The Basic Homotopy Lemma, III

Huaxin Lin

June 9th, 2015,

In this lecture, we will present the following homotopy lemma.

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map.

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$,

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$,

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following:

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}
$$

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

In this lecture, we will present the following homotopy lemma.
Lemma
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

In this lecture, we will present the following homotopy lemma.

Lemma

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=v, u_{1}=1, \text { and }\left\|\phi(f) u_{t}-u_{t} \phi(f)\right\|<\epsilon \tag{e0.1}
\end{equation*}
$$

In this lecture, we will present the following homotopy lemma.

Lemma

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=v, u_{1}=1, \text { and }\left\|\phi(f) u_{t}-u_{t} \phi(f)\right\|<\epsilon \tag{e0.1}
\end{equation*}
$$

for all $t \in[0,1]$ and $f \in \mathcal{F}$.

In this lecture, we will present the following homotopy lemma.

Lemma

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=v, u_{1}=1, \text { and }\left\|\phi(f) u_{t}-u_{t} \phi(f)\right\|<\epsilon \tag{e0.1}
\end{equation*}
$$

for all $t \in[0,1]$ and $f \in \mathcal{F}$. Moreover,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}\right\}\right) \leq 2 \pi+\epsilon \tag{e0.2}
\end{equation*}
$$

Lemma 3.1.
Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number

Lemma 3.1.
Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map.

Lemma 3.1.
Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset,

Lemma 3.1.
Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$.

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following:

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$. be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ L(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }\left.[L]\right|_{\boldsymbol{\beta}\left(\mathcal{P}_{1}\right)}=0 \tag{e0.3}
\end{equation*}
$$

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ L(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }[L]_{\mathcal{\beta}\left(\mathcal{P}_{1}\right)}=0 . \tag{e0.3}
\end{equation*}
$$

Then there exists a unital ϵ - \mathcal{G}_{0}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ L(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }[L]_{\boldsymbol{\mathcal { P }}\left(\mathcal{P}_{1}\right)}=0 . \tag{e0.3}
\end{equation*}
$$

Then there exists a unital ϵ - \mathcal{G}_{0}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $u=\psi(1 \otimes z)$ is a unitary,

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ L(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }[L]_{\boldsymbol{\mathcal { P }}\left(\mathcal{P}_{1}\right)}=0 . \tag{e0.3}
\end{equation*}
$$

Then there exists a unital ϵ - \mathcal{G}_{0}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $u=\psi(1 \otimes z)$ is a unitary,

$$
\begin{equation*}
u \psi(a \otimes 1)=\psi(a \otimes 1) u \text { for all } a \in A \tag{e0.4}
\end{equation*}
$$

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ L(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }[L]_{\boldsymbol{\mathcal { P }}\left(\mathcal{P}_{1}\right)}=0 . \tag{e0.3}
\end{equation*}
$$

Then there exists a unital ϵ - \mathcal{G}_{0}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $u=\psi(1 \otimes z)$ is a unitary,

$$
\begin{align*}
u \psi(a \otimes 1) & =\psi(a \otimes 1) u \text { for all } a \in A \tag{e0.4}\\
{\left.[L]\right|_{\mathcal{P}} } & =\left.[\psi]\right|_{\mathcal{P}} \text { and } \tag{e0.5}
\end{align*}
$$

Lemma 3.1.

Let $A=P M_{r}(C(X)) P$ and let $\mathcal{H} \subset(A \otimes C(\mathbb{T}))_{\text {s.a. }}$ be a finite subset, let $1>\sigma>0$ be a positive number and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0, \mathcal{G}_{0} \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_{0}, \mathcal{P}_{1} \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P}=\mathcal{P}_{0} \cup \boldsymbol{\beta}\left(\mathcal{P}_{1}\right) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta>0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_{1} \subset(A \otimes C(\mathbb{T}))_{+}^{1} \backslash\{0\}$ satisfying the following: Suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ L(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1} \text { and }[L]_{\boldsymbol{\mathcal { P }}\left(\mathcal{P}_{1}\right)}=0 . \tag{e0.3}
\end{equation*}
$$

Then there exists a unital ϵ - \mathcal{G}_{0}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $u=\psi(1 \otimes z)$ is a unitary,

$$
\begin{align*}
u \psi(a \otimes 1) & =\psi(a \otimes 1) u \text { for all } a \in A & & (\mathrm{e} 0.4) \\
{\left.[L]\right|_{\mathcal{P}} } & =[\psi]_{\mathcal{P}} \text { and } & & (\mathrm{e} 0.5) \tag{e0.5}\\
|\operatorname{tr} \circ L(h)-\operatorname{tr} \circ \psi(h)| & <\sigma \text { for all } h \in \mathcal{H} . & & (\mathrm{e} 0.6) \tag{e0.6}
\end{align*}
$$

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$.

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$. When $K_{i}(A)$ is torsion free, we may assume that $\mathcal{P}_{0}, \mathcal{P}_{1} \subset K_{0}(A) \oplus K_{1}(A)$.

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$. When $K_{i}(A)$ is torsion free, we may assume that $\mathcal{P}_{0}, \mathcal{P}_{1} \subset K_{0}(A) \oplus K_{1}(A)$.
In general,

$$
\underline{K}(A)=\bigoplus_{i=0,1} K_{i}(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_{i}(A, \mathbb{Z} / n \mathbb{Z})
$$

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$. When $K_{i}(A)$ is torsion free, we may assume that $\mathcal{P}_{0}, \mathcal{P}_{1} \subset K_{0}(A) \oplus K_{1}(A)$.
In general,

$$
\underline{K}(A)=\bigoplus_{i=0,1} K_{i}(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_{i}(A, \mathbb{Z} / n \mathbb{Z})
$$

There is an abelian C^{*}-algebra C_{n} such that $K_{i}\left(A \otimes C_{n}\right)=K_{i}(A, \mathbb{Z} / n \mathbb{Z})$, $i=0,1$.

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$. When $K_{i}(A)$ is torsion free, we may assume that $\mathcal{P}_{0}, \mathcal{P}_{1} \subset K_{0}(A) \oplus K_{1}(A)$.
In general,

$$
\underline{K}(A)=\bigoplus_{i=0,1} K_{i}(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_{i}(A, \mathbb{Z} / n \mathbb{Z})
$$

There is an abelian C^{*}-algebra C_{n} such that $K_{i}\left(A \otimes C_{n}\right)=K_{i}(A, \mathbb{Z} / n \mathbb{Z})$, $i=0,1$. One may write

$$
\underline{K}(A \otimes C(\mathbb{T}))=\underline{K}(A) \bigoplus \beta(\underline{K}(A))
$$

If $\phi: A \rightarrow B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A)$,

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$. When $K_{i}(A)$ is torsion free, we may assume that $\mathcal{P}_{0}, \mathcal{P}_{1} \subset K_{0}(A) \oplus K_{1}(A)$.
In general,

$$
\underline{K}(A)=\bigoplus_{i=0,1} K_{i}(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_{i}(A, \mathbb{Z} / n \mathbb{Z})
$$

There is an abelian C^{*}-algebra C_{n} such that $K_{i}\left(A \otimes C_{n}\right)=K_{i}(A, \mathbb{Z} / n \mathbb{Z})$, $i=0,1$. One may write

$$
\underline{K}(A \otimes C(\mathbb{T}))=\underline{K}(A) \bigoplus \beta(\underline{K}(A))
$$

If $\phi: A \rightarrow B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A), u \in B$ such that $\|[\phi, u]\| \approx 0$, then, ϕ and u induce a ccp map $L: A \otimes C(\mathbb{T}) \rightarrow B$ which is approximately multiplicative.

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$. When $K_{i}(A)$ is torsion free, we may assume that $\mathcal{P}_{0}, \mathcal{P}_{1} \subset K_{0}(A) \oplus K_{1}(A)$.
In general,

$$
\underline{K}(A)=\bigoplus_{i=0,1} K_{i}(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_{i}(A, \mathbb{Z} / n \mathbb{Z})
$$

There is an abelian C^{*}-algebra C_{n} such that $K_{i}\left(A \otimes C_{n}\right)=K_{i}(A, \mathbb{Z} / n \mathbb{Z})$, $i=0,1$. One may write

$$
\underline{K}(A \otimes C(\mathbb{T}))=\underline{K}(A) \bigoplus \beta(\underline{K}(A))
$$

If $\phi: A \rightarrow B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A), u \in B$ such that $\|[\phi, u]\| \approx 0$, then, ϕ and u induce a ccp map $L: A \otimes C(\mathbb{T}) \rightarrow B$ which is approximately multiplicative. It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$

Note that $K_{i}(A \otimes C(\mathbb{T}))=K_{i}(A) \oplus \boldsymbol{\beta}\left(K_{i-1}(A)\right), i=0,1$. When $K_{i}(A)$ is torsion free, we may assume that $\mathcal{P}_{0}, \mathcal{P}_{1} \subset K_{0}(A) \oplus K_{1}(A)$.
In general,

$$
\underline{K}(A)=\bigoplus_{i=0,1} K_{i}(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_{i}(A, \mathbb{Z} / n \mathbb{Z})
$$

There is an abelian C^{*}-algebra C_{n} such that $K_{i}\left(A \otimes C_{n}\right)=K_{i}(A, \mathbb{Z} / n \mathbb{Z})$, $i=0,1$. One may write

$$
\underline{K}(A \otimes C(\mathbb{T}))=\underline{K}(A) \bigoplus \beta(\underline{K}(A))
$$

If $\phi: A \rightarrow B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A), u \in B$ such that $\|[\phi, u]\| \approx 0$, then, ϕ and u induce a ccp map $L: A \otimes C(\mathbb{T}) \rightarrow B$ which is approximately multiplicative. It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}$.

It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$

It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}$. If $\mathcal{P} \subset K_{0}(A)$, we write

$$
\left.\operatorname{bott}_{0}(\phi, u)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}
$$

It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}$. If $\mathcal{P} \subset K_{0}(A)$, we write

$$
\left.\operatorname{bott}_{0}(\phi, u)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{0}(A)$ to $K_{1}(B)$)

It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}$. If $\mathcal{P} \subset K_{0}(A)$, we write

$$
\left.\operatorname{bott}_{0}(\phi, u)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{0}(A)$ to $K_{1}(B)$) if $\mathcal{P} \subset K_{1}(A)$, we write

$$
\left.\operatorname{bott}_{1}(\phi, u)\right|_{\mathcal{P}}=\operatorname{Bott}(\phi, u)_{\mathcal{P}}
$$

It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}$. If $\mathcal{P} \subset K_{0}(A)$, we write

$$
\left.\operatorname{bott}_{0}(\phi, u)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{0}(A)$ to $K_{1}(B)$) if $\mathcal{P} \subset K_{1}(A)$, we write

$$
\left.\operatorname{bott}_{1}(\phi, u)\right|_{\mathcal{P}}=\operatorname{Bott}(\phi, u)_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{1}(A)$ to $K_{0}(B)$).

It gives a partial map from $\boldsymbol{\beta}(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}$. If $\mathcal{P} \subset K_{0}(A)$, we write

$$
\left.\operatorname{bott}_{0}(\phi, u)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{0}(A)$ to $K_{1}(B)$) if $\mathcal{P} \subset K_{1}(A)$, we write

$$
\left.\operatorname{bott}_{1}(\phi, u)\right|_{\mathcal{P}}=\operatorname{Bott}(\phi, u)_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{1}(A)$ to $K_{0}(B)$). Exel formula: for $z \in K_{1}(A)$ and $\tau \in T(B)$,

It gives a partial map from $\beta(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}$. If $\mathcal{P} \subset K_{0}(A)$, we write

$$
\left.\operatorname{bott}_{0}(\phi, u)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{0}(A)$ to $K_{1}(B)$) if $\mathcal{P} \subset K_{1}(A)$, we write

$$
\left.\operatorname{bott}_{1}(\phi, u)\right|_{\mathcal{P}}=\operatorname{Bott}(\phi, u)_{\mathcal{P}}
$$

(which may be viewed as map from $\mathcal{P} \subset K_{1}(A)$ to $K_{0}(B)$). Exel formula: for $z \in K_{1}(A)$ and $\tau \in T(B)$,

$$
\rho_{B}\left(\operatorname{bott}_{1}(\phi(z), u)\right)(\tau)=\frac{1}{2 \pi i} \tau\left(\log \left(\phi(z)^{*} u \phi(z) u^{*}\right)\right) .
$$

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

where $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{n} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$ is a unital homomorphism,

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

where $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{n} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$ is a unital homomorphism, and $\tau\left(e_{0}\right)$ is small.

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

where $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{n} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$ is a unital homomorphism, and $\tau\left(e_{0}\right)$ is small. This can be done because of Cor. 2.5.

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

where $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{n} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$ is a unital homomorphism, and $\tau\left(e_{0}\right)$ is small. This can be done because of Cor. 2.5.

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

where $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{n} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$ is a unital homomorphism, and $\tau\left(e_{0}\right)$ is small. This can be done because of Cor. 2.5. Define $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by $\psi(a)=\psi_{0}(a) \oplus \psi_{1}(a)$ for all $a \in A$

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

where $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{n} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$ is a unital homomorphism, and $\tau\left(e_{0}\right)$ is small. This can be done because of Cor. 2.5. Define $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by $\psi(a)=\psi_{0}(a) \oplus \psi_{1}(a)$ for all $a \in A$ and $\psi(1 \otimes z)=e_{0} \oplus \psi_{1}(1 \otimes z)$.

The idea of the proof:

Write

$$
\begin{equation*}
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} \tag{e0.7}
\end{equation*}
$$

where $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{n} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$ is a unital homomorphism, and $\tau\left(e_{0}\right)$ is small. This can be done because of Cor. 2.5. Define $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by $\psi(a)=\psi_{0}(a) \oplus \psi_{1}(a)$ for all $a \in A$ and $\psi(1 \otimes z)=e_{0} \oplus \psi_{1}(1 \otimes z)$. Put $u=\psi(1 \otimes z)$. One verifies that this ψ and u satisfy all requirements.

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given.

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$.

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets.

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$,

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\},
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.
We may assume that $\mathcal{G}_{0 A}$ is sufficiently large and ϵ is sufficiently small

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.
We may assume that $\mathcal{G}_{0 A}$ is sufficiently large and ϵ is sufficiently small such that $\left.\left[L_{1}\right]\right|_{\mathcal{P}}$ is well defined for any unital $\mathcal{G}_{0}-\epsilon$-multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.
We may assume that $\mathcal{G}_{0 A}$ is sufficiently large and ϵ is sufficiently small such that $\left.\left[L_{1}\right]\right|_{\mathcal{P}}$ is well defined for any unital $\mathcal{G}_{0}-\epsilon$-multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$
\begin{equation*}
\left.\left[L_{1}\right]\right|_{\mathcal{P}_{0}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}_{0}} \tag{e0.8}
\end{equation*}
$$

for any unital $\mathcal{G}_{0 A^{-}} \epsilon$-multiplicative contractive completely positive linear map

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.
We may assume that $\mathcal{G}_{0 A}$ is sufficiently large and ϵ is sufficiently small such that $\left.\left[L_{1}\right]\right|_{\mathcal{P}}$ is well defined for any unital $\mathcal{G}_{0}-\epsilon$-multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$
\begin{equation*}
\left.\left[L_{1}\right]\right|_{\mathcal{P}_{0}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}_{0}} \tag{e0.8}
\end{equation*}
$$

for any unital $\mathcal{G}_{0 A^{-}}-$-multiplicative contractive completely positive linear map L_{2} from $A \otimes C(\mathbb{T})$ such that

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.
We may assume that $\mathcal{G}_{0 A}$ is sufficiently large and ϵ is sufficiently small such that $\left.\left[L_{1}\right]\right|_{\mathcal{P}}$ is well defined for any unital $\mathcal{G}_{0}-\epsilon$-multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$
\begin{equation*}
\left.\left[L_{1}\right]\right|_{\mathcal{P}_{0}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}_{0}} \tag{e0.8}
\end{equation*}
$$

for any unital $\mathcal{G}_{0 A^{-}-}-$-multiplicative contractive completely positive linear map L_{2} from $A \otimes C(\mathbb{T})$ such that

$$
\begin{equation*}
L_{1} \approx_{\epsilon} L_{2} \text { on } \mathcal{G}_{0 A} \tag{e0.9}
\end{equation*}
$$

Proof of Lemma 3.1 : Let \mathcal{H} and σ_{0}, ϵ and \mathcal{G}_{0} are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_{0}$ which is in the unit ball of A and $\sigma<\epsilon / 4$. We may also assume that

$$
\mathcal{G}_{0}=\left\{g \otimes f: g \in \mathcal{G}_{0 A} \text { and } f \in \mathcal{G}_{1 T}\right\}
$$

where $\mathcal{G}_{0 A} \subset A$ and $\mathcal{G}_{1 T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1 T}=\left\{1_{C(\mathbb{T})}, z\right\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.
We may assume that $\mathcal{G}_{0 A}$ is sufficiently large and ϵ is sufficiently small such that $\left.\left[L_{1}\right]\right|_{\mathcal{P}}$ is well defined for any unital $\mathcal{G}_{0}-\epsilon$-multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$
\begin{equation*}
\left.\left[L_{1}\right]\right|_{\mathcal{P}_{0}}=\left.\left[L_{2}\right]\right|_{\mathcal{P}_{0}} \tag{e0.8}
\end{equation*}
$$

for any unital $\mathcal{G}_{0 A^{-}-}-$-multiplicative contractive completely positive linear map L_{2} from $A \otimes C(\mathbb{T})$ such that

$$
\begin{equation*}
L_{1} \approx_{\epsilon} L_{2} \text { on } \mathcal{G}_{0 A} \tag{e0.9}
\end{equation*}
$$

We may also assume that $\epsilon<\sigma$.

Let n be an integer such that $1 / n<\sigma / 2$.

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$.

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ),

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\quad \mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ.

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}.

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}. It follows from Cor. 2.5 that there is a projection $e_{0} \in M_{k}$ and a $\mathcal{G}_{0}-\epsilon / 2$-multiplicative contractive completely positive linear maps $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}. It follows from Cor. 2.5 that there is a projection $e_{0} \in M_{k}$ and a $\mathcal{G}_{0}-\epsilon / 2$-multiplicative contractive completely positive linear maps $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and a unital homomorphism $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{k}\left(1-e_{0}\right)$ such that

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}. It follows from Cor. 2.5 that there is a projection $e_{0} \in M_{k}$ and a $\mathcal{G}_{0}-\epsilon / 2$-multiplicative contractive completely positive linear maps $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and a unital homomorphism $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{k}\left(1-e_{0}\right)$ such that

$$
\begin{equation*}
\operatorname{tr}\left(e_{0}\right)<1 / n<\sigma, \tag{e0.10}
\end{equation*}
$$

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}. It follows from Cor. 2.5 that there is a projection $e_{0} \in M_{k}$ and a $\mathcal{G}_{0}-\epsilon / 2$-multiplicative contractive completely positive linear maps $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and a unital homomorphism $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{k}\left(1-e_{0}\right)$ such that

$$
\begin{array}{r}
\operatorname{tr}\left(e_{0}\right)<1 / n<\sigma \\
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} . \tag{e0.11}
\end{array}
$$

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}. It follows from Cor. 2.5 that there is a projection $e_{0} \in M_{k}$ and a $\mathcal{G}_{0}-\epsilon / 2$-multiplicative contractive completely positive linear maps $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and a unital homomorphism $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{k}\left(1-e_{0}\right)$ such that

$$
\begin{array}{r}
\operatorname{tr}\left(e_{0}\right)<1 / n<\sigma \\
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} . \tag{e0.11}
\end{array}
$$

Define $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by $\psi(a)=\psi_{0}(a) \oplus \psi_{1}(a)$ for all $a \in A$

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}. It follows from Cor. 2.5 that there is a projection $e_{0} \in M_{k}$ and a $\mathcal{G}_{0}-\epsilon / 2$-multiplicative contractive completely positive linear maps $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and a unital homomorphism $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{k}\left(1-e_{0}\right)$ such that

$$
\begin{array}{r}
\operatorname{tr}\left(e_{0}\right)<1 / n<\sigma \\
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} . \tag{e0.11}
\end{array}
$$

Define $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by $\psi(a)=\psi_{0}(a) \oplus \psi_{1}(a)$ for all $a \in A$ and $\psi(1 \otimes z)=e_{0} \oplus \psi_{1}(1 \otimes z)$.

Let n be an integer such that $1 / n<\sigma / 2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_{s}$. Let $\delta>0, \mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_{1} \subset A \otimes C(\mathbb{T})_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon / 2$ (in place of ϵ), $\mathcal{G}_{0}($ in place of $\mathcal{F}), \mathcal{H}\left(\right.$ in place of $\left.\mathcal{H}_{1}\right)$ and Δ. Now suppose that $L: A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ, \mathcal{G} and \mathcal{H}_{1}. It follows from Cor. 2.5 that there is a projection $e_{0} \in M_{k}$ and a $\mathcal{G}_{0}-\epsilon / 2$-multiplicative contractive completely positive linear maps $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and a unital homomorphism $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow\left(1-e_{0}\right) M_{k}\left(1-e_{0}\right)$ such that

$$
\begin{array}{r}
\operatorname{tr}\left(e_{0}\right)<1 / n<\sigma \\
\left\|L(a)-\psi_{0}(a) \oplus \psi_{1}(a)\right\|<\epsilon \text { for all } a \in \mathcal{G}_{0} . \tag{e0.11}
\end{array}
$$

Define $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by $\psi(a)=\psi_{0}(a) \oplus \psi_{1}(a)$ for all $a \in A$ and $\psi(1 \otimes z)=e_{0} \oplus \psi_{1}(1 \otimes z)$. Put $u=\psi(1 \otimes z)$. One verifies that this ψ and u satisfy all requirements.

Lemma 3.2.
Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map.

Lemma 3.2.
Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.

Lemma 3.2.
Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{\mathbf{1}} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$,

Lemma 3.2.
Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that,

Lemma 3.2.
Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $k \geq 1$) is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map,

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $k \geq 1$) is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $k \geq 1$) is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

$$
\|L(1 \otimes z)-u\|<\delta
$$

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ (for some integer $k \geq 1$) is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

$$
\begin{align*}
\|L(1 \otimes z)-u\| & <\delta \tag{e0.12}\\
{[L]_{\boldsymbol{\beta}(\mathcal{P})} } & =0 \text { and } \tag{e0.13}
\end{align*}
$$

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}($ for some integer $k \geq 1)$ is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

$$
\begin{align*}
\|L(1 \otimes z)-u\| & <\delta, \tag{e0.12}\\
{\left[L \|_{\boldsymbol{\beta}(\mathcal{P})}\right.} & =0 \text { and } \tag{e0.13}\\
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) & \geq \Delta\left(\widehat{h_{1} \otimes h_{2}}\right) \tag{e0.14}
\end{align*}
$$

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}($ for some integer $k \geq 1)$ is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

$$
\begin{align*}
\|L(1 \otimes z)-u\| & <\delta, \tag{e0.12}\\
{\left[L \|_{\boldsymbol{\beta}(\mathcal{P})}\right.} & =0 \text { and } \tag{e0.13}\\
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) & \geq \Delta\left(\widehat{h_{1} \otimes h_{2}}\right) \tag{e0.14}
\end{align*}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$,

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}($ for some integer $k \geq 1)$ is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

$$
\begin{align*}
\|L(1 \otimes z)-u\| & <\delta, \tag{e0.12}\\
{\left[\left.L\right|_{\boldsymbol{\beta}(\mathcal{P})}\right.} & =0 \text { and } \tag{e0.13}\\
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) & \geq \Delta\left(\widehat{h_{1} \otimes h_{2}}\right) \tag{e0.14}
\end{align*}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$, then there exists a continuous path of unitaries $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}($ for some integer $k \geq 1)$ is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

$$
\begin{align*}
\|L(1 \otimes z)-u\| & <\delta \tag{e0.12}\\
{[L]_{\boldsymbol{\beta}(\mathcal{P})} } & =0 \text { and } \tag{e0.13}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\widehat{h_{1} \otimes h_{2}}\right) \tag{e0.14}
\end{equation*}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$, then there exists a continuous path of unitaries $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ with $u_{0}=u$ and $u_{1}=1$ such that

Lemma 3.2.

Let $A=P M_{r}(C(X)) P$ and let $\Delta:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$, a finite subset $\mathcal{G} \subset A, \delta>0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}($ for some integer $k \geq 1)$ is \mathcal{G}^{\prime} - δ-multiplicative contractive completely positive linear map, where $\mathcal{G}^{\prime}=\left\{g \otimes f: g \in \mathcal{G}, f=\left\{1, z, z^{*}\right\}\right\}$ and $u \in M_{k}$ is a unitary such that

$$
\begin{align*}
\|L(1 \otimes z)-u\| & <\delta \tag{e0.12}\\
{[L]_{\boldsymbol{\beta}(\mathcal{P})} } & =0 \text { and } \tag{e0.13}
\end{align*}
$$

$\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\widehat{h_{1} \otimes h_{2}}\right)$
for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$, then there exists a continuous path of unitaries $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ with $u_{0}=u$ and $u_{1}=1$ such that

$$
\begin{equation*}
\left\|L(f \otimes 1) u_{t}-u_{t} L(f \otimes 1)\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.15}
\end{equation*}
$$

and $t \in[0,1]$. Moreover, length $\left(\left\{u_{t}\right\}\right) \leq \pi+\epsilon$.

The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

$$
L \approx \psi_{0} \oplus \psi_{1}
$$

where ψ_{1} is a homomorphism

The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

$$
L \approx \psi_{0} \oplus \psi_{1}
$$

where ψ_{1} is a homomorphism and $u \approx e_{0} \oplus \psi_{1}(1 \otimes z)$.

The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

$$
L \approx \psi_{0} \oplus \psi_{1}
$$

where ψ_{1} is a homomorphism and $u \approx e_{0} \oplus \psi_{1}(1 \otimes z)$. In $\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$, one easily find a path of unitaries $\{w(t): t \in[0,1]\}$

The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

$$
L \approx \psi_{0} \oplus \psi_{1}
$$

where ψ_{1} is a homomorphism and $u \approx e_{0} \oplus \psi_{1}(1 \otimes z)$. In $\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$, one easily find a path of unitaries $\{w(t): t \in[0,1]\}$ such that $w(0)=\psi_{1}(1 \otimes z), w(1)=1-e_{0}$ and $\psi_{1}(f \otimes 1)$ commutes with $w(t)$.

The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

$$
L \approx \psi_{0} \oplus \psi_{1}
$$

where ψ_{1} is a homomorphism and $u \approx e_{0} \oplus \psi_{1}(1 \otimes z)$. In $\left(1-e_{0}\right) M_{n}\left(1-e_{0}\right)$, one easily find a path of unitaries $\{w(t): t \in[0,1]\}$ such that $w(0)=\psi_{1}(1 \otimes z), w(1)=1-e_{0}$ and $\psi_{1}(f \otimes 1)$ commutes with $w(t)$. The we consider $e_{0} \oplus w(t)$.

$$
\begin{aligned}
& \text { Proof : Let } \Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\} \text { and let } \\
& B=A \otimes C(\mathbb{T}) \text {. }
\end{aligned}
$$

Proof : Let $\Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\}$ and let $B=A \otimes C(\mathbb{T})$. Then B has the form $Q M_{r}(C(X \times T) Q$. Let $\mathcal{H}^{\prime} \subset B_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset,

Proof: Let $\Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\}$ and let $B=A \otimes C(\mathbb{T})$. Then B has the form $Q M_{r}(C(X \times T) Q$. Let $\mathcal{H}^{\prime} \subset B_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ), $\mathcal{P}^{\prime} \subset \underline{K}(B)$ (in place of \mathcal{P}) be a finite subset required by Theorem 2. 1(for B instead of A) for $\epsilon / 16$ (in place of ϵ), \mathcal{F}_{0} (in place of \mathcal{F}) and Δ.

Proof : Let $\Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\}$ and let $B=A \otimes C(\mathbb{T})$. Then B has the form $Q M_{r}(C(X \times T) Q$. Let $\mathcal{H}^{\prime} \subset B_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ), $\mathcal{P}^{\prime} \subset \underline{K}(B)$ (in place of \mathcal{P}) be a finite subset required by Theorem 2. 1(for B instead of A) for $\epsilon / 16$ (in place of ϵ), \mathcal{F}_{0} (in place of \mathcal{F}) and Δ. Without loss of generality, we may assume that there are finite subsets $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{2}^{\prime} \subset C(\mathbb{T})_{+} \backslash\{0\}$

Proof : Let $\Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\}$ and let $B=A \otimes C(\mathbb{T})$. Then B has the form $Q M_{r}(C(X \times T) Q$. Let $\mathcal{H}^{\prime} \subset B_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ), $\mathcal{P}^{\prime} \subset \underline{K}(B)$ (in place of \mathcal{P}) be a finite subset required by Theorem 2. 1(for B instead of A) for $\epsilon / 16$ (in place of ϵ), \mathcal{F}_{0} (in place of \mathcal{F}) and Δ. Without loss of generality, we may assume that there are finite subsets $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{2}^{\prime} \subset C(\mathbb{T})_{+} \backslash\{0\}$ such that

$$
\mathcal{H}^{\prime}=\left\{h_{1} \otimes h_{2}: h_{1} \in \mathcal{H}_{1}^{\prime} \text { and } h_{2} \in \mathcal{H}_{2}^{\prime}\right\}
$$

Proof : Let $\Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\}$ and let $B=A \otimes C(\mathbb{T})$. Then B has the form $Q M_{r}(C(X \times T) Q$. Let $\mathcal{H}^{\prime} \subset B_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ), $\mathcal{P}^{\prime} \subset \underline{K}(B)$ (in place of \mathcal{P}) be a finite subset required by Theorem 2. 1(for B instead of A) for $\epsilon / 16$ (in place of ϵ), \mathcal{F}_{0} (in place of \mathcal{F}) and Δ. Without loss of generality, we may assume that there are finite subsets $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{2}^{\prime} \subset C(\mathbb{T})_{+} \backslash\{0\}$ such that

$$
\mathcal{H}^{\prime}=\left\{h_{1} \otimes h_{2}: h_{1} \in \mathcal{H}_{1}^{\prime} \text { and } h_{2} \in \mathcal{H}_{2}^{\prime}\right\}
$$

and $\mathcal{G}_{1}=\left\{g \otimes f: g \in \mathcal{G}_{1}^{\prime}\right.$ and $\left.f \in\left\{1, z, z^{*}\right\}\right\}$, where $\mathcal{G}_{1}^{\prime} \subset A$ is a finite subset.

Proof : Let $\Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\}$ and let $B=A \otimes C(\mathbb{T})$. Then B has the form $Q M_{r}(C(X \times T) Q$. Let $\mathcal{H}^{\prime} \subset B_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ), $\mathcal{P}^{\prime} \subset \underline{K}(B)$ (in place of \mathcal{P}) be a finite subset required by Theorem 2. 1(for B instead of A) for $\epsilon / 16$ (in place of ϵ), \mathcal{F}_{0} (in place of \mathcal{F}) and Δ. Without loss of generality, we may assume that there are finite subsets $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{2}^{\prime} \subset C(\mathbb{T})_{+} \backslash\{0\}$ such that

$$
\mathcal{H}^{\prime}=\left\{h_{1} \otimes h_{2}: h_{1} \in \mathcal{H}_{1}^{\prime} \text { and } h_{2} \in \mathcal{H}_{2}^{\prime}\right\}
$$

and $\mathcal{G}_{1}=\left\{g \otimes f: g \in \mathcal{G}_{1}^{\prime}\right.$ and $\left.f \in\left\{1, z, z^{*}\right\}\right\}$, where $\mathcal{G}_{1}^{\prime} \subset A$ is a finite subset. We may also assume that $1_{A} \in \mathcal{H}_{1}^{\prime}$ and $1_{C(\mathbb{T})} \in \mathcal{H}_{2}^{\prime}$.

Proof : Let $\Delta_{1}=(1 / 2) \Delta, \mathcal{F}_{0}=\{f \otimes 1: 1 \otimes z: f \in \mathcal{F}\}$ and let $B=A \otimes C(\mathbb{T})$. Then B has the form $Q M_{r}(C(X \times T) Q$. Let $\mathcal{H}^{\prime} \subset B_{+} \backslash\{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ), $\mathcal{P}^{\prime} \subset \underline{K}(B)$ (in place of \mathcal{P}) be a finite subset required by Theorem 2. 1(for B instead of A) for $\epsilon / 16$ (in place of ϵ), \mathcal{F}_{0} (in place of \mathcal{F}) and Δ. Without loss of generality, we may assume that there are finite subsets $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{2}^{\prime} \subset C(\mathbb{T})_{+} \backslash\{0\}$ such that

$$
\mathcal{H}^{\prime}=\left\{h_{1} \otimes h_{2}: h_{1} \in \mathcal{H}_{1}^{\prime} \text { and } h_{2} \in \mathcal{H}_{2}^{\prime}\right\}
$$

and $\mathcal{G}_{1}=\left\{g \otimes f: g \in \mathcal{G}_{1}^{\prime}\right.$ and $\left.f \in\left\{1, z, z^{*}\right\}\right\}$, where $\mathcal{G}_{1}^{\prime} \subset A$ is a finite subset. We may also assume that $1_{A} \in \mathcal{H}_{1}^{\prime}$ and $1_{C(\mathbb{T})} \in \mathcal{H}_{2}^{\prime}$.
Without loss of generality, one may assume that

$$
\begin{equation*}
\mathcal{P}^{\prime}=\mathcal{P}_{0} \sqcup \mathcal{P}_{1}, \tag{e0.16}
\end{equation*}
$$

where $\mathcal{P}_{0} \subset \underline{K}(A)$ and $\mathcal{P}_{1} \subset \boldsymbol{\beta}(\underline{K}(A))$ are finite subsets.

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$.

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} . \tag{e0.17}
\end{equation*}
$$

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} . \tag{e0.17}
\end{equation*}
$$

There is $\delta_{2}>0$ (in place of δ) with $\delta_{2}<\epsilon / 16$, a finite subset $\mathcal{G}_{2} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} . \tag{e0.17}
\end{equation*}
$$

There is $\delta_{2}>0$ (in place of δ) with $\delta_{2}<\epsilon / 16$, a finite subset $\mathcal{G}_{2} \subset A \otimes C(\mathbb{T})($ in place of $\mathcal{G})$ and a finite subset $\mathcal{H}_{3} \subset(A \otimes C(\mathbb{T}))_{+} \backslash\{0\}$ (in place of \mathcal{H}_{1}) required by 3.1 for $\sigma, \Delta, \mathcal{H}^{\prime}($ in place of \mathcal{H}), $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ),

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} . \tag{e0.17}
\end{equation*}
$$

There is $\delta_{2}>0$ (in place of δ) with $\delta_{2}<\epsilon / 16$, a finite subset $\mathcal{G}_{2} \subset A \otimes C(\mathbb{T})($ in place of $\mathcal{G})$ and a finite subset $\mathcal{H}_{3} \subset(A \otimes C(\mathbb{T}))_{+} \backslash\{0\}$ (in place of \mathcal{H}_{1}) required by 3.1 for $\sigma, \Delta, \mathcal{H}^{\prime}($ in place of \mathcal{H}), $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\quad \mathcal{G}_{1}$ (in place of \mathcal{G}_{0}), \mathcal{P}_{0} and \mathcal{P} (in place of \mathcal{P}_{1}).

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} . \tag{e0.17}
\end{equation*}
$$

There is $\delta_{2}>0$ (in place of δ) with $\delta_{2}<\epsilon / 16$, a finite subset $\mathcal{G}_{2} \subset A \otimes C(\mathbb{T})($ in place of $\mathcal{G})$ and a finite subset $\mathcal{H}_{3} \subset(A \otimes C(\mathbb{T}))_{+} \backslash\{0\}$ (in place of \mathcal{H}_{1}) required by 3.1 for $\sigma, \Delta, \mathcal{H}^{\prime}($ in place of \mathcal{H}), $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\quad \mathcal{G}_{1}$ (in place of \mathcal{G}_{0}), \mathcal{P}_{0} and \mathcal{P} (in place of \mathcal{P}_{1}). We may also assume that

$$
\mathcal{G}_{2}=\left\{g \otimes f: g \in \mathcal{G}_{2}^{\prime} \text { and } f \in\left\{1, z, z^{*}\right\}\right\},
$$

where $\mathcal{G}_{2}^{\prime} \subset A$ is a finite subset.

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} \tag{e0.17}
\end{equation*}
$$

There is $\delta_{2}>0$ (in place of δ) with $\delta_{2}<\epsilon / 16$, a finite subset $\mathcal{G}_{2} \subset A \otimes C(\mathbb{T})($ in place of $\mathcal{G})$ and a finite subset $\mathcal{H}_{3} \subset(A \otimes C(\mathbb{T}))_{+} \backslash\{0\}$ (in place of \mathcal{H}_{1}) required by 3.1 for $\sigma, \Delta, \mathcal{H}^{\prime}($ in place of \mathcal{H}), $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\quad \mathcal{G}_{1}$ (in place of \mathcal{G}_{0}), \mathcal{P}_{0} and \mathcal{P} (in place of \mathcal{P}_{1}). We may also assume that

$$
\mathcal{G}_{2}=\left\{g \otimes f: g \in \mathcal{G}_{2}^{\prime} \text { and } f \in\left\{1, z, z^{*}\right\}\right\}
$$

where $\mathcal{G}_{2}^{\prime} \subset A$ is a finite subset. We may further assume that

$$
\mathcal{H}_{3}=\left\{h_{1} \otimes h_{2}: h_{1} \in \mathcal{H}_{4} \text { and } h_{2} \in \mathcal{H}_{5}\right\}
$$

where $\mathcal{H}_{4} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{5} \subset C(\mathbb{T})_{+} \backslash\{0\}$ are finite subset.

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} \tag{e0.17}
\end{equation*}
$$

There is $\delta_{2}>0$ (in place of δ) with $\delta_{2}<\epsilon / 16$, a finite subset $\mathcal{G}_{2} \subset A \otimes C(\mathbb{T})($ in place of $\mathcal{G})$ and a finite subset $\mathcal{H}_{3} \subset(A \otimes C(\mathbb{T}))_{+} \backslash\{0\}$ (in place of \mathcal{H}_{1}) required by 3.1 for $\sigma, \Delta, \mathcal{H}^{\prime}($ in place of \mathcal{H}), $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\quad \mathcal{G}_{1}$ (in place of \mathcal{G}_{0}), \mathcal{P}_{0} and \mathcal{P} (in place of \mathcal{P}_{1}). We may also assume that

$$
\mathcal{G}_{2}=\left\{g \otimes f: g \in \mathcal{G}_{2}^{\prime} \text { and } f \in\left\{1, z, z^{*}\right\}\right\}
$$

where $\mathcal{G}_{2}^{\prime} \subset A$ is a finite subset. We may further assume that

$$
\mathcal{H}_{3}=\left\{h_{1} \otimes h_{2}: h_{1} \in \mathcal{H}_{4} \text { and } h_{2} \in \mathcal{H}_{5}\right\},
$$

where $\mathcal{H}_{4} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{5} \subset C(\mathbb{T})_{+} \backslash\{0\}$ are finite subset. Let $\mathcal{G}=\mathcal{F} \cup \mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime}, \delta=\min \left\{\delta_{1} / 2, \delta_{2} / 2, \epsilon / 16\right\}, \mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup \mathcal{H}_{4}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{5}$.

Let $\mathcal{P} \subset \underline{K}(A)$ be a finite subset such that $\boldsymbol{\beta}(\mathcal{P})=\mathcal{P}_{1}$. Let

$$
\begin{equation*}
\sigma=\min \left\{\Delta_{1}(\hat{h}): h \in \mathcal{H}^{\prime}\right\} \tag{e0.17}
\end{equation*}
$$

There is $\delta_{2}>0$ (in place of δ) with $\delta_{2}<\epsilon / 16$, a finite subset $\mathcal{G}_{2} \subset A \otimes C(\mathbb{T})($ in place of $\mathcal{G})$ and a finite subset $\mathcal{H}_{3} \subset(A \otimes C(\mathbb{T}))_{+} \backslash\{0\}$ (in place of \mathcal{H}_{1}) required by 3.1 for $\sigma, \Delta, \mathcal{H}^{\prime}($ in place of \mathcal{H}), $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\quad \mathcal{G}_{1}$ (in place of \mathcal{G}_{0}), \mathcal{P}_{0} and \mathcal{P} (in place of \mathcal{P}_{1}). We may also assume that

$$
\mathcal{G}_{2}=\left\{g \otimes f: g \in \mathcal{G}_{2}^{\prime} \text { and } f \in\left\{1, z, z^{*}\right\}\right\}
$$

where $\mathcal{G}_{2}^{\prime} \subset A$ is a finite subset. We may further assume that

$$
\mathcal{H}_{3}=\left\{h_{1} \otimes h_{2}: h_{1} \in \mathcal{H}_{4} \text { and } h_{2} \in \mathcal{H}_{5}\right\},
$$

where $\mathcal{H}_{4} \subset A_{+} \backslash\{0\}$ and $\mathcal{H}_{5} \subset C(\mathbb{T})_{+} \backslash\{0\}$ are finite subset. Let $\mathcal{G}=\mathcal{F} \cup \mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime}, \delta=\min \left\{\delta_{1} / 2, \delta_{2} / 2, \epsilon / 16\right\}, \mathcal{H}_{1}=\mathcal{H}_{1}^{\prime} \cup \mathcal{H}_{4}$ and $\mathcal{H}_{2}=\mathcal{H}_{2}^{\prime} \cup \mathcal{H}_{5}$.

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ.

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $w=\psi(1 \otimes z)$ is a unitary,

$$
w \psi(g \otimes 1)=\psi(g \otimes 1) w \text { for all } g \in A, \quad(\mathrm{e} 0.18)
$$

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $w=\psi(1 \otimes z)$ is a unitary,

$$
\begin{array}{rlr}
w \psi(g \otimes 1) & =\psi(g \otimes 1) w \text { for all } g \in A, \quad(\mathrm{e} 0.18) \\
{\left.[\psi]\right|_{\mathcal{P}^{\prime}}} & =\left.[L]\right|_{\mathcal{P}^{\prime}}, & (\mathrm{e} 0.19)
\end{array}
$$

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $w=\psi(1 \otimes z)$ is a unitary,

$$
\begin{array}{rlrl}
w \psi(g \otimes 1) & =\psi(g \otimes 1) w \text { for all } g \in A, & (\mathrm{e} 0.18) \\
{\left.[\psi]\right|_{\mathcal{P}^{\prime}}} & =\left.[L]\right|_{\mathcal{P}^{\prime}}, & & (\mathrm{e} 0.19) \\
|\operatorname{tr} \circ L(g)-\operatorname{tr} \circ \psi(g)| & <\sigma \text { for all } g \in \mathcal{H}_{3} . & & (\mathrm{e} 0.20)
\end{array}
$$

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $w=\psi(1 \otimes z)$ is a unitary,

$$
\begin{aligned}
w \psi(g \otimes 1) & =\psi(g \otimes 1) w \text { for all } g \in A, & & (\mathrm{e} 0.18) \\
{\left.[\psi]\right|_{\mathcal{P}^{\prime}} } & =\left[\left.L\right|_{\mathcal{P}^{\prime}},\right. & & (\mathrm{e} 0.19) \\
|\operatorname{tr} \circ L(g)-\operatorname{tr} \circ \psi(g)| & <\sigma \text { for all } g \in \mathcal{H}_{3} . & & (\mathrm{e} 0.20)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\operatorname{tr} \circ \psi(h) \geq \operatorname{tr} \circ L(h)-\sigma \geq \Delta_{1}(\hat{h}) \tag{e0.21}
\end{equation*}
$$

for all $h \in \mathcal{H}^{\prime}$.

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $w=\psi(1 \otimes z)$ is a unitary,

$$
\begin{array}{rlrl}
w \psi(g \otimes 1) & =\psi(g \otimes 1) w \text { for all } g \in A, & (\mathrm{e} 0.18) \\
{\left.[\psi]\right|_{\mathcal{P}^{\prime}}} & =\left.[L]\right|_{\mathcal{P}^{\prime}}, & & (\mathrm{e} 0.19) \\
|\operatorname{tr} \circ L(g)-\operatorname{tr} \circ \psi(g)| & <\sigma \text { for all } g \in \mathcal{H}_{3} . & & (\mathrm{e} 0.20) \tag{e0.20}
\end{array}
$$

It follows that

$$
\begin{equation*}
\operatorname{tr} \circ \psi(h) \geq \operatorname{tr} \circ L(h)-\sigma \geq \Delta_{1}(\hat{h}) \tag{e0.21}
\end{equation*}
$$

for all $h \in \mathcal{H}^{\prime}$. Combining (e 0.18), (e 0.13), (e 0.14), (e 0.20) and (e 0.15), by applying Theorem 2.1, one obtains a unitary $U \in M_{k}$ such that

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $w=\psi(1 \otimes z)$ is a unitary,

$$
\begin{array}{rlrl}
w \psi(g \otimes 1) & =\psi(g \otimes 1) w \text { for all } g \in A, & (\mathrm{e} 0.18) \\
{\left.[\psi]\right|_{\mathcal{P}^{\prime}}} & =\left.[L]\right|_{\mathcal{P}^{\prime}}, & & (\mathrm{e} 0.19) \\
|\operatorname{tr} \circ L(g)-\operatorname{tr} \circ \psi(g)| & <\sigma \text { for all } g \in \mathcal{H}_{3} . & & (\mathrm{e} 0.20)
\end{array}
$$

It follows that

$$
\begin{equation*}
\operatorname{tr} \circ \psi(h) \geq \operatorname{tr} \circ L(h)-\sigma \geq \Delta_{1}(\hat{h}) \tag{e0.21}
\end{equation*}
$$

for all $h \in \mathcal{H}^{\prime}$. Combining (e 0.18), (e 0.13), (e 0.14), (e 0.20) and (e 0.15), by applying Theorem 2.1, one obtains a unitary $U \in M_{k}$ such that

$$
\begin{equation*}
\|\operatorname{Ad} U \circ \psi(f)-L(f)\|<\epsilon / 16 \text { for all } f \in \mathcal{F}_{0} \tag{e0.22}
\end{equation*}
$$

Now suppose that $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ and a unitary $u \in M_{k}$ satisfy the assumption with the above $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{G}, \mathcal{P}, \delta$ and σ. It follows from ?? that there is a unital $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ - \mathcal{G}_{1}-multiplicative contractive completely positive linear map $\psi: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that $w=\psi(1 \otimes z)$ is a unitary,

$$
\begin{array}{rlrl}
w \psi(g \otimes 1) & =\psi(g \otimes 1) w \text { for all } g \in A, & (\mathrm{e} 0.18) \\
{\left.[\psi]\right|_{\mathcal{P}^{\prime}}} & =\left.[L]\right|_{\mathcal{P}^{\prime}}, & & (\mathrm{e} 0.19) \\
|\operatorname{tr} \circ L(g)-\operatorname{tr} \circ \psi(g)| & <\sigma \text { for all } g \in \mathcal{H}_{3} . & & (\mathrm{e} 0.20)
\end{array}
$$

It follows that

$$
\begin{equation*}
\operatorname{tr} \circ \psi(h) \geq \operatorname{tr} \circ L(h)-\sigma \geq \Delta_{1}(\hat{h}) \tag{e0.21}
\end{equation*}
$$

for all $h \in \mathcal{H}^{\prime}$. Combining (e 0.18), (e 0.13), (e 0.14), (e 0.20) and (e 0.15), by applying Theorem 2.1, one obtains a unitary $U \in M_{k}$ such that

$$
\begin{equation*}
\|\operatorname{Ad} U \circ \psi(f)-L(f)\|<\epsilon / 16 \text { for all } f \in \mathcal{F}_{0} \tag{e0.22}
\end{equation*}
$$

Let $w_{1}=\operatorname{Ad} U \circ \phi(1 \otimes z)$.

Then

$$
\begin{aligned}
\|u-w\| & \leq\|u-L(1 \otimes z)\|+\|L(1 \otimes z)-\operatorname{Ad} U \circ \psi(1 \otimes z)\|(\mathrm{e} 0.23) \\
& <\delta+\epsilon / 16<\epsilon / 8
\end{aligned}
$$

Then

$$
\begin{align*}
\|u-w\| & \leq\|u-L(1 \otimes z)\|+\|L(1 \otimes z)-\operatorname{Ad} U \circ \psi(1 \otimes z)\|(\mathrm{e} 0.23) \\
& <\delta+\epsilon / 16<\epsilon / 8 \tag{e0.24}
\end{align*}
$$

There is a continuous path of unitaries $\left\{u_{t} \in[0,1 / 2]\right\} \subset M_{k}$ such that

Then

$$
\begin{align*}
\|u-w\| & \leq\|u-L(1 \otimes z)\|+\|L(1 \otimes z)-\operatorname{Ad} U \circ \psi(1 \otimes z)\|(\mathrm{e} 0.23) \\
& <\delta+\epsilon / 16<\epsilon / 8 \tag{e0.24}
\end{align*}
$$

There is a continuous path of unitaries $\left\{u_{t} \in[0,1 / 2]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
\left\|u_{t}-u\right\|<\epsilon / 8, \quad\left\|u_{t}-w\right\|<\epsilon / 8, \quad u_{0}=u, \quad u_{1 / 2}=w \tag{e0.25}
\end{equation*}
$$

Then

$$
\begin{align*}
\|u-w\| & \leq\|u-L(1 \otimes z)\|+\|L(1 \otimes z)-\operatorname{Ad} U \circ \psi(1 \otimes z)\|(\mathrm{e} 0.23) \\
& <\delta+\epsilon / 16<\epsilon / 8 \tag{e0.24}
\end{align*}
$$

There is a continuous path of unitaries $\left\{u_{t} \in[0,1 / 2]\right\} \subset M_{k}$ such that

$$
\begin{array}{r}
\left\|u_{t}-u\right\|<\epsilon / 8, \quad\left\|u_{t}-w\right\|<\epsilon / 8, \quad u_{0}=u, \quad u_{1 / 2}=w \\
\text { and length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right)<\epsilon \pi / 8 .
\end{array}
$$

Then

$$
\begin{align*}
\|u-w\| & \leq\|u-L(1 \otimes z)\|+\|L(1 \otimes z)-\operatorname{Ad} U \circ \psi(1 \otimes z)\|(\mathrm{e} 0.23) \\
& <\delta+\epsilon / 16<\epsilon / 8 \tag{e0.24}
\end{align*}
$$

There is a continuous path of unitaries $\left\{u_{t} \in[0,1 / 2]\right\} \subset M_{k}$ such that

$$
\begin{array}{r}
\left\|u_{t}-u\right\|<\epsilon / 8, \quad\left\|u_{t}-w\right\|<\epsilon / 8, \quad u_{0}=u, \quad u_{1 / 2}=w \\
\text { and length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right)<\epsilon \pi / 8 \tag{e0.26}
\end{array}
$$

It follows (from Theorem 1.1) that there exists a continuous path of unitaries $\left\{u_{t}: t \in[1 / 2,1]\right\} \subset M_{k}$ such that

Then

$$
\begin{align*}
\|u-w\| & \leq\|u-L(1 \otimes z)\|+\|L(1 \otimes z)-\operatorname{Ad} U \circ \psi(1 \otimes z)\|(\mathrm{e} 0.23) \\
& <\delta+\epsilon / 16<\epsilon / 8 \tag{e0.24}
\end{align*}
$$

There is a continuous path of unitaries $\left\{u_{t} \in[0,1 / 2]\right\} \subset M_{k}$ such that

$$
\begin{array}{r}
\left\|u_{t}-u\right\|<\epsilon / 8,\left\|u_{t}-w\right\|<\epsilon / 8, \quad u_{0}=u, \quad u_{1 / 2}=w \tag{e0.25}\\
\text { and length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right)<\epsilon \pi / 8
\end{array}
$$

It follows (from Theorem 1.1) that there exists a continuous path of unitaries $\left\{u_{t}: t \in[1 / 2,1]\right\} \subset M_{k}$ such that

$$
u_{1 / 2}=w, \quad u_{1}=1 \text { and } u_{t} \operatorname{Ad} U \circ \phi(f \otimes 1)=\operatorname{Ad} U \circ \phi(f \otimes 1) u_{t}(\mathrm{e} 0.27)
$$

for all $t \in[1 / 2,1]$ and $f \in A \otimes 1$.

Moreover,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[1 / 2,1]\right\}\right) \leq \pi \tag{e0.28}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[1 / 2,1]\right\}\right) \leq \pi \tag{e0.28}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[0,1]\right\} \leq \pi+\epsilon \pi / 6\right. \tag{e0.29}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[1 / 2,1]\right\}\right) \leq \pi \tag{e0.28}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[0,1]\right\} \leq \pi+\epsilon \pi / 6\right. \tag{e0.29}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\left\|u_{t} L(f \otimes 1)-L(f \otimes 1) u_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.30}
\end{equation*}
$$

and $t \in[0,1]$.

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra.

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset.

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta>0$ satisfying the following:

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta>0$ satisfying the following: For any \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow B$ (for some unital C*-algebra B),

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta>0$ satisfying the following: For any \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow B$ (for some unital C^{*}-algebra B), and any unitary $u \in B$ such that

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta>0$ satisfying the following: For any \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow B$ (for some unital C^{*}-algebra B), and any unitary $u \in B$ such that

$$
\begin{equation*}
\|\phi(g) u-u \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \tag{e0.31}
\end{equation*}
$$

The following is a useful observation.
Lemma 3.3.
Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta>0$ satisfying the following: For any \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow B$ (for some unital C^{*}-algebra B), and any unitary $u \in B$ such that

$$
\begin{equation*}
\|\phi(g) u-u \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \tag{e0.31}
\end{equation*}
$$

there exists a unital \mathcal{F} - ϵ-multiplicative contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow B$ such that

The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta>0$ satisfying the following: For any \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow B$ (for some unital C^{*}-algebra B), and any unitary $u \in B$ such that

$$
\begin{equation*}
\|\phi(g) u-u \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \tag{e0.31}
\end{equation*}
$$

there exists a unital \mathcal{F} - ϵ-multiplicative contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow B$ such that

$$
\begin{equation*}
\|\phi(f)-L(f \otimes 1)\|<\epsilon \text { and }\|L(1 \otimes z)-u\|<\epsilon \tag{e0.32}
\end{equation*}
$$

The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F}_{0} \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta>0$ satisfying the following: For any \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow B$ (for some unital C^{*}-algebra B), and any unitary $u \in B$ such that

$$
\begin{equation*}
\|\phi(g) u-u \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \tag{e0.31}
\end{equation*}
$$

there exists a unital \mathcal{F} - ϵ-multiplicative contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow B$ such that

$$
\begin{equation*}
\|\phi(f)-L(f \otimes 1)\|<\epsilon \text { and }\|L(1 \otimes z)-u\|<\epsilon \tag{e0.32}
\end{equation*}
$$

for all $f \in \mathcal{F}_{0}$, where $z \in C(\mathbb{T})$ is the identity function on the unit circle.

Lemma 3.4.
Let $A \in P M_{r}(C(X)) P$.

Lemma 3.4.
Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset.

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets.

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets. For any non-decreasing map $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$,

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets. For any non-decreasing map $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets. For any non-decreasing map $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\delta>0$ such that,

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets. For any non-decreasing map $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\delta>0$ such that, for any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $u \in M_{k}$ such that

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets. For any non-decreasing map $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\delta>0$ such that, for any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $u \in M_{k}$ such that

$$
\begin{align*}
& \|u \phi(g)-\phi(g) u\|<\delta \text { for all } g \in \mathcal{G} \tag{e0.33}\\
& \text { and } \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1}^{\prime} \text {, } \tag{e0.34}
\end{align*}
$$

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets. For any non-decreasing map $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\delta>0$ such that, for any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $u \in M_{k}$ such that

$$
\begin{align*}
& \|u \phi(g)-\phi(g) u\|<\delta \text { for all } g \in \mathcal{G} \tag{e0.33}\\
& \text { and } \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1}^{\prime} \text {, } \tag{e0.34}
\end{align*}
$$

there exists a continuous path of unitaries $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

Lemma 3.4.

Let $A \in P M_{r}(C(X)) P$. Let $\epsilon>0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and let $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets. For any non-decreasing map $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ and $\delta>0$ such that, for any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $u \in M_{k}$ such that

$$
\begin{align*}
& \|u \phi(g)-\phi(g) u\|<\delta \text { for all } g \in \mathcal{G} \tag{e0.33}\\
& \text { and } \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}_{1}^{\prime} \text {, } \tag{e0.34}
\end{align*}
$$

there exists a continuous path of unitaries $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=u, \quad u_{1}=w, \quad\left\|u_{t} \phi(f)-\phi(f) u_{t}\right\|<\epsilon \tag{e0.35}
\end{equation*}
$$

for all $f \in \mathcal{G}$ and $t \in[0,1]$,

$$
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\hat{h_{1}}\right) \tau_{m}\left(h_{2}\right) / 4
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$,

$$
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\hat{h_{1}}\right) \tau_{m}\left(h_{2}\right) / 4
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$, where $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ is a contractive completely positive linear map such that

$$
\begin{equation*}
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\hat{h_{1}}\right) \tau_{m}\left(h_{2}\right) / 4 \tag{e0.36}
\end{equation*}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$, where $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ is a contractive completely positive linear map such that

$$
\begin{align*}
& \|L(f \otimes 1)-\phi(f)\|<\epsilon \text { for all } f \in \mathcal{F} \\
& \text { and }\|L(1 \otimes z)-w\|<\epsilon
\end{align*}
$$

$$
\begin{equation*}
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\hat{h_{1}}\right) \tau_{m}\left(h_{2}\right) / 4 \tag{e0.36}
\end{equation*}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$, where $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ is a contractive completely positive linear map such that

$$
\begin{align*}
& \|L(f \otimes 1)-\phi(f)\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.37}\\
& \text { and }\|L(1 \otimes z)-w\|<\epsilon \tag{e0.38}
\end{align*}
$$

and τ_{m} is the tracial state on $C(\mathbb{T})$ induced by the Lesbegue measure on the circle.

$$
\begin{equation*}
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\hat{h_{1}}\right) \tau_{m}\left(h_{2}\right) / 4 \tag{e0.36}
\end{equation*}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$, where $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ is a contractive completely positive linear map such that

$$
\begin{align*}
& \|L(f \otimes 1)-\phi(f)\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.37}\\
& \text { and }\|L(1 \otimes z)-w\|<\epsilon \tag{e0.38}
\end{align*}
$$

and τ_{m} is the tracial state on $C(\mathbb{T})$ induced by the Lesbegue measure on the circle. Moreover,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}\right\}\right) \leq \pi+\epsilon \tag{e0.39}
\end{equation*}
$$

Idea of the Proof of 3.4:

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$.

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$. There is an almost multiplicative ccl map $L_{1}: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$. There is an almost multiplicative ccl map $L_{1}: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
L_{1}(g \otimes 1) \approx \phi(g) \text { and } L_{1}(1 \otimes z) \approx u
$$

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$. There is an almost multiplicative $\mathrm{ccl} \operatorname{map} L_{1}: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
L_{1}(g \otimes 1) \approx \phi(g) \text { and } L_{1}(1 \otimes z) \approx u
$$

We will then write (by 2.12).

$$
L_{1} \approx(1-p) L_{1}(1-p) \oplus \psi
$$

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$. There is an almost multiplicative $\mathrm{ccl} \operatorname{map} L_{1}: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
L_{1}(g \otimes 1) \approx \phi(g) \text { and } L_{1}(1 \otimes z) \approx u
$$

We will then write (by 2.12).

$$
L_{1} \approx(1-p) L_{1}(1-p) \oplus \psi
$$

where ψ is a unital homomorphism and $\operatorname{tr}(1-p)$ is small.

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$. There is an almost multiplicative ccl map $L_{1}: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
L_{1}(g \otimes 1) \approx \phi(g) \text { and } L_{1}(1 \otimes z) \approx u
$$

We will then write (by 2.12).

$$
L_{1} \approx(1-p) L_{1}(1-p) \oplus \psi
$$

where ψ is a unital homomorphism and $\operatorname{tr}(1-p)$ is small. We also have

$$
\psi(f) \approx \operatorname{diag}(\psi_{0}(f), \overbrace{\psi_{1}(f), \ldots, \psi_{1}(f)}^{n})
$$

Idea of the Proof of 3.4:

Keep in mind there exists an integer $n \geq 1$ such that

$$
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f)
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$. There is an almost multiplicative ccl map $L_{1}: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
L_{1}(g \otimes 1) \approx \phi(g) \text { and } L_{1}(1 \otimes z) \approx u
$$

We will then write (by 2.12).

$$
L_{1} \approx(1-p) L_{1}(1-p) \oplus \psi
$$

where ψ is a unital homomorphism and $\operatorname{tr}(1-p)$ is small. We also have

$$
\begin{align*}
& \psi(f) \approx \operatorname{diag}\left(\psi_{0}(f),\right.\overbrace{\psi_{1}(f), \ldots, \psi_{1}(f)}^{n}) \\
& \text { and } \operatorname{tr}\left(e_{0}\right) \approx 0 . \tag{e0.40}
\end{align*}
$$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$.

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$.

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. There is a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. There is a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$ such that

$$
w_{0, j}^{\prime}=\exp \left(i a_{j}\right), \quad w_{1, j}^{\prime}=\exp (i(2 \pi j / n)), \psi_{1}(f) w_{t, j}=\psi_{1}(f) w_{t, j} \quad(\mathrm{e} 0.41)
$$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. There is a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$ such that

$$
\begin{array}{r}
w_{0, j}^{\prime}=\exp \left(i a_{j}\right), \quad w_{1, j}^{\prime}=\exp (i(2 \pi j / n)), \psi_{1}(f) w_{t, j}=\psi_{1}(f) w_{t, j} \quad(\mathrm{e} 0.41) \\
\text { and length }\left(\left\{w_{t, j}^{\prime}\right\}\right) \leq \pi+\epsilon / 4 .
\end{array}
$$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. There is a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$ such that

$$
\begin{array}{r}
w_{0, j}^{\prime}=\exp \left(i a_{j}\right), \quad w_{1, j}^{\prime}=\exp (i(2 \pi j / n)), \psi_{1}(f) w_{t, j}=\psi_{1}(f) w_{t, j} \\
\text { and length } \left.\left(\left\{w_{t, j}^{\prime}\right\}\right) \leq \pi+\epsilon / 41\right) \\
\text { (e } 0.42)
\end{array}
$$

There is a unitary $w_{0}^{\prime \prime} \in(1-p) M_{k}(1-p)$ such that

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. There is a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$ such that

$$
\begin{array}{r}
w_{0, j}^{\prime}=\exp \left(i a_{j}\right), \quad w_{1, j}^{\prime}=\exp (i(2 \pi j / n)), \psi_{1}(f) w_{t, j}=\psi_{1}(f) w_{t, j} \quad(\mathrm{e} 0.41) \\
\text { and length }\left(\left\{w_{t, j}^{\prime}\right\}\right) \leq \pi+\epsilon / 4 .
\end{array}
$$

There is a unitary $w_{0}^{\prime \prime} \in(1-p) M_{k}(1-p)$ such that

$$
\begin{equation*}
w_{0}^{\prime \prime} \approx(1-p) L_{1}(1 \otimes z)(1-p) \tag{e0.43}
\end{equation*}
$$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. There is a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$ such that

$$
\begin{array}{r}
w_{0, j}^{\prime}=\exp \left(i a_{j}\right), \quad w_{1, j}^{\prime}=\exp (i(2 \pi j / n)), \psi_{1}(f) w_{t, j}=\psi_{1}(f) w_{t, j} \\
\text { and length } \left.\left(\left\{w_{t, j}^{\prime}\right\}\right) \leq \pi+\epsilon / 41\right) \\
\text { (e } 0.42)
\end{array}
$$

There is a unitary $w_{0}^{\prime \prime} \in(1-p) M_{k}(1-p)$ such that

$$
\begin{equation*}
w_{0}^{\prime \prime} \approx(1-p) L_{1}(1 \otimes z)(1-p) \tag{e0.43}
\end{equation*}
$$

Put

$$
u_{0}^{\prime}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus w_{0}^{\prime}
$$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right)
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. There is a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$ such that

$$
\begin{array}{r}
w_{0, j}^{\prime}=\exp \left(i a_{j}\right), \quad w_{1, j}^{\prime}=\exp (i(2 \pi j / n)), \psi_{1}(f) w_{t, j}=\psi_{1}(f) w_{t, j} \\
\text { and length } \left.\left(\left\{w_{t, j}^{\prime}\right\}\right) \leq \pi+\epsilon / 41\right) \\
(\mathrm{e} 0.42)
\end{array}
$$

There is a unitary $w_{0}^{\prime \prime} \in(1-p) M_{k}(1-p)$ such that

$$
\begin{equation*}
w_{0}^{\prime \prime} \approx(1-p) L_{1}(1 \otimes z)(1-p) \tag{e0.43}
\end{equation*}
$$

Put

$$
\begin{equation*}
u_{0}^{\prime}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus w_{0}^{\prime} \approx u \tag{e0.44}
\end{equation*}
$$

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
w_{0}=u, \quad w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right)
$$

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{r}
w_{0}=u, w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right) \\
\left\|w_{t} \phi(f)-\phi(f) w_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F},
\end{array}
$$

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{rr}
w_{0}=u, w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right) & (\mathrm{e} 0.45) \\
\left\|w_{t} \phi(f)-\phi(f) w_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F}, & (\mathrm{e} 0.46) \\
\text { and length }\left(\left\{w_{t}\right\}\right) \leq \pi+\epsilon . & (\mathrm{e} 0.47)
\end{array}
$$

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{rr}
w_{0}=u, w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right) & (\mathrm{e} 0.45) \\
\left\|w_{t} \phi(f)-\phi(f) w_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F}, & (\mathrm{e} 0.46) \\
\text { and length }\left(\left\{w_{t}\right\}\right) \leq \pi+\epsilon . & (\mathrm{e} 0.47)
\end{array}
$$

Define $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by
$L(a \otimes f)=(1-p) L_{1}(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_{0}(a), \overbrace{\psi_{1}(a), \ldots, \psi_{1}(a)}^{n}) f\left(w_{1}\right)$.

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{rr}
w_{0}=u, w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right) & (\mathrm{e} 0.45) \\
\left\|w_{t} \phi(f)-\phi(f) w_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F}, & (\mathrm{e} 0.46) \\
\text { and length }\left(\left\{w_{t}\right\}\right) \leq \pi+\epsilon . & (\mathrm{e} 0.47)
\end{array}
$$

Define $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by
$L(a \otimes f)=(1-p) L_{1}(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_{0}(a), \overbrace{\psi_{1}(a), \ldots, \psi_{1}(a)}^{n}) f\left(w_{1}\right)$. for all $a \in A$ and $f \in C(\mathbb{T})$.

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{rr}
w_{0}=u, w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right) & (\mathrm{e} 0.45) \\
\left\|w_{t} \phi(f)-\phi(f) w_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F}, & (\mathrm{e} 0.46) \\
\text { and length }\left(\left\{w_{t}\right\}\right) \leq \pi+\epsilon . & (\mathrm{e} 0.47)
\end{array}
$$

Define $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by
$L(a \otimes f)=(1-p) L_{1}(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_{0}(a), \overbrace{\psi_{1}(a), \ldots, \psi_{1}(a)}^{n}) f\left(w_{1}\right)$.
for all $a \in A$ and $f \in C(\mathbb{T})$. It follows that

$$
\begin{equation*}
L(f \otimes 1) \approx \phi(f) \text { and } L\left(1 \otimes z \approx w_{1}\right. \tag{e0.48}
\end{equation*}
$$

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{rr}
w_{0}=u, w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right) & (\mathrm{e} 0.45) \\
\left\|w_{t} \phi(f)-\phi(f) w_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F}, & (\mathrm{e} 0.46) \\
\text { and length }\left(\left\{w_{t}\right\}\right) \leq \pi+\epsilon . & (\mathrm{e} 0.47)
\end{array}
$$

Define $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by
$L(a \otimes f)=(1-p) L_{1}(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_{0}(a), \overbrace{\psi_{1}(a), \ldots, \psi_{1}(a)}^{n}) f\left(w_{1}\right)$.
for all $a \in A$ and $f \in C(\mathbb{T})$. It follows that

$$
\begin{equation*}
L(f \otimes 1) \approx \phi(f) \text { and } L\left(1 \otimes z \approx w_{1}\right. \tag{e0.48}
\end{equation*}
$$

One also has that

$$
\begin{equation*}
\operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(\hat{h_{1}}\right) \cdot \tau_{m}\left(h_{2}\right) / 4 \tag{e0.49}
\end{equation*}
$$

Lemma 2.12.

Let A be a unital subhomogeneous C^{*}-algebra. Let $\epsilon>0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_{0}>0$. There exist $\delta>0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi: A \rightarrow M_{n}$ (for some integer $n \geq 1$) is a δ - \mathcal{G}-multiplicative contractive completely positive linear map. Then, there exists a projection $p \in M_{n}$ and a unital homomorphism $\phi_{0}: A \rightarrow p M_{n} p$ such that

$$
\begin{align*}
\|p \phi(a)-\phi(a) p\| & <\epsilon \text { for all } a \in \mathcal{F}, \\
\left\|\phi(a)-\left[(1-p) \phi(a)(1-p)+\phi_{0}(a)\right]\right\| & <\epsilon \text { for all } a \in \mathcal{F} \text { and } \\
\operatorname{tr}(1-p) & <\sigma_{0}, \tag{e0.50}
\end{align*}
$$

where tr is the normalized trace on M_{n}.

Proof of 3.4 There exists an integer $n \geq 1$ such that

$$
\begin{equation*}
(1 / n) \sum_{j=1}^{n} f\left(e^{\theta+j 2 \pi i / n}\right) \geq(63 / 64) \tau_{m}(f) \tag{e0.51}
\end{equation*}
$$

for all $f \in \mathcal{H}_{2}$ and for any $\theta \in[-\pi, \pi]$. We may also assume that $16 \pi / n<\epsilon$.
Let

$$
\left.\sigma_{1}=\left(1 / 2^{10}\right) \inf \left\{t(h): h \in \mathcal{H}_{1}\right\} \inf \left\{\tau_{m}(g): g \in \mathcal{H}_{2}\right\}\right\}
$$

Let $\mathcal{F}^{\prime}=\left\{f \otimes 1, f \otimes z: f \in \mathcal{F} \cup \mathcal{H}_{1}\right\}$. Let $\delta_{1}>0$ (in place of δ) and $\mathcal{G}_{1} \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset required by 3.5 for $\epsilon / 32$ (in place of ϵ), \mathcal{F}^{\prime} (in place of \mathcal{F}) and $\sigma_{1} / 16$ (in place of σ_{0}). Without loss of generality, one may assume that

$$
\mathcal{G}_{1}=\left\{g \otimes 1,1 \otimes z: g \in \mathcal{G}_{2}\right\}
$$

where $\mathcal{G}_{2} \subset A$ is a finite subset.

Let $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ (in place of \mathcal{H}_{2}) be a finite subset required by ?? for $\min \left\{\epsilon / 32, \sigma_{1} / 16\right\}$ (in place of ϵ), $\mathcal{F} \cup \mathcal{H}_{1}$ (in place of \mathcal{F}), \mathcal{H}_{1} (in place of \mathcal{H}), $(190 / 258) \Delta$ (in place of Δ) and $\sigma_{1} / 16$ (in place of σ) and integer n. Put

$$
\mathcal{H}^{\prime}=\left\{h_{1} \otimes h_{2}, h_{1} \otimes 1,1 \otimes h_{2}: h_{1} \in \mathcal{H}_{1} \text { and } h_{2} \in \mathcal{H}_{2}\right\} .
$$

Let $\mathcal{G}_{3}=\mathcal{G}_{2} \cup \mathcal{H}_{1} \cup \mathcal{H}_{1}^{\prime}$. To simplify the notation, without loss of generality, one may assume that \mathcal{G}_{3} and \mathcal{F}^{\prime} are all in the unit ball of $A \otimes C(\mathbb{T})$. Let $\delta_{2}=\min \left\{\epsilon / 64, \delta_{1} / 2, \sigma_{1} / 16\right\}$.
Let $\mathcal{G}_{4} \subset A$ be a finite subset (in place of \mathcal{G}) and let δ_{3} (in place of δ) be positive as required by Lemma 3.3 for \mathcal{G}_{3} (in place of \mathcal{F}_{0}), \mathcal{F}^{\prime} (in place of \mathcal{F}), and δ_{2} (in place of ϵ).
Let $\mathcal{G}=\mathcal{G}_{4} \cup \mathcal{G}_{3}$ and $\delta=\min \left\{\delta_{1} / 4, \delta_{2} / 2, \delta_{3} / 2\right\}$. Now let $\phi: A \rightarrow M_{k}$ be a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map and $u \in M_{k}$ be a unitary such that (e 0.33) and (e 0.34) hold for the above δ, σ, \mathcal{G} and \mathcal{H}_{1}^{\prime}.
It follows from Lemma A that there exists a δ_{2} - \mathcal{G}_{3}-multiplicative

$$
\begin{aligned}
\left\|L_{1}(g \otimes 1)-\phi(g)\right\|<\delta_{2} & \text { for all } g \in \mathcal{G}_{2} \text { and } \\
& \left\|L_{1}(1 \otimes z)-u\right\|<\delta_{2} .
\end{aligned}
$$

We then have that

$$
\begin{aligned}
\operatorname{tr} \circ L_{1}(h \otimes 1) & \geq \operatorname{tr} \circ \phi(h)-\delta_{2} \\
& \geq \Delta(\hat{h})-\sigma_{1} / 16 \geq(191 / 256) \Delta(\hat{h})
\end{aligned}
$$

for all $h \in \mathcal{H}_{1}$.

It follows 3.5 that there exists a projection $p \in M_{k}$ and a unital homomorphism $\psi: A \otimes C(\mathbb{T}) \rightarrow p M_{k} p$ such that

$$
\begin{array}{ll}
\left\|p L_{1}(f)-L_{1}(f) p\right\|<\min \left\{\epsilon / 32, \sigma_{1} / 16\right\} \text { for all } f \in \mathcal{F}^{\prime},(\mathrm{e} 0.56) \\
\left\|L_{1}(f)-(1-p) L_{1}(f)(1-p)+\psi(f)\right\|<\min \left\{\epsilon / 32, \sigma_{1} / 16\right\} & (\mathrm{e} 0.57) \\
\text { for all } f \in \mathcal{F}^{\prime} \text { and } \operatorname{tr}(1-p)<\sigma_{1} / 16 \text {. } \tag{e0.58}
\end{array}
$$

Note that $p M_{k} p \cong M_{m}$ for some $m \leq k$. It follows from (e 0.55), (e 0.34), (e 0.57) and (e 0.58) that

$$
\operatorname{tr} \circ \psi(h) \geq(191 / 256) \Delta(\hat{h})-\sigma_{1} / 16-\sigma_{1} / 16 \geq(190 / 256) \Delta(\hat{h})(\mathrm{e} 0.59)
$$

for all $h \in \mathcal{H}_{1}$.
By Cor A (Lecture 2) there are mutually orthogonal projections $e_{0}, e_{1}, e_{2}, \ldots, e_{n} \in p M_{k} p$ such that $e_{1}, e_{2}, \ldots, e_{n}$ are equivalent, there are unital homomorphisms $\psi_{0}: A \otimes C(\mathbb{T}) \rightarrow e_{0} M_{k} e_{0}$ and $\psi_{1}: A \otimes C(\mathbb{T}) \rightarrow e_{1} M_{k} e_{1}$ such that

$$
\begin{array}{r}
\|\psi(f)-\operatorname{diag}(\psi_{0}(f), \overbrace{\psi_{1}(f), \ldots, \psi_{1}(f)}^{n})\|<\min \left\{\epsilon / 32, \sigma_{1} / 6\right)(\mathrm{e} 0.60) \\
\text { for all } f \in \mathcal{F}_{1} \text { and } \operatorname{tr}\left(e_{0}\right)<\sigma_{1} / 16 \quad(\mathrm{e} 0.61) \tag{e0.61}
\end{array}
$$

Let $w_{0}^{\prime}=\psi_{1}(1 \otimes z)$. One may write

$$
w_{0}^{\prime}=\operatorname{diag}\left(\exp \left(i a_{1}\right), \exp \left(i a_{2}\right), \ldots, \exp \left(i a_{n}\right)\right),
$$

where $a_{j} \in e_{j} M_{k} e_{j}$ is a selfadjoint element with $\left\|a_{j}\right\| \leq \pi$. By linear algebra, it is easy to find a continuous path of unitaries $\left\{w_{t, j}^{\prime}: t \in[0,1]\right\} \subset e_{j} M_{k} e_{j}$ such that

$$
\begin{align*}
w_{0, j}^{\prime}= & \exp \left(i a_{j}\right), \quad w_{1, j}^{\prime}=\exp (i(2 \pi j / n)) \tag{e0.62}\\
& \text { and length }\left(\left\{w_{t, j}^{\prime}\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.63}
\end{align*}
$$

Moreover, one can choose such $w_{t, j}^{\prime}$ that it commutes with every element in $\psi_{1}(f), f \in A$. There is a unitary $w_{0}^{\prime \prime} \in(1-p) M_{k}(1-p)$ such that

$$
\begin{equation*}
\left\|w_{0}^{\prime \prime}-(1-p) L_{1}(1 \otimes z)(1-p)\right\|<\epsilon / 16 \tag{e0.64}
\end{equation*}
$$

Put

$$
\begin{equation*}
u_{0}^{\prime}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus w_{0}^{\prime} \tag{e0.65}
\end{equation*}
$$

Then u_{0} is a unitary and

$$
\begin{align*}
\left\|u-u_{0}^{\prime}\right\| & \leq\left\|u-L_{1}(1 \otimes z)\right\|+\left\|L_{1}(1 \otimes z)-u_{0}^{\prime}\right\| \\
& \leq \delta_{2}+\epsilon / 16<\epsilon / 8 \tag{e0.67}
\end{align*}
$$

One obtains a continuous path of unitaries $\left\{w_{t} \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{rr}
w_{0}=u, w_{1}=w_{0}^{\prime \prime} \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}\left(w_{1,1}^{\prime}, w_{1,2}^{\prime}, \ldots, w_{1, n}^{\prime}\right) & (\mathrm{e} 0.68) \\
\left\|w_{t} \phi(f)-\phi(f) w_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F}, & (\mathrm{e} 0.69) \\
\text { and length }\left(\left\{w_{t}\right\}\right) \leq \pi+\epsilon . & (\mathrm{e} 0.70)
\end{array}
$$

Define $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ by

$$
L(a \otimes f)=(1-p) L_{1}(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_{0}(a), \overbrace{\psi_{1}(a), \ldots, \psi_{1}(a)}^{n}) f\left(w_{1}\right) .
$$

for all $a \in A$ and $f \in C(\mathbb{T})$. It follows that

$$
\|L(f \otimes 1)-\phi(f)\|<\epsilon \text { for all } f \in \mathcal{F} \text { and }\left\|L(1 \otimes z)-w_{1}\right\|<\epsilon
$$

One also has that

$$
\begin{aligned}
L\left(h_{1} \otimes h_{2}\right) & \geq \operatorname{tr}\left(\left(\psi_{0}\left(h_{1}\right)+n \operatorname{tr}\left(\psi_{1}\left(h_{1} \otimes 1\right)\right)\right) \operatorname{tr}\left(h_{2}\left(w_{1}\right)\right)\right. \\
& \geq \operatorname{tr} \circ \psi\left(h_{1}\right)\left(\frac{1-\sigma_{1} / 16}{n}\right) \sum_{j=1}^{n} h_{2}\left(e^{i 2 \pi j / n}\right)-\sigma_{1} / 6 \\
& \geq(190 / 256) \Delta\left(\hat{h_{1}}\right)\left(\frac{1-\sigma_{1} / 16}{n}\right) \sum_{j=1}^{n} h_{2}\left(e^{i 2 \pi j / n}\right)-\sigma_{1} / 6 \\
& \geq(\mathrm{e} 0.71) \\
& \geq(190 / 256) \Delta\left(\hat{h_{1}}\right)(63 / 64)\left(1-\sigma_{1} / 16\right) \tau_{m}\left(h_{2}\right)-\sigma_{1} / 6 \\
& \geq \Delta\left(\hat{h_{1}}\right) \cdot \tau_{m}\left(h_{2}\right) / 4
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$.

Lemma 3.5.
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map.

Lemma 3.5.
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$,

Lemma 3.5.
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}$,

Lemma 3.5.
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$

Lemma 3.5.
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following:

Lemma 3.5.
Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear $\operatorname{map} \phi: A \rightarrow M_{k}$

Lemma 3.5.

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

Lemma 3.5.

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H}
$$

Lemma $\mathbf{3 . 5 .}$

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

Lemma 3.5.

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

Lemma 3.5.

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=v, u_{1}=1, \text { and }\left\|\phi(f) u_{t}-u_{t} \phi(f)\right\|<\epsilon \tag{e0.73}
\end{equation*}
$$

Lemma 3.5.

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=v, u_{1}=1, \text { and }\left\|\phi(f) u_{t}-u_{t} \phi(f)\right\|<\epsilon \tag{e0.73}
\end{equation*}
$$

for all $t \in[0,1]$ and $f \in \mathcal{F}$.

Lemma 3.5.

Let $A=P M_{r}(C(X)) P$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. For any $\epsilon>0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A_{+}^{1} \backslash\{0\}, \delta>0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ-multiplicative contractive completely positive linear map $\phi: A \rightarrow M_{k}$ (for some integer $k \geq 1$) and any unitary $v \in M_{k}$ such that

$$
\begin{aligned}
& \operatorname{tr} \circ \phi(h) \geq \Delta(\hat{h}) \text { for all } h \in \mathcal{H} \\
& \|\phi(g) v-v \phi(g)\|<\delta \text { for all } g \in \mathcal{G} \text { and }\left.\operatorname{Bott}(\phi, v)\right|_{\mathcal{P}}=\{0\}
\end{aligned}
$$

then there exists a continuous path of unitary $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=v, u_{1}=1, \text { and }\left\|\phi(f) u_{t}-u_{t} \phi(f)\right\|<\epsilon \tag{e0.73}
\end{equation*}
$$

for all $t \in[0,1]$ and $f \in \mathcal{F}$. Moreover,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}\right\}\right) \leq 2 \pi+\epsilon \tag{e0.74}
\end{equation*}
$$

Definition

Let A be a unital C^{*}-algebra with $T(A) \neq \emptyset$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Suppose that $\tau_{m}: C(\mathbb{T}) \rightarrow \mathbb{C}$ is the tracial state given by the normalized Lesbegue measure. Define $\Delta_{1}:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ by

$$
\Delta_{1}(\hat{h})=\sup \left\{\frac{\Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right)}{4}: \hat{h} \geq{\widehat{h_{1} \otimes h_{2}}}_{2}\right. \text { and }
$$

Definition

Let A be a unital C^{*}-algebra with $T(A) \neq \emptyset$ and let $\Delta: A_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ be a non-decreasing map. Suppose that $\tau_{m}: C(\mathbb{T}) \rightarrow \mathbb{C}$ is the tracial state given by the normalized Lesbegue measure. Define $\Delta_{1}:(A \otimes C(\mathbb{T}))_{+}^{q, 1} \backslash\{0\} \rightarrow(0,1)$ by

$$
\begin{align*}
\Delta_{1}(\hat{h})= & \sup \left\{\frac{\Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right)}{4}:\right. \\
& \hat{h} \geq \widehat{h}_{1} \otimes h_{2} \tag{e0.75}
\end{align*} \text { and } .
$$

Proof:

Let Δ_{1} be as above.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets,

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset,

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2)

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A$ (in place of \mathcal{G}) be a finite subset,

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset,

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$ and let $\delta=\min \left\{\delta_{2}, \epsilon / 16\right\}$.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$ and let $\delta=\min \left\{\delta_{2}, \epsilon / 16\right\}$. Let $\mathcal{H}=\mathcal{H}_{1}$.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$ and let $\delta=\min \left\{\delta_{2}, \epsilon / 16\right\}$. Let $\mathcal{H}=\mathcal{H}_{1}$.
Now suppose that $\phi: A \rightarrow M_{k}$ is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{\mathbf{1}} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$ and let $\delta=\min \left\{\delta_{2}, \epsilon / 16\right\}$. Let $\mathcal{H}=\mathcal{H}_{1}$.
Now suppose that $\phi: A \rightarrow M_{k}$ is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map and $u \in M_{k}$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P}.

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{\mathbf{1}} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$ and let $\delta=\min \left\{\delta_{2}, \epsilon / 16\right\}$. Let $\mathcal{H}=\mathcal{H}_{1}$.
Now suppose that $\phi: A \rightarrow M_{k}$ is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map and $u \in M_{k}$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P}.
By applying 3.4 one obtains a continuous path of unitaries $\left\{u_{t}: t \in[0,1 / 2]\right\} \subset M_{k}$

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{\mathbf{1}} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A($ in place of $\mathcal{G})$ be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$ and let $\delta=\min \left\{\delta_{2}, \epsilon / 16\right\}$. Let $\mathcal{H}=\mathcal{H}_{1}$.
Now suppose that $\phi: A \rightarrow M_{k}$ is a unital δ - \mathcal{G}-multiplicative contractive completely positive linear map and $u \in M_{k}$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P}.
By applying 3.4 one obtains a continuous path of unitaries $\left\{u_{t}: t \in[0,1 / 2]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=u, u_{1}=w,\left\|u_{t} \phi(g)-\phi(g) u_{t}\right\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \tag{e0.76}
\end{equation*}
$$

Proof:

Let Δ_{1} be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_{1} \subset A_{+}^{1} \backslash\{0\}$ and $\mathcal{H}_{2} \subset C(\mathbb{T})_{+}^{1} \backslash\{0\}$ be finite subsets, $\mathcal{G}_{1} \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_{1}>0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by 3.2 for $\epsilon / 4$ (in place of ϵ), \mathcal{F} and Δ_{1}. (This is for applying 3.2) Let $\mathcal{G}_{2} \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}_{1}^{\prime} \subset A_{+} \backslash\{0\}$ be a fintie subset, $\delta_{2}>0$ (in place of δ) be required by 3.4. for $\min \left\{\epsilon / 16, \delta_{1} / 2\right\}$ (in place of ϵ), $\mathcal{G}_{1} \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_{1} and \mathcal{H}_{2}. (This preparation for applying 3.4).
Let $\mathcal{G}=\mathcal{G}_{2} \cup \mathcal{G}_{1} \subset \mathcal{F}$ and let $\delta=\min \left\{\delta_{2}, \epsilon / 16\right\}$. Let $\mathcal{H}=\mathcal{H}_{1}$.
Now suppose that $\phi: A \rightarrow M_{k}$ is a unital $\delta-\mathcal{G}$-multiplicative contractive completely positive linear map and $u \in M_{k}$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P}.
By applying 3.4 one obtains a continuous path of unitaries $\left\{u_{t}: t \in[0,1 / 2]\right\} \subset M_{k}$ such that

$$
\begin{equation*}
u_{0}=u, u_{1}=w,\left\|u_{t} \phi(g)-\phi(g) u_{t}\right\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \tag{e0.76}
\end{equation*}
$$

for all $g \in \mathcal{G}_{1} \cup \mathcal{F}$ and $t \in[0,1 / 2]$.

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, \quad(\mathrm{e} 0.77)
$$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{array}{r}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\}
\end{array}
$$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & \text { (e } 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & (\mathrm{e} 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & (\mathrm{e} 0.79)
\end{aligned}
$$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & (\mathrm{e} 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & (\mathrm{e} 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & (\mathrm{e} 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & (\mathrm{e} 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & (\mathrm{e} 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & (\mathrm{e} 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$.

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & \text { (e } 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & \text { (e } 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & \text { (e } 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$. Furthermore,

$$
\begin{equation*}
\operatorname{length}\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.80}
\end{equation*}
$$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & \text { (e } 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & \text { (e } 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & \text { (e } 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$. Furthermore,

$$
\begin{equation*}
\operatorname{length}\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.80}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left.[L]\right|_{\beta(\mathcal{P})}=\left.\operatorname{Bott}(\phi, w)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0 \tag{e0.81}
\end{equation*}
$$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & \text { (e } 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & \text { (e } 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & \text { (e } 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$. Furthermore,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.80}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left.[L]\right|_{\beta(\mathcal{P})}=\left.\operatorname{Bott}(\phi, w)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0 \tag{e0.81}
\end{equation*}
$$

By (e 0.77), (e 0.78), (e 0.81) and (e 0.79), applying 3.2,

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & \text { (e } 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & \text { (e } 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & \text { (e } 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$. Furthermore,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.80}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left.[L]\right|_{\beta(\mathcal{P})}=\left.\operatorname{Bott}(\phi, w)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0 \tag{e0.81}
\end{equation*}
$$

By (e 0.77), (e 0.78), (e 0.81) and (e 0.79), applying 3.2, there is a continuous path of unitaries $\left\{u_{t} \in[1 / 2,1]\right\} \subset M_{k}$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & \text { (e } 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & \text { (e } 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & \text { (e } 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$. Furthermore,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.80}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left.[L]\right|_{\beta(\mathcal{P})}=\left.\operatorname{Bott}(\phi, w)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0 \tag{e0.81}
\end{equation*}
$$

By (e 0.77), (e 0.78), (e 0.81) and (e 0.79), applying 3.2, there is a continuous path of unitaries $\left\{u_{t} \in[1 / 2,1]\right\} \subset M_{k}$ such that

$$
u_{1 / 2}=w, \quad u_{1}=1
$$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & \text { (e } 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & \text { (e } 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & (\mathrm{e} 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$. Furthermore,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.80}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left.[L]\right|_{\beta(\mathcal{P})}=\left.\operatorname{Bott}(\phi, w)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0 \tag{e0.81}
\end{equation*}
$$

By (e 0.77), (e 0.78), (e 0.81) and (e 0.79), applying 3.2, there is a continuous path of unitaries $\left\{u_{t} \in[1 / 2,1]\right\} \subset M_{k}$ such that

$$
u_{1 / 2}=w, \quad u_{1}=1, \quad\left\|u_{t} \phi(f)-\phi(f) u_{t}\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F}(\mathrm{e} 0.82)
$$

Moreover, there is a unital contractive completely positive linear map $L: A \otimes C(\mathbb{T}) \rightarrow M_{k}$ such that

$$
\begin{aligned}
\|L(g \otimes 1)-\phi(g)\|<\min \left\{\delta_{1}, \epsilon / 4\right\} \text { for all } g \in \mathcal{G}_{1} \cup \mathcal{F}, & (\mathrm{e} 0.77) \\
\|L(1 \otimes z)-w\|<\min \left\{\delta_{1}, \epsilon / 4\right\} & (\mathrm{e} 0.78) \\
\text { and } \operatorname{tr} \circ L\left(h_{1} \otimes h_{2}\right) \geq \Delta\left(h_{1}\right) \tau_{m}\left(h_{2}\right) / 4 & (\mathrm{e} 0.79)
\end{aligned}
$$

for all $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$. Furthermore,

$$
\begin{equation*}
\text { length }\left(\left\{u_{t}: t \in[0,1 / 2]\right\}\right) \leq \pi+\epsilon / 4 \tag{e0.80}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left.[L]\right|_{\beta(\mathcal{P})}=\left.\operatorname{Bott}(\phi, w)\right|_{\mathcal{P}}=\left.\operatorname{Bott}(\phi, u)\right|_{\mathcal{P}}=0 \tag{e0.81}
\end{equation*}
$$

By (e 0.77), (e 0.78), (e 0.81) and (e 0.79), applying 3.2, there is a continuous path of unitaries $\left\{u_{t} \in[1 / 2,1]\right\} \subset M_{k}$ such that

$$
\begin{array}{r}
u_{1 / 2}=w, \quad u_{1}=1, \quad\left\|u_{t} \phi(f)-\phi(f) u_{t}\right\|<\epsilon / 4 \text { for all } f \in \mathcal{F} \quad(\mathrm{e} 0.82) \\
\text { and } \operatorname{length}\left(\left\{u_{t}: t \in[1 / 2,1]\right\}\right) \leq \pi+\epsilon / 4 \quad(\mathrm{e} 0.83)
\end{array}
$$

Therefore $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$

Therefore $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ is a continuous path of unitaries in M_{k} with $u_{0}=u$ and $u_{1}=1$

Therefore $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ is a continuous path of unitaries in M_{k} with $u_{0}=u$ and $u_{1}=1$ such that

$$
\begin{equation*}
\left\|u_{t} \phi(f)-\phi(f) u_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F} \tag{e0.84}
\end{equation*}
$$

Therefore $\left\{u_{t}: t \in[0,1]\right\} \subset M_{k}$ is a continuous path of unitaries in M_{k} with $u_{0}=u$ and $u_{1}=1$ such that

$$
\begin{array}{r}
\left\|u_{t} \phi(f)-\phi(f) u_{t}\right\|<\epsilon \text { for all } f \in \mathcal{F} \\
\text { and length }\left(\left\{u_{t}: t \in[0,1]\right\}\right) \leq 2 \pi+\epsilon
\end{array}
$$

Theorem

(Loring) Let $\epsilon>0$.

Theorem

(Loring) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following:

Theorem

(Loring) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any pair of unitaries $u, v \in M_{n}$ (for any $n \geq 1$)

Theorem

(Loring) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any pair of unitaries $u, v \in M_{n}$ (for any $n \geq 1$) with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

Theorem

(Loring) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any pair of unitaries $u, v \in M_{n}$ (for any $n \geq 1$) with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

Theorem

(Loring) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any pair of unitaries $u, v \in M_{n}$ (for any $n \geq 1$) with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
u(0)=u, u(1)=1_{A} \text { and }
$$

Theorem

(Loring) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any pair of unitaries $u, v \in M_{n}$ (for any $n \geq 1$) with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
u(0)=u, \quad u(1)=1_{A} \text { and } \quad \|[u(t) v-v u(t) \|<\epsilon \text { for all } t \in[0,1] .
$$

Theorem

(Loring) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For any pair of unitaries $u, v \in M_{n}$ (for any $n \geq 1$) with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
u(0)=u, \quad u(1)=1_{A} \text { and } \quad \|[u(t) v-v u(t) \|<\epsilon \text { for all } t \in[0,1] .
$$

Moreover,

$$
\text { length }(\{u(t)\}) \leq \pi+\epsilon
$$

Theorem
 (Lin 2009) Let $\epsilon>0$.

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following:

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$,

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$, any pair of unitaries $u, v \in A$

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$, any pair of unitaries $u, v \in A$ with

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$, any pair of unitaries $u, v \in A$ with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$, any pair of unitaries $u, v \in A$ with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$, any pair of unitaries $u, v \in A$ with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
u(0)=u, u(1)=1_{A} \text { and }
$$

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$, any pair of unitaries $u, v \in A$ with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
u(0)=u, \quad u(1)=1_{A} \text { and } \quad \|[u(t) v-v u(t) \|<\epsilon \text { for all } t \in[0,1] .
$$

Theorem

(Lin 2009) Let $\epsilon>0$. There exists $\delta>0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_{1}(A)=0$, any pair of unitaries $u, v \in A$ with

$$
\|[u, v]\|<\delta \text { and } \operatorname{bott}_{1}(u, v)=0
$$

then there exists a continuous path of unitaries $\{u(t): t \in[0,1]\} \subset A$ such that

$$
u(0)=u, \quad u(1)=1_{A} \text { and } \quad \|[u(t) v-v u(t) \|<\epsilon \text { for all } t \in[0,1] .
$$

Moreover,

$$
\text { length }(\{u(t)\}) \leq \pi+\epsilon
$$

