The Basic Homotopy Lemma, III

Huaxin Lin

June 9th, 2015,

Lemma Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map.

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$,

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}$,

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following:

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

 $tr \circ \phi(h) \ge \Delta(\hat{h})$ for all $h \in \mathcal{H}$,

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$tr \circ \phi(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}$,
 $\|\phi(g)v - v\phi(g)\| < \delta$ for all $g \in \mathcal{G}$ and $\operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\}$,

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$tr \circ \phi(h) \ge \Delta(\hat{h}) ext{ for all } h \in \mathcal{H},$$

 $\|\phi(g)v - v\phi(g)\| < \delta ext{ for all } g \in \mathcal{G} ext{ and } \operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\},$

then there exists a continuous path of unitary $\{u_t : t \in [0,1]\} \subset M_k$ such that

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$tr \circ \phi(h) \ge \Delta(\hat{h}) ext{ for all } h \in \mathcal{H}, \ \|\phi(g)v - v\phi(g)\| < \delta ext{ for all } g \in \mathcal{G} ext{ and } \operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\},$$

then there exists a continuous path of unitary $\{u_t : t \in [0,1]\} \subset M_k$ such that

$$u_0 = v, \ u_1 = 1, \ \text{and} \ \|\phi(f)u_t - u_t\phi(f)\| < \epsilon$$
 (e0.1)

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$tr \circ \phi(h) \ge \Delta(\hat{h}) ext{ for all } h \in \mathcal{H},$$

 $\|\phi(g)v - v\phi(g)\| < \delta ext{ for all } g \in \mathcal{G} ext{ and } \operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\},$

then there exists a continuous path of unitary $\{u_t : t \in [0,1]\} \subset M_k$ such that

$$u_0 = v, \ u_1 = 1, \ \text{and} \ \|\phi(f)u_t - u_t\phi(f)\| < \epsilon$$
 (e0.1)

for all $t \in [0, 1]$ and $f \in \mathcal{F}$.

Lemma

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$tr \circ \phi(h) \ge \Delta(\hat{h}) \text{ for all } h \in \mathcal{H},$$

 $\|\phi(g)v - v\phi(g)\| < \delta \text{ for all } g \in \mathcal{G} \text{ and } \operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\},$

then there exists a continuous path of unitary $\{u_t : t \in [0,1]\} \subset M_k$ such that

$$u_0 = v, \ u_1 = 1, \ \text{and} \ \|\phi(f)u_t - u_t\phi(f)\| < \epsilon$$
 (e0.1)

for all $t \in [0,1]$ and $f \in \mathcal{F}$. Moreover,

$$length(\{u_t\}) \le 2\pi + \epsilon.$$
 (e0.2)

Lemma 3.1. Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number Lemma 3.1. Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Lemma 3.1. Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, Lemma 3.1. Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \mathcal{G}(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$.

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))^1_+ \setminus \{0\}$ satisfying the following:

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \mathcal{B}(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))^1_+ \setminus \{0\}$ satisfying the following: Suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $n \geq 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))_+^1 \setminus \{0\}$ satisfying the following: Suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $n \ge 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map such that

$$\operatorname{tr} \circ L(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}_1$ and $[L]|_{\beta(\mathcal{P}_1)} = 0.$ (e0.3)

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))_+^1 \setminus \{0\}$ satisfying the following: Suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $n \ge 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map such that

 $\operatorname{tr} \circ L(h) \ge \Delta(\hat{h})$ for all $h \in \mathcal{H}_1$ and $[L]|_{\beta(\mathcal{P}_1)} = 0.$ (e0.3)

Then there exists a unital ϵ - \mathcal{G}_0 -multiplicative contractive completely positive linear map $\psi : A \otimes C(\mathbb{T}) \to M_k$

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))_+^1 \setminus \{0\}$ satisfying the following: Suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $n \ge 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map such that

$$\operatorname{tr} \circ L(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}_1$ and $[L]|_{\beta(\mathcal{P}_1)} = 0.$ (e0.3)

Then there exists a unital ϵ - \mathcal{G}_0 -multiplicative contractive completely positive linear map $\psi : A \otimes C(\mathbb{T}) \to M_k$ such that $u = \psi(1 \otimes z)$ is a unitary,

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))_+^1 \setminus \{0\}$ satisfying the following: Suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $n \ge 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map such that

$$\operatorname{tr} \circ L(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}_1$ and $[L]|_{\beta(\mathcal{P}_1)} = 0.$ (e0.3)

Then there exists a unital ϵ - \mathcal{G}_0 -multiplicative contractive completely positive linear map $\psi : A \otimes C(\mathbb{T}) \to M_k$ such that $u = \psi(1 \otimes z)$ is a unitary,

$$u\psi(a\otimes 1) = \psi(a\otimes 1)u$$
 for all $a\in A$ (e0.4)

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))_+^1 \setminus \{0\}$ satisfying the following: Suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $n \ge 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map such that

$$\operatorname{tr} \circ L(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}_1$ and $[L]|_{\beta(\mathcal{P}_1)} = 0.$ (e0.3)

Then there exists a unital ϵ - \mathcal{G}_0 -multiplicative contractive completely positive linear map $\psi : A \otimes C(\mathbb{T}) \to M_k$ such that $u = \psi(1 \otimes z)$ is a unitary,

$$\begin{array}{rcl} u\psi(a\otimes 1) &=& \psi(a\otimes 1)u \mbox{ for all } a\in A & (e\,0.4) \\ [L]|_{\mathcal{P}} &=& [\psi]|_{\mathcal{P}} \mbox{ and } & (e\,0.5) \end{array}$$

Let $A = PM_r(C(X))P$ and let $\mathcal{H} \subset (A \otimes C(\mathbb{T}))_{s.a.}$ be a finite subset, let $1 > \sigma > 0$ be a positive number and let $\Delta : A_+^{q,1} \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$, $\mathcal{G}_0 \subset A \otimes C(\mathbb{T})$ be a finite subset, $\mathcal{P}_0, \mathcal{P}_1 \subset \underline{K}(A)$ be finite subsets and let $\mathcal{P} = \mathcal{P}_0 \cup \beta(\mathcal{P}_1) \subset \underline{K}(A \otimes C(\mathbb{T}))$. There exists $\delta > 0$, a finite subset $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and a finite subset $\mathcal{H}_1 \subset (A \otimes C(\mathbb{T}))_+^1 \setminus \{0\}$ satisfying the following: Suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $n \ge 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map such that

$$\operatorname{tr} \circ L(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}_1$ and $[L]|_{\beta(\mathcal{P}_1)} = 0.$ (e0.3)

Then there exists a unital ϵ - \mathcal{G}_0 -multiplicative contractive completely positive linear map $\psi : A \otimes C(\mathbb{T}) \to M_k$ such that $u = \psi(1 \otimes z)$ is a unitary,

$$u\psi(a\otimes 1) = \psi(a\otimes 1)u$$
 for all $a\in A$ (e0.4)

$$L]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}} \text{ and } (e0.5)$$

$$|\operatorname{tr} \circ L(h) - \operatorname{tr} \circ \psi(h)| < \sigma \text{ for all } h \in \mathcal{H}.$$
 (e0.6)

Huaxin Lin

The Basic Homotopy Lemma, III

3 / 29

Note that $K_i(A \otimes C(\mathbb{T})) = K_i(A) \oplus \beta(K_{i-1}(A)), i = 0, 1.$

$$\underline{K}(A) = \bigoplus_{i=0,1} K_i(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_i(A, \mathbb{Z}/n\mathbb{Z}).$$

$$\underline{K}(A) = \bigoplus_{i=0,1} K_i(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_i(A, \mathbb{Z}/n\mathbb{Z}).$$

There is an abelian C^* -algebra C_n such that $K_i(A \otimes C_n) = K_i(A, \mathbb{Z}/n\mathbb{Z})$, i = 0, 1.

$$\underline{K}(A) = \bigoplus_{i=0,1} K_i(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_i(A, \mathbb{Z}/n\mathbb{Z}).$$

There is an abelian C^* -algebra C_n such that $K_i(A \otimes C_n) = K_i(A, \mathbb{Z}/n\mathbb{Z})$, i = 0, 1. One may write

$$\underline{K}(A \otimes C(\mathbb{T})) = \underline{K}(A) \bigoplus \beta(\underline{K}(A)).$$

If $\phi : A \to B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A)$,

$$\underline{K}(A) = \bigoplus_{i=0,1} K_i(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_i(A, \mathbb{Z}/n\mathbb{Z}).$$

There is an abelian C^* -algebra C_n such that $K_i(A \otimes C_n) = K_i(A, \mathbb{Z}/n\mathbb{Z})$, i = 0, 1. One may write

$$\underline{K}(A\otimes C(\mathbb{T}))=\underline{K}(A)\bigoplus \beta(\underline{K}(A)).$$

If $\phi : A \to B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A)$, $u \in B$ such that $\|[\phi, u]\| \approx 0$, then, ϕ and u induce a ccp map $L : A \otimes C(\mathbb{T}) \to B$ which is approximately multiplicative.

$$\underline{K}(A) = \bigoplus_{i=0,1} K_i(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_i(A, \mathbb{Z}/n\mathbb{Z}).$$

There is an abelian C^* -algebra C_n such that $K_i(A \otimes C_n) = K_i(A, \mathbb{Z}/n\mathbb{Z})$, i = 0, 1. One may write

$$\underline{K}(A \otimes C(\mathbb{T})) = \underline{K}(A) \bigoplus \beta(\underline{K}(A)).$$

If $\phi : A \to B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A)$, $u \in B$ such that $\|[\phi, u]\| \approx 0$, then, ϕ and u induce a ccp map $L : A \otimes C(\mathbb{T}) \to B$ which is approximately multiplicative. It gives a partial map from $\beta(\mathcal{P})$ to $\underline{K}(B)$

$$\underline{K}(A) = \bigoplus_{i=0,1} K_i(A) \bigoplus \bigoplus_{i=0,1} \bigoplus_{n>1} K_i(A, \mathbb{Z}/n\mathbb{Z}).$$

There is an abelian C^* -algebra C_n such that $K_i(A \otimes C_n) = K_i(A, \mathbb{Z}/n\mathbb{Z})$, i = 0, 1. One may write

$$\underline{K}(A \otimes C(\mathbb{T})) = \underline{K}(A) \bigoplus \beta(\underline{K}(A)).$$

If $\phi: A \to B$ be a unital homomorphism, and $\mathcal{P} \subset \underline{K}(A)$, $u \in B$ such that $\|[\phi, u]\| \approx 0$, then, ϕ and u induce a ccp map $L: A \otimes C(\mathbb{T}) \to B$ which is approximately multiplicative. It gives a partial map from $\beta(\mathcal{P})$ to $\underline{K}(B)$ which will be denoted by $Bott(\phi, u)|_{\mathcal{P}}$.
It gives a partial map from $\beta(\mathcal{P})$ to $\underline{K}(B)$

 $\mathrm{bott}_{0}(\phi, u)|_{\mathcal{P}} = \mathrm{Bott}(\phi, u)|_{\mathcal{P}}$

$$\mathrm{bott}_{0}(\phi, u)|_{\mathcal{P}} = \mathrm{Bott}(\phi, u)|_{\mathcal{P}}$$

(which may be viewed as map from $\mathcal{P} \subset K_0(A)$ to $K_1(B)$)

$$\mathrm{bott}_{0}(\phi, u)|_{\mathcal{P}} = \mathrm{Bott}(\phi, u)|_{\mathcal{P}}$$

(which may be viewed as map from $\mathcal{P} \subset K_0(A)$ to $K_1(B)$) if $\mathcal{P} \subset K_1(A)$, we write

$$\operatorname{bott}_1(\phi, u)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)_{\mathcal{P}}.$$

$$\mathrm{bott}_{0}(\phi, u)|_{\mathcal{P}} = \mathrm{Bott}(\phi, u)|_{\mathcal{P}}$$

(which may be viewed as map from $\mathcal{P} \subset K_0(A)$ to $K_1(B)$) if $\mathcal{P} \subset K_1(A)$, we write

$$\operatorname{bott}_1(\phi, u)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)_{\mathcal{P}}.$$

(which may be viewed as map from $\mathcal{P} \subset K_1(A)$ to $K_0(B)$).

$$\mathrm{bott}_{0}(\phi, u)|_{\mathcal{P}} = \mathrm{Bott}(\phi, u)|_{\mathcal{P}}$$

(which may be viewed as map from $\mathcal{P} \subset K_0(A)$ to $K_1(B)$) if $\mathcal{P} \subset K_1(A)$, we write

$$\operatorname{bott}_1(\phi, u)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)_{\mathcal{P}}.$$

(which may be viewed as map from $\mathcal{P} \subset K_1(A)$ to $K_0(B)$). Exel

formula: for $z \in K_1(A)$ and $\tau \in T(B)$,

$$\mathrm{bott}_{0}(\phi, u)|_{\mathcal{P}} = \mathrm{Bott}(\phi, u)|_{\mathcal{P}}$$

(which may be viewed as map from $\mathcal{P} \subset K_0(A)$ to $K_1(B)$) if $\mathcal{P} \subset K_1(A)$, we write

$$\operatorname{bott}_1(\phi, u)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)_{\mathcal{P}}.$$

(which may be viewed as map from $\mathcal{P} \subset K_1(A)$ to $K_0(B)$). Exel

formula: for $z \in K_1(A)$ and $\tau \in T(B)$,

$$\rho_B(\operatorname{bott}_1(\phi(z), u))(\tau) = \frac{1}{2\pi i} \tau(\log(\phi(z)^* u \phi(z) u^*)).$$

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \qquad (e 0.7)$$

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \qquad (e \, 0.7)$$

where $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_n e_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_n (1 - e_0)$ is a unital homomorphism,

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \tag{e0.7}$$

where $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_n e_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_n (1 - e_0)$ is a unital homomorphism, and $\tau(e_0)$ is small.

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \qquad (e \, 0.7)$$

where $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_n e_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_n (1 - e_0)$ is a unital homomorphism, and $\tau(e_0)$ is small. This can be done because of Cor. 2.5.

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \qquad (e \, 0.7)$$

where $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_n e_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_n (1 - e_0)$ is a unital homomorphism, and $\tau(e_0)$ is small. This can be done because of Cor. 2.5.

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \qquad (e \, 0.7)$$

where $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_n e_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_n (1 - e_0)$ is a unital homomorphism, and $\tau(e_0)$ is small. This can be done because of Cor. 2.5. Define $\psi : A \otimes C(\mathbb{T}) \to M_k$ by $\psi(a) = \psi_0(a) \oplus \psi_1(a)$ for all $a \in A$

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \qquad (e \, 0.7)$$

where $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_n e_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_n (1 - e_0)$ is a unital homomorphism, and $\tau(e_0)$ is small. This can be done because of Cor. 2.5. Define $\psi : A \otimes C(\mathbb{T}) \to M_k$ by $\psi(a) = \psi_0(a) \oplus \psi_1(a)$ for all $a \in A$ and $\psi(1 \otimes z) = e_0 \oplus \psi_1(1 \otimes z)$.

Write

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0, \qquad (e \, 0.7)$$

where $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_n e_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_n (1 - e_0)$ is a unital homomorphism, and $\tau(e_0)$ is small. This can be done because of Cor. 2.5. Define $\psi : A \otimes C(\mathbb{T}) \to M_k$ by $\psi(a) = \psi_0(a) \oplus \psi_1(a)$ for all $a \in A$ and $\psi(1 \otimes z) = e_0 \oplus \psi_1(1 \otimes z)$. Put $u = \psi(1 \otimes z)$. One verifies that this ψ and u satisfy all requirements. **Proof of Lemma 3.1** : Let \mathcal{H} and σ_0 , ϵ and \mathcal{G}_0 are given.

Proof of Lemma 3.1: Let \mathcal{H} and σ_0 , ϵ and \mathcal{G}_0 are given. Without loss of generality, we may assume that $\mathcal{H} \subset \mathcal{G}_0$

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets.

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$,

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator.

We may assume that \mathcal{G}_{0A} is sufficiently large and ϵ is sufficiently small

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator. We may assume that \mathcal{G}_{0A} is sufficiently large and ϵ is sufficiently small such that $[L_1]|_{\mathcal{P}}$ is well defined for any unital \mathcal{G}_0 - ϵ -multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator. We may assume that \mathcal{G}_{0A} is sufficiently large and ϵ is sufficiently small such that $[L_1]|_{\mathcal{P}}$ is well defined for any unital \mathcal{G}_0 - ϵ -multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$[L_1]|_{\mathcal{P}_0} = [L_2]|_{\mathcal{P}_0} \tag{e0.8}$$

for any unital $\mathcal{G}_{0A}\mbox{-}\epsilon\mbox{-multiplicative contractive completely positive linear map}$

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator. We may assume that \mathcal{G}_{0A} is sufficiently large and ϵ is sufficiently small such that $[L_1]|_{\mathcal{P}}$ is well defined for any unital \mathcal{G}_0 - ϵ -multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$[L_1]|_{\mathcal{P}_0} = [L_2]|_{\mathcal{P}_0} \tag{e0.8}$$

for any unital \mathcal{G}_{0A} - ϵ -multiplicative contractive completely positive linear map L_2 from $A \otimes C(\mathbb{T})$ such that

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator. We may assume that \mathcal{G}_{0A} is sufficiently large and ϵ is sufficiently small such that $[L_1]|_{\mathcal{P}}$ is well defined for any unital \mathcal{G}_0 - ϵ -multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$[L_1]|_{\mathcal{P}_0} = [L_2]|_{\mathcal{P}_0} \tag{e0.8}$$

for any unital \mathcal{G}_{0A} - ϵ -multiplicative contractive completely positive linear map L_2 from $A \otimes C(\mathbb{T})$ such that

$$L_1 \approx_{\epsilon} L_2 \text{ on } \mathcal{G}_{0A}.$$
 (e0.9)

$$\mathcal{G}_0 = \{ g \otimes f : g \in \mathcal{G}_{0A} \text{ and } f \in \mathcal{G}_{1T} \},\$$

where $\mathcal{G}_{0A} \subset A$ and $\mathcal{G}_{1T} \subset C(\mathbb{T})$ are finite subsets. To simplify matter further, we may assume, without loss of generality, that $\mathcal{G}_{1T} = \{1_{C(\mathbb{T})}, z\}$, where $z \in C(\mathbb{T})$ is the standard unitary generator. We may assume that \mathcal{G}_{0A} is sufficiently large and ϵ is sufficiently small such that $[L_1]|_{\mathcal{P}}$ is well defined for any unital \mathcal{G}_0 - ϵ -multiplicative contractive completely positive linear map from $A \otimes C(\mathbb{T})$ and

$$[L_1]|_{\mathcal{P}_0} = [L_2]|_{\mathcal{P}_0} \tag{e0.8}$$

for any unital \mathcal{G}_{0A} - ϵ -multiplicative contractive completely positive linear map L_2 from $A \otimes C(\mathbb{T})$ such that

$$L_1 \approx_{\epsilon} L_2 \text{ on } \mathcal{G}_{0A}.$$
 (e0.9)

We may also assume that $\epsilon < \sigma$.

Let *n* be an integer such that $1/n < \sigma/2$.

Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$.

Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . It follows from Cor. 2.5 that there is a projection $e_0 \in M_k$ and a $\mathcal{G}_0 \cdot \epsilon/2$ -multiplicative contractive completely positive linear maps $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_k e_0$ Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . It follows from Cor. 2.5 that there is a projection $e_0 \in M_k$ and a $\mathcal{G}_0 \cdot \epsilon/2$ -multiplicative contractive completely positive linear maps $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_k e_0$ and a unital homomorphism $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_k (1 - e_0)$ such that
Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . It follows from Cor. 2.5 that there is a projection $e_0 \in M_k$ and a $\mathcal{G}_0 \cdot \epsilon/2$ -multiplicative contractive completely positive linear maps $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_k e_0$ and a unital homomorphism $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_k (1 - e_0)$ such that

$$tr(e_0) < 1/n < \sigma,$$
 (e0.10)

Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . It follows from Cor. 2.5 that there is a projection $e_0 \in M_k$ and a $\mathcal{G}_0 \cdot \epsilon/2$ -multiplicative contractive completely positive linear maps $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_k e_0$ and a unital homomorphism $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_k (1 - e_0)$ such that

$$\operatorname{tr}(e_0) < 1/n < \sigma, \qquad (e \, 0.10)$$

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0.$$
 (e0.11)

Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . It follows from Cor. 2.5 that there is a projection $e_0 \in M_k$ and a $\mathcal{G}_0 \cdot \epsilon/2$ -multiplicative contractive completely positive linear maps $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_k e_0$ and a unital homomorphism $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_k (1 - e_0)$ such that

$$\operatorname{tr}(e_0) < 1/n < \sigma, \qquad (e \ 0.10)$$
$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0. \qquad (e \ 0.11)$$

Define $\psi : A \otimes C(\mathbb{T}) \to M_k$ by $\psi(a) = \psi_0(a) \oplus \psi_1(a)$ for all $a \in A$

Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . It follows from Cor. 2.5 that there is a projection $e_0 \in M_k$ and a $\mathcal{G}_0 - \epsilon/2$ -multiplicative contractive completely positive linear maps $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_k e_0$ and a unital homomorphism $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_k (1 - e_0)$ such that

$$tr(e_0) < 1/n < \sigma,$$
 (e0.10)

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0.$$
 (e0.11)

Define $\psi : A \otimes C(\mathbb{T}) \to M_k$ by $\psi(a) = \psi_0(a) \oplus \psi_1(a)$ for all $a \in A$ and $\psi(1 \otimes z) = e_0 \oplus \psi_1(1 \otimes z)$.

Let *n* be an integer such that $1/n < \sigma/2$. Note that $A \otimes C(\mathbb{T}) \in \mathcal{A}_s$. Let $\delta > 0$, $\mathcal{G} \subset A \otimes C(\mathbb{T})$ and $\mathcal{H}_1 \subset A \otimes C(\mathbb{T})_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be finite subsets required by Cor. 2.5 for $A \otimes C(\mathbb{T})$ (in place of A), $\epsilon/2$ (in place of ϵ), \mathcal{G}_0 (in place of \mathcal{F}), \mathcal{H} (in place of \mathcal{H}_1) and Δ . Now suppose that $L : A \otimes C(\mathbb{T})$ satisfies the assumption for the above δ , \mathcal{G} and \mathcal{H}_1 . It follows from Cor. 2.5 that there is a projection $e_0 \in M_k$ and a $\mathcal{G}_0 \cdot \epsilon/2$ -multiplicative contractive completely positive linear maps $\psi_0 : A \otimes C(\mathbb{T}) \to e_0 M_k e_0$ and a unital homomorphism $\psi_1 : A \otimes C(\mathbb{T}) \to (1 - e_0) M_k (1 - e_0)$ such that

$$tr(e_0) < 1/n < \sigma,$$
 (e0.10)

$$\|L(a) - \psi_0(a) \oplus \psi_1(a)\| < \epsilon \text{ for all } a \in \mathcal{G}_0.$$
 (e0.11)

Define $\psi : A \otimes C(\mathbb{T}) \to M_k$ by $\psi(a) = \psi_0(a) \oplus \psi_1(a)$ for all $a \in A$ and $\psi(1 \otimes z) = e_0 \oplus \psi_1(1 \otimes z)$. Put $u = \psi(1 \otimes z)$. One verifies that this ψ and u satisfy all requirements.

Lemma 3.2. Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map.

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset.

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$,

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A$, $\delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that,

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A$, $\delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map,

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A, \delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A, \delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

 $\|L(1\otimes z)-u\| < \delta,$

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A$, $\delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

$$\|L(1\otimes z)-u\| < \delta, \qquad (e0.12)$$

$$[L]|_{\boldsymbol{\beta}(\mathcal{P})} = 0 \text{ and } (e0.13)$$

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A, \delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

$$\|L(1 \otimes z) - u\| < \delta, \qquad (e0.12)$$

$$[L]|_{eta(\mathcal{P})} = 0$$
 and (e0.13)

$$\operatorname{tr} \circ L(h_1 \otimes h_2) \geq \Delta(\widehat{h_1 \otimes h_2})$$
 (e0.14)

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A, \delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

$$\|L(1 \otimes z) - u\| < \delta, \qquad (e 0.12)$$

$$L]|_{eta(\mathcal{P})} = 0$$
 and (e0.13)

$$\operatorname{tr} \circ L(h_1 \otimes h_2) \geq \Delta(\widehat{h_1 \otimes h_2})$$
 (e0.14)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$,

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A, \delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

$$\|L(1 \otimes z) - u\| < \delta, \qquad (e0.12)$$

$$|L|_{eta(\mathcal{P})} = 0$$
 and (e0.13)

$$\operatorname{tr} \circ L(h_1 \otimes h_2) \geq \Delta(\widehat{h_1 \otimes h_2})$$
 (e0.14)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$, then there exists a continuous path of unitaries $\{u_t : t \in [0, 1]\} \subset M_k$

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A, \delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

$$\|L(1 \otimes z) - u\| < \delta, \qquad (e0.12)$$

$$|L|_{eta(\mathcal{P})} = 0$$
 and (e0.13)

$$\operatorname{tr} \circ L(h_1 \otimes h_2) \geq \Delta(\widehat{h_1 \otimes h_2})$$
 (e0.14)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$, then there exists a continuous path of unitaries $\{u_t : t \in [0, 1]\} \subset M_k$ with $u_0 = u$ and $u_1 = 1$ such that

Let $A = PM_r(C(X))P$ and let $\Delta : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a finite subset $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$, a finite subset $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$, a finite subset $\mathcal{G} \subset A, \delta > 0$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ such that, if $L : A \otimes C(\mathbb{T}) \to M_k$ (for some integer $k \ge 1$) is \mathcal{G}' - δ -multiplicative contractive completely positive linear map, where $\mathcal{G}' = \{g \otimes f : g \in \mathcal{G}, f = \{1, z, z^*\}\}$ and $u \in M_k$ is a unitary such that

$$\|L(1 \otimes z) - u\| < \delta, \qquad (e0.12)$$

$$[L]|_{eta(\mathcal{P})} = 0$$
 and (e0.13)

$$\operatorname{tr} \circ L(h_1 \otimes h_2) \geq \Delta(\widehat{h_1 \otimes h_2})$$
 (e0.14)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$, then there exists a continuous path of unitaries $\{u_t : t \in [0, 1]\} \subset M_k$ with $u_0 = u$ and $u_1 = 1$ such that

$$\|L(f \otimes 1)u_t - u_t L(f \otimes 1)\| < \epsilon \text{ for all } f \in \mathcal{F}$$
 (e0.15)

and $t \in [0,1]$. Moreover, $length(\{u_t\}) \leq \pi + \epsilon$.

Huaxin Lin

The Basic Homotopy Lemma, III

By 3.1 and Theorem 2.1, we may write

 $L\approx\psi_{0}\oplus\psi_{1}$

where ψ_1 is a homomorphism

By 3.1 and Theorem 2.1, we may write

 $L \approx \psi_0 \oplus \psi_1$

where ψ_1 is a homomorphism and $u \approx e_0 \oplus \psi_1(1 \otimes z)$.

By 3.1 and Theorem 2.1, we may write

 $L \approx \psi_0 \oplus \psi_1$

where ψ_1 is a homomorphism and $u \approx e_0 \oplus \psi_1(1 \otimes z)$. In $(1 - e_0)M_n(1 - e_0)$, one easily find a path of unitaries $\{w(t) : t \in [0, 1]\}$

By 3.1 and Theorem 2.1, we may write

 $L\approx\psi_{0}\oplus\psi_{1}$

where ψ_1 is a homomorphism and $u \approx e_0 \oplus \psi_1(1 \otimes z)$. In $(1 - e_0)M_n(1 - e_0)$, one easily find a path of unitaries $\{w(t) : t \in [0, 1]\}$ such that $w(0) = \psi_1(1 \otimes z)$, $w(1) = 1 - e_0$ and $\psi_1(f \otimes 1)$ commutes with w(t).

By 3.1 and Theorem 2.1, we may write

 $L\approx\psi_{0}\oplus\psi_{1}$

where ψ_1 is a homomorphism and $u \approx e_0 \oplus \psi_1(1 \otimes z)$. In $(1 - e_0)M_n(1 - e_0)$, one easily find a path of unitaries $\{w(t) : t \in [0, 1]\}$ such that $w(0) = \psi_1(1 \otimes z)$, $w(1) = 1 - e_0$ and $\psi_1(f \otimes 1)$ commutes with w(t). The we consider $e_0 \oplus w(t)$.

Proof: Let $\Delta_1 = (1/2)\Delta$, $\mathcal{F}_0 = \{f \otimes 1 : 1 \otimes z : f \in \mathcal{F}\}$ and let $B = A \otimes C(\mathbb{T})$.

Proof: Let $\Delta_1 = (1/2)\Delta$, $\mathcal{F}_0 = \{f \otimes 1 : 1 \otimes z : f \in \mathcal{F}\}$ and let $B = A \otimes C(\mathbb{T})$. Then *B* has the form $QM_r(C(X \times T)Q)$. Let $\mathcal{H}' \subset B_+ \setminus \{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_1 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset,

Proof: Let $\Delta_1 = (1/2)\Delta$, $\mathcal{F}_0 = \{f \otimes 1 : 1 \otimes z : f \in \mathcal{F}\}$ and let $B = A \otimes C(\mathbb{T})$. Then *B* has the form $QM_r(C(X \times T)Q)$. Let $\mathcal{H}' \subset B_+ \setminus \{0\}$ (in place of \mathcal{H}) be a finite subset, $\mathcal{G}_1 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ), $\mathcal{P}' \subset \underline{K}(B)$ (in place of \mathcal{P}) be a finite subset required by Theorem 2. 1(for *B* instead of *A*) for $\epsilon/16$ (in place of \mathcal{F}) and Δ .

$$\mathcal{H}' = \{h_1 \otimes h_2 : h_1 \in \mathcal{H}'_1 \text{ and } h_2 \in \mathcal{H}'_2\}$$

$$\mathcal{H}' = \{h_1 \otimes h_2 : h_1 \in \mathcal{H}'_1 \text{ and } h_2 \in \mathcal{H}'_2\}$$

and $\mathcal{G}_1 = \{g \otimes f : g \in \mathcal{G}'_1 \text{ and } f \in \{1, z, z^*\}\}$, where $\mathcal{G}'_1 \subset A$ is a finite subset.

$$\mathcal{H}' = \{h_1 \otimes h_2 : h_1 \in \mathcal{H}'_1 \text{ and } h_2 \in \mathcal{H}'_2\}$$

and $\mathcal{G}_1 = \{g \otimes f : g \in \mathcal{G}'_1 \text{ and } f \in \{1, z, z^*\}\}$, where $\mathcal{G}'_1 \subset A$ is a finite subset. We may also assume that $1_A \in \mathcal{H}'_1$ and $1_{\mathcal{C}(\mathbb{T})} \in \mathcal{H}'_2$.

$$\mathcal{H}' = \{h_1 \otimes h_2 : h_1 \in \mathcal{H}'_1 \text{ and } h_2 \in \mathcal{H}'_2\}$$

and $\mathcal{G}_1 = \{g \otimes f : g \in \mathcal{G}'_1 \text{ and } f \in \{1, z, z^*\}\}$, where $\mathcal{G}'_1 \subset A$ is a finite subset. We may also assume that $1_A \in \mathcal{H}'_1$ and $1_{\mathcal{C}(\mathbb{T})} \in \mathcal{H}'_2$. Without loss of generality, one may assume that

$$\mathcal{P}' = \mathcal{P}_0 \sqcup \mathcal{P}_1, \tag{e0.16}$$

where $\mathcal{P}_0 \subset \underline{K}(A)$ and $\mathcal{P}_1 \subset \beta(\underline{K}(A))$ are finite subsets.

$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

There is $\delta_2 > 0$ (in place of δ) with $\delta_2 < \epsilon/16$, a finite subset $\mathcal{G}_2 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and

$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

There is $\delta_2 > 0$ (in place of δ) with $\delta_2 < \epsilon/16$, a finite subset $\mathcal{G}_2 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and a finite subset $\mathcal{H}_3 \subset (A \otimes C(\mathbb{T}))_+ \setminus \{0\}$ (in place of \mathcal{H}_1) required by **3.1** for σ , Δ , \mathcal{H}' (in place of \mathcal{H}), min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ),

$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

There is $\delta_2 > 0$ (in place of δ) with $\delta_2 < \epsilon/16$, a finite subset $\mathcal{G}_2 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and a finite subset $\mathcal{H}_3 \subset (A \otimes C(\mathbb{T}))_+ \setminus \{0\}$ (in place of \mathcal{H}_1) required by **3.1** for σ , Δ , \mathcal{H}' (in place of \mathcal{H}), min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), \mathcal{G}_1 (in place of \mathcal{G}_0), \mathcal{P}_0 and \mathcal{P} (in place of \mathcal{P}_1).
$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

There is $\delta_2 > 0$ (in place of δ) with $\delta_2 < \epsilon/16$, a finite subset $\mathcal{G}_2 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and a finite subset $\mathcal{H}_3 \subset (A \otimes C(\mathbb{T}))_+ \setminus \{0\}$ (in place of \mathcal{H}_1) required by **3.1** for σ , Δ , \mathcal{H}' (in place of \mathcal{H}), min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), \mathcal{G}_1 (in place of \mathcal{G}_0), \mathcal{P}_0 and \mathcal{P} (in place of \mathcal{P}_1). We may also assume that

$$\mathcal{G}_2 = \{ g \otimes f : g \in \mathcal{G}'_2 \text{ and } f \in \{1, z, z^*\} \},$$

where $\mathcal{G}'_2 \subset A$ is a finite subset.

$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

There is $\delta_2 > 0$ (in place of δ) with $\delta_2 < \epsilon/16$, a finite subset $\mathcal{G}_2 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and a finite subset $\mathcal{H}_3 \subset (A \otimes C(\mathbb{T}))_+ \setminus \{0\}$ (in place of \mathcal{H}_1) required by **3.1** for σ , Δ , \mathcal{H}' (in place of \mathcal{H}), min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), \mathcal{G}_1 (in place of \mathcal{G}_0), \mathcal{P}_0 and \mathcal{P} (in place of \mathcal{P}_1). We may also assume that

$$\mathcal{G}_2 = \{ g \otimes f : g \in \mathcal{G}'_2 \text{ and } f \in \{1, z, z^*\} \},$$

where $\mathcal{G}'_2 \subset A$ is a finite subset. We may further assume that

$$\mathcal{H}_3 = \{h_1 \otimes h_2 : h_1 \in \mathcal{H}_4 \text{ and } h_2 \in \mathcal{H}_5\},\$$

where $\mathcal{H}_4 \subset A_+ \setminus \{0\}$ and $\mathcal{H}_5 \subset C(\mathbb{T})_+ \setminus \{0\}$ are finite subset.

$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

There is $\delta_2 > 0$ (in place of δ) with $\delta_2 < \epsilon/16$, a finite subset $\mathcal{G}_2 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and a finite subset $\mathcal{H}_3 \subset (A \otimes C(\mathbb{T}))_+ \setminus \{0\}$ (in place of \mathcal{H}_1) required by **3.1** for σ , Δ , \mathcal{H}' (in place of \mathcal{H}), min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), \mathcal{G}_1 (in place of \mathcal{G}_0), \mathcal{P}_0 and \mathcal{P} (in place of \mathcal{P}_1). We may also assume that

$$\mathcal{G}_2 = \{ g \otimes f : g \in \mathcal{G}'_2 \text{ and } f \in \{1, z, z^*\} \},$$

where $\mathcal{G}'_2 \subset A$ is a finite subset. We may further assume that

$$\mathcal{H}_3 = \{h_1 \otimes h_2 : h_1 \in \mathcal{H}_4 \text{ and } h_2 \in \mathcal{H}_5\},\$$

where $\mathcal{H}_4 \subset A_+ \setminus \{0\}$ and $\mathcal{H}_5 \subset C(\mathbb{T})_+ \setminus \{0\}$ are finite subset. Let $\mathcal{G} = \mathcal{F} \cup \mathcal{G}'_1 \cup \mathcal{G}'_2, \, \delta = \min\{\delta_1/2, \delta_2/2, \epsilon/16\}, \, \mathcal{H}_1 = \mathcal{H}'_1 \cup \mathcal{H}_4$ and $\mathcal{H}_2 = \mathcal{H}'_2 \cup \mathcal{H}_5$.

$$\sigma = \min\{\Delta_1(\hat{h}) : h \in \mathcal{H}'\}.$$
 (e0.17)

There is $\delta_2 > 0$ (in place of δ) with $\delta_2 < \epsilon/16$, a finite subset $\mathcal{G}_2 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) and a finite subset $\mathcal{H}_3 \subset (A \otimes C(\mathbb{T}))_+ \setminus \{0\}$ (in place of \mathcal{H}_1) required by **3.1** for σ , Δ , \mathcal{H}' (in place of \mathcal{H}), min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), \mathcal{G}_1 (in place of \mathcal{G}_0), \mathcal{P}_0 and \mathcal{P} (in place of \mathcal{P}_1). We may also assume that

$$\mathcal{G}_2 = \{ g \otimes f : g \in \mathcal{G}'_2 \text{ and } f \in \{1, z, z^*\} \},$$

where $\mathcal{G}'_2 \subset A$ is a finite subset. We may further assume that

$$\mathcal{H}_3 = \{h_1 \otimes h_2 : h_1 \in \mathcal{H}_4 \text{ and } h_2 \in \mathcal{H}_5\},\$$

where $\mathcal{H}_4 \subset A_+ \setminus \{0\}$ and $\mathcal{H}_5 \subset C(\mathbb{T})_+ \setminus \{0\}$ are finite subset. Let $\mathcal{G} = \mathcal{F} \cup \mathcal{G}'_1 \cup \mathcal{G}'_2, \, \delta = \min\{\delta_1/2, \delta_2/2, \epsilon/16\}, \, \mathcal{H}_1 = \mathcal{H}'_1 \cup \mathcal{H}_4$ and $\mathcal{H}_2 = \mathcal{H}'_2 \cup \mathcal{H}_5$.

Now suppose that $L : A \otimes C(\mathbb{T}) \to M_k$ and a unitary $u \in M_k$ satisfy the assumption with the above $\mathcal{H}_1, \mathcal{H}_2, \mathcal{G}, \mathcal{P}, \delta$ and σ .

 $w\psi(g\otimes 1) = \psi(g\otimes 1)w$ for all $g\in A$, (e0.18)

$$egin{array}{rcl} w\psi(g\otimes 1)&=&\psi(g\otimes 1)w ext{ for all }g\in A, &(ext{e0.18})\ [\psi]|_{\mathcal{P}'}&=&[\mathcal{L}]|_{\mathcal{P}'}, &(ext{e0.19}) \end{array}$$

$$\begin{split} w\psi(g\otimes 1) &= \psi(g\otimes 1)w \text{ for all } g\in A, \quad (e\,0.18)\\ [\psi]|_{\mathcal{P}'} &= [L]|_{\mathcal{P}'}, \qquad (e\,0.19) \end{split}$$

 $|\mathrm{tr}\circ \mathit{L}(g)-\mathrm{tr}\circ\psi(g)|\ <\ \sigma\ \ \mbox{for all}\ \ g\in\mathcal{H}_3.$ (e0.20)

$$\begin{split} w\psi(g\otimes 1) &= \psi(g\otimes 1)w \text{ for all } g\in A, \quad (e\,0.18)\\ [\psi]|_{\mathcal{P}'} &= [L]|_{\mathcal{P}'}, \qquad (e\,0.19) \end{split}$$

$$[\mathcal{V}]|_{\mathcal{P}'} = [\mathcal{L}]|_{\mathcal{P}'}, \qquad (e \, 0.19)$$

$$|\operatorname{tr} \circ L(g) - \operatorname{tr} \circ \psi(g)| < \sigma \text{ for all } g \in \mathcal{H}_3.$$
 (e0.20)

It follows that

$$tr \circ \psi(h) \ge tr \circ L(h) - \sigma \ge \Delta_1(\hat{h})$$
 (e0.21)

for all $h \in \mathcal{H}'$.

$$w\psi(g\otimes 1) = \psi(g\otimes 1)w$$
 for all $g\in A$, (e0.18)

$$[\psi]|_{\mathcal{P}'} = [L]|_{\mathcal{P}'},$$
 (e0.19)

$$|\operatorname{tr} \circ L(g) - \operatorname{tr} \circ \psi(g)| < \sigma \text{ for all } g \in \mathcal{H}_3.$$
 (e0.20)

It follows that

$$tr \circ \psi(h) \ge tr \circ L(h) - \sigma \ge \Delta_1(\hat{h})$$
 (e0.21)

for all $h \in \mathcal{H}'$. Combining (e0.18), (e0.13), (e0.14), (e0.20) and (e0.15), by applying Theorem 2.1, one obtains a unitary $U \in M_k$ such that

$$w\psi(g\otimes 1) = \psi(g\otimes 1)w$$
 for all $g\in A$, (e0.18)

$$[\psi]|_{\mathcal{P}'} = [L]|_{\mathcal{P}'},$$
 (e0.19)

$$|\operatorname{tr} \circ L(g) - \operatorname{tr} \circ \psi(g)| < \sigma \text{ for all } g \in \mathcal{H}_3.$$
 (e0.20)

It follows that

$$tr \circ \psi(h) \ge tr \circ L(h) - \sigma \ge \Delta_1(\hat{h})$$
 (e0.21)

for all $h \in \mathcal{H}'$. Combining (e0.18), (e0.13), (e0.14), (e0.20) and (e0.15), by applying Theorem 2.1, one obtains a unitary $U \in M_k$ such that

$$\|\operatorname{Ad} U \circ \psi(f) - L(f)\| < \epsilon/16 \text{ for all } f \in \mathcal{F}_0.$$
 (e0.22)

$$w\psi(g\otimes 1) = \psi(g\otimes 1)w$$
 for all $g\in A$, (e0.18)

$$[\psi]|_{\mathcal{P}'} = [\mathcal{L}]|_{\mathcal{P}'},$$
 (e0.19)

$$|\operatorname{tr} \circ L(g) - \operatorname{tr} \circ \psi(g)| < \sigma \text{ for all } g \in \mathcal{H}_3.$$
 (e0.20)

It follows that

$$tr \circ \psi(h) \ge tr \circ L(h) - \sigma \ge \Delta_1(\hat{h})$$
 (e0.21)

for all $h \in \mathcal{H}'$. Combining (e0.18), (e0.13), (e0.14), (e0.20) and (e0.15), by applying Theorem 2.1, one obtains a unitary $U \in M_k$ such that

$$\|\operatorname{Ad} U \circ \psi(f) - L(f)\| < \epsilon/16 \text{ for all } f \in \mathcal{F}_0.$$
 (e0.22)

Let $w_1 = \operatorname{Ad} U \circ \phi(1 \otimes z)$.

$$\begin{aligned} \|u - w\| &\leq \|u - L(1 \otimes z)\| + \|L(1 \otimes z) - \operatorname{Ad} U \circ \psi(1 \otimes z)\| \ (e \ 0.23) \\ &< \delta + \epsilon/16 < \epsilon/8. \end{aligned}$$

$$\begin{aligned} \|u - w\| &\leq \|u - L(1 \otimes z)\| + \|L(1 \otimes z) - \operatorname{Ad} U \circ \psi(1 \otimes z)\| \ (e0.23) \\ &< \delta + \epsilon/16 < \epsilon/8. \end{aligned}$$

There is a continuous path of unitaries $\{u_t \in [0, 1/2]\} \subset M_k$ such that

$$\begin{aligned} \|u - w\| &\leq \|u - L(1 \otimes z)\| + \|L(1 \otimes z) - \operatorname{Ad} U \circ \psi(1 \otimes z)\| \ (e \ 0.23) \\ &< \delta + \epsilon/16 < \epsilon/8. \end{aligned}$$

There is a continuous path of unitaries $\{u_t \in [0, 1/2]\} \subset M_k$ such that

$$||u_t - u|| < \epsilon/8, ||u_t - w|| < \epsilon/8, u_0 = u, u_{1/2} = w$$
 (e0.25)

$$\begin{aligned} \|u - w\| &\leq \|u - L(1 \otimes z)\| + \|L(1 \otimes z) - \operatorname{Ad} U \circ \psi(1 \otimes z)\| \ (e0.23) \\ &< \delta + \epsilon/16 < \epsilon/8. \end{aligned}$$

There is a continuous path of unitaries $\{u_t \in [0, 1/2]\} \subset M_k$ such that

$$\begin{aligned} \|u_t - u\| &< \epsilon/8, \ \|u_t - w\| < \epsilon/8, \ u_0 = u, \ u_{1/2} = w \\ \text{and length}(\{u_t : t \in [0, 1/2]\}) < \epsilon\pi/8. \end{aligned}$$

$$\begin{aligned} \|u - w\| &\leq \|u - L(1 \otimes z)\| + \|L(1 \otimes z) - \operatorname{Ad} U \circ \psi(1 \otimes z)\| \ (e \ 0.23) \\ &< \delta + \epsilon/16 < \epsilon/8. \end{aligned}$$

There is a continuous path of unitaries $\{u_t \in [0, 1/2]\} \subset M_k$ such that

$$\begin{aligned} \|u_t - u\| &< \epsilon/8, \ \|u_t - w\| < \epsilon/8, \ u_0 = u, \ u_{1/2} = w \\ \text{and length}(\{u_t : t \in [0, 1/2]\}) < \epsilon\pi/8. \end{aligned} \tag{e0.25}$$

It follows (from Theorem 1.1) that there exists a continuous path of unitaries $\{u_t : t \in [1/2, 1]\} \subset M_k$ such that

$$\begin{aligned} \|u - w\| &\leq \|u - L(1 \otimes z)\| + \|L(1 \otimes z) - \operatorname{Ad} U \circ \psi(1 \otimes z)\| \ (e0.23) \\ &< \delta + \epsilon/16 < \epsilon/8. \end{aligned}$$

There is a continuous path of unitaries $\{u_t \in [0, 1/2]\} \subset M_k$ such that

$$\begin{aligned} \|u_t - u\| &< \epsilon/8, \ \|u_t - w\| < \epsilon/8, \ u_0 = u, \ u_{1/2} = w \\ \text{and length}(\{u_t : t \in [0, 1/2]\}) < \epsilon\pi/8. \end{aligned} \tag{e0.25}$$

It follows (from Theorem 1.1) that there exists a continuous path of unitaries $\{u_t : t \in [1/2, 1]\} \subset M_k$ such that

 $u_{1/2} = w$, $u_1 = 1$ and $u_t \operatorname{Ad} U \circ \phi(f \otimes 1) = \operatorname{Ad} U \circ \phi(f \otimes 1) u_t(e 0.27)$

for all $t \in [1/2, 1]$ and $f \in A \otimes 1$.

Moreover,

 $length(\{u_t : t \in [1/2, 1]\}) \le \pi.$ (e0.28)

Moreover,

$$length(\{u_t : t \in [1/2, 1]\}) \le \pi.$$
 (e0.28)

It follows that

length({
$$u_t : t \in [0, 1]$$
} $\leq \pi + \epsilon \pi/6.$ (e0.29)

Moreover,

$$length(\{u_t : t \in [1/2, 1]\}) \le \pi.$$
 (e0.28)

It follows that

length({
$$u_t : t \in [0, 1]$$
} $\leq \pi + \epsilon \pi/6.$ (e0.29)

Furthermore,

$$\|u_t L(f \otimes 1) - L(f \otimes 1)u_t\| < \epsilon \text{ for all } f \in \mathcal{F}$$
 (e0.30)

and $t \in [0, 1]$.

Lemma **3.3.** Let A be a unital amenable separable C*-algebra.

Lemma 3.3. Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset

Lemma 3.3.

Let A be a unital amenable separable C^* -algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset.

Lemma 3.3.

Let A be a unital amenable separable C^{*}-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta > 0$ satisfying the following:

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta > 0$ satisfying the following: For any \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow B$ (for some unital C*-algebra B),

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta > 0$ satisfying the following: For any \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow B$ (for some unital C*-algebra B), and any unitary $u \in B$ such that

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta > 0$ satisfying the following: For any \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow B$ (for some unital C*-algebra B), and any unitary $u \in B$ such that

$$\|\phi(g)u - u\phi(g)\| < \delta$$
 for all $g \in \mathcal{G}$, (e0.31)

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta > 0$ satisfying the following: For any \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow B$ (for some unital C*-algebra B), and any unitary $u \in B$ such that

$$\|\phi(g)u - u\phi(g)\| < \delta \text{ for all } g \in \mathcal{G}, \tag{e0.31}$$

there exists a unital \mathcal{F} - ϵ -multiplicative contractive completely positive linear map $L : A \otimes C(\mathbb{T}) \to B$ such that

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta > 0$ satisfying the following: For any \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow B$ (for some unital C*-algebra B), and any unitary $u \in B$ such that

$$\|\phi(g)u - u\phi(g)\| < \delta \text{ for all } g \in \mathcal{G}, \tag{e0.31}$$

there exists a unital \mathcal{F} - ϵ -multiplicative contractive completely positive linear map $L : A \otimes C(\mathbb{T}) \to B$ such that

$$\|\phi(f) - L(f \otimes 1)\| < \epsilon \text{ and } \|L(1 \otimes z) - u\| < \epsilon$$
 (e0.32)

Lemma 3.3.

Let A be a unital amenable separable C*-algebra. Let $\epsilon > 0$, let $\mathcal{F}_0 \subset A$ be a finite subset and let $\mathcal{F} \subset A \otimes C(\mathbb{T})$ be a finite subset. There exists a finite subset $\mathcal{G} \subset A$ and $\delta > 0$ satisfying the following: For any \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow B$ (for some unital C*-algebra B), and any unitary $u \in B$ such that

$$\|\phi(g)u - u\phi(g)\| < \delta \text{ for all } g \in \mathcal{G}, \qquad (e0.31)$$

there exists a unital \mathcal{F} - ϵ -multiplicative contractive completely positive linear map $L : A \otimes C(\mathbb{T}) \to B$ such that

$$\|\phi(f) - L(f \otimes 1)\| < \epsilon$$
 and $\|L(1 \otimes z) - u\| < \epsilon$ (e0.32)

for all $f \in \mathcal{F}_0$, where $z \in C(\mathbb{T})$ is the identity function on the unit circle.

Lemma **3.4.** Let $A \in PM_r(C(X))P$.

Lemma 3.4. Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset.

Lemma 3.4. Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets.

Lemma 3.4.

Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets. For any non-decreasing map $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$,
Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets. For any non-decreasing map $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$

Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets. For any non-decreasing map $\Delta : A^{q,1}_+ \setminus \{0\} \rightarrow (0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ and $\delta > 0$ such that,

Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets. For any non-decreasing map $\Delta : A^{q,1}_+ \setminus \{0\} \rightarrow (0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ and $\delta > 0$ such that, for any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow M_k$ (for some integer $k \geq 1$) and any unitary $u \in M_k$ such that

Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets. For any non-decreasing map $\Delta : A^{q,1}_+ \setminus \{0\} \rightarrow (0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ and $\delta > 0$ such that, for any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow M_k$ (for some integer $k \geq 1$) and any unitary $u \in M_k$ such that

$$\|u\phi(g) - \phi(g)u\| < \delta$$
 for all $g \in \mathcal{G}$ (e0.33)

and
$$tr \circ \phi(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}'_1$, (e0.34)

Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets. For any non-decreasing map $\Delta : A^{q,1}_+ \setminus \{0\} \rightarrow (0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ and $\delta > 0$ such that, for any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow M_k$ (for some integer $k \geq 1$) and any unitary $u \in M_k$ such that

$$\|u\phi(g) - \phi(g)u\| < \delta$$
 for all $g \in \mathcal{G}$ (e0.33)

and
$$tr\circ\phi(h)\geq\Delta(\hat{h})$$
 for all $h\in\mathcal{H}_1',$ (e0.34)

there exists a continuous path of unitaries $\{u_t : t \in [0, 1]\} \subset M_k$ such that

Let $A \in PM_r(C(X))P$. Let $\epsilon > 0$ and let $\mathcal{F} \subset A$ be a finite subset. Let $\mathcal{H}_1 \subset A^1_+ \setminus \{0\}$ and let $\mathcal{H}_2 \subset C(\mathbb{T})^1_+ \setminus \{0\}$ be finite subsets. For any non-decreasing map $\Delta : A^{q,1}_+ \setminus \{0\} \rightarrow (0,1)$, there exists a finite subset $\mathcal{G} \subset A$, a finite subset $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ and $\delta > 0$ such that, for any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \rightarrow M_k$ (for some integer $k \geq 1$) and any unitary $u \in M_k$ such that

$$\|u\phi(g) - \phi(g)u\| < \delta$$
 for all $g \in \mathcal{G}$ (e0.33)

and
$$tr\circ\phi(h)\geq\Delta(\hat{h})$$
 for all $h\in\mathcal{H}_1',$ (e0.34)

there exists a continuous path of unitaries $\{u_t : t \in [0,1]\} \subset M_k$ such that

$$u_0 = u, \ u_1 = w, \ \|u_t \phi(f) - \phi(f)u_t\| < \epsilon$$
 (e0.35)

for all $f \in \mathcal{G}$ and $t \in [0, 1]$,

$$tr \circ L(h_1 \otimes h_2) \ge \Delta(\hat{h_1})\tau_m(h_2)/4 \tag{e0.36}$$

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$,

$$tr \circ L(h_1 \otimes h_2) \ge \Delta(\hat{h_1}) \tau_m(h_2)/4$$
 (e0.36)

$$tr \circ L(h_1 \otimes h_2) \ge \Delta(\hat{h_1}) \tau_m(h_2)/4$$
 (e0.36)

$$\begin{aligned} \|L(f \otimes 1) - \phi(f)\| &< \epsilon \text{ for all } f \in \mathcal{F} \\ \text{and } \|L(1 \otimes z) - w\| &< \epsilon, \end{aligned} \tag{e0.37}$$

$$tr \circ L(h_1 \otimes h_2) \ge \Delta(\hat{h_1})\tau_m(h_2)/4 \tag{e0.36}$$

$$\begin{aligned} \|L(f \otimes 1) - \phi(f)\| &< \epsilon \text{ for all } f \in \mathcal{F} \\ and \ \|L(1 \otimes z) - w\| &< \epsilon, \end{aligned} \tag{e0.37}$$

and τ_m is the tracial state on $C(\mathbb{T})$ induced by the Lesbegue measure on the circle.

$$tr \circ L(h_1 \otimes h_2) \ge \Delta(\hat{h_1})\tau_m(h_2)/4 \tag{e0.36}$$

$$\begin{aligned} \|L(f \otimes 1) - \phi(f)\| &< \epsilon \text{ for all } f \in \mathcal{F} \\ and \ \|L(1 \otimes z) - w\| &< \epsilon, \end{aligned} \tag{e0.37}$$

and τ_m is the tracial state on $C(\mathbb{T})$ induced by the Lesbegue measure on the circle. Moreover,

$$length(\{u_t\}) \le \pi + \epsilon.$$
 (e0.39)

Keep in mind there exists an integer $n \ge 1$

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$.

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$. There is an almost multiplicative ccl map $L_1 : A \otimes C(\mathbb{T}) \to M_k$ such that

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$. There is an almost multiplicative ccl map $L_1 : A \otimes C(\mathbb{T}) \to M_k$ such that

 $L_1(g \otimes 1) \approx \phi(g)$ and $L_1(1 \otimes z) \approx u$.

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$. There is an almost multiplicative ccl map $L_1 : A \otimes C(\mathbb{T}) \to M_k$ such that

$$L_1(g \otimes 1) \approx \phi(g)$$
 and $L_1(1 \otimes z) \approx u$.

We will then write (by 2.12).

$$L_1 \approx (1-p)L_1(1-p) \oplus \psi,$$

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$. There is an almost multiplicative ccl map $L_1 : A \otimes C(\mathbb{T}) \to M_k$ such that

$$L_1(g \otimes 1) \approx \phi(g)$$
 and $L_1(1 \otimes z) \approx u$.

We will then write (by 2.12).

$$L_1 \approx (1-p)L_1(1-p) \oplus \psi,$$

where ψ is a unital homomorphism and tr(1-p) is small.

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$. There is an almost multiplicative ccl map $L_1 : A \otimes C(\mathbb{T}) \to M_k$ such that

$$L_1(g \otimes 1) \approx \phi(g)$$
 and $L_1(1 \otimes z) \approx u$.

We will then write (by 2.12).

$$L_1\approx (1-p)L_1(1-p)\oplus \psi,$$

where ψ is a unital homomorphism and tr(1-p) is small. We also have

$$\psi(f) \approx \operatorname{diag}(\psi_0(f), \overbrace{\psi_1(f), \dots, \psi_1(f)}^n)$$

Keep in mind there exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n}f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$. There is an almost multiplicative ccl map $L_1 : A \otimes C(\mathbb{T}) \to M_k$ such that

$$L_1(g \otimes 1) \approx \phi(g)$$
 and $L_1(1 \otimes z) \approx u$.

We will then write (by 2.12).

$$L_1\approx (1-p)L_1(1-p)\oplus \psi,$$

where ψ is a unital homomorphism and tr(1-p) is small. We also have

$$\psi(f) \approx \operatorname{diag}(\psi_0(f), \underbrace{\psi_1(f), \dots, \psi_1(f)}^n)$$

and $\operatorname{tr}(e_0) \approx 0.$ (e0.40)

Let
$$w'_0 = \psi_1(1 \otimes z)$$
.

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), ..., \exp(ia_n)),$$

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), \dots, \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$.

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), \dots, \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$. There is a continuous path of unitaries $\{w'_{t,j} : t \in [0,1]\} \subset e_j M_k e_j$

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), ..., \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$. There is a continuous path of unitaries $\{w'_{t,j} : t \in [0,1]\} \subset e_j M_k e_j$ such that

$$w_{0,j}' = \exp(ia_j), \ w_{1,j}' = \exp(i(2\pi j/n)), \psi_1(f)w_{t,j} = \psi_1(f)w_{t,j} \ (e\,0.41)$$

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), \dots, \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$. There is a continuous path of unitaries $\{w'_{t,j} : t \in [0,1]\} \subset e_j M_k e_j$ such that

$$w'_{0,j} = \exp(ia_j), \ w'_{1,j} = \exp(i(2\pi j/n)), \psi_1(f)w_{t,j} = \psi_1(f)w_{t,j} \ (e0.41)$$

and $\operatorname{length}(\{w'_{t,j}\}) \le \pi + \epsilon/4. \ (e0.42)$

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), \dots, \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$. There is a continuous path of unitaries $\{w'_{t,j} : t \in [0,1]\} \subset e_j M_k e_j$ such that

$$\begin{split} w_{0,j}' &= \exp(ia_j), \ w_{1,j}' = \exp(i(2\pi j/n)), \psi_1(f) w_{t,j} = \psi_1(f) w_{t,j} \ (e0.41) \\ &\text{and } \operatorname{length}(\{w_{t,j}'\}) \leq \pi + \epsilon/4. \ (e0.42) \end{split}$$

There is a unitary $w_0'' \in (1-p)M_k(1-p)$ such that

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), \dots, \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$. There is a continuous path of unitaries $\{w'_{t,j} : t \in [0,1]\} \subset e_j M_k e_j$ such that

$$\begin{aligned} w_{0,j}' &= \exp(ia_j), \ w_{1,j}' &= \exp(i(2\pi j/n)), \psi_1(f) w_{t,j} &= \psi_1(f) w_{t,j} \ (e\,0.41) \\ &\text{and } \operatorname{length}(\{w_{t,j}'\}) \leq \pi + \epsilon/4. \ (e\,0.42) \end{aligned}$$

There is a unitary $w_0'' \in (1-p)M_k(1-p)$ such that

$$w_0'' \approx (1-p)L_1(1\otimes z)(1-p)$$
 (e0.43)

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), ..., \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$. There is a continuous path of unitaries $\{w'_{t,j} : t \in [0,1]\} \subset e_j M_k e_j$ such that

$$\begin{aligned} w_{0,j}' &= \exp(ia_j), \ w_{1,j}' &= \exp(i(2\pi j/n)), \psi_1(f) w_{t,j} &= \psi_1(f) w_{t,j} \ (e\,0.41) \\ &\text{and } \operatorname{length}(\{w_{t,j}'\}) \leq \pi + \epsilon/4. \ (e\,0.42) \end{aligned}$$

There is a unitary $w_0'' \in (1-p)M_k(1-p)$ such that

$$w_0'' \approx (1-p)L_1(1 \otimes z)(1-p)$$
 (e0.43)

Put

$$u_0' = w_0'' \oplus \psi_0(1 \otimes z) \oplus w_0'$$

$$w'_0 = \operatorname{diag}(\exp(ia_1), \exp(ia_2), ..., \exp(ia_n)),$$

where $a_j \in e_j M_k e_j$ is a selfadjoint element with $||a_j|| \le \pi$. There is a continuous path of unitaries $\{w'_{t,j} : t \in [0,1]\} \subset e_j M_k e_j$ such that

$$w'_{0,j} = \exp(ia_j), \quad w'_{1,j} = \exp(i(2\pi j/n)), \psi_1(f)w_{t,j} = \psi_1(f)w_{t,j} \quad (e\,0.41)$$

and $\operatorname{length}(\{w'_{t,j}\}) \le \pi + \epsilon/4. \quad (e\,0.42)$

There is a unitary $w_0'' \in (1-p)M_k(1-p)$ such that

$$w_0'' \approx (1-p)L_1(1 \otimes z)(1-p)$$
 (e0.43)

Put

$$u_0' = w_0'' \oplus \psi_0(1 \otimes z) \oplus w_0' \approx u. \qquad (e 0.44)$$

$$w_0 = u, \ w_1 = w_0'' \oplus \psi_0(1 \otimes z) \oplus \operatorname{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}')$$
 (e0.45)

$$w_{0} = u, \quad w_{1} = w_{0}'' \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}') \quad (e \ 0.45)$$
$$\|w_{t}\phi(f) - \phi(f)w_{t}\| < \epsilon \text{ for all } f \in \mathcal{F}, \quad (e \ 0.46)$$

$$w_0 = u, \ w_1 = w_0'' \oplus \psi_0(1 \otimes z) \oplus \operatorname{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}') \quad (e \, 0.45)$$

$$\|w_t\phi(f) - \phi(f)w_t\| < \epsilon \text{ for all } f \in \mathcal{F}, \quad (e0.46)$$

and length
$$(\{w_t\}) \le \pi + \epsilon$$
. (e0.47)

$$\begin{split} w_0 &= u, \ w_1 = w_0'' \oplus \psi_0(1 \otimes z) \oplus \text{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}') \quad (\text{e}\,0.45) \\ &\|w_t \phi(f) - \phi(f) w_t\| < \epsilon \text{ for all } f \in \mathcal{F}, \quad (\text{e}\,0.46) \end{split}$$

and $\operatorname{length}(\{w_t\}) \le \pi + \epsilon$. (e0.47)

Define $L: A \otimes C(\mathbb{T}) \to M_k$ by

$$L(a \otimes f) = (1-p)L_1(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_0(a), \underbrace{\psi_1(a), ..., \psi_1(a)}^n)f(w_1).$$
$$w_{0} = u, \quad w_{1} = w_{0}'' \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}') \quad (e0.45)$$
$$\|w_{t}\phi(f) - \phi(f)w_{t}\| < \epsilon \text{ for all } f \in \mathcal{F}, \quad (e0.46)$$

and length $(\{w_t\}) \le \pi + \epsilon$. (e0.47)

Define $L: A \otimes C(\mathbb{T}) \to M_k$ by

 $L(a \otimes f) = (1 - p)L_1(a \otimes f)(1 - p) \oplus \operatorname{diag}(\psi_0(a), \overline{\psi_1(a), ..., \psi_1(a)})f(w_1).$ for all $a \in A$ and $f \in C(\mathbb{T})$.

$$w_{0} = u, \quad w_{1} = w_{0}'' \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}') \quad (e \ 0.45)$$
$$\|w_{t}\phi(f) - \phi(f)w_{t}\| < \epsilon \text{ for all } f \in \mathcal{F}, \quad (e \ 0.46)$$

and length $(\{w_t\}) \le \pi + \epsilon$. (e0.47)

Define $L: A \otimes C(\mathbb{T}) \to M_k$ by

 $L(a \otimes f) = (1-p)L_1(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_0(a), \overbrace{\psi_1(a), \dots, \psi_1(a)}^n) f(w_1).$

for all $a \in A$ and $f \in C(\mathbb{T})$. It follows that

 $L(f \otimes 1) \approx \phi(f)$ and $L(1 \otimes z \approx w_1)$ (e0.48)

$$w_{0} = u, \quad w_{1} = w_{0}'' \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}') \quad (e \ 0.45)$$
$$\|w_{t}\phi(f) - \phi(f)w_{t}\| < \epsilon \text{ for all } f \in \mathcal{F}, \quad (e \ 0.46)$$

and length($\{w_t\}$) $\leq \pi + \epsilon$. (e0.47)

Define $L: A \otimes C(\mathbb{T}) \to M_k$ by

 $L(a \otimes f) = (1-p)L_1(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_0(a), \underbrace{\psi_1(a), ..., \psi_1(a)}^n)f(w_1).$

for all $a \in A$ and $f \in C(\mathbb{T})$. It follows that

$$L(f \otimes 1) \approx \phi(f) \text{ and } L(1 \otimes z \approx w_1$$
 (e0.48)

One also has that

$$\operatorname{tr} \circ L(h_1 \otimes h_2) \ge \Delta(\hat{h}_1) \cdot \tau_m(h_2)/4 \tag{e0.49}$$

Lemma 2.12.

Let A be a unital subhomogeneous C*-algebra. Let $\epsilon > 0$, let $\mathcal{F} \subset A$ be a finite subset and let $\sigma_0 > 0$. There exist $\delta > 0$ and a finite subset $\mathcal{G} \subset A$ satisfying the following: Suppose that $\phi : A \to M_n$ (for some integer $n \ge 1$) is a δ - \mathcal{G} -multiplicative contractive completely positive linear map. Then, there exists a projection $p \in M_n$ and a unital homomorphism $\phi_0 : A \to pM_n p$ such that

$$\begin{aligned} \|p\phi(a) - \phi(a)p\| &< \epsilon \text{ for all } a \in \mathcal{F}, \\ \|\phi(a) - [(1-p)\phi(a)(1-p) + \phi_0(a)]\| &< \epsilon \text{ for all } a \in \mathcal{F} \text{ and} \\ tr(1-p) &< \sigma_0, \end{aligned}$$
(e0.50)

where tr is the normalized trace on M_n .

Proof of 3.4 There exists an integer $n \ge 1$ such that

$$(1/n)\sum_{j=1}^{n} f(e^{\theta+j2\pi i/n}) \ge (63/64)\tau_m(f)$$
 (e0.51)

for all $f \in \mathcal{H}_2$ and for any $\theta \in [-\pi, \pi]$. We may also assume that $16\pi/n < \epsilon$.

Let

$$\sigma_1 = (1/2^{10}) \inf\{t(h) : h \in \mathcal{H}_1\} \inf\{\tau_m(g) : g \in \mathcal{H}_2\}\}.$$

Let $\mathcal{F}' = \{f \otimes 1, f \otimes z : f \in \mathcal{F} \cup \mathcal{H}_1\}$. Let $\delta_1 > 0$ (in place of δ) and $\mathcal{G}_1 \subset A \otimes C(\mathbb{T})$ (in place of \mathcal{G}) be a finite subset required by **3.5** for $\epsilon/32$ (in place of ϵ), \mathcal{F}' (in place of \mathcal{F}) and $\sigma_1/16$ (in place of σ_0). Without loss of generality, one may assume that

$$\mathcal{G}_1 = \{ g \otimes 1, 1 \otimes z : g \in \mathcal{G}_2 \},\$$

where $\mathcal{G}_2 \subset A$ is a finite subset.

Let $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ (in place of \mathcal{H}_2) be a finite subset required by **??** for $\min\{\epsilon/32, \sigma_1/16\}$ (in place of ϵ), $\mathcal{F} \cup \mathcal{H}_1$ (in place of \mathcal{F}), \mathcal{H}_1 (in place of \mathcal{H}), (190/258) Δ (in place of Δ) and $\sigma_1/16$ (in place of σ) and integer *n*. Put

$$\mathcal{H}' = \{h_1 \otimes h_2, h_1 \otimes 1, 1 \otimes h_2 : h_1 \in \mathcal{H}_1 \text{ and } h_2 \in \mathcal{H}_2\}.$$

Let $\mathcal{G}_3 = \mathcal{G}_2 \cup \mathcal{H}_1 \cup \mathcal{H}'_1$. To simplify the notation, without loss of generality, one may assume that \mathcal{G}_3 and \mathcal{F}' are all in the unit ball of $A \otimes C(\mathbb{T})$. Let $\delta_2 = \min\{\epsilon/64, \delta_1/2, \sigma_1/16\}$. Let $\mathcal{G}_4 \subset A$ be a finite subset (in place of \mathcal{G}) and let δ_3 (in place of δ) be positive as required by Lemma 3.3 for \mathcal{G}_3 (in place of \mathcal{F}_0), \mathcal{F}' (in place of \mathcal{F}), and δ_2 (in place of ϵ). Let $\mathcal{G} = \mathcal{G}_4 \cup \mathcal{G}_3$ and $\delta = \min\{\delta_1/4, \delta_2/2, \delta_3/2\}$. Now let $\phi : A \to M_k$ be a unital δ -G-multiplicative contractive completely positive linear map and $u \in M_k$ be a unitary such that (e0.33) and (e0.34) hold for the above δ , $\sigma, \mathcal{G} \text{ and } \mathcal{H}'_1.$

It follows from Lemma A that there exists a δ_2 - \mathcal{G}_3 -multiplicative

Huaxin Lin

contractive completely positive linear map $L_1 : A \otimes C(\mathbb{T}) \to M_k$ such that

$$\begin{split} \|\mathcal{L}_1(g\otimes 1) - \phi(g)\| &< \delta_2 \text{ for all } g \in \mathcal{G}_2 \text{ and} \\ \|\mathcal{L}_1(1\otimes z) - u\| &< \delta_2. \end{split} \tag{e0.52}$$

We then have that

$$\begin{array}{rcl} \mathrm{tr} \circ L_1(h \otimes 1) & \geq & \mathrm{tr} \circ \phi(h) - \delta_2 & (e\,0.54) \\ & \geq & \Delta(\hat{h}) - \sigma_1/16 \geq (191/256)\Delta(\hat{h}) & (e\,0.55) \end{array}$$

for all
$$h \in \mathcal{H}_1$$
.

Huaxin Lin

It follows **3.5** that there exists a projection $p \in M_k$ and a unital homomorphism $\psi : A \otimes C(\mathbb{T}) \to pM_k p$ such that

$$\begin{aligned} \|pL_1(f) - L_1(f)p\| &< \min\{\epsilon/32, \sigma_1/16\} \text{ for all } f \in \mathcal{F}', (e\,0.56) \\ \|L_1(f) - (1-p)L_1(f)(1-p) + \psi(f)\| &< \min\{\epsilon/32, \sigma_1/16\} \quad (e\,0.57) \\ \text{ for all } f \in \mathcal{F}' \quad \text{and } \operatorname{tr}(1-p) < \sigma_1/16. \end{aligned}$$

Note that $pM_kp \cong M_m$ for some $m \le k$. It follows from (e0.55), (e0.34), (e0.57) and (e0.58) that

$$\mathrm{tr} \circ \psi(h) \geq (191/256)\Delta(\hat{h}) - \sigma_1/16 - \sigma_1/16 \geq (190/256)\Delta(\hat{h})(\mathrm{e}\,0.59)$$

for all $h \in \mathcal{H}_1$.

By Cor A (Lecture 2) there are mutually orthogonal projections $e_0, e_1, e_2, ..., e_n \in pM_kp$ such that $e_1, e_2, ..., e_n$ are equivalent, there are unital homomorphisms $\psi_0 : A \otimes C(\mathbb{T}) \to e_0M_ke_0$ and $\psi_1 : A \otimes C(\mathbb{T}) \to e_1M_ke_1$ such that

$$\|\psi(f) - \operatorname{diag}(\psi_0(f), \psi_1(f), \dots, \psi_1(f))\| < \min\{\epsilon/32, \sigma_1/6\} \in 0.60\}$$

for all $f \in \mathcal{F}_1$ and $\operatorname{tr}(e_0) < \sigma_1/16$ (e 0.61)
Huaxin Lin The Basic Homotopy Lemma, III June 9th, 2015, 22/29

Let $w'_0 = \psi_1(1 \otimes z)$. One may write

$$w_0' = \operatorname{diag}(\exp(ia_1), \exp(ia_2), ..., \exp(ia_n)),$$

where $a_i \in e_i M_k e_i$ is a selfadjoint element with $||a_i|| \le \pi$. By linear algebra, it is easy to find a continuous path of unitaries $\{w'_{t,i}: t \in [0,1]\} \subset e_i M_k e_i$ such that

$$w'_{0,j} = \exp(ia_j), \ w'_{1,j} = \exp(i(2\pi j/n)),$$
 (e0.62)

and length(
$$\{w'_{t,j}\}$$
) $\leq \pi + \epsilon/4.$ (e0.63)

Moreover, one can choose such $w'_{t,i}$ that it commutes with every element in $\psi_1(f), f \in A$. There is a unitary $w_0'' \in (1-p)M_k(1-p)$ such that

$$\|w_0'' - (1-p)L_1(1\otimes z)(1-p)\| < \epsilon/16.$$
 (e0.64)

Put

$$u_0' = w_0'' \oplus \psi_0(1 \otimes z) \oplus w_0'. \qquad (e \, 0.65)$$

Then u_0 is a unitary and

$$\begin{aligned} \|u - u'_0\| &\leq \|u - L_1(1 \otimes z)\| + \|L_1(1 \otimes z) - u'_0\| & (e \, 0.66) \\ &\leq \delta_2 + \epsilon/16 < \epsilon/8. & (e \, 0.67) \end{aligned}$$

$$w_{0} = u, \quad w_{1} = w_{0}'' \oplus \psi_{0}(1 \otimes z) \oplus \operatorname{diag}(w_{1,1}', w_{1,2}', ..., w_{1,n}') \quad (e \ 0.68)$$
$$\|w_{t}\phi(f) - \phi(f)w_{t}\| < \epsilon \text{ for all } f \in \mathcal{F}, \quad (e \ 0.69)$$
$$\text{and } \operatorname{length}(\{w_{t}\}) \le \pi + \epsilon. \quad (e \ 0.70)$$

Define $L: A \otimes C(\mathbb{T}) \to M_k$ by

$$L(a \otimes f) = (1-p)L_1(a \otimes f)(1-p) \oplus \operatorname{diag}(\psi_0(a), \underbrace{\psi_1(a), ..., \psi_1(a)}^n)f(w_1).$$

for all $a \in A$ and $f \in C(\mathbb{T})$. It follows that

$$\|L(f\otimes 1) - \phi(f)\| < \epsilon \text{ for all } f \in \mathcal{F} \text{ and } \|L(1\otimes z) - w_1\| < \epsilon.$$

Huaxin Lin

The Basic Homotopy Lemma, III

June 9th, 2015, 22 / 29

One also has that

$$\begin{split} \mathcal{L}(h_1 \otimes h_2) &\geq \operatorname{tr}((\psi_0(h_1) + n\operatorname{tr}(\psi_1(h_1 \otimes 1)))\operatorname{tr}(h_2(w_1))) \\ &\geq \operatorname{tr} \circ \psi(h_1)(\frac{1 - \sigma_1/16}{n}) \sum_{j=1}^n h_2(e^{i2\pi j/n}) - \sigma_1/6 \quad (e\,0.71) \\ &\geq (190/256)\Delta(\hat{h_1})(\frac{1 - \sigma_1/16}{n}) \sum_{j=1}^n h_2(e^{i2\pi j/n}) - \sigma_1/6 \quad (e\,0.72) \\ &\geq (190/256)\Delta(\hat{h_1})(63/64)(1 - \sigma_1/16)\tau_m(h_2) - \sigma_1/6 \\ &\geq (190/256)\Delta(\hat{h_1})((63/64)(1 - 1/2^{14})\tau_m(h_2) - (1/2^{12})t(h_1)\tau_m(h_2) \\ &> \Delta(\hat{h_1}) \cdot \tau_m(h_2)/4 \end{split}$$

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$.

Lemma 3.5. Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map.

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$,

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}$,

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following:

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

 $tr \circ \phi(h) \ge \Delta(\hat{h})$ for all $h \in \mathcal{H}$,

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$\begin{split} tr \circ \phi(h) \geq \Delta(\hat{h}) \ \ \text{for all} \ \ h \in \mathcal{H}, \\ \|\phi(g)v - v\phi(g)\| < \delta \ \ \text{for all} \ \ g \in \mathcal{G} \ \ \text{and} \ \ \operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\}, \end{split}$$

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$tr \circ \phi(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}$,
 $\|\phi(g)v - v\phi(g)\| < \delta$ for all $g \in \mathcal{G}$ and $\operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\}$,

then there exists a continuous path of unitary $\{u_t : t \in [0, 1]\} \subset M_k$ such that

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$tr \circ \phi(h) \ge \Delta(\hat{h})$$
 for all $h \in \mathcal{H}$,
 $\|\phi(g)v - v\phi(g)\| < \delta$ for all $g \in \mathcal{G}$ and $\operatorname{Bott}(\phi, v)|_{\mathcal{P}} = \{0\}$,

then there exists a continuous path of unitary $\{u_t : t \in [0, 1]\} \subset M_k$ such that

$$u_0 = v, \ u_1 = 1, \ \text{and} \ \|\phi(f)u_t - u_t\phi(f)\| < \epsilon$$
 (e0.73)

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$\begin{aligned} &tr \circ \phi(h) \geq \Delta(\hat{h}) \ \ \text{for all} \ \ h \in \mathcal{H}, \\ &\|\phi(g)v - v\phi(g)\| < \delta \ \ \text{for all} \ \ g \in \mathcal{G} \ \ \text{and} \ \ \mathrm{Bott}(\phi, v)|_{\mathcal{P}} = \{0\}, \end{aligned}$$

then there exists a continuous path of unitary $\{u_t : t \in [0, 1]\} \subset M_k$ such that

$$u_0 = v, \ u_1 = 1, \ \text{and} \ \|\phi(f)u_t - u_t\phi(f)\| < \epsilon$$
 (e0.73)

for all $t \in [0,1]$ and $f \in \mathcal{F}$.

Let $A = PM_r(C(X))P$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, there exists a finite subset $\mathcal{H} \subset A^1_+ \setminus \{0\}, \ \delta > 0$, a finite subset $\mathcal{G} \subset A$ and a finite subset $\mathcal{P} \subset \underline{K}(A)$ satisfying the following: For any unital \mathcal{G} - δ -multiplicative contractive completely positive linear map $\phi : A \to M_k$ (for some integer $k \geq 1$) and any unitary $v \in M_k$ such that

$$\begin{aligned} &tr \circ \phi(h) \geq \Delta(\hat{h}) \ \ \text{for all} \ \ h \in \mathcal{H}, \\ &\|\phi(g)v - v\phi(g)\| < \delta \ \ \text{for all} \ \ g \in \mathcal{G} \ \ \text{and} \ \ \mathrm{Bott}(\phi, v)|_{\mathcal{P}} = \{0\}, \end{aligned}$$

then there exists a continuous path of unitary $\{u_t : t \in [0, 1]\} \subset M_k$ such that

$$u_0 = v, \ u_1 = 1, \ \text{and} \ \|\phi(f)u_t - u_t\phi(f)\| < \epsilon$$
 (e0.73)

for all $t \in [0,1]$ and $f \in \mathcal{F}$. Moreover,

$$length(\{u_t\}) \le 2\pi + \epsilon.$$
 (e0.74)

Definition

Let A be a unital C*-algebra with $T(A) \neq \emptyset$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \rightarrow (0,1)$ be a non-decreasing map. Suppose that $\tau_m : C(\mathbb{T}) \rightarrow \mathbb{C}$ is the tracial state given by the normalized Lesbegue measure. Define $\Delta_1 : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \rightarrow (0,1)$ by

$$\Delta_1(\hat{h}) = \sup\{\frac{\Delta(h_1)\tau_m(h_2)}{4}: \hat{h} \ge \widehat{h_1 \otimes h_2} \text{ and}$$

Definition

Let A be a unital C*-algebra with $T(A) \neq \emptyset$ and let $\Delta : A^{q,1}_+ \setminus \{0\} \to (0,1)$ be a non-decreasing map. Suppose that $\tau_m : C(\mathbb{T}) \to \mathbb{C}$ is the tracial state given by the normalized Lesbegue measure. Define $\Delta_1 : (A \otimes C(\mathbb{T}))^{q,1}_+ \setminus \{0\} \to (0,1)$ by

$$\Delta_1(\hat{h}) = \sup\{\frac{\Delta(h_1)\tau_m(h_2)}{4} : \hat{h} \ge \widehat{h_1 \otimes h_2} \text{ and} \\ h_1 \in \mathcal{A}_+ \setminus \{0\}, \ h_2 \in \mathcal{C}(\mathbb{T})_+ \setminus \{0\}\}.$$
 (e0.75)

Let Δ_1 be as above.

Let Δ_1 be as above. We will apply 3.2 and 3.4.

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset \mathcal{A}_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset \mathcal{C}(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets,

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset \mathcal{A}_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset \mathcal{C}(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset \mathcal{A}$ (in place of \mathcal{G}) be a finite subset,

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2**

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 .

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2)

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset,

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset,

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**.
Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4.** for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 .

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$ and let $\delta = \min\{\delta_2, \epsilon/16\}$.

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$ and let $\delta = \min\{\delta_2, \epsilon/16\}$. Let $\mathcal{H} = \mathcal{H}_1$.

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$ and let $\delta = \min\{\delta_2, \epsilon/16\}$. Let $\mathcal{H} = \mathcal{H}_1$.

Now suppose that $\phi : A \to M_k$ is a unital δ -*G*-multiplicative contractive completely positive linear map

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$ and let $\delta = \min\{\delta_2, \epsilon/16\}$. Let $\mathcal{H} = \mathcal{H}_1$.

Now suppose that $\phi : A \to M_k$ is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map and $u \in M_k$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P} .

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$ and let $\delta = \min\{\delta_2, \epsilon/16\}$. Let $\mathcal{H} = \mathcal{H}_1$.

Now suppose that $\phi : A \to M_k$ is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map and $u \in M_k$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P} .

By applying **3.4** one obtains a continuous path of unitaries $\{u_t : t \in [0, 1/2]\} \subset M_k$

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$ and let $\delta = \min\{\delta_2, \epsilon/16\}$. Let $\mathcal{H} = \mathcal{H}_1$.

Now suppose that $\phi : A \to M_k$ is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map and $u \in M_k$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P} .

By applying **3.4** one obtains a continuous path of unitaries $\{u_t : t \in [0, 1/2]\} \subset M_k$ such that

$$u_0 = u, \ u_1 = w, \ \|u_t \phi(g) - \phi(g)u_t\| < \min\{\delta_1, \epsilon/4\}$$
 (e0.76)

Let Δ_1 be as above. We will apply 3.2 and 3.4. Let $\mathcal{H}_1 \subset A_+^1 \setminus \{0\}$ and $\mathcal{H}_2 \subset C(\mathbb{T})_+^1 \setminus \{0\}$ be finite subsets, $\mathcal{G}_1 \subset A$ (in place of \mathcal{G}) be a finite subset, $\delta_1 > 0$ (in place of δ) and $\mathcal{P} \subset \underline{K}(A)$ be a finite subset required by **3.2** for $\epsilon/4$ (in place of ϵ), \mathcal{F} and Δ_1 . (This is for applying 3.2) Let $\mathcal{G}_2 \subset A$ (in place of \mathcal{G}) be a finite subset, $\mathcal{H}'_1 \subset A_+ \setminus \{0\}$ be a finite subset, $\delta_2 > 0$ (in place of δ) be required by **3.4**. for min $\{\epsilon/16, \delta_1/2\}$ (in place of ϵ), $\mathcal{G}_1 \cup \mathcal{F}$ (in place of \mathcal{F}) and \mathcal{H}_1 and \mathcal{H}_2 . (This preparation for applying 3.4).

Let $\mathcal{G} = \mathcal{G}_2 \cup \mathcal{G}_1 \subset \mathcal{F}$ and let $\delta = \min\{\delta_2, \epsilon/16\}$. Let $\mathcal{H} = \mathcal{H}_1$.

Now suppose that $\phi : A \to M_k$ is a unital δ - \mathcal{G} -multiplicative contractive completely positive linear map and $u \in M_k$ is a unitary which satisfy the assumption for the above $\mathcal{H}, \delta, \mathcal{G}$ and \mathcal{P} .

By applying **3.4** one obtains a continuous path of unitaries $\{u_t : t \in [0, 1/2]\} \subset M_k$ such that

$$u_0 = u, \ u_1 = w, \ \|u_t \phi(g) - \phi(g)u_t\| < \min\{\delta_1, \epsilon/4\}$$
 (e0.76)

for all $g \in \mathcal{G}_1 \cup \mathcal{F}$ and $t \in [0, 1/2]$.

 $\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\}$ for all $g \in \mathcal{G}_1 \cup \mathcal{F}$, (e0.77)

$$\begin{aligned} \|L(g\otimes 1) - \phi(g)\| &< \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \qquad (e0.77) \\ \|L(1\otimes z) - w\| &< \min\{\delta_1, \epsilon/4\} \qquad (e0.78) \end{aligned}$$

$$\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\}$$
 for all $g \in \mathcal{G}_1 \cup \mathcal{F}$, (e0.77)

$$\|L(1\otimes z) - w\| < \min\{\delta_1, \epsilon/4\}$$
 (e0.78)

and
$$\operatorname{tr} \circ L(h_1 \otimes h_2) \ge \Delta(h_1) \tau_m(h_2)/4$$
 (e0.79)

$$\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\}$$
 for all $g \in \mathcal{G}_1 \cup \mathcal{F}$, (e0.77)

$$\|L(1\otimes z) - w\| < \min\{\delta_1, \epsilon/4\}$$
 (e0.78)

and
$$\operatorname{tr} \circ L(h_1 \otimes h_2) \ge \Delta(h_1) \tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$

$$\|L(g\otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\}$$
 for all $g \in \mathcal{G}_1 \cup \mathcal{F},$ (e0.77)

$$\|L(1\otimes z) - w\| < \min\{\delta_1, \epsilon/4\}$$
 (e0.78)

and tr
$$\circ L(h_1 \otimes h_2) \ge \Delta(h_1) \tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$.

$$\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \qquad (e0.77)$$

$$\|L(1\otimes z) - w\| < \min\{\delta_1, \epsilon/4\}$$
 (e0.78)

and tr
$$\circ L(h_1 \otimes h_2) \ge \Delta(h_1)\tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$. Furthermore,

$$length(\{u_t : t \in [0, 1/2]\}) \le \pi + \epsilon/4.$$
 (e0.80)

$$\begin{aligned} \|L(g\otimes 1) - \phi(g)\| &< \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \\ \|L(1\otimes z) - w\| &< \min\{\delta_1, \epsilon/4\} \end{aligned} (e0.77)$$

and
$$\operatorname{tr} \circ L(h_1 \otimes h_2) \ge \Delta(h_1) \tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$. Furthermore,

$$length(\{u_t : t \in [0, 1/2]\}) \le \pi + \epsilon/4.$$
 (e0.80)

Note that

$$[L]|_{\beta(\mathcal{P})} = \operatorname{Bott}(\phi, w)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)|_{\mathcal{P}} = 0.$$
 (e0.81)

$$\begin{aligned} \|L(g\otimes 1) - \phi(g)\| &< \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \qquad (e0.77) \\ \|L(1\otimes z) - w\| &< \min\{\delta_1, \epsilon/4\} \qquad (e0.78) \end{aligned}$$

and
$$\operatorname{tr} \circ L(h_1 \otimes h_2) \ge \Delta(h_1) \tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$. Furthermore,

$$length(\{u_t : t \in [0, 1/2]\}) \le \pi + \epsilon/4.$$
 (e0.80)

Note that

$$[\mathcal{L}]|_{\beta(\mathcal{P})} = \operatorname{Bott}(\phi, w)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)|_{\mathcal{P}} = 0.$$
 (e0.81)

By (e0.77), (e0.78), (e0.81) and (e0.79), applying 3.2,

$$\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \quad (e0.77)$$

and tr
$$\circ L(h_1 \otimes h_2) > \Delta(h_1)\tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$. Furthermore,

$$length(\{u_t : t \in [0, 1/2]\}) \le \pi + \epsilon/4.$$
 (e0.80)

Note that

$$[\mathcal{L}]|_{\beta(\mathcal{P})} = \operatorname{Bott}(\phi, w)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)|_{\mathcal{P}} = 0.$$
 (e0.81)

By (e0.77), (e0.78), (e0.81) and (e0.79), applying **3.2**, there is a continuous path of unitaries $\{u_t \in [1/2, 1]\} \subset M_k$

$$\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \quad (e0.77)$$

and tr
$$\circ L(h_1 \otimes h_2) \ge \Delta(h_1)\tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$. Furthermore,

$$length(\{u_t : t \in [0, 1/2]\}) \le \pi + \epsilon/4.$$
 (e0.80)

Note that

$$[\mathcal{L}]|_{\beta(\mathcal{P})} = \operatorname{Bott}(\phi, w)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)|_{\mathcal{P}} = 0.$$
 (e0.81)

By (e0.77), (e0.78), (e0.81) and (e0.79), applying **3.2**, there is a continuous path of unitaries $\{u_t \in [1/2, 1]\} \subset M_k$ such that

$$u_{1/2} = w, \ u_1 = 1,$$

$$\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \quad (e0.77)$$

and tr
$$\circ L(h_1 \otimes h_2) \ge \Delta(h_1)\tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$. Furthermore,

$$length(\{u_t : t \in [0, 1/2]\}) \le \pi + \epsilon/4.$$
 (e0.80)

Note that

$$[\mathcal{L}]|_{\beta(\mathcal{P})} = \operatorname{Bott}(\phi, w)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)|_{\mathcal{P}} = 0.$$
 (e0.81)

By (e0.77), (e0.78), (e0.81) and (e0.79), applying **3.2**, there is a continuous path of unitaries $\{u_t \in [1/2, 1]\} \subset M_k$ such that

$$u_{1/2} = w, \ u_1 = 1, \ \|u_t \phi(f) - \phi(f)u_t\| < \epsilon/4 \text{ for all } f \in \mathcal{F} \ (e0.82)$$

$$\|L(g \otimes 1) - \phi(g)\| < \min\{\delta_1, \epsilon/4\} \text{ for all } g \in \mathcal{G}_1 \cup \mathcal{F}, \quad (e0.77)$$

and tr
$$\circ L(h_1 \otimes h_2) \ge \Delta(h_1)\tau_m(h_2)/4$$
 (e0.79)

for all $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$. Furthermore,

$$length(\{u_t : t \in [0, 1/2]\}) \le \pi + \epsilon/4.$$
 (e0.80)

Note that

$$[\mathcal{L}]|_{\beta(\mathcal{P})} = \operatorname{Bott}(\phi, w)|_{\mathcal{P}} = \operatorname{Bott}(\phi, u)|_{\mathcal{P}} = 0.$$
 (e0.81)

By (e0.77), (e0.78), (e0.81) and (e0.79), applying **3.2**, there is a continuous path of unitaries $\{u_t \in [1/2, 1]\} \subset M_k$ such that

$$u_{1/2} = w, \ u_1 = 1, \ \|u_t \phi(f) - \phi(f) u_t\| < \epsilon/4 \text{ for all } f \in \mathcal{F} \ (e0.82)$$

and $\operatorname{length}(\{u_t : t \in [1/2, 1]\}) \le \pi + \epsilon/4 \ (e0.83)$

Therefore $\{u_t : t \in [0,1]\} \subset M_k$

Therefore $\{u_t : t \in [0,1]\} \subset M_k$ is a continuous path of unitaries in M_k with $u_0 = u$ and $u_1 = 1$

Therefore $\{u_t : t \in [0,1]\} \subset M_k$ is a continuous path of unitaries in M_k with $u_0 = u$ and $u_1 = 1$ such that

$$\|u_t\phi(f) - \phi(f)u_t\| < \epsilon \text{ for all } f \in \mathcal{F}$$
 (e0.84)

Therefore $\{u_t : t \in [0,1]\} \subset M_k$ is a continuous path of unitaries in M_k with $u_0 = u$ and $u_1 = 1$ such that

$$\|u_t\phi(f) - \phi(f)u_t\| < \epsilon \text{ for all } f \in \mathcal{F}$$
 (e0.84)

and
$$length(\{u_t : t \in [0,1]\}) \le 2\pi + \epsilon.$$
 (e0.85)

(Loring) Let $\epsilon > 0$.

(Loring) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following:

(Loring) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For any pair of unitaries $u, v \in M_n$ (for any $n \ge 1$)

(Loring) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For any pair of unitaries $u, v \in M_n$ (for any $n \ge 1$) with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

(Loring) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For any pair of unitaries $u, v \in M_n$ (for any $n \ge 1$) with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

(Loring) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For any pair of unitaries $u, v \in M_n$ (for any $n \ge 1$) with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

 $u(0) = u, u(1) = 1_A$ and

(Loring) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For any pair of unitaries $u, v \in M_n$ (for any $n \ge 1$) with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

u(0) = u, $u(1) = 1_A$ and $||[u(t)v - vu(t)|| < \epsilon$ for all $t \in [0, 1]$.

(Loring) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For any pair of unitaries $u, v \in M_n$ (for any $n \ge 1$) with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

$$u(0) = u$$
, $u(1) = 1_A$ and $||[u(t)v - vu(t)|| < \epsilon$ for all $t \in [0, 1]$.

Moreover,

$$\operatorname{length}({u(t)}) \leq \pi + \epsilon.$$

(Lin 2009) Let $\epsilon > 0$.
(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following:

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C*-algebra A of stable rank one and real rank zero with $K_1(A) = 0$,

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_1(A) = 0$, any pair of unitaries $u, v \in A$

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_1(A) = 0$, any pair of unitaries $u, v \in A$ with

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_1(A) = 0$, any pair of unitaries $u, v \in A$ with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_1(A) = 0$, any pair of unitaries $u, v \in A$ with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_1(A) = 0$, any pair of unitaries $u, v \in A$ with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

 $u(0) = u, u(1) = 1_A$ and

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_1(A) = 0$, any pair of unitaries $u, v \in A$ with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

 $u(0) = u, \ u(1) = 1_A \text{ and } \|[u(t)v - vu(t)\| < \epsilon \text{ for all } t \in [0,1].$

(Lin 2009) Let $\epsilon > 0$. There exists $\delta > 0$ satisfying the following: For or any unital simple separable simple C^{*}-algebra A of stable rank one and real rank zero with $K_1(A) = 0$, any pair of unitaries $u, v \in A$ with

 $\|[u, v]\| < \delta$ and $bott_1(u, v) = 0$,

then there exists a continuous path of unitaries $\{u(t) : t \in [0,1]\} \subset A$ such that

$$u(0) = u$$
, $u(1) = 1_A$ and $||[u(t)v - vu(t)|| < \epsilon$ for all $t \in [0, 1]$.

Moreover,

$$\operatorname{length}(\{u(t)\}) \leq \pi + \epsilon.$$