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INTRODUCTION

This lecture reviews the results of Evans & Honkapohja (REStud, 2003; JMCB,
2003, ScandJE, 2006) and Evans & McGough (JMCB, 2007).

• We start from the standard “new Phillips curve/IS curve” NK model,

• optimal monetary policy under RE and we look at two potential problems:

— Indeterminacy (multiple equilibria) and instability under learning

• We find: a well chosen “expectations based” it rule is superior to purely
“fundamentals based” rules.



OUTLINE

• Optimal monetary policy under RE in the NK model.

• Problems of indeterminacy and instability under learning with fundamentals-
based it rules.

• Desirability of “expectations based” rules

• Extensions: (i) discussion of approximate targeting rules
(ii) structural parameter learning
(iii) robustness to structural parameter uncertainty.



MACRO MODEL

The structural model is:

xt = −ϕ(it −E∗t πt+1) +E∗t xt+1 + gt (IS)

πt = λxt + βE∗t πt+1 + ut, (PC)

xt = “output gap” and πt = inflation rate,

gt, ut are observable with

gt = μgt−1 + g̃t and ut = ρut−1 + ũt.

See e.g. Woodford (various) and “The Science of Monetary Policy,” Clarida,
Gali & Gertler (JEL, 1999)



OPTIMAL MONETARY POLICY WITH COMMITMENT UNDER RE

To complete the model we add a policy rule for it.

The policy maker aims to minimize

Et

∞X
s=0

βs
³
αx2t+s + π2t+s

´
.

Note: x target of 0 (no inflation bias), π target of 0 (for simplicity).

Distinguish between policy with and without commitment.

We will focus on the commitment case. EH (REStud, 2003 examine discretion)



Gains From Commitment

Two possible sources of gain from commitment

• Classic Inflation bias. For the objective function

α(xt+s − x̄)2 + π2t+s, where x̄ > 0

policy makers gain by committing to a policy with Ext+s = 0 (Kydland-
Prescott). This is not our focus here: we set x̄ = 0.

• Stabilization bias. Arises from forward looking PC curve. Commitment
gains arise even with x̄ = 0.



OPTIMAL POLICY WITH COMMITMENT

From the FOCs we obtain

λπt = −αxt
λπt+s = −α(xt+s − xt+s−1), for s = 1, 2, . . .

• Optimal discretionary policy is λπt = −αxt, all t

• Optimal policy with commitment is time inconsistent

• We adopt the timeless perspective optimal policy (see Woodford and Mc-
Callum/Nelson),

λπt = −α(xt − xt−1), all t, (OPT)

i.e. follow same rule in first period too.



OPTIMAL SOLUTION UNDER RE

Combining PC and OPT −→ optimal REE

xt = b̄xxt−1 + c̄xut,

πt = b̄πxt−1 + c̄πut.

where b̄x is the root 0 < b̄x < 1 of

βb̄2x − γb̄x + 1 = 0,

and γ = 1 + β + λ2/α.

We still need an interest rate reaction function that implements the optimal
REE.



FUNDAMENTALS FORM OF OPTIMAL it RULE

• Compute xt, Etπt+1 and Etxt+1 for optimal REE.

• Insert into IS curve to get the “fundamentals-based” optimal it-rule

it = ψxxt−1 + ψggt + ψuut,

where ψi depend on λ, α, ρ, ϕ, β.

This it rule is consistent with the optimal REE. But

• Will it lead to “determinacy”?

• Will it lead to stability under learning?



DETERMINACY

Combining IS, PC and the fundamentals-based it rule gives the reduced formÃ
xt
πt

!
=

Ã
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!
,

yt =ME∗t yt+1 +Nyt−1 + Pvt.

Recall that we say a model is “determinate” if a unique (nonexplosive) solu-
tion, and “indeterminate” if there are multiple solutions. These will include
stationary sunspot solutions.

Compare eigenvalues of the matrix of the stacked first-order system to the
number of predetermined variable.



DETERMINACY RESULTS: FUNDAMENTALS BASED REACTION
FUNCTION

Proposition 1: Under the fundamentals based reaction function there are para-
meter regions in which the model is determinate and other parameter regions
in which it is indeterminate.

Calibrations

W: β = 0.99, ϕ = (0.157)−1, λ = 0.024.
CGG: β = 0.99, ϕ = 4, λ = 0.075
MN: β = 0.99, ϕ = 0.164, λ = 0.3.

Indeterminate for output policy weights α < α̂, where
α̂ = 0.16 (W), 7.5 (CGG), 277 (MN)
Hence in some cases this it rule is also consistent with inefficient REE.



Review: Learning and E-stability

yt =ME∗t yt+1 +Nyt−1 + Pvt.

The optimal REE takes the form

yt = ā+ b̄yt−1 + c̄vt,

and the corresponding expectations are

Etyt+1 = ā+ b̄yt + c̄Etvt+1
= ā+ b̄(ā+ b̄yt−1 + c̄vt) + c̄Fvt

Replace by LS learning:

E∗t yt+1 = at + bt(at + btyt−1 + ctvt) + ctFvt,

with at, bt, ct updated using LS. The question: over time does

(at, bt, ct)→ (ā, b̄, c̄)?



E-STABILITY

Stability under learning is analyzed using E-stability. Reduced form:

yt =ME∗t yt+1 +Nyt−1 + Pvt.

For the PLM (Perceived Law of Motion)

yt = a+ byt−1 + cvt.

E∗t yt+1 = (I + b)a+ b2yt−1 + (bc+ cF )vt.

This −→ ALM (Actual Law of Motion)

yt =M(I + b)a+ (Mb2 +N)yt−1 + (Mbc+NcF + P )vt.

Mapping from PLM to ALM

T (a, b, c) = (M(I + b)a,Mb2 +N,Mbc+NcF + P ).



T : PLM → ALM is given by

T (a, b, c) = (M(I + b)a,Mb2 +N,Mbc+NcF + P ).

The optimal REE is a fixed point of T (a, b, c). If

d/dτ(a, b, c) = T (a, b, c)− (a, b, c)

is locally asymptotically stable at the REE it is said to be E-stable.

E-stability conditions were given in lecture 2.

E-stability governs stability under LS learning.



INSTABILITY RESULT

Proposition 2: The fundamentals based it - rule leads to instability under learn-
ing for all structural parameter values.

Partial Intuition: Fix all PLM parameters except aπ. Then

∆Taπ(aπ) = (β + λϕ)∆aπ

via IS,PC. This tends to destabilize if β + λϕ > 1.

Conclusion: The fundamentals based reaction function can lead to indetermi-
nacy and it always leads to instability under learning of the optimal REE.

Question: Is there an alternative interest rate setting rule that guarantees de-
terminacy and stability?



ALTERNATIVE INFORMATION ASSUMPTION

• The instability result just stated was based on our “main information as-
sumption”: E∗t yt+1 depends on yt−1 and vt but not on yt.

• Under the “alternative information assumption” we permit E∗t yt+1 to de-
pend on yt and vt (so that yt and E∗t yt+1 are simultaneously determined).

• Under RE these information assumptions are the same, but they are distinct
under learning.

Proposition 3: Under the alternative information assumption and the funda-
mentals based reaction function there are parameter regions in which the model
is stable under learning and other parameter regions in which it is unstable under
learning.



AN EXPECTATIONS BASED OPTIMAL RULE

• The instability problem can be overcome if expectations of private agents
are observable and policy is conditioned on them.

• To get an optimal rule of this form solve for it from structural equations
(IS), (PC) and the optimality condition (OPT), without imposing RE.

• That is, solve

xt = −ϕ(it −E∗t πt+1) +E∗t xt+1 + gt (IS)

πt = λxt + βE∗t πt+1 + ut, (PC)

λπt = −α(xt − xt−1), all t, (OPT)

for it in terms of xt−1, E∗t xt+1, E
∗
t πt+1, gt, ut.



We obtain

it = δLxt−1 + δπE
∗
t πt+1 + δxE

∗
t xt+1 + δggt + δuut,

where

δL =
−α

ϕ(α+ λ2)
,

δπ = 1 +
λβ

ϕ(α+ λ2)
,

δx = δg = ϕ−1,

δu =
λ

ϕ(α+ λ2)
.

We call this the expectations based reaction function, or the expectations-based
optimal it - rule.

This derivation made no specific assumption about expectation formation.



DETERMINACY AND STABILITY

Proposition 4: Under the expectations-based it - rule, the REE is determinate
for all structural parameter values.

Proposition 5: Under the expectations-based it - rule, the optimal REE is stable
under learning for all structural parameter values.

Proposition 6: The expectations-based rule is also stable under the alternative
information assumption.

Partial intuition: ↑ E∗t πt+1 −→↑↑ it −→↓ xt, πt.

Conclusion: if expectations are observable then the optimal policy can be
achieved using the expectations-based it rule.
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Instability under fundamnetals-based rule
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Remarks:

• Stability would also hold for some variations of LS learning and even some
misspecified learning schemes such as adaptive expectations

• Determinacy and stability of EB rule holds if (a) expectations observed with
white noise error, or (b) VAR proxies for expectations are used. (Honkapo-
hja and Mitra 2005a, 2006).

• We finally consider several extensions: (i) approximate targeting rules
(ii) structural parameter learning
(iii) robustness to structural parameter uncertainty.



EXTENSION 1: APPROXIMATING OPTIMAL POLICY

McCallum & Nelson (2001) have suggested interest rate rules that approximate

λπt = −α(xt − xt−1), (OPT)

Basic Approximate Targeting Rule:

it = πt + θ[πt + (α/λ)(xt − xt−1)].

Determinacy and stability: Numerical results indicate that for all α, θ the REE
is determinate and stable under learning.

MN show the REE is close to optimal for θ large.

MN propose alternative formulations that do not require observations of con-
temporaneous xt and πt.



Variants of Approximate Targeting Rule

MN recommend forward looking variants, e.g.

it = Ẽtπt+1 + θ[Ẽtπt+1 + (α/λ)(Ẽtxt+1 − Ẽtxt)],

where Ẽt denotes CB forecasts. Assume Ẽt = E∗t , i.e. both CB and private
agents follow LS learning.

Table 1. Indeterminacy for θ ≥ θ̂

α 0.1 0.5 1.0 2.0
W 0.019 0.004 0.002 0.001
CGG 1.223 0.288 0.147 0.075
MN 7.460 1.755 0.895 0.453



Table 2. Instability for θ ≥ θ̃

α 0.1 0.5 1.0 2.0
W 0.038 0.008 0.004 0.002
CGG 11.61 0.704 0.324 0.156
MN 70.78 4.30 1.98 0.950

These results are a problem since low θ lead to large deviations from optimal
REE.



EXTENSION 2: ESTIMATION OF STRUCTURAL PARAMETERS

• So far we’ve assumed ϕ, λ are known.

• Suppose now that policy makers estimate ϕ, λ :

wx,t = −ϕrt + ex,t and

wπ,t = λxt + eπ,t

where

wx,t = xt −E∗t xt+1 − gt

wπ,t = πt − βE∗t πt+1 − ut

rt = it −E∗t πt+1.

using recursive IV estimators.



Estimation of Structural Parameters (plus private agent learning)

We are thus now assuming:

• Private agents forecast using estimated VARs, updated by recursive LS

• Central Bank (CB) uses EB rule with estimated ϕ̂t, λ̂t, updated using
recursive IV

• In EH (JMCB, 2003) we that under this simultaneous learning the opti-
mal REE continues to be locally stable.



EXTENSION 3: ROBUSTNESS TO STRUCTURAL PARAMETER
UNCERTAINTY

Evans and McGough (JMCB, 2007) consider the issue of structural parameter
uncertainty further.

There is a wide range of values for φ, λ used in calibrations.

Name φ λ
Woodford 1/.157 .024

Clarida-Gali-Gertler 4 .075
McCallum-Nelson .164 .3

variant 1/.157 .3



In addition there is the issue of inertia in PC and IS equations. We thus consider

IS : xt = −φ(it −Etπt+1) + δEtxt+1 + (1− δ)xt−1 + gt

PC : πt = β(γEtπt+1 + (1− γ)πt−1) + λxt + ut.

Estimates of δ and γ have included values close to 1 (purely forward-looking)
and 0.5. Some models have even lower δ.

To study the impact of uncertainty on the problems of stability and indetermi-
nacy, suppose the CB believes in a particular calibration. We then examine
one of the Taylor-type class of rules

Contemporaneous: it = απEtπt + αxEtxt

Lagged Data: it = αππt−1 + αxxt−1
Forward Expectations: it = απEtπt+1 + αxEtxt+1.



Choose the parameters απ and αx to solve (numerically) the optimal policy
problem

min
αx,απ

ψV ar(x|α) + V ar(π|α).

for that calibration. We also impose that the optimized policy deliver an REE
that is determinate & stable under learning.

Question: can such a policy result in indeterminacy or learning instability
under a different calibration?

Answer: yes. For either the lagged data rule or the forward expectations rule
the W, MN or CGG calibrations can lead to stable indeterminacy, unstable
indeterminacy or explosive behavior under some other calibrations.

Thus structural parameter uncertainty is potentially a big problem. We recom-
mend the following procedure.



Robust it rules: “optimal constrained” rules

Start with a class of it rules parameterized by ξ ∈ X .

Structural parameters are denoted ω ∈ S. Assume a “prior” probability distri-
bution over their values with support S̄ ⊂ S.

Determine the set P ⊂ X defined by

P =
n
ξ ∈ X : determinacy and learning stability hold for all ω ∈ S̄

o
.

Assume P is non-empty (otherwise a tolerance must be specified).

Then, given a policy loss function L(ξ, ω) that is well-defined for all ξ ∈ P
and ω ∈ S̄, the robust optimal constrained policy is defined by

ξ̄ = arg min
ξ∈P

EL(ξ, ω),

where the expectation is taken over the prior distribution on S̄.



To implement this we consider the class of it rules

it = θit−1 + αfEtyt+1 + αcEtyt + αLyt−1 + αĝĝt.

We specify probability weights at 0.3 for W, MN and CGG and 0.1 for the
variant calibration.

For the inertial parameters we set the conditional probability weights at 0.4 for
γ = δ = 0.5, at 0.2 each for γ = δ = 0.75 and γ = δ = 0.25, and at 0.1
each for γ = δ = 1 and γ = δ = 0.01.



Main findings:

• The set P was non-empty. Thus rules exist that are robust to parameter
uncertainty.

• A fairly simple robust nearly-optimal was

∆it = Etπt+1+2(Etπt+1−πt−1)+0.6Etxt+4.5(Etxt−xt−1)+4ut.

Thus optimal policy can be designed to deliver determinacy and stability under
learning in the face of structural parameter uncertainty.



CONCLUSIONS

• Optimal monetary policy design, under commitment, should not simply
assume RE.

• The economy will diverge under private agent learning if the fundamentals
based it rule is followed. Indeterminacy may also arise.

• Under our expectations-based it rule the optimal REE is always stable
under learning, and indeterminacies are avoided.

• This policy is even locally stable under two-sided learning when CB is
estimating structural parameters.



• If there is a high degree of uncertainty about structural parameters, the CB
should follow “optimal constrained” rules, designed to be optimal subject
to always delivering determinacy and stability under learning.

General point: Monetary policy must treat expectations as subject to shocks
and be designed to be stable under learning.



ADDENDUM: PRICE LEVEL FORMULATION OF FUNDAMENTALS
BASED REACTION FUNCTION

The optimization condition

λ(pt − pt−1) = −α(xt − xt−1) (OPT)

can be rewritten as

xt = −
λ

α
pt + k, for any k. (OPT’)

This yields an REE

pt = b̄xpt−1 + c̄put + āp
xt = b̄ppt−1 + c̄xut + āx

with alternative fundamentals based reaction function

it = ηppt−1 + ϕ−1gt + ηuut + η0.

Result: The optimal REE is unstable under learning if ϕ > λ/α.


