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Abstract

We examine global dynamics under infinite-horizon learning in

New Keynesian models where the interest-rate rule is subject to the

zero lower bound. The intended steady state is locally but not glob-

ally stable. Unstable deflationary paths emerge after large pessimistic

shocks to expectations. For large expectation shocks that push interest

rates to the zero bound, a temporary fiscal stimulus, or in some cases

a policy of fiscal austerity, will insulate the economy from deflation

traps if the policy is appropriately tailored in magnitude and dura-

tion. A fiscal stimulus “switching rule,” which automatically kicks in

without discretionary fine-tuning, can be equally effective.
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1 Introduction

The recent financial crisis and the subsequent adverse macroeconomic devel-

opments in advanced market economies have focused the analysis of macro-

economic outcomes on low rates of inflation and low levels of aggregate eco-

nomic activity. Worries have emerged that, in the absence of strong policy

interventions, the economy might be driven into a deflationary trap and de-

flationary expectations. Bullard (2010) has stressed the risk of extended

periods of deflation, sometimes called a liquidity trap. The Japanese econ-

omy seems to have been plagued by such a liquidity trap for nearly two

decades.1 In macroeconomic research these developments have motivated

work that has focused on the possibility of multiple equilibria due to the

zero interest rate lower bound (ZLB) under standard monetary policy rules,

like the Taylor rule. See for example Reifschneider and Williams (2000),

Benhabib, Schmitt-Grohe, and Uribe (2001), Benhabib, Schmitt-Grohe, and

Uribe (2002), Eggertsson and Woodford (2003), and the more recent work

by Werning (2012) and Mertens and Ravn (2014).

This recent literature has explored new types of monetary and/or fiscal

policies that can avoid or escape persistent deflationary outcomes. Such poli-

cies are based on models that strongly rely on the rational expectations hy-

pothesis: Proposed policies make use of announcements, promises or threats

about future policy actions and outcomes, such as policy induced violations

of the transversality conditions in order to avoid falling into the liquidity

trap. Some of these ideas - especially forward guidance in monetary policy

- are now used in actual policy making, e.g. see Bernanke (2012). Others

suggest suitably “irresponsible” fiscal or monetary policies (see e.g. Krug-

man (1998), Chapter 2.4 of Woodford (2003) and Benhabib, Schmitt-Grohe,

and Uribe (2002)), which are controversial as their credibility may be ques-

tionable. More recently, a number of papers have examined the efficacy of

standard fiscal policies, i.e. changes in taxes and/or government spending,

when monetary policy is constrained at the zero lower bound. Christiano,

Eichenbaum, and Rebelo (2011), Woodford (2011), Eggertsson (2010) and

Braun, Korber, and Waki (2012) assume rational expectations and also that

the economy is pushed to the zero lower bound as a result of a sustained ex-

ogenous negative preference shock, modeled as a two-state Markov process,

1See Krugman (1998), Eggertsson and Woodford (2003), and Svensson (2003) for the

renewed interest in the liquidity trap sparked by the recent Japanese experience.
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with an absorbing value at the normal level, and which therefore disappears

in finite time. In our view this perspective does not do justice to the view of

expectations as having an independent role in macroeconomic dynamics.

Christiano and Eichenbaum (2012) and Mertens and Ravn (2014) both

consider sunspot equilibria, again taking the form of a two-state Markov

process, with the normal outcome as an absorbing state. These papers do

consider aspects of expectations formation and learning. The former pa-

per uses learning as a selection device to rule out the sunspot equilibrium.

The latter paper concedes the instability of the sunspot equilibrium under

learning, but looks at the impact of fiscal policy on the learning paths to

the absorbing state leading to the targeted steady state. Christiano and

Eichenbaum (2012) and Mertens and Ravn (2014) both use short-horizon

learning based on Euler equations, along lines introduced in Evans, Guse,

and Honkapohja (2008). In the current paper we use infinite-horizon learn-

ing in which agents’ decisions are based on forecasts of inflation and output

over the entire future.

We instead consider situations in which, due to some dramatic adverse

shock to expectations, the economy is in a region in which expectations are

in, or with unchanged policy will enter, the deflation trap region in which

adaptive learning reinforces pessimistic expectations. We consider how to

avoid this trap, characterized by low output and persistent deflation, by

focusing on traditional fiscal policies involving government spending on goods

and services, i.e. policies of fiscal stimulus or austerity. We also retain the

usual monetary policy of the Taylor interest rate rule that assures the local

stability of the economy at the targeted inflation rate.2

We consider two types of fiscal policies. The first type is an announced

increase or cut in government spending on goods that is tuned to the current

macroeconomic situation. Following Evans, Honkapohja, and Mitra (2009)

agents are assumed to build into their decision-making the announced path

of government spending. We show that a properly tuned fiscal stimulus is

effective. With the stimulus policy in place, the economy can escape from

the liquidity trap. Surprisingly, in some conditions suitably designed fiscal

austerity can also move the economy out of a liquidity trap. The second

type of successful fiscal policy is instead rule-based, so that an appropriate

increase in government spending is triggered if actual inflation or inflation

2We do not consider other more complex monetary policies that have been used in the

literature on current crisis to address the problems in the functioning of financial markets.
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expectations go below a pre-specified lower threshold for the rate of inflation.

Our analysis relies on the assumption that private agents form their ex-

pectations using adaptive learning.3 4 In other words, in making forecasts

agents act like econometricians who have a forecasting model that in any pe-

riod is estimated using existing data, and updated as new data becomes avail-

able. The state of the economy in any time period is viewed as a temporary

equilibrium for given expectations while the learning process is a sequence

of temporary equilibria that can converge to rational expectations equilib-

rium. We explore policies designed to avoid and escape the ZLB in New

Keynesian (NK) models with agents who form expectations using adaptive

learning rules. We focus on NK models because, from the policy viewpoint

the problem with deflation has been associated with declining output, high

unemployment and/or stagnation.5 For some policies the announcements of

a sequence of policy moves are a key part of policy. Using the techniques in

Evans, Honkapohja, and Mitra (2009) these announcements are assumed to

be credible and are thus incorporated into agents’ forecasting.

Analytically, the multiple equilibria problem means that, in addition to

the targeted steady state at the (gross) inflation rate  = ∗ ≥ 1, there is
a low-inflation unintended steady state. If the (gross) interest rate is at or

near the lower bound  = 1, then by the Fisher equation  =  there is

a second, lower, steady state  near , where   1 is the discount factor.

It turns out that under learning dynamics a persistent deflation trap with

 ≤  is possible when policy is described by the usual Taylor rule and

constant fiscal policy.

The intuition for the deflation trap under learning is that if expected

inflation and expected output are below the values corresponding to the low

steady state at , then aggregate demand will be low because the expected

deflation implies high ex-ante real interest rates values. The high real interest

3For discussion and analytical results concerning adaptive learning in a wide range of

macroeconomic models, see for example Sargent (1993), Evans and Honkapohja (2001),

Sargent (2008), and Evans and Honkapohja (2009). For empirical work on learning, see

Milani (2007), Milani (2011), Eusepi and Preston (2011), Slobodyan and Wouters (2012),

and as an overview Section 3 of Evans and Honkapohja (2013).
4Recently, there has been increasing interest in relaxing the rational expectations hy-

pothesis in the context of macroeconomic policy analysis, see e.g. Taylor and Williams

(2010) and Woodford (2013).
5Consequences of the interest rate zero lower bound and the liquidity trap under adap-

tive learning have earlier been studied in Evans and Honkapohja (2005), Evans, Guse, and

Honkapohja (2008) and Evans and Honkapohja (2010).
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rates, especially if combined with low expected output, lead to low actual

levels of aggregate output and to actual inflation below expected inflation.

Under adaptive learning expectations are revised further downward, pushing

the economy deeper into the deflation trap.

The lack of rational expectations can give scope for wealth effects, like the

traditional Pigou effect, as a stabilizing mechanism. Can wealth effects en-

sure an eventual return to the steady state? The answer depends on specific

aspects of the private agents’ expectations. Evans and Honkapohja (2010)

find deflation traps when agents forecast over the infinite future and perceive

that the transversality condition (TVC) is always met along these disequi-

librium paths. Such consumers are called “Ricardian,” in that they do not

perceive bonds and money as net wealth.6 What about the direct wealth

effects of real money and bonds when households are non-Ricardian? Would

such wealth effects be effective in avoiding deflation traps if households do

not have Ricardian consumption functions? We investigate this issue and

find that wealth effects can eventually return the economy to the ∗ steady
state, but that these mechanisms can be slow, and fail in some cases.7

Our main focus is on fiscal policies. As indicated above, we first consider

policies that implement a temporary fiscal stimulus in the form of govern-

ment spending, or its converse, a policy of temporary fiscal austerity, under

the assumption that future taxes adjust to keep the government solvent in

the long-run. We show that a fiscal stimulus can be effective, i.e. deliver

convergence of the economy to the targeted steady state, if its magnitude is

sufficient and its duration is sufficiently short. Interestingly, a policy of fiscal

austerity, i.e. a temporary cut in government spending can also be effective.

This requires, however, the fiscal austerity period to be sufficiently long, and

the degree of initial pessimism in expectations to be relatively mild.

One disadvantage of fiscal stimulus and fiscal austerity policies is that

both their magnitude and duration have to be tailored to the initial pes-

simistic expectations, so they require precise discretionary action. A second

more automatic fiscal policy, a fiscal stimulus“switching rule,” can also en-

sure a return to the intended steady state ∗. This policy eliminates the

6In Evans, Honkapohja, and Mitra (2012) it was shown that when expectations are not

fully rational, Ricardian equivalence may or may not hold, depending in particular on the

assumptions concerning the influence of government financial variables on expectations.
7Another mechanism that can prevent a deflationary spiral is a lower bound  on

inflation due to asymmetric costs of price adjustment. However, it still can lead to falling

output, to stagnation, or to a very slow return to the ∗ steady state. See Appendix 2.
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unintended steady state and guarantees that the economy does not get stuck

in a regime of deflation and stagnation. A significant advantage of this rule

is that it is triggered automatically and does not require discretionary fiscal

fine tuning.

2 The Model

We start with the same basic economic framework as in Evans, Guse, and

Honkapohja (2008). There is a continuum of household-firms, which produce

a differentiated consumption good under monopolistic competition and price-

adjustment costs. There is also a government which uses both monetary and

fiscal policy and can issue public debt as described below.

The objective for agent  is to maximize expected, discounted utility

subject to a standard flow budget constraint:

 0

∞X
=0



µ


−1


 


−1
− 1
¶

(1)

  + +  +Υ = −1
−1
 +−1

−1
 −1 +





 (2)

where  is the Dixit-Stiglitz consumption aggregator,  and  denote

nominal and real money balances,  is the labor input into production,

 denotes the real quantity of risk-free one-period nominal bonds held by

the agent at the end of period , Υ is the lump-sum tax collected by the

government, −1 is the nominal interest rate factor between periods −1 and
,  is the price of consumption good ,  is output of good ,  is the

aggregate price level, and the inflation rate is  = −1. The subjective
discount factor is denoted by . The utility function has the parametric form

 =
1−1

1− 1
+



1− 2

µ
−1


¶1−2
− 1+

1 + 
− 

2

µ


−1
− 1
¶2



where 1 2    0. The final term parameterizes the cost of adjusting

prices in the spirit of Rotemberg (1982).8 The household decision problem

is also subject to the usual “no Ponzi game” condition.

8We use the Rotemberg formulation in preference to the Calvo model of price stickiness

because it enables us to study global dynamics in the nonlinear system. See Ascari and

Rossi (2012) for a comparison of Rotemberg and Calvo models when there is trend inflation.
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Production function for good  is given by

 = 

where 0    1. Output is differentiated and firms operate under monopo-

listic competition. Each firm faces a downward-sloping demand curve given

by

 =

µ




¶−1
 (3)

Here  is the profit maximizing price set by firm  consistent with its

production . The parameter  is the elasticity of substitution between

two goods and is assumed to be greater than one.  is aggregate output,

which is exogenous to the firm.

The government’s flow budget constraint is

 + +Υ =  +−1
−1
 +−1

−1
 −1 (4)

where  denotes government consumption of the aggregate good,  is the

real quantity of government debt, and Υ is the real lump-sum tax collected.
9

We assume that fiscal policy follows a linear tax rule for lump-sum taxes as

in Leeper (1991)

Υ = 0 + −1 (5)

where we will usually assume that −1 − 1    1. This restriction on

 means that fiscal policy is “passive” in the terminology of Leeper (1991)

and implies that an increase in real government debt leads to an increase in

taxes sufficient to cover the increased interest and at least some fraction of

the increased principal.

Initially we assume that  is constant and given by

 = ̄ (6)

From market clearing we have

 +  =  (7)

Monetary policy is assumed to follow a global interest rate rule

 − 1 = 
¡
+1 


+1

¢
 (8)

9Some of the literature cited above allows for labor income taxes. This could be intro-

duced in our set-up but would complicate our model.
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The function ( ) is taken to be positive and non-decreasing in each ar-

gument. The rule (8) is a nonlinear forward-looking Taylor rule, where the

nominal rate is set by the central bank as a function of expected inflation

and expected output.10 We assume the existence of ∗ ∗ and ∗ such that
∗ = −1∗ and (∗ ∗) = ∗ − 1. Here ∗ can be viewed as the inflation
target of the Central Bank, and ∗ is the natural rate of output, i.e. the level
of output compatible with steady state inflation ∗We assume that ∗ ≥ 1.
In the numerical analysis we will use the functional form

( ) = (∗ − 1)
³ 

∗

´∗(∗−1)µ 

∗

¶

 (9)

which implies the existence of a steady state at (∗ ∗). Using∗ = ∗−1we
obtain ∗(

∗ ∗) = ∗∗ = −1 We assume that   1. Equations

(6), (5) and (8) constitute “normal policy”.

2.1 Optimal decisions for private sector

In Appendix 1 we derive the following optimality conditions for the consumer-

producer:

0 = − +



( − 1) 1


(10)

+

µ
1− 1



¶

1



(1−1)



−1 −





1


(+1 − 1)+1

−1 = 

¡
−1+1

−1
+1

¢
(11)

and

 = ()
12

Ã¡
1−−1

¢
−1


2−1
+1

!−12
 (12)

where +1 = +1.

For convenience we make the assumptions 1 = 2 = 1, i.e. utility of

consumption and of money is logarithmic. It is also assumed that agents

have point expectations, so that their decisions depend only on the mean of

their subjective forecasts.

10The main results below would also hold in the case of a contemporaneous-data Taylor

rule, which is used in Evans, Guse, and Honkapohja (2008).
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We now proceed to rewrite the decision rules for  and  so that they

depend on forecasts of key variables over the infinite horizon. The infinite-

horizon (IH) learning approach in New Keynesian models was first empha-

sized by Preston (2005) and Preston (2006), and was used in Evans and

Honkapohja (2010) to study the properties of a liquidity trap.11

2.2 The infinite-horizon Phillips curve

Defining

 = ( − 1) (13)

the price-setting Euler equation (10) becomes

0 = − +





1



+

µ
1− 1



¶

1



(1−1)



−1 −





1


+1

Using the production function  =  we get

 =




(1+)
 −  − 1



1
 

(−1)
 −1 + +1

and using the demand curve  = ()
− gives

 =



()

−(1+) (1+)
 − − 1


()

−(−1)−1 ++1

It is shown in Appendix 1 that the necessary TVC for optimal price

setting implies the condition

lim
→∞

 = 0 (14)

Defining

 ≡ 


()

−(1+) (1+)
 −  − 1


()

−(−1)−1 

11In the literature on learning and bounded rationality it is often assumed that agents

have a short (one-period) decision horizon. Then Euler equations provide directly the

relevant decision rules. Evans, Guse, and Honkapohja (2008) applies the Euler-equation

approach to the analysis of liquidity traps.
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iterating the Euler equation yields

 =  +

∞X
=1

+ (15)

by using the limit condition + → 0 as  →∞. This last condition is
implied by (14). We remark that the variable + is a mixture of aggregate

variables and the agent’s own future decisions.

At this point there are alternative ways to proceed. One approach em-

phasized by Eusepi and Preston (2010) is to assume that agents choose 

as part of the optimal plan given expectations about the future values of

variables that are exogenous to them.12 We take a different approach mo-

tivated by the agents’ knowledge of observed empirical relationships that

hold in temporary equilibrium. It is assumed that at time  agents fore-

cast aggregate inflation + and aggregate output + using an adaptive

learning rule that is discussed below. In addition, we make some further

adaptive learning assumptions that involve their own future decisions and

expected future aggregate variables. In particular, agents are assumed to

have learned from experience that, in temporary equilibrium, it is always the

case that  = 1 and also  =  −  in per capita terms. These two

relationships necessarily hold in temporary equilibrium because agents have

been assumed to be identical (though agents themselves do not need to know

this). Therefore, we assume that agents impose these relationships in their

forecasts in (15), i.e. they set (++)
 = 1 and + =  

+ − +
for  ≥ 1. In the case of no policy change the latter assumption becomes
+ =  

+ − ̄.

Recalling the assumptions of point expectations and log utility of con-

sumption gives

 =  +

∞X
=1

+, where

+ =




¡
 
+

¢(1+) −  − 1


 
+(


+ − ̄)−1

Finally, assuming homogeneous expectations and imposing symmetry, i.e.

all agents are in identical situations so that  =  = ,  =  and in

12To implement this approach they linearize the model around the intended steady state.
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addition −1 = −1 for all  (note that  = ()(−1−1) so
that  = , and  = ), we obtain

 =




(1+)
 −  − 1


( − ̄)−1 + (16)





∞X
=1

−1
¡
+

¢(1+) −  − 1


∞X
=1


µ

+

+ − ̄

¶


which defines the temporary equilibrium value for . In order to have a

monotonic relationship between  and , the appropriate root for given 

is  ≥ 1
2
and so we need to impose  ≥ −1

4
to have a meaningful model. We

will treat (16), together with (13), as the temporary equilibrium equations

that determine  given expectations {+}∞=1. Later, we will consider a case
where  varies over time and then + − ̄ becomes + = (+ − +)



in equation (16).

2.3 The consumption function

To derive the consumption function using the IH-learning approach, the first

step is to use the flow budget constraint and the NPG (no Ponzi game) to

obtain an intertemporal budget constraint. First, we define the asset wealth

 =  +

as the sum of holdings of real bonds and real money balances and write the

flow budget constraint as

 +  =  −Υ + −1 + −1 (1−−1)−1 (17)

where  = −1. Note that we assume () = , i.e. the rep-

resentative agent assumption is being invoked. Iterating (17) forward and

imposing

lim
→∞

(
+)

−1+ = 0 (18)

where


+ =

Y
=1

+

11



with + = +−1+, we obtain the life-time budget constraint of the
household

0 = −1 + Φ +

∞X
=1

(
+)

−1Φ
+ (19)

0 = −1 +  −  +

∞X
=1

(
+)

−1(+ − +) (20)

where

Φ
+ = + −Υ

+ − + + (

+)

−1(1−
+−1)


+−1 or (21)

+ = Φ
+ + + = + −Υ

+ + (

+)

−1(1−
+−1)


+−1

Here all expectations are formed in period , which is indicated in the notation

for 
+ but is omitted from the other expectational variables.

From the consumer’s perspective equation (18) is related to the transver-

sality condition requiring the discounted value of assets  to go to 0 as

→∞. Some earlier papers (see Chapter 2.4 of Woodford (2003) and Ben-
habib, Schmitt-Grohe, and Uribe (2002)) explore commitments to combina-

tions of fiscal and monetary policies that rule out paths that satisfy Euler

equations but that do not converge to the targeted steady state as possible

equilibria because they violate the consumers’ transversality conditions. Our

approach is different. We use fiscal policies involving government spending on

goods and services to directly affect aggregate expenditures. In our adaptive

learning context these policies generate inflation and interest rate trajectories

that exclude paths where inflation falls below a specified threshold, and in

particular they can avoid deflationary paths.

Returning to optimization of consumption we have

−1 = +1(

+1)

−1, where +1 = 

+1, and (22)

under the assumption of a representative agents and identical expectations.

The consumption Euler equation (22) implies the relations

+ = 


+ (23)

and we obtain

(1−)−1 = −1+−Υ+
−1(1−−1)−1+

∞X
=1

(
+)

−1+ (24)
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As + = + −Υ
+ +(


+)

−1(1−
+−1)


+−1, the final term in (24) is

∞X
=1

(
+)

−1(+ −Υ
+) +

∞X
=1

(
+)

−1(+)
−1(1−

+−1)

+−1

and using (12) with the representative agent assumption we have

∞X
=1

(
+)

−1(+)
−1(1−

+−1)

+−1

=

∞X
=1

(
+)

−1(+)
−1(−

+−1

+−1) = −



1− 


and so


1 + 

1− 
= −1 +

−1


+  −Υ +

∞X
=1

(
+)

−1(+ −Υ
+)

Finally, we invoke the flow budget identity ++Υ− = −1
−1
 +−1,

see (4), and obtain the consumption function



∙
1 + 

1− 
− 



 − 1
¸
=  +  −  +

∞X
=1

(
+)

−1(+) (25)

where + = + −Υ
+.

The derivation of the consumption function (25) has assumed households

that do not act in a Ricardian way, i.e. they do not impose the intertemporal

budget constraint (IBC) of the government. We next turn to the case of

Ricardian consumers.

2.4 The Case of Ricardian Consumers

For Ricardian consumers we modify the consumption function as in Evans

and Honkapohja (2010).13 From (4) one has

 + +Υ =  +−1
−1
 + −1 or

 = ∆ + −1 where

∆ =  −Υ − +−1
−1
 

13Evans, Honkapohja, and Mitra (2012) state the assumptions under which Ricardian

Equivalence holds along a path of temporary equilibria with learning if agents have an

infinite decision horizon.
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By forward substitution, and assuming

lim
→∞

+ + = 0 (26)

we get

0 = −1 +∆ +

∞X
=1

−1
+∆+ (27)

Note that ∆+ is the primary government deficit in + , measured as gov-

ernment purchases less lump-sum taxes and less seigniorage. Under the Ri-

cardian Equivalence assumption, we assume that agents at each time  expect

this constraint to be satisfied, i.e.

0 = −1 +∆ +

∞X
=1

(
+)

−1∆
+ where

∆
+ = + −Υ

+ −
+ +

+−1(

+)

−1 for  = 1 2 3    

A Ricardian consumer assumes that (26) holds. His flow budget con-

straint (17) can be written as:

 = −1 + , where

 =  −Υ − −  + −1 −1

The relevant transversality condition is now (26). Iterating forward and using

(23) together with (26) yields the consumption function

 = (1− )

Ã
 −  +

∞X
=1

(
+)

−1(+)

!
 (28)

where + = + − +. For more details see Evans and Honkapohja

(2010).

3 Temporary Equilibrium and Learning

3.1 Equilibrium Conditions

We now come to the formulation of learning (see footnote 3 for general ref-

erences on adaptive learning). In general, in adaptive learning it is assumed
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that each agent has a model for perceived dynamics of state variables, also

called the perceived law of motion (PLM), to make his forecasts of relevant

variables. In each period the PLM parameters have been estimated using

available data and the estimated model is used to compute forecasts. The

PLM parameters are then re-estimated when new data becomes available in

subsequent periods. A common formulation is to postulate that the PLM is

a linear regression model where endogenous variables depend on intercepts,

observed exogenous variables and possibly lags of endogenous variables. The

estimation would then be based on least squares or related methods. The re-

gression formulation cannot be applied here because there would asymptotic

perfect multicollinearity in the current non-stochastic setting.14 We therefore

assume that agents form expectations using so-called steady state learning,

which is formulated as follows.

Steady-state learning with point expectations is formalized as

+ =  for all  ≥ 1 and  = −1 + (−1 − −1) (29)

for  =    . Here  is called the “gain sequence,” and measures

the extent of adjustment of estimates to the most recent forecast error. In

stochastic systems one often sets  = −1 and this “decreasing gain” learning
corresponds to least-squares updating. Also widely used is the case  = ,

for 0   ≤ 1, called “constant gain” learning. In this case it is usually

assumed that  is small. Stability of the steady states is examined below

using the simple learning rules just described.

The temporary equilibrium equations with steady state learning are as

follows. In presenting them we must distinguish between the cases of Ricar-

dian and non-Ricardian consumers.

1. The aggregate demand relation. In the non-Ricardian case

 =  +
 +  −  +

X∞
=1
(

+)
−1

(1− )−1(1 + )− [ (  

 )]
−1[1 +  (  


 )]

=  +
 +  −  +  [1 +  (  


 )−  ]

−1
(1− )−1(1 + )− [ (  


 )]
−1[1 +  (  


 )]

≡  + (  

  


   ) (30)

14See Evans and Honkapohja (1998) or Section 7.2 of Evans and Honkapohja (2001) for

discussions of learning in deterministic and stochastic models.
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where we have assumed that agents know the interest rate rule.

For the case of Ricardian consumers this equation is replaced by  =

 + , where  is given by (28). This leads to equation (40), given in

the next section.

2. The nonlinear Phillips curve

 = −1[̃( 

+1 


+2)] (31)

≡ −1[( 

 )]

≡ 2( 

 )

where

() ≡ ( − 1) (32)

( 

 ) ≡





µ
−1(1+) − ¡1− −1

¢ 

( − )

¶
(33)

+




µ
(1− )−1

µ
−1( )

(1+) − ¡1− −1
¢ 


¶¶


and where until Section 4 we assume that  =  − ̄

3. Bond dynamics

 + =  −Υ +
−1


−1 +
−1


 (34)

4. Money demand

 = 


 − 1 (35)

5. Interest rate rule

 = 1 +  (  

 ) .

The state variables are −1, −1, and −1. The system in general has

four expectational variables: output  , inflation  , income net of taxes 



and net output  . In cases where government spending is constant we
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have  =  − ̄, so that it is not necessary to introduce expectations of

net output separately. The evolution of expectations is given by

 = −1 + (−1 − −1) (36)

 = −1 + (−1 − −1) (37)

 = −1 + (−1 − −1) (38)

 = −1 + (−1 − −1) (39)

where equation (38) is used only in cases when the households are Non-

Ricardian.

3.2 Dynamics under standard policies

3.2.1 The case with Ricardian consumers

We now consider the case where government spending is constant  = ̄.

In this case we can assume that + = + = + − ̄. For simplicity,

in this section we drop the dependence of the interest rate rule on expected

output so that  = 0 and  = 1+ () Using this and the steady-state

learning assumption in (28), the market-clearing equation  =  +  gives

the aggregate output equation

 = ̄ + (−1 − 1)( − ̄)

µ


1 + ()− 

¶
(40)

≡ 1(

  


)

The temporary equilibrium is now given by the Phillips curve (31), the out-

put equation with Ricardian consumption function (40) and the independent

equation for the evolution of debt and money. Note that the Ricardian sys-

tem just depends on expectations of output and inflation, so that the paths

of inflation and output do not depend on the evolution of bonds and real

balances. The (small gain) dynamics can therefore be described by the E-

stability differential equation using a two-dimensional phase diagram. (See

e.g. Evans and Honkapohja (2001) for a discussion of E-stability.)

The E-stability differential equations are given by




= 1(

 )−  (41)




= 2(

 )− 
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where using (31) we define 2(
 ) = 2(1(

 ) ). The steady state

equations for   and  are

 =  − ̄

−1+ + 


(1− ) ( − 1) + 

µ
1− 1



¶
−1 = 0

1 + () = −1

Steady states are defined by  = 1 + () together with the the Fisher

relationship  = −1. For   1 there are two steady states, (∗ ∗) and
( ) with   ∗. Local E-stability results for the Ricardian case are
given by Proposition 2 of Evans and Honkapohja (2010): the ∗ steady state
is locally stable under learning, while for small , the  steady state is

locally unstable under learning, with the local learning dynamics taking the

form of a saddle.15

One can also look at the global learning dynamics using a phase diagram

of system (41). The dynamics in the phase diagram approximate the discrete

real-time paths of steady state learning when the gain  is small. For typical

parameter values the learning dynamics are shown below in Figure 1. The

figure is constructed with the following parameter values  = 25, ∗ = 102,
 = 099,  = 07,  = 350,  = 21,  = 1, and  = 02. While  = 15 is the

usual value for the interest rate rule in the literature, we choose  = 25 to

clearly separate the intended and unintended steady states in the numerical

analysis (our results are robust to using  = 15).

The calibrations of the target inflation rate ∗ the discount factor  the
labor share  and the approximate GDP share of government spending, 

are standard. We set the labor supply elasticity  = 1. To calibrate ,

we exploit the relation of the Rotemberg and the Calvo models of costly and

sticky price adjustments via their reduced form implications for the linearized

Phillips curve. As shown by Keen and Wang (2007), using our notation we

can express  =
(−1)

(1−)(1−) where 1− is the fraction of firms changing their
price during the quarter. Following Basu and Fernald (1997) we calibrate

 = 21, implying a conservatively estimated 5% markup. To calibrate  we

use the estimate of Kehoe and Midrigan (2010), p. 8 for the frequency of

15Instability of the low inflation steady state under learning and the divergent paths were

earlier described in McCallum (2002), Eusepi (2007), and Evans, Guse, and Honkapohja

(2008). Bullard and Cho (2005) show the possibility of “escape paths” toward the low-

inflation outcome.

18



regular price changes from BLS data, excluding temporary changes in price

that quickly revert to their older trend level. Kehoe and Midrigan find this

frequency to be 145 months or 48 quarters, implying that the percentage of

firms not changing prices is during a quarter is  = 07916 Using the formula

above we obtain  ≈ 350 for our calibration. The literature contains a range
of estimates for the value of  and  and thus one could have alternative

calibrations to our model. Our qualitative results are robust to different

calibrations.

We also assume that interest rate expectations + = +−1+ re-
vert to the steady state value −1 for  ≥  . This truncation is needed for

technical reasons to prevent agents forecasting negative real interest rates

indefinitely, which would imply unbounded consumption. For the long run,

it is also plausible that consumers would make this assumption. In Figure 1

we use  = 28 which under a quarterly calibration corresponds to 7 years.16
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Figure 1: Global learning dynamics — the Ricardian case.

The main features that stand out are, first, the local stability of the tar-

geted steady state at (∗ ∗) ≈ (102 09440). There is in fact a “corridor
of stability” defined by a set of initial expectations that converge to the ∗

steady state. (The term “corridor” is due to Leijonhufvud (1973).) This

corridor is defined by the region enclosed within the stable manifold of the

unintended steady state ( ) ≈ (09931 09429). The intuition for the lo-
cal stability of the targeted steady state under learning is that if, say, ( )

16This choice is roughly in line with data on the aftermath of financial crises. See

Reinhart and Rogoff (2009).
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is somewhat below steady-state values then the locally active Taylor rule re-

duces interest rates enough to reduce ex-ante real interest rates, stimulating

output, which increases inflation. Under adaptive learning expectations will

then be revised upward.

Second, we see that convergence to ∗ is locally cyclical: when expec-
tations differ from the intended steady state, the adjustment under normal

policy, with adaptive learning, has gradually convergent cyclical dynamics.17

We will see that this phenomenon cannot eliminated by the fiscal policies

that we consider. The extent of cycling does vary with alternative policies

for avoiding deflation traps. However, the design of policies to minimize this

cyclical dynamics is not our objective in the current paper. Third, it can be

seen that there is a heteroclinic orbit connecting the  steady state with

the ∗ steady state.
Fourth, and most strikingly, we observe that for initial points outside the

corridor of stability the trajectory of expectations is (at least eventually) led

into a deflation trap in which ( ) fall steadily over time. Along these

paths we have falling actual output and inflation, intensifying as deflation

sets in. The intuition for these paths is that if, say, ( ) are somewhat

below the low steady-state values ( ), then we are in the liquidity trap

region near the ZLB in which there is negligible room to reduce nominal

interest rates. However, the real rate is positive and indeed above −1 due
to the expected deflation. These high real interest rates, combined with low

, lead to low levels of aggregate demand and low output, and through the

Phillips curve to actual inflation below expected inflation. Under adaptive

learning expectations of inflation and output are revised further downward,

preventing escape from the deflation trap.

Finally, note that even though the financial wealth of agents is getting

very large over time along such a deflationary path, Ricardian agents do

not respond by sufficiently increasing consumption, as they expect that this

increase in wealth will be offset by future growth in taxes. Thus in the

Ricardian case, wealth effects do not lead to an escape from the deflation

trap.

17We remark that under perfect foresight the adjustment paths would also typically be

cyclical in response to a temporary fiscal stimulus.
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3.2.2 Wealth Effects and Non-Ricardian Consumers

We next consider Non-Ricardian consumers. A traditional argument against

the liquidity trap dates back to Pigou (1943) and Patinkin (1965). In prin-

ciple, wealth effects could prevent a deflation trap: if declining prices lead

to higher perceived wealth, agents will increase their spending. This can be

investigated numerically. Our simulations indicate that wealth effects can

indeed stabilize the economy at ∗.
The dynamics under learning when consumers are not Ricardian are given

in Section 3.1. These describe the temporary equilibrium, and the adjust-

ment of expectations. Taken together they constitute the dynamic system

that determines the real-time evolution of the economy. Because government

bonds and real balances are state variables that affect consumption and out-

put, expectations   are no longer sufficient statistics for the economy

and it is now not possible to characterize the dynamics of the system using

a phase diagram as in (41) and Figure 1. We therefore directly simulate the

real-time dynamics of the system under learning.

To illustrate the possibility of wealth effects successfully leading the econ-

omy back to the targeted steady state we provide a numerical simulation.

Assume that initial expectations are pessimistic, with (0) = 09925 and

(0) = 09425. These expectations are below the low inflation steady state

values and therefore in the deflation trap region when households are Ricar-

dian. In the case of non-Ricardian households the evolution of output and

inflation also depends on wealth dynamics. We are interested in whether

these wealth dynamics can lead the economy to the targeted steady state.

We find that this indeed is possible, but that there is sensitivity to the tax

policy parameters and to the initial wealth of the households.

In the non-Ricardian case we slightly change the interest-rate rule (9) to

( ) =  + (∗ − 1− )
³ 

∗

´∗(∗−1)µ 

∗

¶



for small   0 so that  is bounded above 1 + . This prevents money

demand from becoming unbounded for large deflation rates and low levels

of output. This issue is irrelevant in the Ricardian case but is important in

the non-Ricardian case because of perceived wealth effects. In the numerical

examples we set  = 0001, which corresponds to a floor on net interest rates

of one-tenth of one percent.
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As an illustration consider the tax function (5) with 0 = 005 and  =

−1−1+0001, so that fiscal policy is passive in the sense of Leeper (1991).18
We set  = 003 to match the fraction of real balances to consumption in the

targeted steady state (see (35)), and we set the gain parameter  = 001 The

initial values of real balances and real bonds are(0) = 075 and (0) = 077,

which are close to the values of  and  at the targeted steady state for this

tax function. Figure 2 illustrates the dynamics of inflation and output from

this starting point.
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Figure 2: Inflation, output dynamics with non-Ricardian consumers

Figure 2 shows actual inflation and output on horizontal and vertical axes,

respectively. There is a wide clockwise cycle where inflation and output at

first overshoot (∗ ∗) then spiral below ( ) and finally follow a cyclical
convergent path to (∗ ∗).19 In this example wealth effects do lead to even-
tual convergence to the targeted steady state, in contrast to the divergent

deflationary path that would arise with Ricardian consumers. However, the

path in Figure 2 is highly cyclical, and has extended periods of low output

and substantial deflation with big swings in inflation and output.

Convergence from pessimistic initial expectations to the targeted steady

state appears to be generally robust to starting points for expectations and

18The other parameters are set at their previous values. We also set (0) = (0) and

(0) = (0). The value of  = 50 corresponds to the output coefficient of linearized

Taylor rule of 15 at the intended steady state.
19Time paths of  and  also asymptotically converge to their steady state values.
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initial real bonds and real balances.20 This finding is, however, sensitive to

the value of , in that if  is decreased, for example to  = −1−1−0001 ≈
00091, then the level of bonds eventually explodes. The reason is that now

fiscal policy is active in the sense of Leeper (1991). At the unintended steady

state monetary policy is passive and learning dynamics lead the economy

towards the intended steady state where, however, both fiscal and monetary

policies are active and financial wealth levels will diverge. This leads to

instability under learning: the economy appears to move around the targeted

steady state for a period but eventually bonds follow an explosive path and

the economy diverges.21

From a policy perspective, we see that it is indeed possible for wealth

effects to provide a mechanism for the economy to escape from a deflationary

situation and to return eventually to the targeted steady state. However, this

mechanism relies on consumers being non-Ricardian and on appropriate tax

policy. Furthermore, the path back to the targeted steady state is cyclical

with wide swings in inflation and output.

4 Fiscal Policies

We now examine the role of fiscal policy when large adverse expectation

shocks make deflation traps and stagnation a serious risk.22 We focus on

changes in government purchases of goods and services, rather than tax

changes with unchanged government spending, because in our set-up tax

changes by themselves are neutral if households are Ricardian. In practice,

tax changes financed by changes in government debt can have macroeco-

nomic effects, e.g. if some households are liquidity constrained or are non-

20For brevity, we omit the details. For initial (0) and (0) at levels that are very high,

for example 15 times GDP or higher, we see an extended period of cycling aroung the low

steady state before eventual convergence to the targeted steady state.
21These results are not surprising in view of the (flexible-price, short decision-horizon)

results in Evans and Honkapohja (2005). In that paper under steady state learning there is

convergence to ∗ but with debt exploding under active fiscal policy. In the current paper
with non-Ricardian households the explosive debt path eventually destabilizes inflation

and output as well.
22Evans and Honkapohja (2010) show that for some points within the deflation trap

region, even committing to zero net nominal interest rates forever may be insufficient for

escaping the deflation trap.
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Ricardian.23 However, our objective is to demonstrate that suitable fiscal

rules, based on temporary increases in government spending, can prevent

the economy from falling into or becoming stuck in the deflation trap and

can return the economy to the targeted steady state even if tax changes

by themselves are neutral. Therefore in this section we focus on Ricardian

households. We will return to the case of non-Ricardian consumers in the

next section.

4.1 Temporary Fiscal Stimulus

A traditional countercyclical policy for an economy facing deflation with

declining or stagnant output is a fiscal stimulus taking the form of increased

government expenditures above their normal levels for a finite time horizon,

after which they revert back to lower levels. Analysis of this type of policy has

not been done before when the economy is in a liquidity trap and the dynam-

ics are assumed to evolve in accordance with adaptive learning.24 We want to

study the effectiveness of such a policy under the Ricardian assumption that

the government remains solvent in the long run, and that consumers know

and expect this. In this IH learning framework agents know the trajectory of

government expenditures, including the date at which the expenditures will

return to lower levels, and they incorporate this knowledge into their optimal

consumption and pricing decisions. The consumption function, aggregate de-

mand and the Phillips curve reflect these forward-looking expectations of the

agents.

More explicitly, consider a simple case of anticipated changes in govern-

ment policy. Suppose that there is an initial pessimistic expectations shock

that has lowered (0) and (0) sufficiently so that the economy is in the

deflation trap region. Under normal policy the economy will fail to return

to the targeted steady state. We therefore consider fiscal policies in which

there is a temporary increase in ̄ (from its initial steady state level ̄ = ̄1),

taking the form

 =

½
̄0 for  = 0  0
̄1 for  = 0 + 1 



23There is empirical evidence of positive impacts of tax reductions on aggregate output,

see Romer and Romer (2010).
24Anticipated future policy changes are discussed in Evans, Honkapohja, and Mitra

(2009) in the context of a Ramsey model with flexible prices and without money.
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where ̄0  ̄1. Here we assume that the policy is announced and started

at  = 0 and it is credible. Agents understand that government spending

will be continued at the higher level ̄0 through period 0 and that it will be

reduced to its previous level beginning at 0 + 1.

For gross output agents are assumed to have expectations given by the

simple adaptive rules described in Section 3. For net output, however, ex-

pectations are given by

 =

½
 − ̄0 for  =   0
 − ̄1 for  = 0 + 1 

 (42)

so that agents incorporate the known future path of government spending

into their forecasts.

The variables  that appear in the Phillips curve (16), and in the

consumption function (28) are now defined according to (42). This requires

evaluating the weighted sums of  using the appropriate value of govern-

ment expenditures for each . The computations are straightforward, and

the consumption function is now given by:

 = (1− )

µ
 − ̄0 + (


 − ̄0)

1− ( )−0
( )− 1

+ ( − ̄1)
( )

−0

( )− 1
¶


where  and  are the time  forecasted (constant) value of future real

interest rates and output.

For the interest rate rule (9) we set  = 25 and  = 50, a calibration

broadly consistent with the standard Taylor-rule parameters.
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Figure 3:  and  under a fiscal stimulus.
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Given a specific fiscal stimulus, we can proceed as in Section 2.4, except

that we now report real-time dynamics based on the adaptive learning rules

of Section 3. Figure 3 illustrates one example of the dynamics of output and

inflation for 0 = 6, and with ̄0 = 021, ̄1 = 02. Thus there is a fiscal

stimulus, taking the form of a 5% increase in government spending for six

periods. We set initial expectations at [0] = 09425 and [0] = 0993.

These are in the deflation trap region, and without the fiscal stimulus there

would be falling inflation and output (compare to the steady state values

at the end of Section 3.2.1). Under the fiscal stimulus the economy instead

converges to the intended steady state, though after a wide swing that takes

inflation well above the intended steady state. As noted in connection with

Figure 1, under normal policy the convergence dynamics inside the corridor

of stability are inherently cyclical. This feature also appears after the end

of the temporary stimulus, when expectations overshoot the values of the

targeted steady state.

An important feature of the policy is that the length of the temporary

fiscal stimulus is crucial for its efficacy. For example, if, holding ̄0 = 021,

̄1 = 02, we set 0 = 1 2 or 0 ≥ 37 then the fiscal stimulus does not enable
the economy to return to the targeted steady state. In fact, the size of the

stimulus and the degree of pessimism of expectations also matter for the

efficacy of fiscal stimulus. We now examine this more systematically.25

We consider four different degrees of pessimism of expectations as follows:

Mild:  = 0993 and  = 09425.

Large:  = 0991 and  = 09425

Severe:  = 0985 and  = 09425

Extreme:  = 0985 and  = 09.

We find that a temporary fiscal stimulus always works for a range of govern-

ment spending ̄0 and length of stimulus 0. For 0 = 1, a temporary fiscal

stimulus works for sufficiently large ̄0 Often, increasing length of stimulus

0 somewhat allows the use of a smaller value of ̄0 to achieve convergence

to the intended steady state.

Some specific results are as follows:

Mild pessimism: ̄0 = 0205 yields desired convergence for stimulus of

25Also the parameter  describing statistical forecasting horizon affects the quantitative

results. Through period  +  agents use their forecasts (), whereas after  +  , they

assume that the real interest rate has reverted to normal and set +() = −1 for    .

As indicated earlier, we set  = 28 i.e. agents think it will take 7 years for real interest

rates to return to normal steady state.
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length 0 = 11     22, while with this 0, the policy fails if 0 is outside this

range. A smaller value of ̄0 = 0204 is never effective while ̄0 = 25 makes

the 0 range larger.

Large pessimism: A large value of spending ̄0 = 025 delivers desired

convergence for 0 = 1     37. A smaller value ̄0 = 021 fails.

Severe pessimism: With 0 = 1, ̄0 = 034 is effective.

Extreme pessimism: With 0 = 5, ̄0 = 08 is effective.

Thus, the fiscal stimulus must be adequate in size and length to push

the economy out of the deflation trap region. The intuition for these results

is that the demand stimulus from a temporary increase in  outweighs the

partially offsetting reduced consumption from the higher present value of

taxes, which for Ricardian households equals the present value of government

spending. A permanent increase in ̄ in this set-up does not lift the economy

out of the deflation trap, because the permanently higher taxes exactly offset

the increase in government spending. In contrast, a large enough increase in

government spending for a limited period will add enough stimulus to lead

the economy back to the targeted steady state. We note that the tax rule (5)

implies that the long-run debt to GDP ratio is unaffected by the temporary

stimulus.

4.2 Fiscal Austerity

Perhaps surprisingly, it turns out that a carefully designed restrictive fiscal

policy can in certain cases lift the economy out of the liquidity trap, provided

it is applied for a sufficient long period of time. We now examine this pos-

sibility for the different degrees of pessimism of expectations.26 The results

for the different degrees of pessimism are as follows:

Mild pessimism: cutting government spending to ̄0 = 019 is effective in

moving the economy out of the deflation trap when the length of the policy

is in the range 0 ≥ 33 but this policy fails for smaller values of 027 A more
severe policy ̄0 = 015 is effective also for 0 ≥ 28.
Large pessimism: ̄0 = 019 is effective for length 0 ≥ 67.
26In this section the forecasting horizon is set at  = 60 For shorter horizons, for

example for  = 28 fiscal austerity seems to be ineffective. On the other hand, temporary

fiscal stimuli continue to be effective for large values of 
27We note that if ̄0 = 019 and 0 = 50 the policy induces fairly large fluctuations in

output and inflation compared to a corresponding case of stimulus shown in Figure 3. The

ranges of fluctuations are  ∈ (0886 0990) and  ∈ (0986 1142).
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Severe pessimism: ̄0 = 015 is effective for length 0 ≥ 100.
Extreme pessimism: Fiscal austerity is never effective.

In terms of the length of policy 0 stimulus and austerity policies have

an interesting contrast. The efficacy of the former requires a limited duration

whereas a very long period of the latter is necessary. In all our examples the

efficacy of stimulus policies imply that the austerity policies of same absolute

magnitude and duration are not effective and vice versa. However, there

are also cases for which neither policy is effective for certain intermediate

durations. As an example consider the stimulus policy ̄0 = 025 under mild

pessimism for a forecasting horizon  = 60 A stimulus policy with 0 ≥ 25
is ineffective in lifting the economy out of the deflation trap as is an austerity

policy of ̄0 = 015 for 0  28.

In general, efficacy of austerity policies is more sensitive to the degree of

pessimism of expectations as suggested by the following subtle intuition. If

the economy is in a region in which the ex-ante real interest rate factor is less

than −1 then the consumption function dictates an increase in consumption
flow, stemming from a fixed permanent decrease in taxes, that is larger than

the decrease in . The present value is the same when measured by , but

because   −1, households will substitute toward current consumption.
Formally consider a permanent change in government spending to ̄0  ̄1

Then actual output, for given expectations, is given by

 = ̄0 + (
−1 − 1)( − ̄0)(


 − 1)  ̄1 + (

−1 − 1)( − ̄1)(

 − 1)

provided −1    This effect only holds for a range of 
 in which monetary

policy delivers a low . For larger deflation rates, however, i.e.   0985,

this policy cannot work for initial expectations in which () falls over time

under normal policy. Thus for sufficiently pessimistic initial expectations we

would expect permanent or very long cuts in government spending to fail as

a policy that takes the economy to a steady state.

The above analysis also implies that under adaptive learning, whether

households are Ricardian or not, a fiscal stimulus can give rise to a “fiscal

multiplier” that is quite different from the multiplier under a policy of fiscal

austerity, depending on the magnitude and duration of the policy and on

the initial expectations. This suggests that in an adaptive learning context,

results of empirical studies of the fiscal multiplier will be sensitive to initial

expectations and to the duration and magnitude of policies.

In this section we have seen that the success of the temporary fiscal policy

in general depends on fine tuning the magnitude, direction and duration of
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the policy. We next look at an endogenous switching rule for government

spending that eliminates deflation and stagnation and that also appears to

have reasonable performance overall.

5 A Fiscal Switching Rule

In Section 4.1 we found that a suitably designed temporary stimulus is ef-

fective in getting the economy out of the deflation trap. This is in line with

testimony by Lawrence Summers to the Joint Economic Committee hearing

on January 16, 2008, that fiscal “stimulus program should be timely, targeted

and temporary.” Section 4.1 showed that for a successful policy it is essential

to get the parameters in the right range. This leads us to a discussion of

whether a more “automatic” policy rule can be designed for this purpose.

To prevent deflationary spirals or deflation with declining or stagnant

output, we now explore a temporary fiscal stimulus policy designed to ensure

that expected inflation eventually exceeds some threshold ̃  . Here the

length of the stimulus is dictated by the state of the economy. Specifically,

if   ̃ the government sets  ≥ ̄ as needed to achieve an output level 
such that realized inflation  exceeds expected inflation  . In addition, if

 ≥ ̃, the government sets  ≥ ̄ as needed to ensure that  exceeds the

threshold ̃.28

We remark that the idea of a lower threshold for inflation and increased

government spending to ensure that actual inflation stays above the thresh-

old was suggested in Evans, Guse, and Honkapohja (2008) and Evans and

Honkapohja (2010). The rule proposed here improves upon the earlier ideas

in that it focuses squarely on inflation expectations and the new rule leads to

less extreme fluctuations in  than rules used in the cited earlier papers.
29

To implement this fiscal switching policy, we assume that the government

monitors expectations. Given expectations, it can set  to achieve a level of 

28If   ̃ we set  to ensure that  ≥  + and if 

 ≥ ̃ we set  to ensure that

 ≥ ̃ + , for some small   0. In numerical illustrations we set  = 0005. Note

that if  ≥ ̃ and  ≥ ̃ for  = ̄ then the rule sets  = ̄.
29We require a much smaller increase in  when the trigger is activated than Evans,

Guse, and Honkapohja (2008) and Evans and Honkapohja (2010). In the latter the trigger

was simply a lower bound on actual inflation as opposed to expected inflation, and  was

raised to achieve this bound. In our case with Ricardian consumers the  ratio goes

up from 02 to 0.26 while in Evans and Honkapohja (2010) the ratio is much higher, going

from 02 to 034 if identical calibrations are used.
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using equation (30). In effect the government observes inflation monthly, and

would be able to adjust spending in order to maintain ̃   on a quarterly

basis. Automatic stabilizers, like unemployment benefits and other income

subsidy programs triggered by output thresholds may be useful, but may also

be insufficient. It should be emphasized that if expectations turn substan-

tially pessimistic, government expenditures triggered by an output threshold

may not be able to prevent deflation traps (see Evans, Guse, and Honkapo-

hja (2008)). This could happen even at zero nominal rates if the ex-ante

real interest rate rises and depresses private consumption as a result of sub-

stitution between private consumption and government spending with gross

output remaining at the threshold level. Therefore we focus here on fiscal

switching rules based on thresholds for inflationary expectations. Triggered

government expenditures could involve for example infrastructure or research

projects activated at times of deflationary expectations and designed to avoid

fiscal lags.

From equations (31), (32) and (33) it is apparent that  can be chosen to

attain the required level of inflation. This procedure ensures that eventually

 ≥ ̃We simulate this economy using the same parameters used in Figure

3 above for Ricardian consumers, except that we now use the fiscal switching

rule.30 For the numerical results in this section we set ̃ =  + 0005 =

09981

Two points should be noted about this form of fiscal policy. First, it is

not necessary to decide in advance the magnitude and duration of the fiscal

stimulus. Second, in contrast to the preceding section we now do not assume

that agents know the future path of government spending. Instead agents use

adaptive learning to forecast the future values of their net income in addition

to forecasts of inflation and output.

30In the section we use net rather than gross output in the interest-rate rule, because

of the potential large variation in gross output due to government spending. The results

presented here are not significantly affected by this issue.
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Figure 4:  and  under a fiscal switching rule, Ricardian households

We start with the case in which consumers are Ricardian. In contrast

to the economy depicted in Figure 1, the fiscal switching rule eliminates the

unintended steady state with the inflation rate : the path starting in the

vicinity of  converges to the intended steady state. This is illustrated in

Figure 4. A strong fiscal stimulus generates a steep rise in output and lifts

the economy out of the deflation trap and the economy eventually converges

to the intended steady state. For initial expectations in Figure 4, which are

the same as in Figure 3, the dynamics would be unstable without the fiscal

switching rule. Compared to the policy used in Figure 3, the main difference

is that there is a much stronger but shorter fiscal stimulus under the fiscal

switching rule. There is a also a brief small fiscal stimulus used at a later

date when inflation again is a low values.

In all four cases of pessimism illustrated in Section 4 our switching rule

generates paths that converge to the targeted steady state, and the perfor-

mance of these rules is comparable or somewhat better. The main advantage

of the fiscal switching rule is that it provides a robust policy for ensuring that

the economy does not get stuck in the deflation trap, and it does so using

an “automatic” fiscal policy that does not require tuning to the economic

situation.

The results with non-Ricardian consumers are similar: the fiscal switching

rule eliminates the unintended steady state  and ensures convergence to
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the targeted steady state. Figure 5, using the same parameters used for the

non-Ricardian case of Figure 3, illustrates these results.
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Figure 5:  and  dynamics under fiscal switching rule, non-Ricardian

households

Although in the non-Ricardian case, both paths with and without policy

show cyclical convergence, the path without policy is more volatile. Table 1

illustrates these results for the case of extreme pessimism, i.e. :  = 0985

and  = 09.

Table 1: Non-Ricardian Households

Without policy With policy

maximum inflation,  1.371 1.140

minimum output,  0.805 0.900

Thus, even in the non-Ricardian case in which wealth effects do eventually

return the economy to the intended steady states, the fiscal switching policy

improves performance.

As illustrated for both the Ricardian and Non-Ricardian cases examined,

the fiscal switching rule, together with our interest rate rule, yields conver-

gence to the targeted steady state after an initial overshooting of inflation

and output.31 The overshooting arises from the necessary big initial policy

responses that are needed to counteract the initial pessimistic expectations

31We also checked that with this combination of rules there is convergence to the targeted

steady state from even more pessimistic initial expectations.
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which tend to be inertial under adaptive learning. While our focus in this

section is fiscal policy, we can explore whether more aggressive monetary poli-

cies working in conjunction with fiscal policy can improve stabilization. If

we modify the coefficients of the Taylor rule we can dampen the fluctuations

of output and inflation seen in Figure 4. This is achieved with significant de-

partures from coefficients typically used in the literature and policy practice,

in particular by dramatically increasing the response of the nominal interest

rate to the output gap. For example, if we set  = 1500, for the pessimistic

initial expectations  = 0993 and  = 09425 used in Figure 4, we can

reduce the overshooting of the inflation rate to about one percentage point

above target and eliminate almost entirely the undershooting of output.32

In summary, our analysis suggests that one policy which might be used

to combat stagnation and deflation, in the face of pessimistic expectations,

would consist of a fiscal switching rule combined with a Taylor-type rule for

monetary policy. The fiscal switching rule applies when expected or actual

inflation falls below a critical value. The rule specifies increased government

spending in such a way that expected inflation is ensured to exceed eventu-

ally the critical threshold. This part of the policy eliminates the unintended

steady state and makes sure that the economy does not get stuck in a regime

of deflation and stagnation. Furthermore, unlike the temporary fiscal poli-

cies discussed in the previous section, the switching rules do not require fine

tuning and are triggered automatically. Remarkably, our simulations indi-

cate that this combination of policies is successful regardless of whether the

households are Ricardian or non-Ricardian.

6 Conclusion

We have studied how the an economy can fall into a deflation or low inflation

trap with declining or stagnant output, and explored the design of policies

to avoid such outcomes. Under the perfect foresight view, simply announc-

ing appropriate money growth and/or fiscal policies can in principle avoid

low inflation. The effectiveness of such policies, however, depends on the

assumption of perfect foresight, on policy credibility, and on wealth effects

to eliminate all equilibria except the targeted ∗ steady state. Furthermore

32In terms of the Taylor rule linearized at the targeted steady state, the coefficient on

the output gap corresponding to  = 50 is 15, and for  = 1500 it is 45.
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such policies are “too powerful” under perfect foresight: bad outcomes never

happen.

If we adopt a more plausible adaptive learning view, outcomes with low

inflation and output are still possible. We find that policies of temporary

fiscal stimulus, and in some cases fiscal austerity, can eliminate liquidity traps

and can lead the economy back to its intended steady state. However, such

policies require careful fine tuning of the magnitude, direction and duration

of the policy. A “fiscal switching rule” that automatically triggers a stimulus

of high government expenditures when inflation or expected inflation falls

below a critical threshold is equally effective in stabilizing the economy, but

does not require complicated and discretionary fine tuning, and therefore

seems preferable.
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7 Appendix 1: Private sector optimization

Recall the form of the utility function for household-producer

 =
1−1

1− 1
+



1− 2

µ
−1


¶1−2
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1 + 
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
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and the constraints
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

¶−

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We compute the derivatives with respect to (− 1)-dated variables


−1
= −1 −1 + (−1

−1
 )

−2 



−1
= −1 −1

−1
 


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and with respect to -dated variables
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The Euler equations are





+ 

+1



= 0




+ 

+1


= 0





+ 

+1



= 0

The second equation is just the consumption Euler equation (11), while com-

bining the first and second equations yields the money demand function (12).

The third Euler equation implies one-step nonlinear the Phillips curve (10).

Next, we examine the transversality condition for optimal price setting.

Using Kamihigashi (2003), the transversality condition

lim
→∞

[Ψ( − ̂)] ≤ 0

where {̂} denotes the optimal pricing policy and  is a perturbation

from the optimum, is a necessary condition for optimality under some regu-

larity conditions (in particular, an interior optimum is required).33 Here we

33For brevity, we do not consider these conditions in detail.
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use the short-hand notation

Ψ = (1− ) ( )
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Note that Ψ =



at the optimum. Using the Euler equation for price

setting we have

lim
→∞

[Ψ( − ̂)] (43)
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→∞
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"
−
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for all permitted . Since we are dealing with necessary condition for

local max, the perturbations  can be taken to be in a sufficiently small

neighborhood of ̂. We require that


̂
remains close to 1 but it can be

smaller or bigger than 1. This leads to the requirement

0 = lim
→∞



"


Ã
̂+1

̂

− 1
!
̂+1

̂

#
=  lim

→∞
̂+1 = 0

which gives the TVC (14) in the text.

8 Appendix 2: Asymmetric Price Adjustment

If the costs of price adjustment are asymmetric and are higher for reductions

in prices, then this can provide a lower bound on deflation.34 Consider for

example the case where the cost of price adjustment in the utility function

takes the form

 =

½


2
( − 1)2 for  ≥ 

+∞ for   

34See Evans (2013) for the stagnation regime.
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where  = −1. To examine the implications of asymmetric price-
adjustment costs, we return to the case of Ricardian consumers discussed in

Section 2.4. The temporary equilibrium map for inflation is modified to

 =

½
2( 


 ) for 2( 


 ) ≥ 

 for 2( 

 )  

Because the Ricardian case is a forward-looking two-dimensional system with

adaptive learning, one can illustrate the possible results using phase diagrams

showing the expectational learning dynamics. There are three cases:

1.   . In this case 
∗ is globally stable, since    is no longer

possible.

2.    The deflation trap continues to exist. If  −  is small,

however, in the region      there is gradually falling output.

3.  = . The stagnation regime. In this case there can be convergence

to any 0     with  = .

Figures 6 illustrates the phase diagram for the E-stability differential

equations in ( )-space for the case    in which a deflation trap

continues to exist. In this case the targeted steady state ∗ is locally stable.
However, if output expectations are low, the economy may converge to the

trap even if initially inflation expectations are low but above . The main

difference from the symmetric price-adjustment cost set-up examined in the

paper is that deflation is now bounded from below at rate . Thus, in this

case, persistently low and falling output is compatible with steady deflation

at low levels.
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Figure 6: asymmetric cost adjustment with   

We briefly describe the other two cases of asymmetric adjustment costs.

In all cases the targeted steady state is locally stable under learning. If

 = , there is also a locally stable continuum of steady states at  =

 =  and   , where  is the level of output associated with the

usual  steady state. E-stability dynamics indicate that under learning the

economy can converge to any point on the continuum from initial conditions

(0) &  and (0) sufficiently low. Similar convergence to the continuum

can happen for initial (0) .  and (0) sufficiently low. In the case   
the economy under learning is globally stable at the targeted steady state

∗. However, for  only slightly above , pessimistic initial expectations
((0) (0)) can lead to extended periods of low output and mild deflation

before inflation expectations are pulled up towards  and a recovery begins.

As noted, for example, by Bullard (2010), we do observe economies ex-

hibiting extended periods of very low inflation or mild deflation. The cases

 =  and    show that steady mild deflation is consistent with a de-

flation trap region that leads to persistently falling or persistently low levels

of output. The analysis of fiscal policy provided in this paper could easily be

extended to the various cases of asymmetric price adjustment.
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