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\}, \tag{e0.11}
\end{equation*}
$$

where $g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$. Then for any unital $\delta-\mathcal{G}$
-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{R}$ such that $R \geq N(K+1)$ and

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\}, \tag{e0.11}
\end{equation*}
$$

where $g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$. Then for any unital $\delta-\mathcal{G}$ -multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{R}$ such that $R \geq N(K+1)$ and $\operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h})$ for all $h \in \mathcal{H}$,

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\}, \tag{e0.11}
\end{equation*}
$$

where $g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$. Then for any unital $\delta-\mathcal{G}$ -multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{R}$ such that $R \geq N(K+1)$ and $\operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h})$ for all $h \in \mathcal{H}$, there exists a unitary $u \in M_{R}$ such that

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let
$\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\} \tag{e0.11}
\end{equation*}
$$

where $g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$. Then for any unital $\delta-\mathcal{G}$ -multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{R}$ such that $R \geq N(K+1)$ and $\operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h})$ for all $h \in \mathcal{H}$, there exists a unitary $u \in M_{R}$ such that

$$
\begin{equation*}
\|[\phi(f), u]\|<\epsilon \text { for all } f \in \mathcal{F} \text { and } \tag{e0.12}
\end{equation*}
$$

Lemma 4.4.

Let A be a unital C^{*}-algebra in \mathcal{D}_{s} and let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset. Suppose that $G \subset K(A)$ be the group generated by \mathcal{P},
$G_{1}=G \cap K_{1}(A)=Z^{r} \oplus \operatorname{Tor}\left(K_{1}(A)\right)$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ and let
$\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H} \subset A_{+} \backslash\{0\}$ and an integer $N \geq 1$ satisfying the following: Let $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ and put

$$
\begin{equation*}
K=\max \left\{\left|\kappa\left(\boldsymbol{\beta}\left(g_{i}\right)\right)\right|: 1 \leq i \leq r\right\} \tag{e0.11}
\end{equation*}
$$

where $g_{i}=(\overbrace{0, \ldots, 0}^{i-1}, 1,0, \ldots, 0) \in \mathbb{Z}^{r}$. Then for any unital $\delta-\mathcal{G}$ -multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{R}$ such that $R \geq N(K+1)$ and $\operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h})$ for all $h \in \mathcal{H}$, there exists a unitary $u \in M_{R}$ such that

$$
\begin{array}{r}
\|[\phi(f), u]\|<\epsilon \text { for all } f \in \mathcal{F} \text { and } \tag{e0.12}\\
\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=\left.\kappa \circ \boldsymbol{\beta}\right|_{\mathcal{P}} .
\end{array}
$$

Proof: To simplify notation, without loss of generality, we may assume that \mathcal{F} is a subset of the unit ball. Let $\Delta_{1}=(1 / 8) \Delta$ and $\Delta_{2}=(1 / 16) \Delta$. Let $\epsilon_{0}>0$ and $\mathcal{G}_{0} \subset A$ be a finite subset satisfy the following: If $\phi^{\prime}: A \rightarrow B$ (for any unital C^{*}-algebra B) is a unital ϵ_{0} - \mathcal{G}_{0}-multiplicative contractive completely positive linear map and $u^{\prime} \in B$ is a unitary such that

$$
\begin{equation*}
\left\|\phi^{\prime}(g) u^{\prime}-u^{\prime} \phi^{\prime}(g)\right\|<4 \epsilon_{0} \text { for all } g \in \mathcal{G}_{0} \tag{e0.14}
\end{equation*}
$$

then $\left.\operatorname{Bott}\left(\phi^{\prime}, u^{\prime}\right)\right|_{\mathcal{P}}$ is well defined. Moreover, if $\phi^{\prime}: A \rightarrow B$ is another unital $\epsilon_{0}-\mathcal{G}_{0}$-multiplicative contractive completely positive linear map then

$$
\begin{equation*}
\left.\operatorname{Bott}\left(\phi^{\prime}, u^{\prime}\right)\right|_{\mathcal{P}}=\left.\operatorname{Bott}\left(\phi^{\prime \prime}, u^{\prime \prime}\right)\right|_{\mathcal{P}} \tag{e0.15}
\end{equation*}
$$

provided that

$$
\left\|\phi^{\prime}(g)-\phi^{\prime \prime}(g)\right\|<4 \epsilon_{0} \text { and }\left\|u^{\prime}-u^{\prime \prime}\right\|<4 \epsilon_{0} \text { for all } g \in \mathcal{G}_{0} . \quad(\mathrm{e} 0.16)
$$

We may assume that $1_{A} \in \mathcal{G}_{0}$. Let

$$
\mathcal{G}_{0}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}_{0} \text { and } f=\left\{1_{C(\mathbb{T})}, z, z^{*}\right\} .\right.
$$

where z is the identity function on the unit circle \mathbb{T}. We also assume that if $\Psi^{\prime}: A \otimes C(\mathbb{T}) \rightarrow C$ (to some unital C^{*}-algebra C) is a
$\mathcal{G}^{\prime}{ }^{\prime}-\epsilon_{0}$-multiplicative contractive completely positive linear map, then there exist a unitary $u^{\prime} \in C$ such that

$$
\begin{equation*}
\left\|\Psi^{\prime}(1 \otimes z)-u^{\prime}\right\|<4 \epsilon_{0} \tag{e0.17}
\end{equation*}
$$

Without loss of generality, we may assume that \mathcal{G}_{0} is in the unital ball of A. Let $\epsilon_{1}=\min \left\{\epsilon / 64, \epsilon_{0} / 512\right)$ and $\mathcal{F}_{1}=\mathcal{F} \cup \mathcal{G}_{0}$.
Let $\mathcal{H}_{0} \subset A_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset and $L \geq 1$ be an integer required by 4.3 for ϵ_{1} (in place of ϵ) and \mathcal{F}_{1} (in place of \mathcal{F}) as well as Δ_{2} (in place of Δ).
Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ), $\mathcal{P}_{1} \subset \underline{K}(A)$ (in place of \mathcal{P}) be a finite subset, $\mathcal{H}_{2} \subset A_{\text {s.a. }}$ be a finite subset and $1>\sigma>0$ be required by ?? for ϵ_{1} (in place of ϵ), \mathcal{F}_{1} (in place of \mathcal{F}) and Δ_{1}. We may assume that $\left[1_{A}\right] \in \mathcal{P}_{2}, \mathcal{H}_{2}$ is in the unit ball of A and $\mathcal{H}_{0} \subset \mathcal{H}_{1}$.

Without loss of generality, we may assume that $\delta_{1}, \sigma<\epsilon_{1} / 16$ and $\mathcal{F}_{1} \subset \mathcal{G}_{1}$. Let $\mathcal{P}_{2}=\mathcal{P} \cup \mathcal{P}_{1}$.
Suppose that A has irreducible representations of rank $r_{1}, r_{2}, \ldots, r_{k}$. Fix one irreducible representation $\pi_{0}: A \rightarrow M_{r_{1}}$. Let $N(p) \geq 1$ (in place of $N\left(\mathcal{P}_{0}\right)$) and $\mathcal{H}_{0} \subset A_{+}^{1} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset required by ?? for $\left\{1_{A}\right\}$ (in place of \mathcal{P}_{0}) and $(1 / 3) \Delta$.
Let $G_{0}=G \cap K_{0}(A)$ and write $G_{0}=\mathbb{Z}^{s_{1}} \oplus \mathbb{Z}^{s_{2}} \oplus \operatorname{Tor}\left(G_{0}\right)$, where

$$
j-1
$$

$\mathbb{Z}^{s_{2}} \oplus \operatorname{Tor}\left(G_{0}\right) \subset \operatorname{ker} \rho_{A}$. Let $x_{j}=(\overbrace{0, \ldots, 0}, 1,0, \ldots, 0) \in \mathbb{Z}^{s_{1}} \oplus \mathbb{Z}^{s_{2}}$,
$j=1,2, \ldots, s_{2}$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$ and $A \otimes C(\mathbb{T})$ has irreducible representations of rank $r_{1}, r_{2}, \ldots, r_{k}$. Let

$$
\bar{r}=\max \left\{\left|\left(\pi_{0}\right)_{* 0}\left(x_{j}\right)\right|: 0 \leq j \leq s_{1}+s_{2}\right\} .
$$

Let $\mathcal{P}_{3} \subset \underline{K}(A \otimes C(\mathbb{T}))$ be a finite subset set containing \mathcal{P}_{2}, $\left\{\boldsymbol{\beta}\left(g_{j}\right): 1 \leq j \leq r\right\}$ and a finite subset which generates $\boldsymbol{\beta}\left(\operatorname{Tor}\left(G_{1}\right)\right)$.
Choose $\delta_{2}>0$ and finite subset

$$
\overline{\mathcal{G}}=\left\{g \otimes f: g \in \mathcal{G}_{2}, \quad f \in\left\{1, z, z^{*}\right\}\right\}
$$

in $A \otimes C(\mathbb{T})$, where $\mathcal{G}_{2} \subset A$ is a finite subset such that, for any unital $\delta_{2}-\overline{\mathcal{G}}$-multiplicative contractive completely positive linear map $\Phi^{\prime}: A \otimes C(\mathbb{T}) \rightarrow C$ (for any unital C^{*}-algebra C with $\left.T(C) \neq \emptyset\right),\left.\left[\Phi^{\prime}\right]\right|_{\mathcal{P}_{3}}$ is well defined and

$$
\begin{equation*}
\left.\left[\Phi^{\prime}\right]\right|_{\operatorname{Tor}\left(G_{0}\right) \oplus \boldsymbol{\beta}\left(\operatorname{Tor}\left(G_{1}\right)\right.}=0 . \tag{e0.18}
\end{equation*}
$$

We may assume $\mathcal{G}_{2} \supset \mathcal{G}_{1} \cup \mathcal{F}_{1}$.
Let $\sigma_{1}=\min \left\{\Delta_{2}(\hat{h}): h \in \mathcal{H}_{1}\right\}$. Note $K_{0}(A \otimes C(\mathbb{T}))=K_{0}(A) \oplus \boldsymbol{\beta}\left(K_{1}(A)\right)$ and $\underline{K}(A \otimes C(\mathbb{T}))=\underline{K}(A) \oplus \boldsymbol{\beta}(\underline{K}(A))$. Consider the subgroup of $K_{0}(A \otimes C(\mathbb{T})):$

$$
\mathbb{Z}^{s_{1}} \oplus \mathbb{Z}^{s_{2}} \oplus \mathbb{Z}^{r} \oplus \operatorname{Tor}\left(K _ { 0 } (A) \oplus \boldsymbol { \beta } \left(\operatorname{Tor}\left(K_{1}(A)\right)\right.\right.
$$

Let $\delta_{3}=\min \left\{\delta_{1}, \delta_{2}\right\}$. Let $N\left(\delta_{3}, \overline{\mathcal{G}}, \mathcal{P}_{3}, i\right)$ and $\Lambda_{i}, i=1,2, \ldots, s_{1}+s_{2}+r$, be required by 4.2. (for $A \otimes C(\mathbb{T})$). Choose an integer $n_{1} \geq N(p)$ such that

$$
\frac{\left(\sum_{i=1}^{s_{1}+s_{2}+r} N\left(\delta_{3}, \overline{\mathcal{G}}, \mathcal{P}_{3}, i\right)+1+\Lambda_{i}\right) N(p)}{n_{1}-1}<\min \left\{\sigma / 16, \sigma_{1} / 2\right\}
$$

Choose $n>n_{1}$ such that

$$
\begin{equation*}
\frac{n_{1}+2}{n}<\min \left\{\sigma / 16, \sigma_{1} / 2,1 /(L+1)\right\} \tag{e0.20}
\end{equation*}
$$

Let $\epsilon_{2}>0$ and let $\mathcal{F}_{2} \subset A$ be a finite subset such that $\left.[\Psi]\right|_{\mathcal{P}_{2}}$ is well defined.
Let $\epsilon_{3}=\min \left\{\epsilon_{2} / 2, \epsilon_{1}\right\}$ and $\mathcal{F}_{3}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$.
Let $\delta_{4}>0$ (in place of δ), $\mathcal{G}_{3} \subset A$ (in place of \mathcal{G}) be a finite subset and let $\mathcal{H}_{3} \subset A_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) required by Cor. 2.5 for ϵ_{3} (in place of ϵ), $\mathcal{F}_{3} \cup \mathcal{H}_{1}$ (in place of \mathcal{F}), $\delta_{3} / 2$ (in place of ϵ_{0}), \mathcal{G}_{2} (in place of \mathcal{G}_{0}), Δ, \mathcal{H}_{1} (in place of \mathcal{H}), $\min \left\{\sigma / 16, \sigma_{1} / 2\right\}$ (in place of σ) and n^{2} (in place of K) required by Cor. 2.5 (with $L_{1}=L_{2}$).
Let $\mathcal{G}=\mathcal{F}_{3} \cup \mathcal{G}_{1} \cup \mathcal{G}_{2} \cup \mathcal{G}_{3}$ and let $\delta=\min \left\{\epsilon_{3} / 16, \delta_{4}, \delta_{3} / 16\right\}$. Let $\mathcal{G}_{5}=\left\{g \otimes f: g \in \mathcal{G}_{4}, \quad f \in\left\{1, z, z^{*}\right\}\right\}$.
Let $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{0}$. Define
$N_{0}=(n+1) N(p)\left(\sum_{i=1}^{s_{1}+s_{2}+r} N\left(\delta_{3}, \mathcal{G}_{0}, \mathcal{P}_{3}, i\right)+\Lambda_{i}+1\right)$ and define $N=N_{0}+N_{0} \bar{r}$. Fix any $\kappa \in K K(A \otimes C(\mathbb{T}), \mathbb{C})$ with

$$
K=\max \left\{\mid \kappa\left(\boldsymbol{\beta}\left(g_{i}\right) \mid: 1 \leq j \leq r\right\} .\right.
$$

Let $R>N(K+1)$. Suppose that $\phi: A \rightarrow M_{R}$ is a unital
\mathcal{G} - δ-multiplicative contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \tag{e0.21}
\end{equation*}
$$

Then, by Cor. 2.5, there exists mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{n} \in M_{R}$ such that $e_{1}, e_{2}, \ldots, e_{n}$ are equivalent, $\operatorname{tr}\left(e_{0}\right)<\min \left\{\sigma / 64, \sigma_{1} / 4\right\}$ and $e_{0}+\sum_{i=1}^{n} e_{i}=1_{M_{R}}$, and there exists a unital $\delta_{3} / 2-\mathcal{G}_{2}$-multiplicative contractive completely positive linear map $\psi_{0}: A \rightarrow e_{0} M_{R} e_{0}$ and a unital homomorphism $\psi: A \rightarrow e_{1} M_{R} e_{1}$ such that

$$
\begin{array}{r}
\|\phi(f)-(\psi_{0}(f) \oplus \overbrace{\psi(f), \psi(f), \ldots, \psi(f)}^{n^{2}})\|<\epsilon_{3} \text { for all } f \in \mathcal{F}_{3} \text { and(e } 0.22) \\
\operatorname{tr} \circ \psi(h) \geq \Delta(\hat{h}) / 3 n \text { for all } h \in \mathcal{H}_{\mathbb{L}}(\mathrm{e} 0.23)
\end{array}
$$

Let $\alpha \in \operatorname{Hom}_{\wedge}\left(\underline{K}(A \otimes C(\mathbb{T})), \underline{K}\left(M_{r}\right)\right)$ be define as follows: $\left.\alpha\right|_{\underline{K}(A)}=\left[\pi_{0}\right]$ and $\left.\alpha\right|_{\boldsymbol{\beta}(\underline{K}(A))}=\left.\kappa\right|_{\boldsymbol{\beta}(\underline{K}(A))}$. Let

$$
\max \left\{\left|\kappa \circ \beta\left(g_{i}\right)\right|: i=1,2, \ldots, r,\left|\pi_{0}\left(x_{j}\right)\right|: 1 \leq j \leq s_{1}+s_{2}\right\} \leq \max \{K, \bar{r}\}
$$

Applying we obtain a unital δ_{3} - \mathcal{G}-multiplicative contractive completely positive linear map $\Psi: A \otimes C(\mathbb{T}) \rightarrow M_{N_{1}^{\prime}}$, where
$\left.N_{1}^{\prime} \leq N_{1}=\sum_{j=1}^{s_{1}+s_{2}+r} N\left(\delta_{3}, \mathcal{G}_{0}, \mathcal{P}_{3}, j\right)+\Lambda_{i}\right) \max \{K, \bar{r}\}$, and a
homomorphism $H_{0}: A \otimes C(\mathbb{T}) \rightarrow H_{0}\left(1_{A}\right) M_{N_{1}^{\prime}} H_{0}\left(1_{A}\right)$ such that such that

$$
\begin{equation*}
\left.[\Psi]\right|_{\mathcal{P}_{3}}=\left.\left(\alpha+\left[H_{0}\right]\right)\right|_{\mathcal{P}_{3}} . \tag{e0.24}
\end{equation*}
$$

In particular, since $\left[1_{A}\right] \in \mathcal{P}_{2} \subset \mathcal{P}_{3}$,

$$
\operatorname{rank} \Psi\left(1_{A}\right)=r_{1}+\operatorname{rank}\left(H_{0}\right)
$$

Note that

$$
\begin{equation*}
\frac{N_{1}^{\prime}+N(p)}{R} \leq \frac{N_{1}+N(p)}{N(K+1)}<1 /(n+1) \tag{e0.25}
\end{equation*}
$$

Let $R_{1}=\operatorname{rank} e_{1}$. Then $R_{1} \geq R /(n+1)$. So, from (e 0.25$)$ $R_{1} \geq N_{1}+N(p)$. In other words, $R_{1}-N_{1}^{\prime} \geq N(p)$. Note that

$$
t \circ \psi(\hat{g}) \geq(1 / 3) \Delta(\hat{g}) \text { for all } g \in \mathcal{H}_{0}
$$

where t is the tracial state on $M_{R_{1}}$. By applying to the case that $\phi=\pi_{0} \oplus H_{0}$ and $\mathcal{P}_{0}=\left\{\left[1_{A}\right]\right\}$, we obtain a unital homomorphism
$h_{0}: A \otimes C(\mathbb{T}) \rightarrow M_{n R_{1}-N_{1}^{\prime}}$. Define $\psi_{0}^{\prime}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{R} e_{0}$ by $\psi_{0}^{\prime}(a \otimes f)=\psi_{0}(a) \cdot f(1) \cdot e_{0}$ for all $a \in A$ and $f \in C(\mathbb{T})$, where $1 \in \mathbb{T}$. Define $\psi^{\prime}: A \otimes C(\mathbb{T}) \rightarrow e_{1} M_{R} e_{1}$ by $\psi^{\prime}(a \otimes f)=\psi(a) \cdot f(1) \cdot e_{0}$ for all $a \in A$ and $f \in C(\mathbb{T})$. Let $E_{1}=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n n_{1}}\right)$.
Define $L_{1}: A \rightarrow E_{1} M_{R} E_{1}$ by
$L_{1}(a)=\left.\pi_{0}(a) \oplus H_{0}\right|_{A}(a) \oplus h_{0}(a \otimes 1) \oplus(\overbrace{\psi(f), \ldots, \psi(f)}^{n\left(n_{1}-1\right)})$ for $a \in A$ and define $L_{2}: A \rightarrow E_{1} M_{R} E_{1}$ by
$L_{2}(a)=\Psi(a \otimes 1) \oplus h_{0}(a \otimes 1) \oplus(\overbrace{\psi(f), \ldots, \psi(f)}^{n\left(n_{1}-1\right)})$ for $a \in A$. Note that

$$
\begin{align*}
& {\left.\left[L_{1}\right]\right|_{\mathcal{P}_{1}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}_{1}}} \tag{e0.26}\\
& \left.\operatorname{tr} \circ L_{1}(h) \geq \Delta_{1}(\hat{h}), \operatorname{tr} \circ L_{2}(h) \geq \Delta_{1}(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { ar(ed } 0.27\right) \\
& \left|\operatorname{tr} \circ L_{1}(g)-\operatorname{tr} \circ L_{2}(g)\right|<\sigma \text { for all } g \in \mathcal{H}_{2} .
\end{align*}
$$

It follows from ?? that there exists a unitary $w_{1} \in E_{1} M_{R} E_{1}$ such that

$$
\begin{equation*}
\left\|\operatorname{ad} w_{1} \circ L_{2}(a)-L_{1}(a)\right\|<\epsilon_{1} \text { for all } a \in \mathcal{F}_{1} . \tag{e0.29}
\end{equation*}
$$

Define $E_{2}=\left(e_{1}+e_{2}+\cdots+e_{n^{2}}\right)$ and define $\Phi: A \rightarrow E_{2} M_{R} E_{2}$ by

$$
\begin{equation*}
\Phi(f)(a)=\operatorname{diag}(\overbrace{\psi(a), \psi(a), \ldots, \psi(a)}^{n^{2}}) \text { for all } a \in A . \tag{e0.30}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{tr} \circ \Phi(h) \geq \Delta_{2}(\hat{h}) \text { for all } h \in \mathcal{H}_{0} \tag{e0.31}
\end{equation*}
$$

By (e 0.20),$\frac{n}{n_{1}+2}>L+1$. By applying 4.3, we obtain a unitary $w_{2} \in E_{2} M_{R} E_{2}$ and a unital homomorphism $H_{1}: A \rightarrow\left(E_{2}-E_{1}\right) M_{R}\left(E_{2}-E_{1}\right)$ such that

$$
\left\|\operatorname{ad} w_{2} \circ \operatorname{diag}\left(L_{1}(a), H_{1}(a)\right)-\Phi(a)\right\|<\epsilon_{1} \text { for all } a \in \mathcal{F}_{1} . \quad(e 0.32)
$$

Put

$$
w=\left(e_{0} \oplus w_{1} \oplus\left(E_{2}-E_{1}\right)\right)\left(e_{0} \oplus w_{2}\right) \in M_{R}
$$

Define $H_{1}^{\prime}: A \otimes C(\mathbb{T}) \rightarrow\left(E_{2}-E_{1}\right) M_{R}\left(E_{2}-E_{1}\right)$ by $H_{1}^{\prime}(a \otimes f)=H_{1}(a) \cdot f(1) \cdot\left(E_{2}-E_{1}\right)$ for all $a \in A$ and $f \in C(\mathbb{T})$. Define
$\Psi_{1}: A \rightarrow M_{R}$ by

$$
\begin{equation*}
\Psi_{1}(f)=\psi_{0}^{\prime}(f) \oplus \psi(f) \oplus h_{0} \oplus \overbrace{\psi^{\prime}(f), \ldots, \psi^{\prime}(f)}^{n_{1}-1}) \oplus H_{1}^{\prime}(f) \tag{e0.33}
\end{equation*}
$$

for all $f \in A \otimes C(\mathbb{T})$. It follows from (e 0.29$)$, (e 0.32) and (e 0.22) that

$$
\left\|\phi(a)-w^{*} \Psi_{1}(a \otimes 1) w\right\|<\epsilon_{1}+\epsilon_{1}+\epsilon_{3} \text { for all } a \in \mathcal{F}
$$

Now let $v \in M_{R}$ be a unitary such that

$$
\begin{equation*}
\left\|\Psi_{1}(1 \otimes z)-v\right\|<4 \epsilon_{1} . \tag{e0.35}
\end{equation*}
$$

Put $u=w^{*} v w$. Then, we estimate that

$$
\begin{equation*}
\|[\phi(a), u]\|<\min \left\{\epsilon, \epsilon_{0}\right) \text { for all } a \in \mathcal{F}_{1} \tag{e0.36}
\end{equation*}
$$

Moreover, by (e 0.29),(e 0.24$)$ and (e 0.15),

$$
\begin{equation*}
\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=\left.\kappa \circ \boldsymbol{\beta}\right|_{\mathcal{P}} . \tag{e0.37}
\end{equation*}
$$

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$.

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$,

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$,

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0, a$ finite subset $\mathcal{G} \subset A$

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0, a$ finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$,

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$,

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A)

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$,

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following:

Theorem 4.5.
Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$

Theorem 4.5.

Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$ for some $C \in \mathcal{C}$ such that

Theorem 4.5.

Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$ for some $C \in \mathcal{C}$ such that

$$
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}},
$$

Theorem 4.5.

Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$ for some $C \in \mathcal{C}$ such that

$$
\begin{equation*}
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}} \tag{e0.38}
\end{equation*}
$$

$$
\tau(\phi(a)) \geq \Delta(a), \quad \tau(\psi(a)) \geq \Delta(a), \quad \text { for all } \tau \in T(C), \quad a \in \mathcal{H}_{1}
$$

Theorem 4.5.

Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$ for some $C \in \mathcal{C}$ such that

$$
\begin{equation*}
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}} \tag{e0.38}
\end{equation*}
$$

$$
\begin{gathered}
\tau(\phi(a)) \geq \Delta(a), \quad \tau(\psi(a)) \geq \Delta(a), \quad \text { for all } \tau \in T(C), \quad a \in \mathcal{H}_{1}, \\
|\tau \circ \phi(a)-\tau \circ \psi(a)|<\gamma_{1}, \quad \text { for all } a \in \mathcal{H}_{2},
\end{gathered}
$$

Theorem 4.5.

Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$ for some $C \in \mathcal{C}$ such that

$$
\begin{equation*}
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}} \tag{e0.38}
\end{equation*}
$$

$$
\begin{gather*}
\tau(\phi(a)) \geq \Delta(a), \quad \tau(\psi(a)) \geq \Delta(a), \quad \text { for all } \tau \in T(C), \quad a \in \mathcal{H}_{1} \tag{e0.40}\\
|\tau \circ \phi(a)-\tau \circ \psi(a)|<\gamma_{1}, \quad \text { for all } a \in \mathcal{H}_{2}, \tag{e0.39}
\end{gather*}
$$

and $\operatorname{dist}\left(\phi^{\ddagger}(u), \psi^{\ddagger}(u)\right)<\gamma_{2}$, for all $u \in \mathcal{U}$,

Theorem 4.5.

Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$ for some $C \in \mathcal{C}$ such that

$$
\begin{equation*}
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}} \tag{e0.38}
\end{equation*}
$$

$$
\tau(\phi(a)) \geq \Delta(a), \quad \tau(\psi(a)) \geq \Delta(a), \quad \text { for all } \tau \in T(C), \quad a \in \mathcal{H}_{1}
$$

$$
\begin{align*}
& \quad|\tau \circ \phi(a)-\tau \circ \psi(a)|<\gamma_{1}, \text { for all } a \in \mathcal{H}_{2}, \tag{e0.39}\\
& \text { and } \operatorname{dist}\left(\phi^{\ddagger}(u), \psi^{\ddagger}(u)\right)<\gamma_{2}, \text { for all } u \in \mathcal{U}, \tag{e0.40}
\end{align*}
$$

there exists a unitary $W \in C \otimes M_{N}$ such that

Theorem 4.5.

Let $A \in \mathcal{D}_{d}$ for some integer $d \geq 1$. Let $\mathcal{F} \subset A$, let $\epsilon>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be an order preserving map.
There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}, \gamma_{1}>0, \gamma_{2}>0, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$, a finite subset $\mathcal{H}_{2} \subset A$, a finite subset $\mathcal{U} \subset U\left(M_{k+1}(A)\right) / C U\left(M_{k+1}(A)\right)$ (k depends on A) for which $[\mathcal{U}] \subset \mathcal{P}$, and $N \in \mathbb{N}$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear maps $\phi, \psi: A \rightarrow C$ for some $C \in \mathcal{C}$ such that

$$
\begin{equation*}
\left.[\phi]\right|_{\mathcal{P}}=\left.[\psi]\right|_{\mathcal{P}} \tag{e0.38}
\end{equation*}
$$

$$
\tau(\phi(a)) \geq \Delta(a), \quad \tau(\psi(a)) \geq \Delta(a), \quad \text { for all } \tau \in T(C), \quad a \in \mathcal{H}_{1}
$$

$$
\begin{equation*}
|\tau \circ \phi(a)-\tau \circ \psi(a)|<\gamma_{1}, \quad \text { for all } a \in \mathcal{H}_{2}, \tag{e0.39}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \operatorname{dist}\left(\phi^{\ddagger}(u), \psi^{\ddagger}(u)\right)<\gamma_{2}, \text { for all } u \in \mathcal{U} \tag{e0.40}
\end{equation*}
$$

there exists a unitary $W \in C \otimes M_{N}$ such that

$$
\left\|W\left(\phi(f) \otimes 1_{M_{N}}\right) W^{*}-\left(\psi(f) \otimes 1_{M_{N}}\right)\right\|<\epsilon, \text { for all } f \in \mathcal{F} .
$$

Idea of the proof:

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$.

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and }
$$

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$,

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$,

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$, and $w_{1} \in h_{1}\left(F_{1}\right)$, if $i=1$,

Idea of the proof:

Let $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) \subset C\left([0,1], F_{2}\right) \oplus F_{1}$. Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$, and $w_{1} \in h_{1}\left(F_{1}\right)$, if $i=1$, such that

$$
\begin{equation*}
w_{i} \pi_{t_{i}} \circ \phi(g) w_{i}^{*} \approx \pi_{t_{i}} \circ \psi(g) . \tag{e0.44}
\end{equation*}
$$

Idea of the proof:

$$
\text { Let } \begin{aligned}
C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) & \subset C\left([0,1], F_{2}\right) \oplus F_{1} . \text { Let } \\
0 & =t_{0}<t_{1}<\cdots<t_{n}=1
\end{aligned}
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$, and $w_{1} \in h_{1}\left(F_{1}\right)$, if $i=1$, such that

$$
\begin{equation*}
w_{i} \pi_{t_{i}} \circ \phi(g) w_{i}^{*} \approx \pi_{t_{i}} \circ \psi(g) \tag{e0.44}
\end{equation*}
$$

We may also assume that there is a unitary $w_{e} \in F_{1}$ such that $h_{0}\left(w_{e}\right)=w_{0}$ and $h_{1}\left(w_{e}\right)=w_{n}$.

Idea of the proof:

$$
\text { Let } \begin{aligned}
C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) & \subset C\left([0,1], F_{2}\right) \oplus F_{1} . \text { Let } \\
0 & =t_{0}<t_{1}<\cdots<t_{n}=1
\end{aligned}
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$, and $w_{1} \in h_{1}\left(F_{1}\right)$, if $i=1$, such that

$$
\begin{equation*}
w_{i} \pi_{t_{i}} \circ \phi(g) w_{i}^{*} \approx \pi_{t_{i}} \circ \psi(g) \tag{e0.44}
\end{equation*}
$$

We may also assume that there is a unitary $w_{e} \in F_{1}$ such that $h_{0}\left(w_{e}\right)=w_{0}$ and $h_{1}\left(w_{e}\right)=w_{n}$.
Note that

$$
\left(w_{i+1}^{*} w_{i}\right) \pi_{t_{i}} \circ \phi(g)\left(w_{i}^{*} w_{i+1}\right) \approx w_{i+1}^{*} \pi_{t_{i+1}} \circ \psi(g) w_{i+1}
$$

Idea of the proof:

$$
\text { Let } \begin{aligned}
C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) & \subset C\left([0,1], F_{2}\right) \oplus F_{1} . \text { Let } \\
0 & =t_{0}<t_{1}<\cdots<t_{n}=1
\end{aligned}
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$, and $w_{1} \in h_{1}\left(F_{1}\right)$, if $i=1$, such that

$$
\begin{equation*}
w_{i} \pi_{t_{i}} \circ \phi(g) w_{i}^{*} \approx \pi_{t_{i}} \circ \psi(g) \tag{e0.44}
\end{equation*}
$$

We may also assume that there is a unitary $w_{e} \in F_{1}$ such that $h_{0}\left(w_{e}\right)=w_{0}$ and $h_{1}\left(w_{e}\right)=w_{n}$.
Note that

$$
\begin{align*}
\left(w_{i+1}^{*} w_{i}\right) \pi_{t_{i}} \circ \phi(g)\left(w_{i}^{*} w_{i+1}\right) & \approx w_{i+1}^{*} \pi_{t_{i+1}} \circ \psi(g) w_{i+1} \\
& \approx \phi_{i+1} \circ \phi(g) \tag{e0.45}
\end{align*} \phi_{i} \circ \phi(g) .
$$

Idea of the proof:

$$
\text { Let } \begin{aligned}
C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right) & \subset C\left([0,1], F_{2}\right) \oplus F_{1} . \text { Let } \\
0 & =t_{0}<t_{1}<\cdots<t_{n}=1
\end{aligned}
$$

be a partition so that

$$
\begin{equation*}
\pi_{t} \circ \phi(g) \approx \pi_{t^{\prime}} \circ \phi(g) \text { and } \pi_{t} \circ \psi(g) \approx \pi_{t^{\prime}} \circ \psi(g) \tag{e0.43}
\end{equation*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$, and $w_{1} \in h_{1}\left(F_{1}\right)$, if $i=1$, such that

$$
\begin{equation*}
w_{i} \pi_{t_{i}} \circ \phi(g) w_{i}^{*} \approx \pi_{t_{i}} \circ \psi(g) \tag{e0.44}
\end{equation*}
$$

We may also assume that there is a unitary $w_{e} \in F_{1}$ such that $h_{0}\left(w_{e}\right)=w_{0}$ and $h_{1}\left(w_{e}\right)=w_{n}$.
Note that

$$
\begin{align*}
\left(w_{i+1}^{*} w_{i}\right) \pi_{t_{i}} \circ \phi(g)\left(w_{i}^{*} w_{i+1}\right) & \approx w_{i+1}^{*} \pi_{t_{i+1}} \circ \psi(g) w_{i+1} \\
& \approx \phi_{i+1} \circ \phi(g) \approx \phi_{i} \circ \phi(g) . \tag{e0.45}
\end{align*}
$$

We need to apply the Homotopy Lemma.

Need to change w_{i} to something $z_{i} w_{i}$ to make "bott" element trivial,

Need to change w_{i} to something $z_{i} w_{i}$ to make "bott" element trivial, which is quite demanding.

Need to change w_{i} to something $z_{i} w_{i}$ to make "bott" element trivial, which is quite demanding. In order not to accumulate errors, the condition (e 0.41) is used.

Need to change w_{i} to something $z_{i} w_{i}$ to make "bott" element trivial, which is quite demanding. In order not to accumulate errors, the condition (e 0.41) is used. We also need to take care of "end points".

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Let us assume that A has stable rank $\leq k$.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Let us assume that A has stable rank $\leq k$. C. Thomsen, using de la Harp and Skandalis determinant, showed that there is a splitting exact sequence

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Let us assume that A has stable rank $\leq k$. C. Thomsen, using de la Harp and Skandalis determinant, showed that there is a splitting exact sequence

$$
0 \rightarrow \operatorname{Aff}(T(A)) / \rho_{A}\left(K_{0}(A)\right) \rightarrow U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right) \rightarrow K_{1}(A) \rightarrow 0
$$

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Let us assume that A has stable rank $\leq k$. C. Thomsen, using de la Harp and Skandalis determinant, showed that there is a splitting exact sequence

$$
0 \rightarrow \operatorname{Aff}(T(A)) / \rho_{A}\left(K_{0}(A)\right) \rightarrow U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right) \rightarrow K_{1}(A) \rightarrow 0
$$

Let B is another unital C^{*}-algebra of stable rank at most k.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Let us assume that A has stable rank $\leq k$. C. Thomsen, using de la Harp and Skandalis determinant, showed that there is a splitting exact sequence

$$
0 \rightarrow \operatorname{Aff}(T(A)) / \rho_{A}\left(K_{0}(A)\right) \rightarrow U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right) \rightarrow K_{1}(A) \rightarrow 0
$$

Let B is another unital C^{*}-algebra of stable rank at most k. If $\phi: A \rightarrow B$ is a unital homomorphism

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Let us assume that A has stable rank $\leq k$. C. Thomsen, using de la Harp and Skandalis determinant, showed that there is a splitting exact sequence

$$
0 \rightarrow \operatorname{Aff}(T(A)) / \rho_{A}\left(K_{0}(A)\right) \rightarrow U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right) \rightarrow K_{1}(A) \rightarrow 0
$$

Let B is another unital C^{*}-algebra of stable rank at most k. If $\phi: A \rightarrow B$ is a unital homomorphism then $\phi^{\ddagger}: U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right) \rightarrow U\left(M_{k}(B)\right) / C U\left(M_{k}(B)\right)$.

Let A be a unital C^{*}-algebra and let $U(A)$ be the unitary group of A. Denote by $C U(A)$ the closure of the commutator subgroup of $U(A)$. When A has stable rank one $C U(A) \subset U_{0}(A)$. We will consider the group $U(A) / C U(A)$. Or $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Or even $\cup_{k=1}^{\infty}\left(U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)\right)$. There is a metric on $U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right)$. Let us assume that A has stable rank $\leq k$. C. Thomsen, using de la Harp and Skandalis determinant, showed that there is a splitting exact sequence

$$
0 \rightarrow \operatorname{Aff}(T(A)) / \rho_{A}\left(K_{0}(A)\right) \rightarrow U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right) \rightarrow K_{1}(A) \rightarrow 0
$$

Let B is another unital C^{*}-algebra of stable rank at most k. If $\phi: A \rightarrow B$ is a unital homomorphism then
$\phi^{\ddagger}: U\left(M_{k}(A)\right) / C U\left(M_{k}(A)\right) \rightarrow U\left(M_{k}(B)\right) / C U\left(M_{k}(B)\right)$. Slightly modification, if ϕ is almost multiplicative, ϕ^{\ddagger} can also be defined.

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$,

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW.

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW. Suppose that $L: A \rightarrow C$ is a contractive completely positive linear map.

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW. Suppose that $L: A \rightarrow C$ is a contractive completely positive linear map. Define $L_{e}=\pi_{e} \circ L$.

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW. Suppose that $L: A \rightarrow C$ is a contractive completely positive linear map. Define $L_{e}=\pi_{e} \circ L$. Then $L_{e}: A \rightarrow F_{1}$ is a contractive completely positive linear map such that

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW. Suppose that $L: A \rightarrow C$ is a contractive completely positive linear map. Define $L_{e}=\pi_{e} \circ L$. Then $L_{e}: A \rightarrow F_{1}$ is a contractive completely positive linear map such that

$$
\phi_{0} \circ L_{e}=\pi_{0} \circ L \text { and }
$$

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW. Suppose that $L: A \rightarrow C$ is a contractive completely positive linear map. Define $L_{e}=\pi_{e} \circ L$. Then $L_{e}: A \rightarrow F_{1}$ is a contractive completely positive linear map such that

$$
\begin{equation*}
\phi_{0} \circ L_{e}=\pi_{0} \circ L \text { and } \phi_{1} \circ L_{e}=\pi_{1} \circ L . \tag{e0.46}
\end{equation*}
$$

Moreover, if $\delta>0$ and $\mathcal{G} \subset A$

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW. Suppose that $L: A \rightarrow C$ is a contractive completely positive linear map. Define $L_{e}=\pi_{e} \circ L$. Then $L_{e}: A \rightarrow F_{1}$ is a contractive completely positive linear map such that

$$
\begin{equation*}
\phi_{0} \circ L_{e}=\pi_{0} \circ L \text { and } \phi_{1} \circ L_{e}=\pi_{1} \circ L . \tag{e0.46}
\end{equation*}
$$

Moreover, if $\delta>0$ and $\mathcal{G} \subset A$ and L is δ - \mathcal{G}-multiplicative,

Definition

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a NCCW. Suppose that $L: A \rightarrow C$ is a contractive completely positive linear map. Define $L_{e}=\pi_{e} \circ L$. Then $L_{e}: A \rightarrow F_{1}$ is a contractive completely positive linear map such that

$$
\begin{equation*}
\phi_{0} \circ L_{e}=\pi_{0} \circ L \text { and } \phi_{1} \circ L_{e}=\pi_{1} \circ L . \tag{e0.46}
\end{equation*}
$$

Moreover, if $\delta>0$ and $\mathcal{G} \subset A$ and L is δ - \mathcal{G}-multiplicative, then L_{e} is also δ - \mathcal{G}-multiplicative.

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$,

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined.

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps,

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset.

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_{0} \in \pi_{0}(C) \subset F_{2}$

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_{0} \in \pi_{0}(C) \subset F_{2}$ and $w_{1} \in \pi_{1}(C) \subset F_{2}$ such that

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_{0} \in \pi_{0}(C) \subset F_{2}$ and $w_{1} \in \pi_{1}(C) \subset F_{2}$ such that

$$
\left\|w_{0}^{*} \pi_{0} \circ L_{1}(a) w_{0}-\pi_{0} \circ L_{2}(a)\right\|<\epsilon \text { and }
$$

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_{0} \in \pi_{0}(C) \subset F_{2}$ and $w_{1} \in \pi_{1}(C) \subset F_{2}$ such that

$$
\begin{gathered}
\left\|w_{0}^{*} \pi_{0} \circ L_{1}(a) w_{0}-\pi_{0} \circ L_{2}(a)\right\|<\epsilon \text { and } \\
\left\|w_{1}^{*} \pi_{1} \circ L_{1}(a) w_{1}-\pi_{1} \circ L_{2}(a)\right\|<\epsilon \text { for all } a \in \mathcal{F} .
\end{gathered}
$$

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_{0} \in \pi_{0}(C) \subset F_{2}$ and $w_{1} \in \pi_{1}(C) \subset F_{2}$ such that

$$
\begin{gathered}
\left\|w_{0}^{*} \pi_{0} \circ L_{1}(a) w_{0}-\pi_{0} \circ L_{2}(a)\right\|<\epsilon \text { and } \\
\left\|w_{1}^{*} \pi_{1} \circ L_{1}(a) w_{1}-\pi_{1} \circ L_{2}(a)\right\|<\epsilon \text { for all } a \in \mathcal{F} .
\end{gathered}
$$

Then there exists a unitary $u \in F_{1}$ such that

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_{0} \in \pi_{0}(C) \subset F_{2}$ and $w_{1} \in \pi_{1}(C) \subset F_{2}$ such that

$$
\begin{gather*}
\left\|w_{0}^{*} \pi_{0} \circ L_{1}(a) w_{0}-\pi_{0} \circ L_{2}(a)\right\|<\epsilon \text { and } \tag{e0.47}\\
\left\|w_{1}^{*} \pi_{1} \circ L_{1}(a) w_{1}-\pi_{1} \circ L_{2}(a)\right\|<\epsilon \text { for all } a \in \mathcal{F} . \tag{e0.48}
\end{gather*}
$$

Then there exists a unitary $u \in F_{1}$ such that

$$
\begin{equation*}
\left\|\phi_{0}(u)^{*} \pi_{0} \circ L_{1}(a) \phi_{0}(u)-\pi_{0} \circ L_{2}(a)\right\|<\epsilon \text { and } \tag{e0.49}
\end{equation*}
$$

Lemma

Let A be a unital C^{*}-algebra and let $C \in \mathcal{C}$, where $C=C\left(F_{1}, F_{2}, \phi_{0}, \phi_{1}\right)$ is a 1-dim NCCW as defined. Let $L_{1}, L_{2}: A \rightarrow C$ be two unital completely positive linear maps, let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a subset. Suppose that there is a unitary $w_{0} \in \pi_{0}(C) \subset F_{2}$ and $w_{1} \in \pi_{1}(C) \subset F_{2}$ such that

$$
\begin{gathered}
\left\|w_{0}^{*} \pi_{0} \circ L_{1}(a) w_{0}-\pi_{0} \circ L_{2}(a)\right\|<\epsilon \text { and } \\
\left\|w_{1}^{*} \pi_{1} \circ L_{1}(a) w_{1}-\pi_{1} \circ L_{2}(a)\right\|<\epsilon \text { for all } a \in \mathcal{F} .
\end{gathered}
$$

Then there exists a unitary $u \in F_{1}$ such that

$$
\begin{equation*}
\left\|\phi_{0}(u)^{*} \pi_{0} \circ L_{1}(a) \phi_{0}(u)-\pi_{0} \circ L_{2}(a)\right\|<\epsilon \text { and } \tag{e0.49}
\end{equation*}
$$

$$
\left\|\phi_{1}(u)^{*} \pi_{1} \circ L_{1}(a) \phi_{1}(u)-\pi_{1} \circ L_{2}(a)\right\|<\epsilon \text { for all } a \in \mathcal{F} .(\mathrm{e} 0.50)
$$

Proof:

Write $F_{1}=M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{k}}$ and $F_{2}=M_{r_{1}} \oplus M_{r_{2}} \oplus \cdots \oplus M_{r_{1}}$. We may assume that, $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$.
We may assume that $\left.\phi_{0}\right|_{M_{n_{i}}}$ is injective, $i=1,2, \ldots, k(0)$ with $k(0) \leq k$, $\left.\phi_{0}\right|_{M_{n_{i}}}=0$ if $i>k(0)$, and $\left.\phi_{1}\right|_{M_{n_{i}}}$ is injective, $i=k(1), k(1)+1, \ldots, k$ with $k(1) \leq k,\left.\phi_{1}\right|_{M_{n_{i}}}=0$, if $i<k(1)$. Write $F_{1,0}=\bigoplus_{i=1}^{k(0)} M_{n_{i}}$ and $F_{1,1}=\bigoplus_{j=k(1)}^{k} M_{n_{j}}$. Note that $k(1) \leq k(0)+1,\left.\phi_{0}\right|_{F_{1,0}}$ and $\left.\phi_{1}\right|_{F_{1,1}}$ are injective. Note $\phi_{0}\left(F_{1,0}\right)=\phi_{0}\left(F_{1}\right)=\pi_{0}(C)$ and $\phi_{1}\left(F_{1,1}\right)=\phi_{1}\left(F_{1}\right)=\pi_{1}(C)$. Let $\psi_{0}=\left(\phi_{0} \mid F_{1,0}\right)^{-1}$ and $\psi_{1}=\left(\phi_{1} \mid F_{1,1}\right)^{-1}$. For each fixed $a \in A$, since $L_{i}(a) \in C(i=0,1)$, there are elements

$$
g_{a, i}=g_{a, i, 1} \oplus g_{a, i, 2} \oplus \cdots \oplus g_{a, i, k(0)} \oplus \cdots \oplus g_{a, i, k} \in F_{1}
$$

such that $\phi_{0}\left(g_{a, i}\right)=\pi_{0} \circ L_{i}(a)$ and $\phi_{1}\left(g_{a, i}\right)=\pi_{1} \circ L_{i}(a), i=1,2$., where $g_{a, i, j} \in M_{n_{j}}, j=1,2, \ldots, k$ and $i=1,2$. Note that such $g_{a, i}$ is unique since $\operatorname{ker} \phi_{0} \cap \operatorname{ker} \phi_{1}=\{0\}$. Since $w_{0} \in \pi_{0}(C)=\phi_{0}\left(F_{1}\right)$, there is a unitary

$$
u_{0}=u_{0,1} \oplus u_{0,2} \oplus \cdots \oplus u_{0, k(0)} \oplus \cdots \oplus u_{0, k}
$$

such that $\phi_{0}\left(u_{0}\right)=w_{0}$.

Note that the first $k(0)$ components of u_{0} is uniquely determined by w_{0} (since ϕ_{0} is injective on this part) and the components after $k(0)$'s components can be chosen arbitrarily (since $\phi_{0}=0$ on this part). Similarly there exist

$$
u_{1}=u_{1,1} \oplus u_{1,2} \oplus \cdots \oplus u_{1, k(1)} \oplus \cdots \oplus u_{1, k}
$$

such that $\phi_{1}\left(u_{1}\right)=w_{1}$
Now by e 0.47 and e 0.48 , we have

$$
\begin{align*}
\left\|\phi_{0}\left(u_{0}\right)^{*} \phi_{0}\left(g_{a, 1}\right) \phi_{0}\left(u_{0}\right)-\phi_{0}\left(g_{a, 2}\right)\right\| & <\epsilon \text { and } \tag{e0.51}\\
\left.\| \phi_{1}\left(u_{1}\right)^{*} \phi_{1}\left(g_{a, 1}\right) \phi_{1}\left(u_{1}\right)-\phi_{1}\left(g_{a, 2}\right)\right) \| & <\epsilon \text { for all } a \in \mathcal{F} .(\mathrm{e} 0.52)
\end{align*}
$$

Since ϕ_{0} is injective on F_{1}^{i} for $i \leq k(0)$ and ϕ_{1} is injective on F_{1}^{i} for $i>k(0)$ (note that we use $k(1) \leq k(0)+1$), we have

$$
\begin{aligned}
& \left\|\left(u_{0, i}\right)^{*}\left(g_{a, 1, i}\right) u_{0, i}-\left(g_{a, 2, i}\right)\right\|<\epsilon \forall i \leq k(0) \text { and } \\
& \left\|\left(u_{1, i}\right)^{*}\left(g_{a, 1, i}\right) u_{1, i}-\left(g_{a, 2, i}\right)\right\|<\epsilon \forall i>k(0)
\end{aligned}
$$

Let $u=u_{0,1} \oplus \cdots \oplus u_{0, k(0)} \oplus u_{1, k(0)+1} \oplus \cdots \oplus u_{1, k} \in F_{1}$-that is for the first $k(0)$'s components of u, we use u_{0} 's corresponding components, and for the last $k-k(0)$ components of u, we use u_{1} 's. From e 0.53 and e0.53. we have

$$
\left\|u^{*} g_{a, 1} u-g_{a, 2}\right\|<\epsilon \quad \text { for all } a \in \mathcal{F} .
$$

Apply ϕ_{0} and ϕ_{1} to the above inequality, we get e 0.49 and e 0.50 as desired.

Proof of Theorem 4.5. There is n_{0} such that $n_{0} x=0$ for all $x \in K_{i}(A \otimes C(\mathbb{T})), i=0,1$. Set $N=n_{0}$!. Put Δ_{1} be defined above for the given Δ.
Let $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ (in place of \mathcal{H}_{1}) for $\epsilon / 32$ (in place of ϵ) and \mathcal{F} required by 3.5 .
Let $\delta_{1}>0$ (in place of δ), $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset and let $\mathcal{P}_{0} \subset \underline{K}(A)$ (in place of \mathcal{P}) be a finite subset required by 3.5 for $\epsilon / 32$ (in place of ϵ), \mathcal{F} and Δ_{1}. We may assume that $\delta_{1}<\epsilon / 32$ and $\left(2 \delta_{1}, \mathcal{G}_{1}\right)$ is a KK-pair.
Moreover, we may assume that δ_{1} is so small that if $\|u v-v u\|<3 \delta_{1}$,
then the Exel formula

$$
\tau\left(\operatorname{bott}_{1}(u, v)\right)=\frac{1}{2 \pi \sqrt{-1}}\left(\tau\left(\log \left(u^{*} v u v^{*}\right)\right)\right.
$$

holds for any pair of unitaries u and v in any unital C^{*}-algebra C with tracial rank zero and any $\tau \in T(C)$ (see Theorem 3.6 of [?]). Moreover if $\left\|v_{1}-v_{2}\right\|<3 \delta_{1}$, then

$$
\operatorname{bott}_{1}\left(u, v_{1}\right)=\operatorname{bott}_{1}\left(u, v_{2}\right) .
$$

Let $g_{1}, g_{2}, \ldots, g_{k(A)} \in U\left(M_{m(A)}(A)\right)(m(A) \geq 1$ is an integer) be a finite subset such that $\left\{\overline{g_{1}}, \overline{g_{2}}, \ldots, \bar{g}_{k(A)}\right\} \subset J_{c}\left(K_{1}(A)\right)$ and such that $\left\{\left[g_{1}\right],\left[g_{2}\right], \ldots,\left[g_{k(A)}\right]\right\}$ forms a set of generators for $K_{1}(A)$. Let $\mathcal{U}=\left\{\overline{g_{1}}, \overline{g_{2}}, \ldots, \bar{g}_{k(A)}\right\} \subset J_{c}\left(K_{1}(A)\right)$ be a finite subset.
Let $\mathcal{U}_{0} \subset A$ be a finite subset such that

$$
\left\{g_{1}, g_{2}, \ldots, g_{k(A)}\right\}=\left\{\left(a_{i, j}\right): a_{i, j} \in \mathcal{U}_{0}\right\} .
$$

Let $\delta_{u}=\min \left\{1 / 256 m(A)^{2}, \delta_{1} / 16 m(A)^{2}\right\}, \mathcal{G}_{u}=\mathcal{F} \cup \mathcal{G}_{1} \cup \mathcal{U}_{0}$ and let $\mathcal{P}_{u}=\mathcal{P}_{0}$.
Let $\delta_{2}>0$ (in place of δ), let $\mathcal{G}_{2} \subset A$ (in place of \mathcal{G}) and let $\mathcal{H}_{2}^{\prime} \subset A_{+} \backslash\{0\}$ (in place of \mathcal{H}) and let $N_{1} \geq 1$ (in place of N) be an integer required by 4.4 for δ_{u} (in place of ϵ), \mathcal{G}_{u} (in place of \mathcal{F}), \mathcal{P}_{u} (in place of \mathcal{P}) and Δ and with \bar{g}_{j} (in place of g_{j}), $j=1,2, \ldots, k(A)$ (with $k(A)=r)$.
Let $d=\min \left\{\Delta(\hat{h}): h \in \mathcal{H}_{2}^{\prime}\right\}$. Let $\delta_{3}>0$ and let $\mathcal{G}_{3} \subset A \otimes C(\mathbb{T})$ be finite subset satisfying the following: For any δ_{3} - \mathcal{G}_{3}-multiplicative contractive completely positive linear map $L^{\prime}: A \otimes C(\mathbb{T}) \rightarrow C^{\prime}$ (for any unital C^{*}-algebra C^{\prime} with $\left.T\left(C^{\prime}\right) \neq \emptyset\right)$,

$$
\mid \tau\left([L]\left(\beta\left(\bar{g}_{j}\right)\right) \mid<d / 8, j=1,2, \ldots, k(A) .\right.
$$

Without loss of generality, we may assume that

$$
\mathcal{G}_{3}=\left\{g \otimes z: g \in \mathcal{G}_{3}^{\prime} \text { and } z \in\left\{1, z, z^{*}\right\}\right\},
$$

where $\mathcal{G}_{3}^{\prime} \subset A$ is a finite subset (by choosing a smaller δ_{3} and large \mathcal{G}_{3}^{\prime}). Let $\epsilon_{1}^{\prime \prime}=\min \left\{d / 27 m(A)^{2}, \delta_{u} / 2, \delta_{2} / 2 m(A)^{2}, \delta_{3} / 2 m(A)^{2}\right\}$ and let $\bar{\epsilon}_{1}>0$ (in place of δ) and $\mathcal{G}_{4} \subset A$ (in place of \mathcal{G}) be a finite subset required by ?? for $\epsilon_{1}^{\prime \prime}$ (in place of ϵ) and $\mathcal{G}_{u} \cup \mathcal{G}_{3}^{\prime}$. Put

$$
\epsilon_{1}=\min \left\{\epsilon_{1}^{\prime}, \epsilon_{1}^{\prime \prime}, \bar{\epsilon}_{1}\right\}
$$

Let $\mathcal{G}_{5}=\mathcal{G}_{u} \cup \mathcal{G}_{3}^{\prime} \cup \mathcal{G}_{4}$.
Let $\mathcal{H}_{3}^{\prime} \subseteq A^{+}$(in place of \mathcal{H}_{1}), $\delta_{4}>0$ (in place of δ), $\mathcal{G}_{6} \subset A$ (in place of \mathcal{G}), $\mathcal{H}_{4}^{\prime} \subset A_{\text {s.a. }}$ (in place of \mathcal{H}_{2}), $\mathcal{P}_{1} \subset \underline{K}(A)$ (in place of \mathcal{P}) and $\sigma_{4}>0$ (in place of σ_{2}) be the finite subsetc and constants required by Theorem $2.1 \epsilon_{1} / 4$ (in place ϵ) and \mathcal{G}_{5} (in place of \mathcal{F}) and Δ.
Let $N_{2} \geq N_{1}$ such that $(k(A)+1) / N_{2}<d / 8$. Choose $\mathcal{H}_{5}^{\prime} \subset A_{+} \backslash\{0\}$ and $\delta_{5}>0$ and a finite subset $\mathcal{G}_{7} \subset A$ such that, for any M_{m} and unital $\delta_{5}-\mathcal{G}_{7}$-multiplicative contractive completely positive linear map $L^{\prime}: A \rightarrow M_{m}$, if $\operatorname{tr} \circ L^{\prime}(h)>0$ for all $h \in \mathcal{H}_{5}^{\prime}$, then $m \geq N_{2}((8 / d)+1)$.

Let $\delta=\min \left\{\epsilon_{1} / 16, \delta_{4} / 4 m(A)^{2}, \delta_{5} / 4 m(A)^{2}\right\}$, let $\mathcal{G}=\mathcal{G}_{5} \cup \mathcal{G}_{6} \cup \mathcal{G}_{7}$ and let $\mathcal{P}=\mathcal{P}_{u} \cup \mathcal{P}_{1}$. Let

$$
\mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup \mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{3}^{\prime} \cup \mathcal{H}_{4}^{\prime} \cup \mathcal{H}_{6}^{\prime}
$$

and let $\mathcal{H}_{2}=\mathcal{H}_{4}^{\prime}$. Let $\gamma_{1}=\sigma_{4}$ and let
$0<\gamma_{2}<\min \left\{d / 16 m(A)^{2}, \delta_{u} / 9 m(A)^{2}, 1 / 256 m(A)^{2}\right\}$.
Now suppose that $C \in \mathcal{C}$ and $\phi, \psi: A \rightarrow C$ be two unital
δ - \mathcal{G}-multiplicative contractive completely positive linear maps satisfying the assumption for the above given $\Delta, \mathcal{H}_{1}, \delta, \mathcal{G}, \mathcal{P}, \mathcal{H}_{2}, \gamma_{1}, \gamma_{2}$ and \mathcal{U}.
Let

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

be a partition so that

$$
\begin{align*}
& \left\|\pi_{t} \circ \phi(g)-\pi_{t^{\prime}} \circ \phi(g)\right\|<\epsilon_{1} / 16 \text { and } \tag{e0.56}\\
& \quad\left\|\pi_{t} \circ \psi(g)-\pi_{t^{\prime}} \circ \psi(g)\right\|<\epsilon_{1} / 16 \tag{e0.57}
\end{align*}
$$

for all $g \in \mathcal{G}$, provided $t, t^{\prime} \in\left[t_{i-1}, t_{i}\right], i=1,2, \ldots, n$.
We write $C=A\left(F_{1}, F_{2}, h_{0}, h_{1}\right), F_{1}=M_{m_{1}} \oplus M_{m_{2}} \oplus \cdots \oplus M_{m_{F(1)}}$ and $F_{2}=M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{F(2)}}$. By the choice of \mathcal{H}_{5}^{\prime},

$$
\begin{equation*}
n_{j} \geq N_{2}(8 / d+1) \text { and } m_{s} \geq N_{2}(8 / d+1) \tag{e0.58}
\end{equation*}
$$

$1 \leq j \leq F(2), \quad 1 \leq s \leq F(1)$. By applying Theorem 2.1, there exists a unitary $w_{i} \in F_{2}$, if $0<i<n$, $w_{0} \in h_{0}\left(F_{1}\right)$, if $i=0$, and $w_{1} \in h_{1}\left(F_{1}\right)$, if $i=1$, such that

$$
\begin{equation*}
\left\|w_{i} \pi_{t_{i}} \circ \phi(g) w_{i}^{*}-\pi_{t_{i}} \circ \psi(g)\right\|<\epsilon_{1} / 16 \text { for all } g \in \mathcal{G}_{5} \tag{e0.59}
\end{equation*}
$$

It follows from 0.8 that we may assume that there is a unitary $w_{e} \in F_{1}$ such that $h_{0}\left(w_{e}\right)=w_{0}$ and $h_{1}\left(w_{e}\right)=w_{n}$.
By (e 0.41), let $\omega_{j} \in M_{m(A)}(C)$ be a unitary such that $\omega_{j} \in C U\left(M_{m(A)}(C)\right)$ and
$\|\left\langle\left(\phi \otimes \operatorname{id}_{M_{m(A)}}\left(g_{j}^{*}\right)\right\rangle\left\langle\left(\psi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}\right)\right\rangle-\omega_{j} \|<\gamma_{2}, \quad j=1,2, \ldots, k(A)\right.$.
Write

$$
\omega_{j}=\prod_{l=1}^{e(j)} \exp \left(\sqrt{-1} a_{j}^{(l)}\right)
$$

for some selfadjoint element $a_{j}^{(I)} \in M_{m(A)}(C), I=1,2, \ldots, e(j)$, $j=1,2, \ldots, k(A)$. Write

$$
a_{j}^{(I)}=\left(a_{j}^{(I, 1)}, a_{j}^{(I, 2)}, \ldots, a_{j}^{\left(I, n_{F(2)}\right)}\right) \text { and } \omega_{j}=\left(\omega_{j, 1}, \omega_{j, 2}, \ldots, \omega_{j, F(2)}\right)
$$

in $C\left([0,1], F_{2}\right)=C\left([0,1], M_{n_{1}}\right) \oplus \cdots \oplus C\left([0,1], M_{n_{F(2)}}\right)$, where $\omega_{j, s}=\exp \left(\sqrt{-1} a_{j}^{(l, s)}\right), s=1,2, \ldots, F(2)$. Then

$$
\sum_{l=1}^{e(j)} \frac{n_{s}\left(t_{s} \otimes \operatorname{Tr}_{m(A)}\right)\left(a_{j}^{(l, s)}(t)\right)}{2 \pi} \in \mathbb{Z}, \quad t \in[0,1]
$$

where t_{s} is the normalized trace on $M_{n_{s}}, s=1,2, \ldots, F(2)$. In particular,

$$
\sum_{l=1}^{e(j)} n_{s}\left(t \otimes \operatorname{Tr}_{m(A)}\right)\left(a_{j}^{(l, s)}(t)\right)=\sum_{l=1}^{e(j)} n_{s}\left(t \otimes \operatorname{Tr}_{m(A)}\right)\left(a_{j}^{(l, s)}\left(t^{\prime}\right)\right) \quad(\mathrm{e} 0.60)
$$

for all $t, t^{\prime \prime} \in[0,1]$.
Let $W_{i}=w_{i} \otimes \operatorname{id}_{M_{m(A)}}, i=0,1, \ldots, n$ and $W_{e}=w_{e} \otimes \operatorname{id}_{M_{m}\left(F_{1}\right)}$. Then

$$
\begin{gather*}
\left.\| \pi_{i}\left(\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}^{*}\right)\right\rangle\right) W_{i}\left(\pi_{i}\left(\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}\right)\right\rangle\right) W_{i}^{*}-\omega_{j}\left(t_{i}\right) \|(\mathrm{e} 0.61) \\
<3 m(A)^{2} \epsilon_{1}+2 \gamma_{2}<1 / 32 . \tag{e0.62}
\end{gather*}
$$

We also have

$$
\begin{align*}
& \left.\left.\|\left\langle\phi_{e} \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}^{*}\right)\right\rangle W_{e}\left(\left\langle\phi_{e} \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}\right)\right\rangle\right) W_{e}^{*} \tag{e0.63}\\
& -\pi_{e}\left(\omega_{j}\right) \|<3 m(A)^{2} \epsilon_{1}+2 \gamma_{2}<1 / 32 .
\end{align*}
$$

It follows from (e 0.61) that there exists selfadjoint elements $b_{i, j} \in M_{m(A)}\left(F_{2}\right)$ such that

$$
\exp \left(\sqrt{-1} b_{i, j}\right)=(\mathrm{e} 0.65)
$$

$$
\left.\omega_{j}\left(t_{i}\right)^{*}\left(\pi_{i}\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}^{*}\right)\right\rangle\right) W_{i}\left(\pi_{i}\left(\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}\right)\right\rangle\right) W_{i}^{*}, \quad(\mathrm{e} 0.66)
$$

and $b_{e, j} \in M_{m(A)}\left(F_{1}\right)$ such that

$$
\begin{array}{r}
\exp \left(\sqrt{-1} b_{e, j}\right)=(\mathrm{e} 0.67) \\
\left.\pi_{e}\left(\omega_{j}\right)^{*}\left(\pi_{e}\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}^{*}\right)\right\rangle\right) W_{e}\left(\pi_{e}\left(\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}\right)\right\rangle\right) W_{e}^{*}, \quad(\mathrm{e} 0.68)
\end{array}
$$

and

$$
\left\|b_{i, j}\right\|<2 \arcsin \left(3 m(A)^{2} \epsilon_{1} / 4+2 \gamma_{2}\right), j=1,2, \ldots, k(A), \quad(\mathrm{e} 0.69)
$$

$i=0,1, \ldots, n, e$.
We write

$$
\begin{align*}
b_{i, j} & =\left(b_{i, j}^{(1)}, b_{i, j}^{(2)}, \ldots, b_{i, j}^{F(2)}\right) \in F_{2} \text { and } \\
b_{e, j} & =\left(b_{e, j}^{(1)}, b_{e, j}^{(2)}, \ldots, b_{e, j}^{(F(1))}\right) \in F_{1} . \tag{e0.70}
\end{align*}
$$

We also have that

$$
\begin{equation*}
h_{0}\left(b_{e, j}\right)=b_{0, j} \text { and } h_{1}\left(b_{e, j}\right)=b_{n, j} . \tag{e0.71}
\end{equation*}
$$

Note that

$$
\begin{array}{r}
\left(\pi_{i}\left(\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\left(g_{j}^{*}\right)\right\rangle\right)\right) W_{i}\left(\pi_{i}\left(\left\langle\phi \otimes \operatorname{id}_{M_{m(A)}}\right)\left(g_{j}\right)\right\rangle\right) W_{i}^{*} \\
=\pi_{i}\left(\omega_{j}\right) \exp \left(\sqrt{-1} b_{i, j}\right) \tag{e0.73}
\end{array}
$$

$j=1,2, \ldots, k(A)$ and $i=0,1, \ldots, n, e$.
Then,

$$
\begin{equation*}
\frac{n_{s}}{2 \pi}\left(t_{s} \otimes \operatorname{Tr}_{M_{m(A)}}\right)\left(b_{i, j}^{(s)}\right) \in \mathbb{Z} \tag{e0.74}
\end{equation*}
$$

where t_{s} is the normalized trace on $M_{n_{s}}, s=1,2, \ldots, F(2)$, $j=1,2, \ldots, k(A)$, and $i=0,1, \ldots, n$. We also have

$$
\begin{equation*}
\frac{m_{s}}{2 \pi}\left(t_{s} \otimes \operatorname{Tr}_{M_{m(A)}}\right)\left(b_{e, j}^{(s)}\right) \in \mathbb{Z} \tag{e0.75}
\end{equation*}
$$

where t_{s} is the normalized trace on $M_{m_{s}}, s=1,2, \ldots, F(1)$, $j=1,2, \ldots, k(A)$. Let

$$
\lambda_{i, j}^{(s)}=\frac{n_{s}}{2 \pi}\left(t_{s} \otimes \operatorname{Tr}_{M_{m(A)}}\right)\left(b_{i, j}^{(s)}\right) \in \mathbb{Z},
$$

where t_{s} is the normalized trace on $M_{n_{s}}, s=1,2, \ldots, n, j=1,2, \ldots, k(A)$ and $i=0,1,2, \ldots, n$.
Let

$$
\lambda_{e, j}^{(s)}=\frac{m_{s}}{2 \pi}\left(t_{s} \otimes \operatorname{Tr}_{M_{m(A)}}\right)\left(b_{e, j}^{(s)}\right) \in \mathbb{Z}
$$

where t_{s} is the normalized trace on $M_{m_{s}}, s=1,2, \ldots, F(1)$ and $j=1,2, \ldots, k(A)$. Let

$$
\begin{array}{r}
\lambda_{i, j}=\left(\lambda_{i, j}^{(1)}, \lambda_{i, j}^{(2)}, \ldots, \lambda_{i, j}^{(F(2)}\right) \in \mathbb{Z}^{F(2)} \text { and } \\
\quad \lambda_{e, j}=\left(\lambda_{e, j}^{(1)}, \lambda_{e, j}^{(2)}, \ldots, \lambda_{e, j}^{(F(1)}\right) \in \mathbb{Z}^{F(1)} . \tag{e0.76}
\end{array}
$$

We have

$$
\begin{align*}
\left|\frac{\lambda_{i, j}^{(s)}}{n_{s}}\right| & <d / 4, s=1,2, \ldots, F(2), \text { and } \tag{e0.77}\\
\left|\frac{\lambda_{e, j}^{(s)}}{m_{s}}\right| & <d / 4, s=1,2, \ldots, F(1) \tag{e0.78}
\end{align*}
$$

$j=1,2, \ldots, k(A), i=0,1,2, \ldots, n$.

Define $\alpha_{i}^{(0,1)}: K_{1}(A) \rightarrow \mathbb{Z}^{F(2)}$ by mapping $\left[g_{j}\right]$ to $\lambda_{i, j}, j=1,2, \ldots, k(A)$ and $i=0,1,2, \ldots, n$, and define $\alpha_{e}^{(0,1)}: K_{1}(A) \rightarrow \mathbb{Z}^{F(1)}$ by mapping $\left[g_{j}\right]$ to $\lambda_{e, j}, j=1,2, \ldots, k(A)$. We write $K_{0}(A \otimes C(\mathbb{T}))=K_{0}(A) \oplus \beta\left(K_{1}(A)\right)$) (see ?? for the definition of $\boldsymbol{\beta})$. Define $\alpha_{i}: K_{*}(A \otimes C(\mathbb{T})) \rightarrow K_{*}\left(F_{2}\right)$ as follows: On $K_{0}(A \otimes C(\mathbb{T}))$, define

$$
\left.\alpha_{i}\right|_{K_{0}(A)}=\left.\left[\pi_{i} \circ \phi\right]\right|_{K_{0}(A)},\left.\quad \alpha_{i}\right|_{\boldsymbol{\beta}\left(K_{1}(A)\right)}=\left.\alpha_{i} \circ \boldsymbol{\beta}\right|_{K_{1}(A)}=\alpha_{i}^{(0,1)} \quad(\mathrm{e} 0.79)
$$

and on $K_{1}(A \otimes C(\mathbb{T}))$,

$$
\begin{equation*}
\left.\alpha_{i}\right|_{K_{1}(A \otimes C(\mathbb{T}))}=0, \tag{e0.80}
\end{equation*}
$$

$i=0,1,2, \ldots, n$, and define $\alpha_{e} \in \operatorname{Hom}\left(K_{*}(A \otimes C(\mathbb{T})), K_{*}\left(F_{1}\right)\right)$, by

$$
\left.\alpha_{e}\right|_{K_{0}(A)}=\left.\left[\pi_{e} \circ \phi\right]\right|_{K_{0}(A)},\left.\quad \alpha_{e}\right|_{\boldsymbol{\beta}\left(K_{1}(A)\right)}=\left.\alpha_{i} \circ \boldsymbol{\beta}\right|_{K_{1}(A)}=\alpha_{e}^{(0,1)}(\mathrm{e} 0.81)
$$

on $K_{0}(A \otimes C(\mathbb{T}))$ and $\left.\left(\alpha_{e}\right)\right|_{K_{1}(A \otimes C(\mathbb{T}))}=0$. Note that

$$
\begin{equation*}
\left(h_{0}\right)_{*} \circ \alpha_{e}=\alpha_{0} \text { and }\left(h_{1}\right)_{*} \circ \alpha_{e}=\alpha_{n} . \tag{e0.82}
\end{equation*}
$$

Since $A \otimes C(\mathbb{T})$ satisfies the UCT, the map α_{e} can be lifted to an element of $K K\left(A \otimes C(\mathbb{T}), F_{1}\right)$ which is still denoted by α_{e}. Then define

$$
\begin{equation*}
\alpha_{0}=\alpha_{e} \times\left[h_{0}\right] \text { and } \alpha_{n}=\alpha_{e} \times\left[h_{1}\right] \tag{e0.83}
\end{equation*}
$$

in $K K\left(A \otimes C(\mathbb{T}), F_{2}\right)$. For $i=1, \ldots, n-1$, also pick a lifting of α_{i} in $K K\left(A \otimes C(\mathbb{T}), F_{2}\right)$, and still denote it by α_{i}. We estimate that

$$
\left\|\left(w_{i}^{*} w_{i+1}\right) \pi_{t_{i}} \circ \phi(g)-\pi_{t_{i}} \circ \phi(g)\left(w_{i}^{*} w_{i+1}\right)\right\|<\epsilon_{1} / 4 \text { for all } g \in \mathcal{G}_{5},
$$

$i=0,1, \ldots, n-1$. Let $\Lambda_{i, i+1}: C(\mathbb{T}) \otimes A \rightarrow F_{2}$ be a unital contractive completely positive linear map given by the pair $w_{i}^{*} w_{i+1}$ and $\pi_{t_{i}} \circ \phi$ (by ??, see 2.8 of [?]). Denote $V_{i, j}=\left\langle\pi_{t_{i}} \circ \phi \otimes \operatorname{id}_{M_{m(A)}}\left(g_{j}\right)\right\rangle, j=1,2, \ldots, k(A)$ and $i=0,1,2, \ldots, n-1$.
Write

$$
V_{i, j}=\left(V_{i, j, 1}, V_{i, j, 2}, \ldots, V_{i, j, F(2)}\right) \in F_{2}, j=1,2, \ldots, k(A), \quad i=0,1,2, \ldots, n .
$$

Similarly, write

$$
W_{i}=\left(W_{i, 1}, W_{i, 2}, \ldots, W_{i, F(2)}\right) \in F_{2}, \quad i=0,1,2, \ldots, n .
$$

We have

$$
\begin{array}{r}
\left\|W_{i} V_{i, j}^{*} W_{i}^{*} V_{i, j} V_{i, j}^{*} W_{i+1} V_{i, j} W_{i+1}^{*}-1\right\|<1 / 16 \\
\left\|W_{i} V_{i, j}^{*} W_{i}^{*} V_{i, j} V_{i+1, j}^{*} W_{i+1} V_{i+1, j} W_{i+1}^{*}-1\right\|<1 / 16 \tag{e0.85}
\end{array}
$$

and there is a continuous path $Z(t)$ of unitaries such that $Z(0)=V_{i, j}$ and $Z(1)=V_{i+1, j}$. Since

$$
\left\|V_{i, j}-V_{i+1, j}\right\|<\delta_{1} / 12, \quad j=1,2, \ldots, k(A)
$$

we may assume that $\|Z(t)-Z(1)\|<\delta_{1} / 6$ for all $t \in[0,1]$. We also write

$$
Z(t)=\left(Z_{1}(t), Z_{2}(t), \ldots, Z_{F(2)}(t)\right) \in F_{2} \text { and } t \in[0,1]
$$

We obtain a continuous path

$$
W_{i} V_{i, j}^{*} W_{i}^{*} V_{i, j} Z(t)^{*} W_{i+1} Z(t) W_{i+1}^{*}
$$

which is in $\operatorname{CU}\left(M_{n m(A)}\right)$ for all $t \in[0,1]$ and

$$
\left\|W_{i} V_{i, j}^{*} W_{i}^{*} V_{i, j} Z(t)^{*} W_{i+1} Z(t) W_{i+1}^{*}-1\right\|<1 / 8 \text { for all } t \in[0,1]
$$

$$
(1 / 2 \pi \sqrt{-1})\left(t_{s} \otimes \operatorname{Tr}_{M_{m(A)}}\right)\left[\log \left(W_{i, s} V_{i, j, s}^{*} W_{i, s}^{*} V_{i, j, s} Z_{s}(t)^{*} W_{i+1, s} Z_{s}(t) W_{i+1, s}^{*}\right)\right]
$$ is a constant, where t_{s} is the normalized trace on $M_{n_{s}}$. In particular,

$$
(1 / 2 \pi \sqrt{-1})\left(t_{s} \otimes \operatorname{Tr}_{M_{m(A)}}\right)\left(\log \left(W_{i, s} V_{i, j, s}^{*} W_{i, s}^{*} W_{i+1, s} V_{i, j, s} W_{i+1}^{*}\right)\right)
$$

$=(1 / 2 \pi \sqrt{-1})\left(t_{s} \otimes \operatorname{Tr}_{M_{m(A)}}\right)\left(\log \left(W_{i, s} V_{i, j, s}^{*} W_{i, s}^{*} V_{i, j} V_{i+1, j, s}^{*} W_{i+1} V_{i, j, s} W_{i+1}^{*}\right)\right)$.
Also

$$
\begin{align*}
& W_{i} V_{i, j}^{*} W_{i}^{*} V_{i, j} V_{i+1, j}^{*} W_{i+1} V_{i+1, j} W_{i+1}^{*} \tag{e0.86}\\
& =\left(\omega_{j}\left(t_{i}\right) \exp \left(\sqrt{-1} b_{i, j}\right)\right)^{*} \omega_{j}\left(t_{i}\right) \exp \left(\sqrt{-1} b_{i+1, j}\right) \tag{e0.87}\\
& =\exp \left(-\sqrt{-1} b_{i, j}\right) \omega_{j}\left(t_{i}\right)^{*} \omega_{j}\left(t_{i+1}\right) \exp \left(\sqrt{-1} b_{i+1, j}\right) . \tag{e0.88}
\end{align*}
$$

Note that, by (??) and (e 0.56), for $t \in\left[t_{i}, t_{i+1}\right]$,

$$
\begin{equation*}
\left\|\omega_{j}\left(t_{i}\right)^{*} \omega_{j}(t)-1\right\|<3\left(3 \epsilon_{1}^{\prime}+2 \gamma_{2}\right)<3 / 32 \tag{e0.89}
\end{equation*}
$$

$j=1,2, \ldots, k(A), i=0,1, \ldots, n-1$.

By Lemma 3.5 of [?],

$$
\begin{equation*}
\left(t_{s} \otimes \operatorname{Tr}_{m(A)}\right)\left(\log \left(\omega_{j, s}\left(t_{i}\right)^{*} \omega_{j, s}\left(t_{i+1}\right)\right)\right)=0 \tag{e0.90}
\end{equation*}
$$

It follows that (by the Exel formula, using (??), (e 0.88) and (e 0.90))
$\left.t \otimes \operatorname{Tr}_{m(A)}\right)\left(\operatorname{bott}_{1}\left(V_{i, j}, W_{i}^{*} W_{i+1}\right)\right)$
(e 0.91
(e 0.92
$=\left(\frac{1}{2 \pi \sqrt{-1}}\right)\left(t \otimes \operatorname{Tr}_{m(A)}\right)\left(\log \left(W_{i} V_{i, j}^{*} W_{i}^{*} W_{i+1} V_{i, j} W_{i+1}^{*}\right)\right)$
$=\left(\frac{1}{2 \pi \sqrt{-1}}\right)\left(t \otimes \operatorname{Tr}_{m(A)}\right)\left(\log \left(W_{i} V_{i, j}^{*} W_{i}^{*} V_{i, j} V_{i+1, j}^{*} W_{i+1} V_{i+1, j} W_{i+1}^{*}\right)\right)$
$=\left(\frac{1}{2 \pi \sqrt{-1}}\right)\left(t \otimes \operatorname{Tr}_{m(A)}\right)\left(\log \left(\exp \left(-\sqrt{-1} b_{i, j}\right) \omega_{j}\left(t_{i}\right)^{*} \omega_{j}\left(t_{i+1}\right) \exp \left(\sqrt{-1} b_{i+1, j}\right)\right.\right.$
$=\left(\frac{1}{2 \pi \sqrt{-1}}\right)\left[\left(t \otimes \operatorname{Tr}_{k(n)}\right)\left(-\sqrt{-1} b_{i, j}\right)+\left(t \otimes \operatorname{Tr}_{k(n)}\right)\left(\log \left(\omega_{j}\left(t_{i}\right)^{*} \omega_{j}\left(t_{i+1}\right)\right)\right.\right.$
$=\frac{1}{2 \pi}\left(t \otimes \operatorname{Tr}_{k(n)}\right)\left(-b_{i, j}+b_{i+1, j}\right)$
$\left.+\left(t \otimes \operatorname{Tr}_{k(n)}\right)\left(\sqrt{-1} b_{i, j}\right)\right]$
(e 0.93
(e 0.94
for all $t \in T\left(F_{2}\right)$. In other words,

$$
\begin{equation*}
\left.\operatorname{bott}_{1}\left(V_{i, j}, W_{i}^{*} W_{i+1}\right)\right)=-\lambda_{i, j}+\lambda_{i+1, j} \tag{e0.95}
\end{equation*}
$$

$j=1,2, \ldots, m(A), i=0,1, \ldots, n-1$.
Consider $\alpha_{0}, \ldots, \alpha_{n} \in K K\left(A \otimes C(\mathbb{T}), F_{2}\right)$ and $\alpha_{e} \in K K\left(A \otimes C(\mathbb{T}), F_{1}\right)$. Note that

$$
\left|\alpha_{i}\left(g_{j}\right)\right|=\left|\lambda_{i, j}\right|
$$

and by (e 0.77), one has

$$
m_{s}, n_{j} \geq N_{2}(8 / d+1)
$$

By applying 4.4 (using (e 0.78), among other items), there are unitaries $z_{i} \in F_{2}, i=1,2, \ldots, n-1$, and $z_{e} \in F_{1}$ such that

$$
\begin{aligned}
& \left\|\left[z_{i}, \pi_{t_{i}} \circ \phi(g)\right]\right\|<\delta_{u} \text { for all } g \in \mathcal{G}_{u} \\
& \operatorname{Bott}\left(z_{i}, \pi_{t_{i}} \circ \phi\right)=\alpha_{i} \text { and } \operatorname{Bott}\left(z_{e}, \pi_{e} \circ \phi\right)=\alpha_{e} .
\end{aligned}
$$

Put

$$
z_{0}=h_{0}\left(z_{e}\right) \quad \text { and } \quad z_{n}=h_{1}\left(z_{e}\right) .
$$

One verifies (by $(\mathrm{e} 0.83))$ that

$$
\begin{equation*}
\operatorname{Bott}\left(z_{0}, \pi_{t_{0}} \circ \phi\right)=\alpha_{0} \text { and } \operatorname{Bott}\left(z_{n}, \pi_{t_{n}} \circ \phi\right)=\alpha_{n} \tag{e0.98}
\end{equation*}
$$

Let $U_{i, i+1}=z_{i}\left(w_{i}\right)^{*} w_{i+1}\left(z_{i+1}\right)^{*}, i=0,1,2, \ldots, n-1$. Then

$$
\left.\left\|\left[U_{i, i+1}, \pi_{t_{i}} \circ \phi(g)\right]\right\|<\min \left\{\delta_{1}, \delta_{2}\right\}, \quad g \in \mathcal{G}_{u}, i=0,1,2, \ldots, n-\mathfrak{f} 0.99\right)
$$

Moreover, for $i=0,1,2, \ldots, n-1$,

$$
\begin{aligned}
\operatorname{bott}_{1}\left(U_{i, i+1}, \pi_{t_{i}} \circ \phi\right)= & \left.\operatorname{bott}_{1}\left(z_{i}, \pi_{t_{i}} \circ \phi\right)\right)+\operatorname{bott}_{1}\left(\left(w_{i}^{*} w_{i+1}, \pi_{t_{i}} \circ \phi\right)\right) \\
& +\operatorname{bott}_{1}\left(\left(z_{i+1}^{*}, \pi_{t_{i}} \circ \phi\right)\right. \\
= & \left(\lambda_{i, j}\right)+\left(-\lambda_{i, j}+\lambda_{i+1, j}\right)+\left(-\lambda_{i+1, j}\right) \\
= & 0 .
\end{aligned}
$$

Note that for any $x \in \bigoplus_{*=0,1} \bigoplus_{k=1}^{\infty} K_{*}(A \otimes C(\mathbb{T}), \mathbb{Z} / k \mathbb{Z})$, one has $N x=0$. Therefore
$\left.\operatorname{Bott}((\underbrace{U_{i, i+1}, \ldots, U_{i, i+1}}_{N}),(\underbrace{\pi_{t_{i}} \circ \phi, \ldots, \pi_{t_{i}} \circ \phi}_{N}))\right|_{\mathcal{P}}=\left.N \operatorname{Bott}\left(U_{i, i+1}, \pi_{t_{i}} \circ \phi\right)\right|_{\mathcal{P}}=0$
$i=0,1,2, \ldots, n-1$.
Note that, by the assumption (e 0.39),

$$
\begin{equation*}
t_{s} \circ \pi_{t} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1}^{\prime}, \tag{e0.101}
\end{equation*}
$$

where t_{s} is the normalized trace on $M_{n_{s}}, 1 \leq s \leq F(2)$.
By applying ??, using (e 0.101), (e 0.99) and (e 0.100), there exists a continuous path of unitaries, $\left\{\tilde{U}_{i, i+1}(t): t \in\left[t_{i}, t_{i+1}\right]\right\} \subset F_{2} \otimes M_{N}(\mathbb{C})$ such that

$$
\begin{equation*}
\tilde{U}_{i, i+1}\left(t_{i}\right)=\operatorname{id}_{F_{2} \otimes M_{N}(\mathbb{C})}, \quad \tilde{U}_{i, i+1}\left(t_{i+1}\right)=\left(z_{i} w_{i}^{*} w_{i+1} z_{i+1}^{*}\right) \otimes 1_{M_{N}(\mathbb{C})} \tag{e0.102}
\end{equation*}
$$

and
$\|\tilde{U}_{i, i+1}(t)(\underbrace{\pi_{t_{i}} \circ \phi(f), \ldots, \phi_{t_{i}} \circ \phi(f)}_{N}) \tilde{U}_{i, i+1}(t)^{*}-(\underbrace{\pi_{t_{i}} \circ \phi(f), \ldots, \phi_{t_{i}} \circ \phi(f)}_{N})\|<\epsilon$
(e 0.103)
for all $f \in \mathcal{F}$ and for all $t \in\left[t_{i}, t_{i+1}\right]$. Define $W \in C \otimes M_{N}$ by

$$
W(t)=\left(w_{i} z_{i}^{*} \otimes 1_{M_{N}}\right) \tilde{U}_{i, i+1}(t) \text { for all } t \in\left[t_{i}, t_{i+1}\right]
$$

$i=0,1, \ldots, n-1$. Note that $W\left(t_{i}\right)=w_{i} z_{i}^{*} \otimes 1_{M_{N}}, i=0,1, \ldots, n$. Note also that

$$
W(0)=w_{0} z_{0}^{*} \otimes 1_{M_{N}}=h_{0}\left(w_{e} z_{e}^{*}\right) \otimes 1_{M_{N}}
$$

and

$$
W(1)=w_{n} z_{n}^{*} \otimes 1_{M_{N}}=h_{1}\left(w_{e} z_{e}^{*}\right) \otimes 1_{M_{N}} .
$$

So $W \in C \otimes M_{N}$. One then checks that, by (e 0.56$)$, (e 0.103$)$, (e 0.96$)$ and (e 0.59), for $t \in\left[t_{i}, t_{i+1}\right]$,

$$
\begin{aligned}
& \left\|W(t)\left(\left(\pi_{t} \circ \phi\right)(f) \otimes 1_{M_{N}}\right) W(t)^{*}-\left(\pi_{t} \circ \psi\right)(f) \otimes 1_{M_{N}}\right\| \\
< & \left\|W(t)\left(\left(\pi_{t} \circ \phi\right)(f) \otimes 1_{M_{N}}\right) W(t)^{*}-W(t)\left(\left(\pi_{t_{i}} \circ \phi\right)(f) \otimes 1_{M_{N}}\right) W^{*}(t)\right\| \\
& \left.+\| W(t)\left(\pi_{t_{i}} \circ \phi\right)(f) W(t)^{*}-W\left(t_{i}\right) \pi_{t_{i}} \circ \phi\right)(f) W\left(t_{i}\right)^{*} \| \\
& +\left\|W\left(t_{i}\right)\left(\left(\pi_{t_{i}} \circ \phi\right)(f) \otimes 1_{M_{N}}\right) W\left(t_{i}\right)^{*}-\left(w_{i}\left(\pi_{t_{i}} \circ \phi\right)(f) w_{i}^{*}\right) \otimes 1_{M_{N}}\right\| \\
& +\left\|w_{i}\left(\pi_{t_{i}} \circ \phi\right)(f) w_{i}^{*}-\pi_{t_{i}} \circ \psi(f)\right\| \\
& +\left\|\pi_{t_{i}} \circ \psi(f)-\pi_{t} \circ \phi(f)\right\| \\
< & \epsilon_{1} / 16+\epsilon / 32+\delta_{u}+\epsilon_{1} / 16+\epsilon_{1} / 16<\epsilon
\end{aligned}
$$

