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up=v, ug =1, and ||p(F)ur — urp(f)|| < e (e0.1)
for all t € [0,1] and f € F. Moreover,
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It gives a partial map from 3(P) to K(B) which will be denoted by
Bott(¢, u)|p. If P C Ko(A), we write

botto(¢, u)lp = Bott(¢, u)|»
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It gives a partial map from B(P) to K(B) which will be denoted by
Bott(¢, u)|p. If P C Ko(A), we write

bOtt0(¢7 U)|7) = BOtt(¢7 U)|7D

(which may be viewed as map from P C Ky(A) to Ki(B)) if
P C Ki(A), we write

botti(¢, u)|p = Bott(¢, u)p.

(which may be viewed as map from P C Ki(A) to Ko(B)). Exel

formula: for z € K1(A) and 7 € T(B),
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It gives a partial map from B(P) to K(B) which will be denoted by
Bott(¢, u)|p. If P C Ko(A), we write

bOtt0(¢7 U)|7) = BOtt(QS? U)|7D

(which may be viewed as map from P C Ky(A) to Ki(B)) if
P C Ki(A), we write

botti(¢, u)|p = Bott(¢, u)p.

(which may be viewed as map from P C Ki(A) to Ko(B)). Exel
formula: for z € K1(A) and 7 € T(B),

pa(botti(d(2), u))(7) = %T('Og(qb(Z)*w(Z)u*))-
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The idea of the proof:

Write

IIL(a) — vo(a) ® ¢1(a)|| < € for all a € Gy, (e0.7)
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The idea of the proof:

Write

IIL(a) — vo(a) ® ¢1(a)|| < € for all a € Gy, (e0.7)

where ¢ : A® C(T) — egMueg and ¥1 : A® C(T) — (1 — eg)Mp(1 — )

is a unital homomorphism, and 7(ep) is small. This can be done because
of Cor. 2.5.
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The idea of the proof:

Write

IIL(a) — vo(a) ® ¢1(a)|| < € for all a € Gy, (e0.7)

where 1o : A® C(T) — egMpep and ¢1 : A® C(T) — (1 — eg)Mp(1 — eo)
is a unital homomorphism, and 7(ep) is small. This can be done because

of Cor. 2.5. Define ¢ : A® C(T) — My by ¥(a) = ¥o(a) @ tb1(a) for all
aeA
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The idea of the proof:

Write

IIL(a) — vo(a) ® ¢1(a)|| < € for all a € Gy, (e0.7)

where 1o : A® C(T) — egMpep and ¢1 : A® C(T) — (1 — eg)Mp(1 — eo)
is a unital homomorphism, and 7(ep) is small. This can be done because
of Cor. 2.5. Define ¢ : A® C(T) — My by ¥(a) = ¥o(a) @ tb1(a) for all
acA andY(1®z)=ed1(1® 2).
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The idea of the proof:

Write

IIL(a) — vo(a) ® ¢1(a)|| < € for all a € Gy, (e0.7)

where 1o : A® C(T) — egMpep and ¢1 : A® C(T) — (1 — eg)Mp(1 — eo)
is a unital homomorphism, and 7(ep) is small. This can be done because
of Cor. 2.5. Define ¢ : A® C(T) — My by ¥(a) = ¥o(a) @ tb1(a) for all
acA andY(1®z)=e @ 9Y1(1®2z). Putu=1(1® z). One verifies
that this ¥ and u satisfy all requirements.
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Proof of Lemma 3.1: Let H and o0g, € and G are given.
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Proof of Lemma 3.1: Let H and o9, € and Gy are given. Without loss
of generality, we may assume that H C Gy
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Proof of Lemma 3.1: Let H and o9, € and Gy are given. Without loss
of generality, we may assume that 2 C Gg which is in the unit ball of A
and o < ¢/4.
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Proof of Lemma 3.1: Let H and o9, € and Gy are given. Without loss
of generality, we may assume that 2 C Gg which is in the unit ball of A
and o < €/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},
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Proof of Lemma 3.1: Let H and o9, € and Gy are given. Without loss
of generality, we may assume that 2 C Gg which is in the unit ball of A
and o < €/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets.
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Proof of Lemma 3.1: Let H and o9, € and Gy are given. Without loss
of generality, we may assume that H C Gp which is in the unit ball of A
and o < ¢/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets. To simplify matter
further, we may assume, without loss of generality, that G171 = {1¢(r), 2},
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of generality, we may assume that H C Gp which is in the unit ball of A
and o < ¢/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets. To simplify matter
further, we may assume, without loss of generality, that G171 = {1¢(r), 2},
where z € C(T) is the standard unitary generator.

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 7/29



Proof of Lemma 3.1: Let H and o9, € and Gy are given. Without loss
of generality, we may assume that H C Gp which is in the unit ball of A
and o < ¢/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets. To simplify matter
further, we may assume, without loss of generality, that G171 = {1¢(r), 2},
where z € C(T) is the standard unitary generator.
We may assume that Ggj, is sufficiently large and e is sufficiently small
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of generality, we may assume that H C Gp which is in the unit ball of A
and o < ¢/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets. To simplify matter
further, we may assume, without loss of generality, that G171 = {1¢(r), 2},
where z € C(T) is the standard unitary generator.
We may assume that Ggj, is sufficiently large and e is sufficiently small
such that [L1]|p is well defined for any unital Go-e-multiplicative
contractive completely positive linear map from A® C(T) and
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Proof of Lemma 3.1: Let H and o9, € and Gy are given. Without loss
of generality, we may assume that H C Gp which is in the unit ball of A
and o < ¢/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets. To simplify matter
further, we may assume, without loss of generality, that G171 = {1¢(r), 2},
where z € C(T) is the standard unitary generator.
We may assume that Ggj, is sufficiently large and e is sufficiently small
such that [L1]|p is well defined for any unital Go-e-multiplicative
contractive completely positive linear map from A® C(T) and

[La]lp, = [L2]| P, (e0.8)

for any unital Gya-e-multiplicative contractive completely positive linear
map
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Proof of Lemma 3.1 : Let H and og, € and Gy are given. Without loss
of generality, we may assume that H C Gp which is in the unit ball of A
and o < ¢/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets. To simplify matter
further, we may assume, without loss of generality, that G171 = {1¢(r), 2},
where z € C(T) is the standard unitary generator.
We may assume that Ggj, is sufficiently large and e is sufficiently small
such that [L1]|p is well defined for any unital Go-e-multiplicative
contractive completely positive linear map from A® C(T) and

[La]lp, = [L2]| P, (e0.8)

for any unital Gya-e-multiplicative contractive completely positive linear
map L, from A® C(T) such that

L1 e L2 on QOA. (609)
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Proof of Lemma 3.1 : Let H and og, € and Gy are given. Without loss
of generality, we may assume that H C Gp which is in the unit ball of A
and o < ¢/4. We may also assume that

Go={g®f:g€Goa and f € Gi7},

where Goa C A and G171 C C(T) are finite subsets. To simplify matter
further, we may assume, without loss of generality, that G171 = {1¢(r), 2},
where z € C(T) is the standard unitary generator.
We may assume that Ggj, is sufficiently large and e is sufficiently small
such that [L1]|p is well defined for any unital Go-e-multiplicative
contractive completely positive linear map from A® C(T) and

[La]lp, = [L2]| P, (e0.8)

for any unital Gya-e-multiplicative contractive completely positive linear
map L, from A® C(T) such that

L1 e L2 on QOA. (609)

We may also assume that € < o.
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Let n be an integer such that 1/n < o/2.

Huaxin Lin The Basic Homotopy Lemma, 111



Let n be an integer such that 1/n < 0/2. Note that A® C(T) € As.

Huaxin Lin The Basic Homotopy Lemma, 111



Let n be an integer such that 1/n < /2. Note that A® C(T) € As.
Let § >0, C A® C(T) and H; C A® C(T)4 \ {0}
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Let n be an integer such that 1/n < /2. Note that A® C(T) € As.

Let § >0, C A® C(T) and H1 C A® C(T)+ \ {0} (in place of Hp) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of ¢),
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Let n be an integer such that 1/n < /2. Note that A® C(T) € As.

Let § >0, C A® C(T) and H1 C A® C(T)+ \ {0} (in place of Hp) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of €), Go (in place of F), H (in place of H1) and A.

Huaxin Lin The Basic Homotopy Lemma, 1l June 9th, 2015, 8 /29



Let n be an integer such that 1/n < /2. Note that A® C(T) € As.

Let 6 >0, C A® C(T) and H1 C A® C(T)4 \ {0} (in place of Hz) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of €), Gp (in place of F), H (in place of H1) and A. Now suppose
that L : A® C(T) satisfies the assumption for the above 4, G and H;.
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Let n be an integer such that 1/n < /2. Note that A® C(T) € As.

Let 6 >0, C A® C(T) and H1 C A® C(T)4 \ {0} (in place of Hz) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of €), Gp (in place of F), H (in place of H1) and A. Now suppose
that L : A® C(T) satisfies the assumption for the above 0, G and H;. It
follows from Cor. 2.5 that there is a projection ¢y € M) and a
Go-€/2-multiplicative contractive completely positive linear maps

Qﬁo AR C(T) — eoMkE'o
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place of €), Gp (in place of F), H (in place of H1) and A. Now suppose
that L : A® C(T) satisfies the assumption for the above 0, G and H;. It
follows from Cor. 2.5 that there is a projection ¢y € M) and a
Go-€/2-multiplicative contractive completely positive linear maps

o A® C(T) — egMyep and a unital homomorphism

P1: AR C(T) — (1 — eg)Mk(1 — ep) such that
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Let 6 >0, C A® C(T) and H1 C A® C(T)4 \ {0} (in place of Hz) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of €), Gp (in place of F), H (in place of H1) and A. Now suppose
that L : A® C(T) satisfies the assumption for the above 0, G and H;. It
follows from Cor. 2.5 that there is a projection ¢y € M) and a
Go-€/2-multiplicative contractive completely positive linear maps

o A® C(T) — egMyep and a unital homomorphism

P1: AR C(T) — (1 — eg)Mk(1 — ep) such that

tr(ep) < 1/n < o, (e0.10)

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 8 /29



Let n be an integer such that 1/n < /2. Note that A® C(T) € As.
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tr(ep) < 1/n < o, (e0.10)
IIL(a) — Yo(a) ® ¥1(a)|| < € for all a € Go. (e0.11)
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Let n be an integer such that 1/n < /2. Note that A® C(T) € As.

Let 6 >0, C A® C(T) and H1 C A® C(T)4 \ {0} (in place of Hz) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of €), Gp (in place of F), H (in place of H1) and A. Now suppose
that L : A® C(T) satisfies the assumption for the above 0, G and H;. It
follows from Cor. 2.5 that there is a projection ¢y € M) and a
Go-€/2-multiplicative contractive completely positive linear maps

o A® C(T) — egMyep and a unital homomorphism

P1: AR C(T) — (1 — eg)Mk(1 — ep) such that

tr(ep) < 1/n < o, (e0.10)
IIL(a) — Yo(a) ® ¥1(a)|| < € for all a € Go. (e0.11)

Define ¢ : A® C(T) — My by ¥(a) = vo(a) ® ¢1(a) for all a€ A
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Let n be an integer such that 1/n < /2. Note that A® C(T) € As.

Let 6 >0, C A® C(T) and H1 C A® C(T)4 \ {0} (in place of Hz) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of €), Gp (in place of F), H (in place of H1) and A. Now suppose
that L : A® C(T) satisfies the assumption for the above 0, G and H;. It
follows from Cor. 2.5 that there is a projection ¢y € M) and a
Go-€/2-multiplicative contractive completely positive linear maps

o A® C(T) — egMyep and a unital homomorphism

P1: AR C(T) — (1 — eg)Mk(1 — ep) such that

tr(ep) < 1/n < o, (e0.10)
IIL(a) — Yo(a) ® ¥1(a)|| < € for all a € Go. (e0.11)

Define ¢ : A® C(T) — My by ¢(a) = 1o(a) ® ¢1(a) for allac A and
P(1®z)=e®YP1(lR 2).
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Let n be an integer such that 1/n < /2. Note that A® C(T) € As.

Let 6 >0, C A® C(T) and H1 C A® C(T)4 \ {0} (in place of Hz) be
finite subsets required by Cor. 2.5 for A® C(T) (in place of A), €/2 (in
place of €), Gp (in place of F), H (in place of H1) and A. Now suppose
that L : A® C(T) satisfies the assumption for the above 0, G and H;. It
follows from Cor. 2.5 that there is a projection ¢y € M) and a
Go-€/2-multiplicative contractive completely positive linear maps

o A® C(T) — egMyep and a unital homomorphism

P1: AR C(T) — (1 — eg)Mk(1 — ep) such that

tr(ep) < 1/n < o, (e0.10)
IIL(a) — Yo(a) ® ¥1(a)|| < € for all a € Go. (e0.11)

Define ¢ : A® C(T) — My by ¥(a) = vo(a) ®v1(a) for allae A and
P(1®z)=e®Y1(l®z). Putu=1(1l® z). One verifies that this ¢
and u satisfy all requirements.

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 8 /29



Lemma 3.2.
Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map.
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Lemma 3.2.
Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let e > 0 and let F C A be a finite subset.
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset H1 C AL \ {0}, a finite subset H, C C(T)% \ {0},
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset Hy C A% \ {0}, a finite subset H, C C(T)1 \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that,
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset Hy C A% \ {0}, a finite subset H, C C(T)1 \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map,
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset Hy C A% \ {0}, a finite subset H, C C(T)1 \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset Hy C A% \ {0}, a finite subset H, C C(T)1 \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that

ILl®z)—ul| < 4,
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset Hy C A% \ {0}, a finite subset H, C C(T)1 \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that

ILl®z)—ul| < 4, (e0.12)
[Lllgpy = 0O and (e0.13)

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 9/29



Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset H1 C AL \ {0}, a finite subset H, C C(T)% \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that

ILl®z)—ul| < 4, (e0.12)
[Lllgpy = 0O and (e0.13)
trol(h®h) > A(h® h) (e0.14)
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset H1 C AL \ {0}, a finite subset H, C C(T)% \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that

ILl®z)—ul| < 4, (e0.12)
[Lllgpy = 0O and (e0.13)
trol(h®h) > A(h® h) (e0.14)

for all hy € H1 and hy € Ho,
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset H1 C AL \ {0}, a finite subset H, C C(T)% \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that

ILl®z)—ul| < 4, (e0.12)
[Lllgpy = 0O and (e0.13)
trol(h®h) > A(h® h) (e0.14)

for all hy € H1 and h, € H,, then there exists a continuous path of
unitaries {u; : t € [0,1]} C My
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Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset H1 C AL \ {0}, a finite subset H, C C(T)% \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that

ILl®z)—ul| < 4, (e0.12)
[Lllgpy = 0O and (e0.13)
trol(h®h) > A(h® h) (e0.14)

for all hy € H1 and h, € H,, then there exists a continuous path of
unitaries {u; : t € [0,1]} C Mg with up = u and uy = 1 such that
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Lemma 3.2.

Let A= PM,(C(X))P and let A : (A® C(T))?*\ {0} — (0,1) be a
non-decreasing map. Let € > 0 and let F C A be a finite subset. There
exists a finite subset H1 C AL \ {0}, a finite subset H, C C(T)% \ {0}, a
finite subset G C A, § > 0 and a finite subset P C K(A) such that, if
L:A® C(T) — My (for some integer k > 1) is G'-5-multiplicative
contractive completely positive linear map, where

G ={gxf:geq,f={1,zz"}} and u € My is a unitary such that

ILl®z)—ul| < 4, (e0.12)
[Lllgpy = 0O and (e0.13)
trol(h®h) > A(h® h) (e0.14)

for all hy € H1 and h, € H,, then there exists a continuous path of
unitaries {u; : t € [0,1]} C Mg with up = u and uy = 1 such that

|IL(f @ 1)up — ueL(f @ 1)|| <€ for all f € F (e0.15)

and t € [0, 1]. Moreover, length({u:}) < 7+ €.
June 9th, 2015, 9 /29




The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

L~ g @Y1

where 11 is a homomorphism
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The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

L~ g @Y1

where 11 is a homomorphism and u =~ ey @ ¥1(1 ® z).
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The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

L~ g @Y1

where 11 is a homomorphism and u~ e @ 11(1 ® z). In
(1 — e0)Mp(1 — &), one easily find a path of unitaries {w(t) : t € [0,1]}
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The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

L~ g @Y1

where 11 is a homomorphism and u~ e @ 11(1 ® z). In

(1 — e0)Mp(1 — &), one easily find a path of unitaries {w(t) : t € [0,1]}
such that w(0) = ¢1(1 ® z), w(1l) =1 — ey and ¥1(f ® 1) commutes with
w(t).
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The ideal of the proof:

By 3.1 and Theorem 2.1, we may write

L~ g @Y1

where 11 is a homomorphism and u~ e @ 11(1 ® z). In
(1 — e0)Mp(1 — &), one easily find a path of unitaries {w(t) : t € [0,1]}

such that w(0) = ¢1(1 ® z), w(1l) =1 — ey and ¥1(f ® 1) commutes with
w(t). The we consider ey @ w(t).
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:fc F} and let
B=A® C(T).
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:fc F} and let

B =A® C(T). Then B has the form QM,(C(X x T)Q. Let

H' C By \ {0} (in place of ) be a finite subset, G; C A® C(T) (in place
of G) be a finite subset,
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:f € F} and let

B =A® C(T). Then B has the form QM,(C(X x T)Q. Let

H' C By \ {0} (in place of ) be a finite subset, G; C A® C(T) (in place
of G) be a finite subset, 1 > 0 (in place of §), P’ € K(B) (in place of
P) be a finite subset required by Theorem 2. 1(for B instead of A) for
€/16 (in place of €), Fo (in place of F) and A.
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:f € F} and let

B =A® C(T). Then B has the form QM,(C(X x T)Q. Let

H' C By \ {0} (in place of ) be a finite subset, G; C A® C(T) (in place
of G) be a finite subset, 1 > 0 (in place of §), P’ € K(B) (in place of
P) be a finite subset required by Theorem 2. 1(for B instead of A) for
€/16 (in place of €), Fo (in place of F) and A. Without loss of generality,
we may assume that there are finite subsets #} C Ay \ {0} and

Hy © C(T) \ {0}
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:f € F} and let

B =A® C(T). Then B has the form QM,(C(X x T)Q. Let

H' C By \ {0} (in place of ) be a finite subset, G; C A® C(T) (in place
of G) be a finite subset, 1 > 0 (in place of §), P’ € K(B) (in place of
P) be a finite subset required by Theorem 2. 1(for B instead of A) for
€/16 (in place of €), Fo (in place of F) and A. Without loss of generality,
we may assume that there are finite subsets #} C Ay \ {0} and

H, € C(T)4 \ {0} such that

H/:{h1®h2:h167'[,1 and h2€,H/2}
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:f € F} and let

B =A® C(T). Then B has the form QM,(C(X x T)Q. Let

H' C By \ {0} (in place of ) be a finite subset, G; C A® C(T) (in place
of G) be a finite subset, 1 > 0 (in place of §), P’ € K(B) (in place of
P) be a finite subset required by Theorem 2. 1(for B instead of A) for
€/16 (in place of €), Fo (in place of F) and A. Without loss of generality,
we may assume that there are finite subsets #} C Ay \ {0} and

H, € C(T)4 \ {0} such that

H/:{h1®h2:h1€7'[,1 and h2€7’[’2}

and G1 = {g®@f:g€q] and f € {1,z,z*}}, where G; C A'is a finite
subset.
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:f € F} and let

B =A® C(T). Then B has the form QM,(C(X x T)Q. Let

H' C By \ {0} (in place of ) be a finite subset, G; C A® C(T) (in place
of G) be a finite subset, 1 > 0 (in place of §), P’ € K(B) (in place of
P) be a finite subset required by Theorem 2. 1(for B instead of A) for
€/16 (in place of €), Fo (in place of F) and A. Without loss of generality,
we may assume that there are finite subsets #} C Ay \ {0} and

H, € C(T)4 \ {0} such that

H/:{h1®h2:h1€7'[,1 and h2€H/2}

and G1 = {g®@f:g€q] and f € {1,z,z*}}, where G; C A'is a finite
subset. We may also assume that 14 € H} and 1¢(r) € Ho.
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Proof : Let A; = (1/2)A, Fo={f®1:1®z:f € F} and let

B =A® C(T). Then B has the form QM,(C(X x T)Q. Let

H' C By \ {0} (in place of ) be a finite subset, G; C A® C(T) (in place
of G) be a finite subset, 1 > 0 (in place of §), P’ € K(B) (in place of
P) be a finite subset required by Theorem 2. 1(for B instead of A) for
€/16 (in place of €), Fo (in place of F) and A. Without loss of generality,
we may assume that there are finite subsets #} C Ay \ {0} and

H, € C(T)4 \ {0} such that

H/:{h1®h2:h1€7'[,1 and h2€7’[’2}
and G1 = {g®@f:g€q] and f € {1,z,z*}}, where G; C A'is a finite
subset. We may also assume that 14 € H} and 1¢(r) € Ho.
Without loss of generality, one may assume that

P =Py U P, (e0.16)

where Py C K(A) and P1 C B(K(A)) are finite subsets.
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Let P C K(A) be a finite subset such that 3(P) = P;.
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Let P C K(A) be a finite subset such that 3(P) = P;. Let

o =min{Ay(h): he H'}. (e0.17)
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Let P C K(A) be a finite subset such that 3(P) = P;. Let
o =min{Ay(h): he H'}. (e0.17)

There is d2 > 0 (in place of §) with d» < €/16, a finite subset
Go C A® C(T)(in place of G) and
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Let P C K(A) be a finite subset such that 3(P) = P;. Let
o =min{Ay(h): he H'}. (e0.17)

There is d2 > 0 (in place of §) with d» < €/16, a finite subset
G2 C A® C(T)(in place of G) and a finite subset
H3 C (A® C(T))+ \ {0} (in place of H1) required by 3.1 for o, A, H'(in
place of H), min{e/16,1/2} (in place of ¢),
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Let P C K(A) be a finite subset such that 3(P) = P;. Let
o =min{Ay(h): he H'}. (e0.17)

There is d2 > 0 (in place of §) with d» < €/16, a finite subset
Go C A® C(T)(in place of G) and a finite subset
H3 C (A® C(T))+ \ {0} (in place of H1) required by 3.1 for o, A, H'(in
place of H), min{e/16,01/2} (in place of €), Gi (in place of Gy), Po and
P (in place of P1).
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Let P C K(A) be a finite subset such that 3(P) = P;. Let
o =min{Ay(h): he H'}. (e0.17)

There is d2 > 0 (in place of §) with d» < €/16, a finite subset
Go C A® C(T)(in place of G) and a finite subset
H3 C (A® C(T))+ \ {0} (in place of H1) required by 3.1 for o, A, H'(in
place of H), min{e/16,01/2} (in place of €), Gi (in place of Gy), Po and
P (in place of P1). We may also assume that

Go={g®f:g€G, and f € {l,z,z°}},

where G5 C Ais a finite subset.
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Let P C K(A) be a finite subset such that 3(P) = P;. Let
o =min{Ay(h): he H'}. (e0.17)

There is d2 > 0 (in place of §) with d» < €/16, a finite subset
Go C A® C(T)(in place of G) and a finite subset
H3 C (A® C(T))+ \ {0} (in place of H1) required by 3.1 for o, A, H'(in
place of H), min{e/16,01/2} (in place of €), Gi (in place of Gy), Po and
P (in place of P1). We may also assume that

Go={g®f:ge€Gyand fe{l zz}},
where gg C A'is a finite subset. We may further assume that
Hiz = {hl ® hy i hy € Hq and hy € 7‘[5},

where Hs4 C AL\ {0} and Hs C C(T)4 \ {0} are finite subset.
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Let P C K(A) be a finite subset such that 3(P) = P;. Let
o =min{Ay(h): he H'}. (€0.17)

There is d2 > 0 (in place of §) with d» < €/16, a finite subset
Go C A® C(T)(in place of G) and a finite subset
H3 C (A® C(T))+ \ {0} (in place of H1) required by 3.1 for o, A, H'(in
place of H), min{e/16,01/2} (in place of €), Gi (in place of Gy), Po and
P (in place of P1). We may also assume that

Go={g®f:ge€Gyand fe{l zz}},
where gg C A'is a finite subset. We may further assume that
Hiz = {hl ® hy i hy € Hq and hy € 7‘[5},

where Ha C A4\ {0} and Hs C C(T)4 \ {0} are finite subset. Let
G=FUG UGS, § =min{61/2,02/2,¢/16}, H1 = H} UH4 and
Ho = 7‘[’2 U Hs.
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Let P C K(A) be a finite subset such that 3(P) = P;. Let
o =min{Ay(h): he H'}. (€0.17)

There is d2 > 0 (in place of §) with d» < €/16, a finite subset
Go C A® C(T)(in place of G) and a finite subset
H3 C (A® C(T))+ \ {0} (in place of H1) required by 3.1 for o, A, H'(in
place of H), min{e/16,01/2} (in place of €), Gi (in place of Gy), Po and
P (in place of P1). We may also assume that

Go={g®f:ge€Gyand fe{l zz}},
where gg C A'is a finite subset. We may further assume that
Hiz = {hl ® hy i hy € Hq and hy € 7‘[5},

where Ha C A4\ {0} and Hs C C(T)4 \ {0} are finite subset. Let
G=FUG UGS, § =min{61/2,02/2,¢/16}, H1 = H} UH4 and
Ho = 7‘[’2 U Hs.
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Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above Hi, H>, G, P,  and o.
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Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P, 6 and o. It follows from 7?7 that
there is a unital min{e/16, d1/2}-Gi-multiplicative contractive completely
positive linear map ¢ : A® C(T) — My such that
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Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P,  and o. It follows from ?? that
there is a unital min{e/16, 61 /2}-Gi-multiplicative contractive completely
positive linear map 1 : A® C(T) — My such that w =¢(1® z) is a
unitary,

wi(g®1) = YP(g®@1)w for all g€ A, (e0.18)
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Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P,  and o. It follows from ?? that
there is a unital min{e/16, 61 /2}-Gi-multiplicative contractive completely
positive linear map 1 : A® C(T) — My such that w =¢(1® z) is a
unitary,

wi(g®1) = YP(g®@1)w for all g€ A, (e0.18)
[llp = [Llp (€0.19)

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 13 /29



Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P,  and o. It follows from ?? that
there is a unital min{e/16, 61 /2}-Gi-multiplicative contractive completely
positive linear map 1 : A® C(T) — My such that w =¢(1® z) is a
unitary,

wi(g®1) = YP(g®@1)w for all g€ A, (e0.18)

[llp = [Llp (€0.19)
[troL(g) —tro(g)] < o for all g € Hs. (e0.20)
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Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P,  and o. It follows from ?? that
there is a unital min{e/16, 61 /2}-Gi-multiplicative contractive completely
positive linear map 1 : A® C(T) — My such that w =¢(1® z) is a
unitary,

wi(g®1) = YP(g®@1)w for all g€ A, (e0.18)

[llp = [Llp (€0.19)
ltroL(g) —trowy(g)] < o for all g€ Hs. (e0.20)

It follows that
troa(h) > tro L(h) — o > Ay(h) (e0.21)

for all he H'.

Huaxin Lin The Basic Homotopy Lemma, 1l June 9th, 2015, 13 /29



Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P,  and o. It follows from ?? that
there is a unital min{e/16, 61 /2}-Gi-multiplicative contractive completely
positive linear map 1 : A® C(T) — My such that w =¢(1® z) is a
unitary,

wi(g®1) = YP(g®@1)w for all g€ A, (e0.18)

[llp = [Llp (€0.19)
[troL(g) —tro(g)] < o for all g € Hs. (e0.20)

It follows that
tr o p(h) > tro L(h) — o > A1(h) (e0.21)

for all h € H'. Combining (e0.18), (¢0.13), (e0.14), (e0.20) and
(e0.15), by applying Theorem 2.1, one obtains a unitary U € M such
that
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Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P,  and o. It follows from ?? that
there is a unital min{e/16, 61 /2}-Gi-multiplicative contractive completely
positive linear map 1 : A® C(T) — My such that w =¢(1® z) is a
unitary,

wi(g®1) = YP(g®@1)w for all g€ A, (e0.18)

[llp = [Llp (€0.19)
[troL(g) —tro(g)] < o for all g € Hs. (e0.20)

It follows that
tr o p(h) > tro L(h) — o > A1(h) (e0.21)

for all h € H'. Combining (e0.18), (¢0.13), (e0.14), (e0.20) and
(e0.15), by applying Theorem 2.1, one obtains a unitary U € M such
that

IAd U o 9(f) — L(F)|| < €/16 for all f € Fo. (e0.22)
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Now suppose that L : A® C(T) — My and a unitary u € My satisfy the
assumption with the above H1, Ho, G, P,  and o. It follows from ?? that
there is a unital min{e/16, 61 /2}-Gi-multiplicative contractive completely
positive linear map 1 : A® C(T) — My such that w =¢(1® z) is a
unitary,

wi(g®1) = YP(g®@1)w for all g€ A, (e0.18)

[llp = [Llp (€0.19)
[troL(g) —tro(g)] < o for all g € Hs. (e0.20)

It follows that
tr o p(h) > tro L(h) — o > A1(h) (e0.21)

for all h € H'. Combining (e0.18), (¢0.13), (e0.14), (e0.20) and
(e0.15), by applying Theorem 2.1, one obtains a unitary U € M such
that

IAd U o 9(f) — L(F)|| < €/16 for all f € Fo. (e0.22)

Let vy = Ad U o ¢(1 ® z).
June Oth, 2015, 13 /29



Then

lu—w| < lu—LA@2)|+[L(l®z)—AdUoy¥(1l® z)| (e0.23)
< d+¢€¢/16 <¢/8. (e0.24)
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Then

lu—w| < |lu-Ll@2)|+|Ll®z)—AdUoy(l® z)| (e0.23)
< d+¢€/16 < ¢€/8. (e0.24)

There is a continuous path of unitaries {u; € [0,1/2]} C My such that

Huaxin Lin The Basic Homotopy Lemma, 1l June 9th, 2015, 14 /29



Then

lu—w| < |lu-Ll@2)|+|Ll®z)—AdUoy(l® z)| (e0.23)
< 0+€/16 < ¢€/8. (e0.24)

There is a continuous path of unitaries {u; € [0,1/2]} C My such that

lur — ull <€/8, [lur—wl| <€/8, up=u, uyp=w (e0.25)
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Then

lu—w| < |lu-Ll@2)|+|Ll®z)—AdUoy(l® z)| (e0.23)
< 0+€/16 < ¢€/8. (e0.24)

There is a continuous path of unitaries {u; € [0,1/2]} C My such that

lur — ull <€/8, [lur—wl| <€/8, up=u, uyp=w (e0.25)
and length({u; : t € [0,1/2]}) < em/8.
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Then

lu—w| < |lu—Ll®z)|+||[L(l®z)—AdUoy(l® z)| (e0.23)
< 0+€/16 < ¢€/8. (e0.24)

There is a continuous path of unitaries {u; € [0,1/2]} C My such that

lur — ull <€/8, [lur—wl| <€/8, up=u, uyp=w (e0.25)
and length({u : t € [0,1/2]}) < em/8. (e0.26)

It follows (from Theorem 1.1) that there exists a continuous path of
unitaries {u; : t € [1/2,1]} C My such that
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Then

lu—w| < |lu—Ll®z)|+||[L(l®z)—AdUoy(l® z)| (e0.23)
< 0+€/16 < ¢€/8. (e0.24)

There is a continuous path of unitaries {u; € [0,1/2]} C My such that

lur — ull <€/8, [lur—wl| <€/8, up=u, uyp=w (e0.25)
and length({u : t € [0,1/2]}) < em/8. (e0.26)

It follows (from Theorem 1.1) that there exists a continuous path of
unitaries {u; : t € [1/2,1]} C My such that

upp=w, 1 =1and uyAdUoc¢(f ®1) = Ad U o ¢(f ® 1)us(e0.27)

forall t€[1/2,1] and f € A® 1.
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Moreover,

length({u; : t € [1/2,1]}) < . (e0.28)
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Moreover,
length({u; : t € [1/2,1]}) < . (e0.28)
It follows that

length({u; : t € [0,1]} < 7+ em/6. (0.29)
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Moreover,

length({us : t € [1/2,1]}) < . (e0.28)
It follows that
length({u; : t € [0,1]} < 7+ em/6. (0.29)
Furthermore,
|lusL(f @ 1) — L(f @ L)ue|| < € for all f e F (e0.30)

and t € [0,1].
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The following is a useful observation.

Lemma 3.3.
Let A be a unital amenable separable C*-algebra.
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset.
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset. ~There exists
a finite subset G C A and § > 0 satisfying the following:

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 16 / 29



The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset. ~There exists
a finite subset G C A and 6 > 0 satisfying the following: For any
G-0-multiplicative contractive completely positive linear map ¢ : A — B
(for some unital C*-algebra B),
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset. ~There exists
a finite subset G C A and 6 > 0 satisfying the following: For any
G-0-multiplicative contractive completely positive linear map ¢ : A — B
(for some unital C*-algebra B), and any unitary u € B such that
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset. ~There exists
a finite subset G C A and 6 > 0 satisfying the following: For any
G-0-multiplicative contractive completely positive linear map ¢ : A — B
(for some unital C*-algebra B), and any unitary u € B such that

lé(g)u — ud(g)ll < & for all g € G, (e0.31)
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset. ~There exists
a finite subset G C A and 6 > 0 satisfying the following: For any
G-0-multiplicative contractive completely positive linear map ¢ : A — B
(for some unital C*-algebra B), and any unitary u € B such that

lé(g)u — ud(g)ll < & for all g € G, (e0.31)

there exists a unital F-e-multiplicative contractive completely positive
linear map L: A® C(T) — B such that
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset.  There exists
a finite subset G C A and 6 > 0 satisfying the following: For any
G-0-multiplicative contractive completely positive linear map ¢ : A — B
(for some unital C*-algebra B), and any unitary u € B such that

l¢(g)u — ug(g)l| <o for all g € G, (€0.31)

there exists a unital F-e-multiplicative contractive completely positive
linear map L: A® C(T) — B such that

lp(f) — L(F®1)| < € and ||L(1®z) — u| < e (e0.32)
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The following is a useful observation.

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let e > 0, let Fo C A
be a finite subset and let F C A® C(T) be a finite subset.  There exists
a finite subset G C A and 6 > 0 satisfying the following: For any
G-0-multiplicative contractive completely positive linear map ¢ : A — B
(for some unital C*-algebra B), and any unitary u € B such that

l¢(g)u — ug(g)l| <o for all g € G, (€0.31)

there exists a unital F-e-multiplicative contractive completely positive
linear map L: A® C(T) — B such that

lp(f) — L(F®1)| < € and ||L(1®z) — u| < e (e0.32)

for all f € Fo, where z € C(T) is the identity function on the unit circle.

v
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Lemma 3.4.
Let A € PM,(C(X))P.
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete>0 and let F C A be a finite subset.
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let
Hy C AL\ {0} and let Ho C C(T)L \ {0} be finite subsets.
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let
H1 C AL\ {0} and let Ho € C(T)L \ {0} be finite subsets. For any

non-decreasing map A : Ai’l \ {0} — (0,1),
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let

H1 C AL\ {0} and let Ho € C(T)L \ {0} be finite subsets. For any
non-decreasing map A : Ai’l \ {0} — (0,1), there exists a finite subset
G C A, a finite subset Hy C A4\ {0}
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let

H1 C AL\ {0} and let Ho € C(T)L \ {0} be finite subsets. For any
non-decreasing map A : Ai’l \ {0} — (0,1), there exists a finite subset
G C A, a finite subset H} C Ay \ {0} and § > 0 such that,
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let

H1 C AL\ {0} and let Ho € C(T)L \ {0} be finite subsets. For any
non-decreasing map A : Aj’_’l \ {0} — (0,1), there exists a finite subset

G C A, a finite subset Hy C Ay \ {0} and § > 0 such that, for any unital
G-0-multiplicative contractive completely positive linear map ¢ : A — M
(for some integer k > 1) and any unitary u € My such that
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let

H1 C AL\ {0} and let Ho € C(T)L \ {0} be finite subsets. For any
non-decreasing map A : Af’gl \ {0} — (0,1), there exists a finite subset

G C A, a finite subset Hy C Ay \ {0} and § > 0 such that, for any unital
G-0-multiplicative contractive completely positive linear map ¢ : A — M
(for some integer k > 1) and any unitary u € My such that

llup(g) — d(g)ul| < o for all g €G (e0.33)
and tro ¢(h) > A(h) for all h e Hj, (e0.34)
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Lemma 3.4.
Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let

H1 C AL\ {0} and let Ho € C(T)L \ {0} be finite subsets. For any
non-decreasing map A : Ai’l \ {0} — (0,1), there exists a finite subset

G C A, a finite subset H} C Ay \ {0} and § > 0 such that, for any unital
G-0-multiplicative contractive completely positive linear map ¢ : A — M
(for some integer k > 1) and any unitary u € My such that

|up(g) — d(g)ull <o for all g €G (e0.33)
and tro ¢(h) > A(h) for all h e Hj, (e0.34)

there exists a continuous path of unitaries {u; : t € [0,1]} C My such
that
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Lemma 3.4.

Let A€ PM,(C(X))P. Lete >0 and let F C A be a finite subset. Let
H1 C AL\ {0} and let Ho € C(T)L \ {0} be finite subsets. For any
non-decreasing map A : Ai’l \ {0} — (0,1), there exists a finite subset

G C A, a finite subset H} C Ay \ {0} and § > 0 such that, for any unital
G-0-multiplicative contractive completely positive linear map ¢ : A — M
(for some integer k > 1) and any unitary u € My such that

|up(g) — d(g)ull <o for all g €G (e0.33)
and tro ¢(h) > A(h) for all h e Hj, (e0.34)

there exists a continuous path of unitaries {u; : t € [0,1]} C My such
that

up =u, up =w, |[ued(f)—o(f)ue| <e (e0.35)

forall f € G and t € [0,1],
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tro L(hy @ hp) > A(h)Tm(h2)/4 (e0.36)

for all hy € H1 and hy € Ho,
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tro L(hy @ hp) > A(h)Tm(h2)/4 (e0.36)

for all hy € H1 and hy € Hy, where L: A® C(T) — My is a contractive
completely positive linear map such that
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tro L(hy @ hp) > A(h)Tm(h2)/4 (e0.36)

for all hy € H1 and hy € Hy, where L: A® C(T) — My is a contractive
completely positive linear map such that

IL(F @ 1) — $(F)|| < € for all f e F (e0.37)
and ||[L(1®z)— w|| <e, (e0.38)
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tro L(hy @ hp) > A(h)Tm(h2)/4 (e0.36)

for all hy € H1 and hy € Hy, where L: A® C(T) — My is a contractive
completely positive linear map such that

IL(F @ 1) — $(F)|| < € for all f e F (e0.37)
and ||[L(1®z)— w|| <e, (e0.38)

and T, is the tracial state on C(T) induced by the Lesbegue measure on
the circle.
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tro L(hy @ hp) > A(h)Tm(h2)/4 (e0.36)

for all hy € H1 and hy € Hy, where L: A® C(T) — My is a contractive
completely positive linear map such that

IL(F @ 1) — $(F)|| < € for all f e F (e0.37)
and ||[L(1®z)— w|| <e, (e0.38)

and T, is the tracial state on C(T) induced by the Lesbegue measure on
the circle. Moreover,

length({u:}) < 7 +e. (e 0.39)J
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Idea of the Proof of 3.4:
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that

(1/n) Z f(ePH2m1/n) > (63/64)7m(f)

j=1
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that

(1/n) Z f(ePH2m1/n) > (63/64)7m(f)

Jj=1

for all f € Hy and for any 0 € [—m, 7].
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that
n
(1/n) ) F(e"2m/™) > (63/64)7m(f)
j=1

for all f € Hy and for any 6 € [—m,7]. There is an almost multiplicative
ccl map L3 : A® C(T) — My such that
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that
n
(1/n) ) F(e"2m/™) > (63/64)7m(f)
j=1

for all f € Hy and for any 6 € [—m,7]. There is an almost multiplicative
ccl map L3 : A® C(T) — My such that

Li(g®1)~ ¢(g) and Li1(1® z) =~ u.
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that
n
(1/n) ) F(e"2m/™) > (63/64)7m(f)
j=1

for all f € Hy and for any 6 € [—m,7]. There is an almost multiplicative
ccl map L3 : A® C(T) — My such that

Li(g®1)~ ¢(g) and Li1(1® z) =~ u.
We will then write (by 2.12).

Ly~ (1—p)Li(1 - p) B ¥,
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that
(1/n) D F(H927/) > (63/64)in(f)
j=1

for all f € Hy and for any 6 € [—m,7]. There is an almost multiplicative
ccl map L3 : A® C(T) — My such that

Li(g®1)~ ¢(g) and Li1(1® z) =~ u.
We will then write (by 2.12).
Li~(1-p)(l-p) D,

where 1 is a unital homomorphism and tr(1 — p) is small.
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that
(1/n) D F(H927/) > (63/64)in(f)
j=1

for all f € Hy and for any 6 € [—m,7]. There is an almost multiplicative
ccl map L3 : A® C(T) — My such that

Li(g®1)~ ¢(g) and Li1(1® z) =~ u.
We will then write (by 2.12).
Li~(1-p)(l-p) D,

where v is a unital homomorphism and tr(1 — p) is small. We also have

n

——
Y(f) ~ diag(vo(f), ¥1(f), ... 1(f))
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Idea of the Proof of 3.4:

Keep in mind there exists an integer n > 1 such that
(1/n) D F(H927/) > (63/64)in(f)
j=1

for all f € Hy and for any 6 € [—m,7]. There is an almost multiplicative
ccl map L3 : A® C(T) — My such that

Li(g®1)~ ¢(g) and Li1(1® z) =~ u.
We will then write (by 2.12).
Li~(1-p)(l-p) D,

where v is a unital homomorphism and tr(1 — p) is small. We also have

n

——
Y(f) =~ diag(vo(f), ¥1(f), ..., ¥1(f))
and tr(ep) ~ 0. (e0.40)
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Let Wé =1(1® z).
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Let wi = 9¥1(1 ® z). One may write

wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),
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Let wi = 9¥1(1 ® z). One may write
wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with ||a;|| < .
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Let wy = 91(1 ® z). One may write
wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with ||a;|| < 7. There is a
continuous path of unitaries {w; ; : t € [0,1]} C e;Me;
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Let wy = 91(1 ® z). One may write
wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with ||a;|| < 7. There is a
continuous path of unitaries {w; ; : t € [0,1]} C e;Mye; such that

Wé,j = eXp(iaj)’ W{J = eXp(’.(zﬂ'j/”))a¢l(f)Wt,j = lbl(f)WtJ (e0.41)
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Let wy = 91(1 ® z). One may write
wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with ||a;|| < 7. There is a
continuous path of unitaries {w; ; : t € [0,1]} C e;Mye; such that

wh,; = exp(iaj), wj; = exp(i(2mj/n)), vn(F)wej = v1(F)we; (e0.41)
and length({w;;}) <7+ e€/4. (€0.42)
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Let wy = 91(1 ® z). One may write

wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with [|aj|| < 7. There is a
continuous path of unitaries {w; ; : t € [0,1]} C e;Mye; such that

W(/),j = exp(iaj), W{J =exp(i(2mj/n)), Y1(F)wej = P1(f)we; (e0.41)
and length({w;;}) <7+ e€/4. (€0.42)

There is a unitary wj € (1 — p)Mk(1 — p) such that
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Let wy = 91(1 ® z). One may write

wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with [|aj|| < 7. There is a
continuous path of unitaries {w; ; : t € [0,1]} C e;Mye; such that

W(/),j = exp(iaj), W{J =exp(i(2mj/n)), Y1(F)wej = P1(f)we; (e0.41)
and length({w;;}) <7+ e€/4. (€0.42)

There is a unitary wj € (1 — p)Mk(1 — p) such that

w) = (1—-p)Li(l® z)(1 —p) (e0.43)

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 20/ 29



Let wy = 91(1 ® z). One may write

wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with [|aj|| < 7. There is a
continuous path of unitaries {w; ; : t € [0,1]} C e;Mye; such that

woj = exp(iaj), wi; = exp(i(2mj/n)), 1(F)we; = 1(F)we; (e0.41)
and length({w;;}) <7+ e€/4. (€0.42)

There is a unitary wj € (1 — p)Mk(1 — p) such that
w) = (1—-p)Li(l® z)(1 —p) (e0.43)
Put

up = wl ®1o(l®z)dw
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Let wy = 91(1 ® z). One may write

wg = diag(exp(ia1), exp(iaz), ..., exp(ian)),

where a; € ejMye; is a selfadjoint element with [|aj|| < 7. There is a
continuous path of unitaries {w; ; : t € [0,1]} C e;Mye; such that

woj = exp(iaj), wi; = exp(i(2mj/n)), 1(F)we; = 1(F)we; (e0.41)
and length({w;;}) <7+ e€/4. (€0.42)

There is a unitary wj € (1 — p)Mk(1 — p) such that

w) = (1—-p)Li(l® z)(1 —p) (e0.43)
Put
up = wl ®Yo(l®z)dwy ~ u. (e0.44)
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l® z)®diag(wy 1, wy,...,wi,) (e0.45)
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l® z)®diag(wy 1, wy,...,wi,) (e0.45)
[we(F) — (F)we| < € for all f€F, (e0.46)
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l® z)®diag(wy 1, wy,...,wi,) (e0.45)
|wep(F) — ¢(F)we|| < € for all feF, (e0.46)
and length({w:}) <7 +e (e0.47)
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l® z)®diag(wy 1, wy,...,wi,) (e0.45)
|wep(F) — ¢(F)we|| < € for all feF, (e0.46)
and length({w:}) <7 +e (e0.47)

Define L: A® C(T) — My by

—_——
Lla®f)=(1-p)lLi(a® f)(1 — p) @ diag(vo(a), ¥1(a), ..., 11(a))f (wy).
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l® z)®diag(wy 1, wy,...,wi,) (e0.45)
|wep(F) — ¢(F)we|| < € for all feF, (e0.46)
and length({w:}) <7 +e (e0.47)

Define L: A® C(T) — My by

—_——
Lla®f)=(1-p)lLi(a® f)(1 — p) @ diag(vo(a), ¥1(a), ..., 11(a))f (wy).

forallae Aand f € C(T).
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l® z)®diag(wy 1, wy,...,wi,) (e0.45)
|wed(f) — p(F)we|| < € for all feF, (e0.46)
and length({w:}) <7 +e (e0.47)

Define L: A® C(T) — M by

f_/n_
Lla®f)=(1-p)lLi(a® f)(1 — p) @ diag(vo(a), ¥1(a), ..., 11(a))f (wy).
forallae Aand f € C(T). It follows that

L(fF®1)=~¢(f) and L(1®z~ w (e0.48)
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One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l® z)®diag(wy 1, wy,...,wi,) (e0.45)
|wed(f) — p(F)we|| < € for all feF, (e0.46)
and length({w:}) <7 +e (e0.47)

Define L: A® C(T) — My by
f—/n_
Lla®f)=(1-p)lLi(a® f)(1 — p) @ diag(vo(a), ¥1(a), ..., 11(a))f (wy).
forallae Aand f € C(T). It follows that
L(fF®1)=~¢(f) and L(1®z~ w (e0.48)
One also has that

troL(hy @ hp) > A(h1) - Tm(h2)/4 (e0.49)
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Lemma 2.12.

Let A be a unital subhomogeneous C*-algebra. Let € > 0, let F C A be a
finite subset and let g > 0. There exist 6 > 0 and a finite subset G C A
satisfying the following: Suppose that ¢ : A — M, (for some integer

n > 1) is a §-G-multiplicative contractive completely positive linear map.
Then, there exists a projection p € M,, and a unital homomorphism

¢o : A — pM,p such that

lpp(a) — ¢(a)pll < € for all ae€ F,

llo(a) — [(1— p)o(a)(1 — p) + do(a)]l| < € for all a€ F and
tr(l—p) < oo, (e0.50)

where tr is the normalized trace on M,,.
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Proof of 3.4 There exists an integer n > 1 such that

(1/n) i f(ePH2m1/"Y > (63 /64)7m(f) (e0.51)
j=1

for all f € Hp and for any 6 € [—m, 7]. We may also assume that
167/n < e.
Let

o1 = (1/210)inf{t(h) : h € Hi}inf{rm(g) : g € Hal}}.
Let F/={f®1,f®z:feFUHi}. Let 61 > 0 (in place of §) and
G1 C A® C(T) (in place of G) be a finite subset required by 3.5 for €/32

(in place of €), F’ (in place of F) and o01/16 (in place of og). Without
loss of generality, one may assume that

Gi={g®1,1®z: g€ G},

where Go> C A is a finite subset.
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Let H7 C A+ \ {0} (in place of H2) be a finite subset required by ?? for
min{e/32,01/16} (in place of €), F UH; (in place of F), Hi (in place of
), (190/258)A (in place of A) and 01/16 (in place of o) and integer n.
Put

H/Z{h1®h2,h1®1,1®h2:h1€’H1 and hQEHz}.

Let Gz = Go U H1 U H]. To simplify the notation, without loss of
generality, one may assume that G3 and F’ are all in the unit ball of

AR C(T) Let 4, = min{e/64, (51/2,01/16}.

Let G4 C A be a finite subset (in place of G) and let d3 (in place of §) be
positive as required by Lemma 3.3 for G3 (in place of Fp), F’ (in place of
F), and 6> (in place of €).

Let G = G4 UGz and 6 = min{d1/4,02/2,63/2}. Now let ¢ : A — My be a
unital 0-G-multiplicative contractive completely positive linear map and

u € My be a unitary such that (e0.33) and (e0.34) hold for the above 4,
o, G and Hj.

It follows from Lemma A that there exists a d>-Gz-multiplicative
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contractive completely positive linear map L; : A® C(T) — Mj such that

ILi(g ® 1) — ¢(g)|l < b2 for all g € Go and (e0.52)
||L1(1®Z)—U” < 0s. (60.53)

We then have that

troli(h®1) tr o ¢(h) — 2 (e0.54)

A(h) — 01/16 > (191/256)A(h)  (e0.55)

AVARLYS

for all h € H;.
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It follows 3.5 that there exists a projection p € My and a unital
homomorphism ¢ : A® C(T) — pMyp such that

lpL1(f) — Li(f)p|| < min{e/32,01/16} for all f € F' (e0.56)
|L1(f) — (1 — p)Li(F)(1 — p) + ¥(f)|| < min{e/32,01/16} (e0.57)
for all f e F' and tr(1 - p) < o1/16. (e0.58)

Note that pMyp = M,, for some m < k. It follows from (e 0.55), (e0.34),
(e0.57) and (e0.58) that

tro (k) > (191/256)A(R) — 01/16 — o1/16 > (190/256)A(h)(e 0.59)

for all h € H;.

By Cor A (Lecture 2) there are mutually orthogonal projections

€0, €1, €2, ..., &, € pMyp such that ey, e, ..., e, are equivalent, there are
unital homomorphisms ¢y : A® C(T) — egMyey and

1 : A® C(T) — e;Mke; such that

—_—
() — diag(spo(F), Y1(F), .., 101(F))]| < min{e/32,01/6}e0.60)

for all f € 71 and tr(e) < o01/16 (e0.61)
June 9th, 2015, 22 /29



Let wy = 91(1 ® z). One may write
W(S = diag(exp(ial)7 exp(ia2)a ) eXp(ian))7

where a; € ejMye; is a selfadjoint element with ||a;|| < 7. By linear
algebra, it is easy to find a continuous path of unitaries
{wi;: t €[0,1]} C ejMye; such that

wo; = exp(iaj), wy; = exp(i(2mj/n)), (e0.62)
and length({w;;}) <7+ ¢/4. (e0.63)
Moreover, one can choose such w; +J that it commutes with every element
in ¥1(f), f € A. There is a unitary w} € (1 — p)My(1 — p) such that
lwg —(1-p)Lh(1® Z)( —p)ll < ¢/16. (e0.64)
Put
up = wh ®o(l® z) ® wy. (e0.65)

Then ug is a unitary and

lu—wll < flu—Lle2)|+[L1®2)—ull (0.66)
< 0 +€/16 < €/8. (e0.67)

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 22 /29



One obtains a continuous path of unitaries {w; € [0,1]} C My such that

wo = u, w1 =wy ®o(l®z)®diag(wy 1, wyo,...,wi,) (e0.68)
|wed(f) — p(F)we|| < € for all feF, (e0.69)
and length({w:}) <7 +e (e0.70)

Define L: A® C(T) — My by

n

—_——t
Lla®f)=(1-p)lLi(a® f)(1 — p) @ diag(vo(a), ¥1(a), ..., 1(a))f (wy).
for all a€ A and f € C(T). It follows that

|IL(f ® 1) — ¢(f)]| < e for all feF and ||[L(1®2z)— wi| <e.
June 9th, 2015, 22 /29



One also has that

L(h1 ® hy) > tr((vo(h1) + ntr(vi(h @ 1)))tr(h2(wy))

> tro w(hl)(l — 0’1/16) Zn: h2(ei27rj/n) —01/6 (€0.71)
j=1

n

v

(190/256)A(/?1)(1“nl/16) Z ha(e25/™) — 51 /6 (e0.72)
j=1

v

(190/256)A(h1)(63/64)(1 — 01/16)7m(h2) — 01/6
190/256)A(h1)((63/64)(1 — 1/2M)7m(h2) — (1/232)t(h1)7m(h2)
A(hy) - Tm(h2) /4

>

—

Y

for all hy € Hy and hy € Hs.
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Lemma 3.5.
Let A= PM,(C(X))P and let A : Ai’l \ {0} — (0,1) be a non-decreasing
map.

V.
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Lemma 3.5.
Let A= PM,(C(X))P and let A : Ai’l \ {0} — (0,1) be a non-decreasing
map. For any e > 0 and any finite subset F C A,

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : Ai’l \ {0} — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F C A, there exists a finite
subset H C A%\ {0},

v

Huaxin Lin The Basic Homotopy Lemma, |1l June 9th, 2015, 23 /29




Lemma 3.5.

Let A= PM,(C(X))P and let A : Ai’l \ {0} — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, 6 >0, a finite subset G C A

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & >0, a finite subset G C A and a finite subset

P C K(A) satisfying the following:

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & >0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — My

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & >0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — M (for some integer
k > 1) and any unitary v € My such that

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & >0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — M (for some integer
k > 1) and any unitary v € My such that

tro ¢(h) > A(h) for all he H,

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & > 0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — M (for some integer
k > 1) and any unitary v € My such that

tr o p(h) > A(h) for all h e H,
l¢(g)v — vo(g)|| <& for all g € G and Bott(e, v)|p = {0},

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any e > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & > 0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — My (for some integer
k > 1) and any unitary v € My such that

tr o p(h) > A(h) for all h e H,
l¢(g)v — vo(g)ll <& for all g € G and Bott(e, v)|p = {0},

then there exists a continuous path of unitary {u; : t € [0,1]} C My such
that

v
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any e > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & > 0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — My (for some integer
k > 1) and any unitary v € My such that

tr o p(h) > A(h) for all h e H,
l¢(g)v — vo(g)ll <& for all g € G and Bott(e,v)|p = {0},

then there exists a continuous path of unitary {u; : t € [0,1]} C My such
that

up=v, g =1, and ||¢(F)ur — uep(f)|| < € (e0.73)
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any e > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & > 0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — My (for some integer
k > 1) and any unitary v € My such that

tr o p(h) > A(h) for all h e H,
l¢(g)v — vo(g)ll <& for all g € G and Bott(e,v)|p = {0},

then there exists a continuous path of unitary {u; : t € [0,1]} C My such
that

up=v, g =1, and ||¢(F)ur — uep(f)|| < € (e0.73)

for all t € [0,1] and f € F.
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Lemma 3.5.

Let A= PM,(C(X))P and let A : A%\ {0} — (0,1) be a non-decreasing
map. For any e > 0 and any finite subset F C A, there exists a finite
subset H C AL\ {0}, & > 0, a finite subset G C A and a finite subset

P C K(A) satisfying the following: For any unital G-6-multiplicative
contractive completely positive linear map ¢ : A — My (for some integer
k > 1) and any unitary v € My such that

tr o p(h) > A(h) for all h e H,
l¢(g)v — vo(g)ll <& for all g € G and Bott(e,v)|p = {0},

then there exists a continuous path of unitary {u; : t € [0,1]} C My such
that

up=v, g =1, and ||¢(F)ur — uep(f)|| < € (e0.73)

for all t € [0,1] and f € F. Moreover,

length({u:}) < 27 +e. (e0.74)
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Definition

Let A be a unital C*-algebra with T(A) # (0 and let
A Aj’r’l \ {0} — (0,1) be a non-decreasing map. Suppose that
Tm : C(T) — C is the tracial state given by the normalized Lesbegue

measure. Define Ay : (A® C(T) i’l \ {0} — (0,1) by
NG )
()Tnl2) 4> 7@, and

Ay (h) = sup{ =2
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Definition

Let A be a unital C*-algebra with T(A) # (0 and let
A Aj’r’l \ {0} — (0,1) be a non-decreasing map. Suppose that
Tm : C(T) — C is the tracial state given by the normalized Lesbegue

measure. Define Ay : (A® C(T) i’l \ {0} — (0,1) by

A A(h)Tm(h2) o ——
Aq(h) = sup{% :h>hy ® hp and

h € AL\ {0}, hp € C(T)4 \ {0}}. (¢0.75)

v
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Proof:
Let A7 be as above.
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Proof:
Let A; be as above. We will apply 3.2 and 3.4.
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Hy € C(T)L \ {0} be finite subsets,
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and

Hy C C(T)L \ {0} be finite subsets, Gi C A (in place of G) be a finite
subset,
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Hy C C(T)L \ {0} be finite subsets, Gi C A (in place of G) be a finite

subset, d; > 0 (in place of ) and P C K(A) be a finite subset required by
3.2
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Hy C C(T)L \ {0} be finite subsets, Gi C A (in place of G) be a finite
subset, d; > 0 (in place of ) and P C K(A) be a finite subset required by
3.2 for €/4 (in place of €), F and A;.
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Hy C C(T)L \ {0} be finite subsets, Gi C A (in place of G) be a finite
subset, d; > 0 (in place of ) and P C K(A) be a finite subset required by
3.2 for €/4 (in place of €), F and A;. (This is for applying 3.2)
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Hy C C(T)L \ {0} be finite subsets, Gi C A (in place of G) be a finite
subset, d; > 0 (in place of ) and P C K(A) be a finite subset required by
3.2 for €/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go C A (in place of G) be a finite subset,
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Hy C C(T)L \ {0} be finite subsets, Gi C A (in place of G) be a finite
subset, d; > 0 (in place of ) and P C K(A) be a finite subset required by
3.2 for €/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset,
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d2 > 0 (in place of §) be required by 3.4.
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G UF (in place of F) and H1 and Ha.
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for

applying 3.4).
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =G UG C F
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =GoUG) C F and let 6 = min{dy,€/16}.
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =GoUG) C F and let 6 = min{dy,€/16}. Let H = H;.
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =GoUG) C F and let 6 = min{dy,€/16}. Let H = H;.

Now suppose that ¢ : A — M, is a unital §-G-multiplicative contractive
completely positive linear map
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =GoUG) C F and let 6 = min{dy,€/16}. Let H = H;.

Now suppose that ¢ : A — M, is a unital §-G-multiplicative contractive
completely positive linear map and u € My is a unitary which satisfy the
assumption for the above H, 6, G and P.
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =GoUG) C F and let 6 = min{dy,€/16}. Let H = H;.

Now suppose that ¢ : A — M, is a unital §-G-multiplicative contractive
completely positive linear map and u € My is a unitary which satisfy the
assumption for the above H, 6, G and P.

By applying 3.4 one obtains a continuous path of unitaries

{u : t €]0,1/2]} € M
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =GoUG) C F and let 6 = min{dy,€/16}. Let H = H;.

Now suppose that ¢ : A — M, is a unital §-G-multiplicative contractive
completely positive linear map and u € My is a unitary which satisfy the
assumption for the above H, 6, G and P.

By applying 3.4 one obtains a continuous path of unitaries

{ut : t €[0,1/2]} C My such that

u=u, up=w, ||upd(g)— od(g)ue]| < min{dy,e/4} (e0.76)
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Proof:

Let A1 be as above. We will apply 3.2 and 3.4. Let H; C AL \ {0} and
Ho C C(T)L \ {0} be finite subsets, G1 C A (in place of G) be a finite
subset, 1 > 0 (in place of §) and P C K(A) be a finite subset required by
3.2 for ¢/4 (in place of €), F and A;. (This is for applying 3.2)

Let Go» C A (in place of G) be a finite subset, H} C Ay \ {0} be a fintie
subset, d> > 0 (in place of §) be required by 3.4. for min{e/16,d1/2} (in
place of €), G U F (in place of F) and H; and H>. (This preparation for
applying 3.4).

Let G =GoUG) C F and let 6 = min{dy,€/16}. Let H = H;.

Now suppose that ¢ : A — M, is a unital §-G-multiplicative contractive
completely positive linear map and u € My is a unitary which satisfy the
assumption for the above H, 6, G and P.

By applying 3.4 one obtains a continuous path of unitaries

{ut : t €[0,1/2]} C My such that

u=u, up=w, ||upd(g)— od(g)ue]| < min{dy,e/4} (e0.76)

forall g€ Gt UF and t €]0,1/2].
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — M
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IL(g ® 1) — ¢(g)|| < min{d1,¢/4} for all g € GIUF, (e0.77)
|IL(1 ® z) — w|| < min{d1,¢/4}  (e0.78)
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IL(g ® 1) — ¢(g)|| < min{d1,¢/4} for all g € GIUF, (e0.77)
|IL(1 ® z) — w|| < min{d1,¢/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IL(g ® 1) — ¢(g)|| < min{d1,¢/4} for all g € GIUF, (e0.77)
|IL(1 ® z) — w|| < min{d1,¢/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)
for all hy € Hq
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IL(g ® 1) — ¢(g)|| < min{d1,¢/4} for all g € GIUF, (e0.77)
|IL(1 ® z) — w|| < min{d1,¢/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)
for all hy € H1 and hy € Hs.
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
IL(1® z) — w|| < min{d1,e/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)

for all hy € H1 and hy € Hy. Furthermore,
length({u; : t € [0,1/2]}) < 7+ €/4. (e0.80)
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
IL(1® z) — w|| < min{d1,e/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)

for all hy € H1 and hy € Hy. Furthermore,
length({u: : t € 0,1/2]}) < 7 + €/4. (e0.80)

Note that
(L]l 50y = Bott(é, w)lp = Bott(é, u)|p = 0. (0.81)
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
IL(1® z) — w|| < min{d1,e/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)

for all hy € H1 and hy € Hy. Furthermore,
length({u: : t € 0,1/2]}) < 7 + €/4. (e0.80)

Note that
(L]l 50y = Bott(é, w)lp = Bott(é, u)|p = 0. (0.81)

By (€0.77), (€0.78), (e0.81) and (e0.79), applying 3.2,
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
IL(1® z) — w|| < min{d1,e/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)

for all hy € H1 and hy € Hy. Furthermore,
length({u: : t € 0,1/2]}) < 7 + €/4. (e0.80)

Note that
(L]l 50y = Bott(é, w)lp = Bott(é, u)|p = 0. (0.81)

By (e0.77), (€0.78), (€0.81) and (€0.79), applying 3.2, there is a
continuous path of unitaries {u; € [1/2,1]} C M
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
IL(1® z) — w|| < min{d1,e/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)

for all hy € H1 and hy € Hy. Furthermore,
length({u: : t € 0,1/2]}) < 7 + €/4. (e0.80)

Note that
[L]l5p) = Bott(é, w)lp = Bott(@, u)lp = 0. (e0.81)
By (€0.77), (€0.78), (e0.81) and (e0.79), applying 3.2, there is a

continuous path of unitaries {u; € [1/2,1]} C My such that

Uyjp=w, th = 1,
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
IL(1® z) — w|| < min{d1,e/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)

for all hy € H1 and hy € Hy. Furthermore,
length({u: : t € 0,1/2]}) < 7 + €/4. (e0.80)

Note that
[L]l5p) = Bott(é, w)lp = Bott(@, u)lp = 0. (e0.81)
By (€0.77), (€0.78), (e0.81) and (e0.79), applying 3.2, there is a

continuous path of unitaries {u; € [1/2,1]} C My such that
upp=w, ur =1, [[up(f) — ¢(Flue|| <e/4 for all f € F (e0.82)
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Moreover, there is a unital contractive completely positive linear map
L:A® C(T) — My such that

IIL(g ® 1) — ¢(g)|| < min{d1,e/4} for all g€ G1UF, (e0.77)
IL(1® z) — w|| < min{d1,e/4}  (e0.78)
and tro L(hy ® hp) > A(h1)Tm(h2)/4  (e0.79)

for all hy € H1 and hy € Hy. Furthermore,
length({u: : t € 0,1/2]}) < 7 + €/4. (e0.80)

Note that
(L]l 50y = Bott(é, w)lp = Bott(é, u)|p = 0. (0.81)

By (€0.77), (€0.78), (e0.81) and (e0.79), applying 3.2, there is a
continuous path of unitaries {u; € [1/2,1]} C My such that

upp=w, ur =1, [[up(f) — ¢(Flue|| <e/4 for all f € F (e0.82)
and length({us: t € [1/2,1]}) <7 +¢€/4 (e0.83)
June 9th, 2015, 26 / 29



Therefore {u; : t € [0,1]} C My
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Therefore {u; : t € [0,1]} C My is a continuous path of unitaries in My
with uyg = vand u; =1
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Therefore {u; : t € [0,1]} C My is a continuous path of unitaries in My
with ug = v and u; = 1 such that

lued(f) — o(F)ue|| < € for all feF (e0.84)

Huaxin Lin The Basic Homotopy Lemma, 1l June 9th, 2015, 27 /29



Therefore {u; : t € [0,1]} C My is a continuous path of unitaries in My
with ug = v and u; = 1 such that

lued(f) — o(F)ue|| < € for all feF (e0.84)
and length({us : t € [0,1]}) <27 +e. (e0.85)
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Theorem

(Loring) Let e > 0.
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Theorem

(Loring) Let € > 0. There exists § > 0 satisfying the following:
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Theorem

(Loring) Let € > 0. There exists § > 0 satisfying the following: For any
pair of unitaries u,v € M, (for any n > 1)
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Theorem

(Loring) Let € > 0. There exists § > 0 satisfying the following: For any
pair of unitaries u,v € M, (for any n > 1) with

I[u, v]|| <6 and botti(u, v) =0,
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Theorem

(Loring) Let € > 0. There exists § > 0 satisfying the following: For any
pair of unitaries u,v € M, (for any n > 1) with

I[u, v]|| <6 and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that
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Theorem

(Loring) Let € > 0. There exists § > 0 satisfying the following: For any
pair of unitaries u,v € M, (for any n > 1) with

I[u, v]|| <6 and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that

u(0) =u, u(l)=14 and
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Theorem

(Loring) Let € > 0. There exists § > 0 satisfying the following: For any
pair of unitaries u,v € My, (for any n > 1) with

I[u, v]|| <6 and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that

u(0) =u, u(l)=14 and |[[u(t)v — vu(t)|| <€ for all t € [0,1].
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Theorem

(Loring) Let € > 0. There exists § > 0 satisfying the following: For any
pair of unitaries u,v € My, (for any n > 1) with

I[u, v]|| <6 and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that

u(0) =u, u(l)=14 and |[[u(t)v — vu(t)|| <€ for all t € [0,1].

Moreover,

length({u(t)}) <7 +e.
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Theorem
(Lin 2009) Let € > 0.
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Theorem
(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following:
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or

any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) =0,
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or
any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) = 0, any pair of unitaries u, v € A
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or
any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) = 0, any pair of unitaries u, v € A with
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or
any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) = 0, any pair of unitaries u, v € A with

I[u, v]|| <d and botti(u, v) =0,
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or
any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) = 0, any pair of unitaries u, v € A with

I[u, v]|| <d and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or
any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) = 0, any pair of unitaries u, v € A with

I[u, v]|| <d and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that

u(0) =u, u(l) =14 and
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or
any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) = 0, any pair of unitaries u, v € A with

I[u, v]|| <d and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that

u(0)=u, u(l)=14 and ||[u(t)v — vu(t)|| < € for all t € [0,1].
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Theorem

(Lin 2009) Let € > 0. There exists 6 > 0 satisfying the following: For or
any unital simple separable simple C*-algebra A of stable rank one and real
rank zero with K1(A) = 0, any pair of unitaries u, v € A with

I[u, v]|| <d and botti(u, v) =0,

then there exists a continuous path of unitaries {u(t): t € [0,1]} C A
such that

u(0)=u, u(l)=14 and ||[u(t)v — vu(t)|| < € for all t € [0,1].

Moreover,
length({u(t)}) <7 +e.
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