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Rational expectations solutions to macroeconomic models are equilibria requir-
ing the coordination of expectations, and one can investigate the local stability of
these solutions under alternative learning rules. Eductive (mental) approaches to
learning have somewhat stricter stability conditions than do adaptive (statistical)
approaches, as we illustrate using three economic models. The expectational stabil-
ity principle can be used to understand the relationship between the corresponding
stability conditions. This principle also provides insight into the persistent learning
dynamics that can arise under modiÞed adaptive learning rules.

Les Anticipations Macroéconomiques:
l�Apprentissage Adaptatife et Divinatoire
Les solutions à anticipations rationales dans les modèles macroeconomiques

sont des equilibres qui exigeant la coordination des anticipations, et on peut exam-
iner la stabilité locale des cettes solutions selon la choix des regles d�apprentissage.
Les approches divinatoires (mentales) à l�apprentissage conduisent à des condi-
tions plus strictes que celles des approches adaptatifes (statistiques), et on illustre
cette proposition avec trois modelès economiques. Le principe de �expectational
stability� démontre la connexion entre les conditions correspondantes de stabilité.
Ce principe éclaire les dynamiques d�apprentissage persistantes qui se produiraient
avec des regles modiÞés d�apprentissage adaptatife.

JEL classiÞcations: D83, D84, C62

1 Introduction
The current standard paradigm for modeling expectations in macroeconomics
is rational expectations (RE). There are obvious attractions. Under RE
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there are no incentives to change the forecast rule, while under alternative
assumptions an individual agent would be able to obtain higher utility or
proÞts by adopting a different forecasting procedures. However, implicit in
the RE hypothesis are strong assumptions about the knowledge of the agents
about the model structure. Furthermore, in models in which expectations
affect aggregate outcomes, a rational expectations equilibrium (REE) must
be thought of as a Nash equilibrium in strategies. Consequently, from the
time of its introduction, questions were raised about whether, and if so how,
an REE could be reached by real world agents.
There is now a substantial literature on the question of whether REE can

be attained as the outcome of a learning process. The approaches fall into two
broad groups: eductive and adaptive. Eductive processes operate in mental
time, describing a process of reasoning. The issue is whether rational agents,
following a reasoning process, can deduce that the equilibrium path must
given by a particular REE, leading to coordination on that REE. Adaptive
learning instead operates in real time. Agents have a forecast rule, which they
update in response to forecast errors. A standard approach is to assume they
update parameter estimates according to least squares or other statistical
procedures. The main issue is whether over time expectations converge to
some REE.
There are strong connections between these two approaches but the stabil-

ity conditions are not identical. The expectational stability principle, based
on the mapping from the perceived law of motion to the actual law of mo-
tion, provides a way of understanding the connections: in a wide range of
economic models, expectational stability gives the stability conditions under
adaptive learning, while the stricter iterative expectational stability condi-
tions are necessary for stability under eductive learning. This paper reviews
these connections in three types of model. We also discuss an adaptive rule
that does not fully converge to RE.
Most of the material on adaptive learning is based on my forthcoming

book with Seppo Honkapohja (Evans and Honkapohja 2001). The discussion
of eductive learning is mainly based on joint work with Roger Guesnerie, as
well as on his earlier research.
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2 The Cobweb Model
We begin with the simplest model, the well-known cobweb market model.
Demand for a product depends on price, pt. Supply depends linearly on
E∗t−1pt, the price expected the previous period, when production decisions
are made. Both supply and demand also depend on unobserved white noise
random shocks. Assuming market clearing yields the reduced form

pt = µ+ αE
∗
t−1pt + ηt (1)

where ηt ∼ iid(0, σ2η). In the basic cobweb model α < 0, but related models
with the same reduced form have α > 0, so we leave α unrestricted.
Under rational expectations E∗t−1pt = Et−1pt and there is a unique REE

(rational expectations equilibrium) given by

pt = ā+ ηt and Et−1pt = ā, where ā = (1− α)−1µ.

2.1 Adaptive learning

A simple and natural adaptive learning scheme is to set expectations equal
to the sample mean of the data:

E∗t−1pt = at−1, where at = t
−1

tX
i=1

pi.

Note that this is a special case of Least Squares in which pt is regressed on
a constant. The formula for at can be written recursively as

at = at−1 + γt(pt − at−1), where γt = 1/t.

The sensitivity to forecast errors γt (the gain sequence) declines to zero as
t→∞. In a stochastic context this �decreasing gain� assumption is entirely
natural as it is a requirement for the consistency of an estimator in standard
econometric frameworks. The classical �adaptive expectations� assumption
of a Þxed gain 0 < γt = γ < 1 cannot converge to RE as it would remain
stochastic in the limit. For the decreasing gain rule we have:

Proposition 1 If α < 1 then at → ā with probability 1. If α > 1 then at
converges with probability 0.
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See (Evans and Honkapohja 2001), and the references therein, for these
and related results on least squares learning in the cobweb model. The results
can be generalized in many ways. For example, suppose supply to depend
on a vector of exogenous, stochastically stationary observable shocks wt−1,
so that the reduced form is

pt = µ+ αE
∗
t−1pt + δ

0wt−1 + ηt.

The unique REE takes the form pt = ā + b̄0wt−1 + ηt and under adaptive
learning a natural forecast procedure would be to set E∗t−1pt = at−1+b

0
t−1wt−1,

where (at, b0t) is updated each period using a Least Squares regression of ps on
an intercept and ws−1, using data from s = 1, . . . , t. Then it can be shown
that (at, b0t) → (ā, b̄0) with probability 1 if α < 1. One can also allow for
heterogeneous expectations of agents in various ways.

2.2 Eductive learning

We now take up the eductive viewpoint for the model (1). The argument
here was initially given in (Guesnerie 1992). See (Evans and Guesnerie 1993)
for the multivariate formulation and (Guesnerie 1999) for a comprehensive
discussion and a survey of current research in macroeconomics using the
eductive approach.
The cobweb model can be reformulated as a producers� game in which the

strategy of each Þrm is its output and the optimal choice of output depends
on expected price. We assume that Þrms have identical costs. We allow for
heterogeneous expectations, however, so that the equilibrium market price is
given by

pt = µ+ α

Z
E∗t−1pt(ω)dω + ηt,

where we now assume a continuum of agents indexed by ω and E∗t−1pt(ω) is
the expectation of the market price held by agent ω. The REE is unchanged.
The eductive argument works as follows. Let S(ā) denote a neighborhood

of ā. Suppose it is common knowledge (CK) that E∗t−1pt(ω) ∈ S(ā) for all ω.
Then it follows that it is CK that Ept ∈ |α|S(ā). Hence, assuming individual
rationality, it follows that it is CK that E∗t−1pt(ω) ∈ |α|S(ā) for all ω. If
|α| < 1 then this reinforces and tightens the CK assumption. Iterating this
argument it follows that E∗t−1pt(ω) ∈ |α|N S(ā) for all N = 0, 1, 2, . . . , and
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hence the REE Ept = ā is itself CK. Guesnerie calls such an REE �strongly
rational.� We also use the equivalent terminology that the REE is �eductively
stable� or �stable under eductive learning.�

Proposition 2 If |α| < 1 then the REE is stable under eductive learning,
while if |α| > 1 the REE is not eductively stable.

Note two crucial differences from the adaptive learning results. First, the
learning here takes place in mental time, not real time. In principle, given
the CK assumptions and applying the full power of their reasoning abilities,
rational agents would coordinate instantaneously on the REE when |α| < 1.
Second, when α < −1 the REE is not eductively stable, but is asymptotically
stable under adaptive learning.

2.3 E-stability and Iterative E-stability

The results for stability under adaptive and eductive learning can be obtained
using the expectational stability principle. (See (Evans 1985), (Evans and
Guesnerie 1993) and (Evans and Honkapohja 2001)). Suppose all agents have
the homogeneous expectation E∗t−1pt = a corresponding to a perceived law
of motion for prices pt = a + ηt. Then the actual law of motion for prices
would be given by pt = (µ + αa) + ηt and the corresponding true expected
price would be µ + αa. We thus have a mapping from the perceived law of
motion to the actual law of motion given by

T (a) = µ+ αa.

The REE ā is the Þxed point of this map. If limk→∞ T k(a) = ā for a 6= ā, so
that ā is stable under iterations of the T - map, the REE is said to be iterative
expectationally stable (or IE-stable). Clearly this is given by the condition
|α| < 1, which corresponds to stability under eductive learning.
Stability of ā under the differential equation

da/dτ = T (a(τ))− a(τ )

determines whether the REE is said to be expectationally stable (or E-stable).
For the cobweb model the condition is α < 1, which corresponds to stability
under adaptive learning. Intuitively, E-stability describes a �slow adjust-
ment� of a toward the true expected value generated by a.
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We have described E-stability and IE-stability in the context of the sim-
ple cobweb model, but the approach can easily be generalized. For a given
economic model, let φ be a parameter vector specifying a stochastic process
believed by agents to describe the solution. Suppose that T (φ) is the param-
eter vector that characterizes the ALM (actual law of motion) generated by
the PLM (perceived law of motion) parameter vector φ. Then IE stability
of a Þxed point φ̄ of T (φ) is deÞned by local stability under iterations of T ,
while E-stability is deÞned as local stability under the differential equation
dφ/dτ = T (φ)− φ.
How general are the links between E-stability and adaptive learning (e.g.

least squares learning), and between IE-stability and eductive learning? For
a wide range of models it can be demonstrated that E-stability governs local
stability of least squares learning. This is discussed extensively in (Evans
and Honkapohja 2001), which also outlines several types of assumption that
will be needed for a general result. In cases where theoretical proofs are
not available the link appears borne out by simulations. For stability un-
der eductive learning, IE-stability appears in general to be a necessary but
not always sufficient condition. The lack of sufficiency is shown in (Evans
and Guesnerie 1993) for the cobweb model with a sufficiently heterogeneous
structure, and in (Evans and Guesnerie 1999) for a variation of the dynamic
univariate models given in the next Section. In the present paper IE-stability
is necessary and sufficient for stability under eductive learning.
Finally, the condition for IE-stability of φ̄, that all eigenvalues of the

derivative map DT (φ̄) have modulus less than one, is stronger than the
condition for E-stability, that all eigenvalues of DT (φ̄) have real parts less
than one. We thus have the following relationships:

Eductive stability ⇒ IE-stability

⇒ E-stability⇔ Stability under adaptive learning.

This is an informal conjecture, or �working hypothesis,� the validity of which
has been established for many speciÞc classes of model.

3 A Linear model with Multiplicities
We next consider models of the form

yt = βE
∗
t yt+1 + δyt−1 + vt, (2)
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when expectations are homogeneous, where vt is an exogenous white noise
disturbance. If the model is deterministic then vt ≡ 0. The model has been
normalized so that its equilibrium value is zero (this is not innocuous under
learning). An initial condition y0 = �y0 is given.
Assuming real roots to the quadratic given below, there are two rational

expectations solutions of the form

yt = λ̄yt−1 + d̄vt,

where

βλ̄
2 − λ̄+ δ = 0 and d̄ = (1− βλ̄)−1.

Let the two roots λ̄ be denoted |λ1| < |λ2| . For various reasons we do not
consider here explosive solutions, in which

¯̄
λ̄
¯̄
> 1, nor the case of nonreal

roots. There are therefore two cases of interest:
(1) The standard �saddle point� case, in which |λ1| < 1 < |λ2|. This case

arises if and only if |β + δ| < 1.
(2) The �indeterminacy� case, in which |λ1| < |λ2| < 1. In (β, δ) space

this corresponds to four regions. Region A and B are contiguous, with A
bounded by δ > 0, β < −1 and β + δ < −1, and B bounded by δ ≤ 0,
β < −1/2, β + δ < −1 and βδ < 1/4. Similarly regions C and D are
contiguous, with region D bounded by δ < 0, β > 1 and β + δ > 1 and C
bounded by δ ≥ 0, β > 1/2, β + δ > 1 and βδ < 1/4.
For adaptive learning we use the LS (least squares) learning approach.

Agents make forecasts according to

E∗t yt+1 = λtyt,

where the parameter λt is estimated by a least squares regression of ys on
ys−1 using data s = 1, . . . , t−1. The question of interest is whether, in some
suitable stochastic sense, λt → λ1 or λt → λ2 as t→∞.
Applying the techniques of (Evans and Honkapohja 2001) it can be shown

that local stability of λ1 and λ2 is determined by the corresponding E-stability
condition. To obtain this condition we consider a PLM yt = λyt−1+dvt. This
leads to forecasts E∗t yt+1 = λyt which, when inserted into (2), yields the ALM
yt = δ(1−βλ)−1yt−1+(1−βλ)−1vt. Hence the mapping from PLM to ALM
is

T (λ) = δ(1− βλ)−1

and an REE λ̄ is E-stable if T 0(λ̄) = δβ(1− βλ̄)−2 < 1. We have:
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Proposition 3 Let λ̄ = λ1 or λ̄ = λ2 and assume
¯̄
λ̄
¯̄
< 1. If λ̄ is E-stable

(T 0(λ̄) < 1) then the solution yt = λ̄yt−1+ d̄vt is locally stable under LS (least
squares) learning. If T 0(λ̄) > 1 it is unstable under LS learning.

For the alternative precise interpretations of �locally stable� here, see
(Evans and Honkapohja 2001), Chapter 6, and (Evans and Honkapohja 1998).
We consider next the eductive argument, following (Evans and Guesnerie

1999). We adopt the nonstochastic reduced form

yt = β

Z
E∗t yt+1(ωt)dωt + δyt−1,

though it appears straightforward to generalize the argument to allow for a
white noise shock, as in the cobweb model. The corresponding REE are of
the form yt = λ̄yt−1. We make the following CK assumption:

CK Condition: For all s = 1, 2, . . . ,∞, ys lies between (λ̄ − ²)ys−1 and
(λ̄+ ²)ys−1 for some ² > 0.

Here we take either λ̄ = λ1 or λ̄ = λ2 and we assume that ² is sufficiently
small. Thus it is assumed to be CK that for all time the actual growth rate
is close to λ̄.
For each agent the expected growth rate E∗t yt+1(ωt)/yt lies between λ̄− ²

and λ̄ + ². Inserting this condition into the reduced form it follows that the
actual growth rate will be between λ̄ − ρ² and λ̄ + ρ², where ρ = ¯̄

T 0(λ̄)
¯̄
.

If ρ < 1 then this argument tightens the initial CK restrictions. Thus the
condition for eductive stability in this model is the same as the IE-stability
condition

¯̄
T 0(λ̄)

¯̄
< 1. We obtain:

Proposition 4 Let λ̄ = λ1 or λ̄ = λ2 and assume
¯̄
λ̄
¯̄
< 1. If λ̄ is IE-stable

(
¯̄
T 0(λ̄)

¯̄
< 1) then the solution yt = λ̄yt−1 is locally eductively stable. If¯̄

T 0(λ̄)
¯̄
> 1 then the solution is not locally eductively stable.

We can now compare the stability of solutions under adaptive (least
squares) and eductive learning. We emphasize that all stability results are
local.
In the saddle point region |β + δ| < 1 there is a unique nonexplosive

solution given by λ1. It can be veriÞed that in this region λ1 satisÞes the
IE-stability condition |T 0(λ1)| < 1. Hence the λ1 solution is both eductively
stable and stable under LS learning.
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In the indeterminacy regions A,B,C,D both the λ1 and λ2 solutions are
nonexplosive. λ1 continues to be IE-stable and hence both eductively stable
and stable under LS learning. The situation for the λ2 solution is more
complicated. The λ2 solution is never eductively stable in A,B,C,D and it
is not stable under LS learning in regions B,C. However in regions A and
D the λ2 solution is stable under LS learning.
Variations to the basic model have been taken up in the literature. If the

speciÞcation includes a non-zero intercept, i.e. yt = φ + βE∗t yt+1 + δyt−1 +
vt, and the steady state must also be learned, this will affect the stability
conditions under learning. Under LS learning this is because the forecast
rule estimated by LS will be augmented to include an intercept, while under
eductive learning the CK assumption would be correspondingly weakened.
A second variation of the model is to weaken the information assumption by
assuming that agents do not have available observations on yt when time t
decisions are made.
LS and eductive learning have been examined for both variations of the

model. (See (Evans and Honkapohja 2001) for LS learning and (Evans and
Guesnerie 1999) for the analysis of eductive learning). Although the stability
conditions are altered, we continue to Þnd that the stability conditions for
eductive learning are stricter than for adaptive learning.

4 Persistent Learning Dynamics in the In-
creasing Social Returns model

In our last example we consider a form of adaptive learning that does not
fully converge to RE. The deviation from rationality under adaptive learning
now becomes greater than before, since it persists asymptotically. The po-
tential attraction is that the learning dynamics themselves become of greater
interest.
We adopt a nonlinear economic model that can have multiple steady

states, the �Increasing Social Returns� extension of the OG model. This
model is described in Chapter 4 of (Evans and Honkapohja 2001). The ISR
(Increasing Social Returns) model is an extension of the basic overlapping
generations model of money with production, in which we introduce a positive
production externality and random productivity shocks. The reduced form
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of this model takes the form

nt = H(E∗tXt+1),

Xt = G(nt, vt).

Here nt is aggregate employment, Xt is a measure (a monotonic transforma-
tion) of aggregate output and vt is an iid productivity shock with mean 1.
H and G are continuously differentiable functions.
A nonstochastic version of the model is obtained when vt ≡ 1 for all

t. Assuming point expectations in this case we can again solve for nt =
F(E∗t nt+1). Nonstochastic steady states are given by n = F(n), where
F(n) = H(G(n, 1). For appropriate choices of the parameter values F is
an increasing function with three interior steady states nL < nU < nH sat-
isfying 0 < F 0(nL),F 0(nH) < 1 and F 0(nU) > 1. (Here F 0(n) denotes the
derivative of F). The lower two steady states nL and nU constitute �coor-
dination failures� since it can be shown that they are Pareto dominated by
the high steady state nH . For some choices of parameter values there can be
a single steady state, but we restrict attention to the three steady state case.
When the random productivity shock is present, REE �noisy steady states�
will exist, at least when the support for vt is small enough. These take the
form nt = n and Xt = G(n, vt), where n is near nL, nU or nH .
For eductive learning we focus on the nonstochastic case vt ≡ 1. The

model can be linearized around a steady state so that, to a Þrst order ap-
proximation nt = n̄ + β(Etn∗t+1 − n̄) where n̄ = nL, nU , nH , and β = F 0(n̄).
Suppose we have a CK restriction of the form n̄− ² ≤ nt ≤ n̄ + ², for ² > 0
sufficiently small, for all t = 1, 2, 3, . . . . Then it can be veriÞed that the
steady state is eductively stable if |β| < 1 and not if |β| > 1. It follows that
nL and nH are locally stable under eductive learning, but that nU is not.
Consider next adaptive learning and return to the stochastic case. We

adopt the simplest rule, close to the one used in the cobweb model:

E∗tXt+1 = θt−1, where θt = θt−1 + γt(Xt − θt−1).
Under the standard assumption γt = 1/t, an REE noisy steady state near
nL or nH is locally stable under adaptive learning, while an REE near nU is
not. See (Evans and Honkapohja 2001), Chapter 11.
We now consider adaptive learning with constant gain, i.e. 0 < γt =

γ < 1. Constant gain is often recommended if there is risk of unknown,
recurring structural shifts. It can also be a good choice if other agents use
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it. The results of this section are drawn from (Evans and Honkapohja 2001),
Chapter 14. Let θL = G(nL, 1), θU = G(nU , 1) and θH = G(nH , 1) be the
values of X corresponding to nL, nU and nH , respectively. We assume that
the support of vt is [v̄1, v̄2]. We have:

Proposition 5 There exist �v1 < 1 < �v2 so that for all v̄1, v̄2, satisfying
�v1 < v̄1 < 1 < v̄2 < �v2, there are neighborhoods N(θL) = (a1, a2) and
N(θH) = (b1, b2), with 0 < a1 < θL < a2 < θU < b1 < θH < b2, such that
θt−1 ∈ N(θL) implies θt ∈ N(θL) and θt−1 ∈ N(θH) implies θt ∈ N(θH).

Thus, for a sufficiently small support for the productivity shock vt, ex-
pectations will remain trapped in a neighborhood of θL or θH if they start in
(or enter) that neighborhood. Note that since nt = H(θt−1), this also implies
that nt will be conÞned to a neighborhoods of nL or nH .

Proposition 6 Suppose v̄1 < �v1 and v̄2 > �v2. Then for every interval J =
(θ̄1, θ̄2), 0 < θ̄1 < θ̄2, and for all neighborhoods N(θH) of θH and N(θL) of
θL there is a positive integer T such that if θt ∈ J then, for all s > t + T,
θs ∈ N(θH) with positive probability and θs ∈ N(θL) with positive probability.

Thus, for a given gain γ, if the support of vt is large enough there are en-
dogenous ßuctuations, with the economy occasionally and randomly switch-
ing between high and low levels of economic activity near the E-stable steady
states. These ßuctuations are not fully rational sunspot equilibria (which can
also exist in this model), but instead are generated by a combination of the
random intrinsic productivity shocks and the particular form of the learn-
ing rule. Simulations illustrating the endogenous ßuctuations generated are
presented in (Evans and Honkapohja 2001), Chapter 14. It is also shown
numerically that it is (approximately) optimal for agents to use the constant
gain value used in the simulations (in preference to other values of γ or to
γt = 1/t), given that all other agents do so. Thus the forecast rules used are
(approximately) optimal within a (restricted) class of rules. Whether such
reasonable but not fully rational forecast rules can be good descriptions of
the world is an open question.
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5 Conclusions
Eductive learning is closest to strict rationality. Because eductive reasoning
takes place in mental time, the reasoning process could be instantaneous,
leading to immediate coordination on an eductively stable REE. A possible
alternative view of eductive learning is that the mental stages may correspond
to stages in real time, with the possible deviations from REE shrinking (in
the eductively stable case) as time progresses. An advantage of eductive
learning is that it models agents much like economic theorists.
Adaptive learning models makes agents more boundedly rational. Agents

use a statistical forecasting model that is misspeciÞed during the learning
transition. However, when an REE is adaptively stable, this misspeciÞcation
goes away in the limit and their forecasts become fully rational asymptoti-
cally. An advantage of adaptive learning is that it models agents much like
econometricians. Furthermore, by varying the precise assumptions we make
about their econometric speciÞcation, we can examine the effects of standard
econometric problems such as omitted variables or misspeciÞed functional
forms.
Which is the appropriate way to model economic agents will ultimately

be a matter for empirical and experimental research. It is likely that the
answer depends on the circumstances, for example, in experiments, on the
details of the setting and the types of information provided to the subjects.
A plausible conjecture is that when a model is simple and transparent, as
well as eductively stable, agents will coordinate rapidly on the REE. In such
circumstances least squares learning may be too pessimistic in its predictions
concerning the speed of convergence.
If a model has no eductively stable REE, but has an REE that is adap-

tively stable, then a plausible conjecture is that there will still be convergence
to the REE, at a rate governed by the accumulation of data. After all, agents
still need to make forecasts and standard econometric techniques provide a
plausible model of how agents will do so. The eductive results provide a
caution, however, that coordination in such cases may not be robust.
Finally, when the model is very complex and agents do not clearly under-

stand the structure, simple constant gain adaptive learning rules may provide
useful insights, and indicate the possibility of learning dynamics that persis-
tently deviate from strict rationality.
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