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J. C. Trichet: “Understanding expectations formation as a process underscores
the strategic interdependence that exists between expectations formation and
economics.” (Zolotas lecture, 2005)

Ben S. Bernanke: “In sum, many of the most interesting issues in contempo-
rary monetary theory require an analytical framework that involves learning by
private agents and possibly the central bank as well.” (NBER, July 2007).



Outline of Lectures

Lecture 1, Sept. 11, 10am - noon. Introduction to Expectations and
Adaptive Learning. Convergence of least-squares learning to RE in natural-
rate and cobweb models. Recursive algorithms, stochastic approximation and
E-stability. Applications to simple monetary models.

Lecture 2, Sept. 11, 2 - 4pm. The New Keynesian Model of Mone-
tary Policy: determinacy and stability under learning. The New Keynesian
Model. Interest-rate rules and the possibility of multiple equilibria. Determi-
nacy and stability under learning for Taylor-type interest-rate rules. Stability of
sunspot equilibria under learning.



Lecture 3, Sept. 13, 10am - noon. Optimal Monetary Policy and Learn-
ing in the New Keynesian Model. Optimal discretionary policy and optimal
policy with commitment. Stability under private-agent learning for alternative
implementations of optimal policy. Structural parameter learning by policymak-
ers. Robust policy under parameter uncertainty.

Lecture 4, Sept. 13, 2 - 4pm. Recent Applications of Learning to Mone-
tary Policy. Perpetual learning, persistence, recurrent hyperinflations, liquidity
traps and deflation, dynamic predictor selection and endogenous volatility.



Lecture 1 Outline

• Introduction to expectations and LS learning

• The Muth-Lucas model

• LS learning and E-stability

• Recursive LS, stochastic recursive algorithms and the E-stability principle

• Application to the Muth-Lucas model

• Other examples. Cagan model of inflation. Selection criterion. Sunspot
equilibria.



Introduction

• Expectations play a key role in macroeconomics:
(i) The private sector is forward-looking (e.g. investment, savings deci-
sions)
(ii) Forecasts (including private forecasts) of future inflation and output
have a key role in monetary policy.

• Theories of expectation have evolved:
Naive or static (1930s)
Adaptive Expectations (1950s and 1960s)
RE (1970s and 1980s). RE is the benchmark assumption,
Learning (1990s →)



• Since Lucas (1972, 1976) and Sargent (1973) the standard assumption in
the theory of economic policy is rational expectations (RE). This assumes,
for both private agents and policymakers,

— knowledge of the correct form of the model

— knowledge of all parameters, and

— knowledge that other agents are rational & know that others know . . . .

• RE assumes too much and is therefore implausible. We need an appropriate
model of bounded rationality What form should this take?



• My general answer is given by the Cognitive Consistency Principle: eco-
nomic agents should be about as smart as (good) economists.
Economists forecast economic variables using econometric techniques, so
a good starting point: model agents as “econometricians.” (There are
other possibilities).

• Neither private agents nor economists at central banks do know the true
model. Instead economists formulate and estimate models. These models
are re-estimated and possibly reformulated as new data becomes avail-
able. Economists engage in processes of learning about the economy.
This process may or may not converge to RE



Fundamental Issues Addressed by Learning:

• When private agents follow a learning rule there is the possibility that the
REE of interest may exhibit instability under learning.

• In some models there are multiple equilibria under RE. Learning can then
act as a selection criteria.

• The learning dynamics themselves may be of interest: either just the
transitional dynamics or there may be persistent learning dynamics.



A Muth-Lucas-type Model

In this lecture we will focus on what is in many ways the simplest reduced form.
For the detailed analysis of this model see EH2001, Chapter 2. The reduced
form is:

pt = μ+ αE∗t−1pt + δ0wt−1 + ηt. (RF)

Here E∗t−1pt denotes expectations of pt formed at t− 1, wt−1 is a vector of
exogenous shocks observed at t − 1, and ηt is an exogenous unobserved iid
shock.

We assume α 6= 1 and that wt follows an exogenous stationary VAR process.



Muth example. The structural model consists of demand and supply equa-
tions:

dt = mI −mppt + v1t

st = rI + rpE
∗
t−1pt + r0wwt−1 + v2t,

Assuming market clearing, st = dt, yields the reduced form where μ = (mI −
rI)/mp, δ = −m−1p rw and α = −rp/mp and ηt = (v1t − v2t)/mp.

Note that α < 0 if mp, rp > 0.



Lucas-type Monetary model. A simple Lucas-type model:

qt = q̄ + π(pt −E∗t−1pt) + ζt,

where π > 0, and aggregate demand function is given by

mt + vt = pt + qt,

vt = μ+ γ0wt−1 + ξt,

mt = m̄+ ut + ρ0wt−1.
Here wt−1 are exogenous observables. The reduced form is again

pt = μ+ αE∗t−1pt + δ0wt−1 + ηt, where

α = π(1 + π)−1 and δ = (1 + π)−1(ρ+ γ)

In this example 0 < α < 1.



RATIONAL EXPECTATIONS

First consider the model under RE:

pt = μ+ αEt−1pt + δ0wt−1 + ηt.

The model has a unique RE solution since

Et−1pt = μ+ αEt−1pt + δ0wt−1 −→
Et−1pt = (1− α)−1δ + (1− α)−1δ0wt−1

Hence the unique REE is

pt = ā+ b̄0wt−1 + ηt, where

ā = (1− α)−1δ and b̄ = (1− α)−1δ.



LEAST-SQUARES LEARNING

Under learning, agents have the beliefs or perceived law of motion (PLM)

pt = a+ bwt−1 + ηt,

but a, b are unknown. At the end of time t−1 they estimate a, b by LS (Least
Squares) using data through t−1, i.e. Then they use the estimated coefficients
to make forecasts E∗t−1pt. Here the standard least squares (LS) formula areÃ
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The timing is:

— End of t− 1: wt−1 and pt−1 observed. Agents update estimates of a, b to
at−1, bt−1 using {ps, ws−1}t−1s=1. Agents make forecasts

E∗t−1pt = at−1 + b0t−1wt−1.

— Period t: (i) The shock ηt is realized, pt is determined and wt is realized.
(ii) agents update estimates of a, b to at, bt using {ps, ws−1}ts=1 and make
forecasts

E∗t pt+1 = at + b0twt.

The system under learning is a fully specified dynamic system under learning.

Question: Will (at, bt)→ (ā.b̄) as t→∞?



Theorem: Consider model (RF) with E∗t−1pt = at−1 + b0t−1wt−1 and with

at−1, bt−1 updated over time using least-squares. If α < 1 then

Ã
at
bt

!
→Ã

ā
b̄

!
with probability 1. If α > 1 convergence occurs with probability 0.

Thus the REE is stable under LS learning for both examples.

Example of an unstable REE: Muth model with mp < 0 (Giffen good) and
|mp| < rp.



E-STABILITY

Proving this theorem is not easy. However, there is an easy way of deriving the
stability condition α < 1 that is quite general. Start with the PLM

pt = a+ b0wt−1 + ηt,

and consider what would happen if (a, b) were fixed at some value possibly
different from the RE values (ā, b̄). The corresponding expectations are

E∗t−1pt = a+ b0wt−1,
which would lead to the Actual Law of Motion (ALM)

pt = μ+ α(a+ b0wt−1) + δ0wt−1 + ηt.

The implied ALM gives the mapping T : PLM → ALM:

T

Ã
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The REE ā, b̄ is a fixed point of T . Expectational-stability (“E-stability) is
defined by the differential equation

d

dτ
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Here τ denotes artificial or notional time. ā, b̄ is said to be E-stable if it is
stable under this differential equation.

In the current case the T -map is linear. Component by component we have

da

dτ
= μ+ (α− 1)a

dbi
dτ

= δ + (α− 1)bi for i = 1, ..., p.



da

dτ
= μ+ (α− 1)a

dbi
dτ

= δ + (α− 1)bi for i = 1, ..., p.

It follows that the REE is E-stable if and only if α < 1. This is the stability
condition, given in the theorem, for stability under LS learning.

Intuition: under LS learning the parameters at, bt are slowly adjusted, on aver-
age, in the direction of the corresponding ALM parameters.

We will next outline the techniques used to prove the theorem.



RATIONAL VS. REASONABLE LEARNING

First, a remark. LS learning is boundedly rational but not fully rational. Under
LS learning the true process followed by pt is given by

pt = μ+ α(at−1 + b0t−1wt−1) + δ0wt−1 + ηt, or

pt = (μ+ αat−1) + (δ + αbt−1)0wt−1 + ηt,

The coefficients are thus time-varying, not constant.

However LS learning, though not fully rational, appears “reasonable” [Margaret
Bray]. For α < 1, since then at, bt → ā, b̄, the agents’ misspecification
disappears asymptotically.



RECURSIVE FORMULATION

Letting φt = (at, b
0
t)
0, LS updating can be written recursively as

φt = φt−1 + t−1R−1t zt−1(pt − φ0t−1zt−1)
Rt = Rt−1 + t−1(zt−1z0t−1 −Rt−1),

and under learning pt is given by

pt = (μ+ αat−1) + (δ + αbt−1)0wt−1 + ηt, or

pt = T (φt−1)0zt−1 + ηt.

Combining equations gives

φt = φt−1 + t−1R−1t zt−1(z0t−1(T (φt−1)− φt−1) + ηt)

Rt = Rt−1 + t−1(zt−1z0t−1 −Rt−1).



This is a Stochastic Recursive System (SRA), is an example of an SRA,

θt = θt−1 + γtQ(t, θt−1,Xt),

where θt is a vector of parameter estimates, Xt is the state vector and γt is a
deterministic sequence of “gains”. In Xt can depend on θt−1.

Here θt−1↔ φt−1, Rt, Xt↔ zt, zt−1, ηt and γt↔ t−1.

The “stochastic approximation” approach associates an ordinary differential
equation (ODE) with the SRA,

dθ

dτ
= h(θ(τ)),

where h(θ) is obtained as

h(θ) = lim
t→∞EQ(t, θ,Xt),



provided this limit exists. If Xt depends on θt−1, then instead

h(θ) = lim
t→∞EQ(t, θ, X̄t(θ)),

The stochastic approximation results are:

Under suitable assumptions, if θ̄ is a locally stable equilibrium point of the ODE
then θ̄ is a possible point of convergence of the SRA. If θ̄ is not a locally stable
equilibrium point of the ODE then θ̄ is not a possible point of convergence of
the SRA, i.e. θt→ θ̄ with probability 0.

Discuss “suitable assumptions” and “possible point of convergence”. See Ch.
6 of EH (2001) for details.



APPLICATION TO THE MUTH-LUCAS MODEL

The SRA is

φt = φt−1 + t−1R−1t zt−1(z0t−1(T (φt−1)− φt−1) + ηt)

Rt+1 = Rt + t−1 t

t+ 1
(ztz

0
t −Rt).

and we identify θt with the components of φt,Rt+1.

The regularity assumptions are satisfied. The ODE is computed to be

dφ

dτ
= R−1M(T (φ)− φ)

dR

dτ
= M −R

where M = Eztz
0
t. The fixed point is φ = φ̄ ≡ (ā, b̄0)0 and R =M .



It is easy to see that R(τ) → M globally. But then stability stability of the
ODE reduces to stability of

dφ

dτ
= T (φ)− φ.

But φ =

Ã
a
b

!
, so this is just the E-stability differential equation, and

E-stability holds if and only if α < 1.

Our conclusions: (i) stochastic approximation techniques can be used to prove
the stated Theorem on convergence of LS learning.
(ii) E-stability governs convergence under LS learning.

Numerical simulation of learning in Muth model. μ = 5, δ = 1 and α = −0.5.
wt

iid∼ N(0, 1) and ηt
iid∼ N(0, 1/4). Initial values a0 = 1, b0 = 2 and

R0 = eye(2). Convergence to the REE ā = 10/3 and b̄ = 2/3 is rapid.





THE E-STABILITY PRINCIPLE

— To study convergence of LS learning to an REE, specify a PLM with para-
meters φ. The PLM can be thought of as an econometric forecasting model.
The REE is the PLM with φ = φ̄.

— PLMs can take the form of ARMA or VARs or admit cycles or a dependence
on sunspots.

— Compute the ALM for this PLM. This gives a map

φ→ T (φ),

with fixed point φ̄.



— E-stability is determined by local asymptotic stability of φ̄ under

dφ

dτ
= T (φ)− φ.

The E-stability condition is that all roots of DT (φ̄) − I have negative real
parts. Equivalently, the real parts of all eigenvalues of DT (φ̄) must be less
than 1.

— The E-stability principle: E-stability governs local stability of an REE under
LS and closely related learning rules.



DISCUSSION OF E-STABILITY

— For some economic models the validity of the E-stability principle can be
proved. In other cases it can be verified numerically.

— I regard the E-stability principle therefore as an operating hypothesis. The
full extent of its validity remains to be determined. It appears to hold in a very
wide range of economic models, e.g. RBC models, OG models with sunspots
or cycles, New Keynesian models, open-economy macro models.

— The E-stability principle can be adapted to hold for misspecification issues,
e.g. overparametrization (strong E-stability) or underparameterization (conver-
gence to a “Restricted Perceptions Equilibrium”).

— The E-stability principle also holds for “constant-gain” versions of LS in which
there is incomplete convergence to an REE.



ADAPTIVE LEARNING VS. EDUCTIVE LEARNING

— LS learning is adaptive: it occurs in real time in response to forecast errors
as data is accumulated.

— Another time of learning is “eductive.” This occurs in “mental time” as a
result of a reasoning process. In some models one can argue that if all agents
know that Ept will be within a certain distance of its RE value, then in fact
Ept will be strictly closer. Under common knowledge of rationality, one can
then deduce that Ept is at its RE value.

— In such cases the REE is said to be eductively stable. See Guesnerie (1992,
2002), Evans and Guesnerie (1993, 2003, 2005), and others.



— In the cobweb model Guesnerie (1992) showed that with a homogeneous
structure the condition for eductive stability is |α| < 1. This condition can be
obtained from “iterative E-stability,” which requires that

φN+1 = T (φN), for N = 0, 1, 2, . . . .

converges to the RE fixed point φ̄.

— Evans-Guesnerie showed more generally that iterative E-stability is a necessary
condition for eductive stability. Iterative E-stability is stronger than E-stability:
we need all roots of DT (φ̄) lie inside the unit circle.

— Eductive stability treats agents as economic theorists. It seems more appro-
priate in models with transparent structures. In the lectures I will focus on
adaptive/LS learning.



Sargent-Wallace “ad hoc” model

There are many other univariate examples, e.g. the Sargent and Wallace (1975),
AS-IS-LM model:

qt = aI + ap(pt −E∗t−1pt) + u1t, where ap > 0,

qt = bI + br(rt − (E∗t−1pt+1 −E∗t−1pt)) + u2t, where br < 0,

m = cI + pt + cqqt + crrt + u3t, where cq > 0, cr < 0.

The model can be solved to yield the reduced form of the price level

pt = α+ β0E
∗
t−1pt + β1E

∗
t−1pt+1 + vt,

where Et−1vt = 0 and

β0 = (ap(1 + brcqc
−1
r ) + br)/(ap(1 + brcqc

−1
r ) + brc

−1
r )

β1 = (1− β0)/(1− c−1r ).



pt = α+ β0E
∗
t−1pt + β1E

∗
t−1pt+1 + vt.

For Sargent-Wallace β1 > 0 and β0 + β1 < 1. The MSV solution is

pt = ā+ vt, where

ā = α/(1− β0 − β1).

For the PLM pt = a+ vt the solution is stable under learning.

Taylor (1977) has a version withmt in the AS curve that leads to indeterminacy.
SSEs exist and can sometimes be stable under learning.



Cagan Model

The Cagan model of inflation is

mt − pt = −γ(E∗t pt+1 − pt) + ηt

where money supply mt is exogenous. This can be put in the form

pt = βE∗t pt+1 + κmt + vt,

where 0 < β = γ/(1 + γ) < 1 when γ > 0. In linearized OG models, γ < 0

and hence β < 0 or β > 1 is possible.

Other economic models fit this framework:
— Asset pricing with risk-neutrality
— PPP model of exchange rates



In some cases lagged pt appears, e.g. in the Cagan model if

mt = m+ dpt−1 + et.

The general model

pt = βE∗t pt+1 + δpt−1 + vt,

is of interest because of its one-step forward, one-step backward structure.
Under RE the MSV solutions take the form

pt = c̄+ āpt−1 + k̄vt.

Here ā satisfies

βa2 − a+ δ = 0,

with roots

a1 = (2β)
−1

µ
1−

q
1− 4βδ

¶
and a2 = (2β)

−1
µ
1 +

q
1− 4βδ

¶



If |β + δ| < 1 then only the a1 solution gives a stationary (non-explosive)
solution. In some cases both solutions are stationary, as are sunspot solutions.

Using PLMs

pt = c+ apt−1 + kvt

we can check whether under LS learning (ct, at, kt)→ (ā, b̄, k̄) locally.

If there are two stationary solutions of this form, E-stability can select between
them. We can also look at the stability of SSEs (stationary sunspot equilibria)

pt = c+ apt−1 + kvt + dξt,

where ξt is a suitable AR(1) sunspot. See Evans and McGough (2005a).
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CONCLUSIONS

• RE is very strong, unless supplemented by an account of how it can be
reached by boundedly rational agents.

• The cognitive consistency principle suggests modeling economic agents
as econometricians, forecasting using estimated models with parameter
estimates that are updated over time.

• The E-stability principle governs converge

• In the Muth-Lucas model, we can show convergence to RE.



• More generally, multiple REE are possible. Stability under learning provides
a selection criterion. Sometimes sunspot equilibria can be stable under
learning.

• Next lecture: the New Keynesian model and monetary policy.


