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Abstract

We explore the connection between shock observability and equilibrium.

When aggregate shocks are unobserved the rational expectations solutions re-

main unchanged if contemporaneous aggregate outcomes are observable, but

their stability under adaptive learning must be reconsidered. We obtain learn-

ing stability conditions and show that, provided there is not large positive

expectational feedback, the minimum state variable solution is robustly sta-

ble under learning, while the nonfundamental solution is never robustly stable.

Using agent-level micro-founded settings we apply our results to overlapping

generations and New Keynesian models, and we address the uniqueness con-

cerns raised in Cochrane (2011).

JEL Classifications: E31; E32; E52; D84; D83

Key Words: Expectations; Learning; Observability; Selection; New Keyne-

sian; Indeterminacy.

1 Introduction

We explore the connection between shock observability and equilibrium selection un-

der learning. Under rational expectations (RE) the assumption of shock observability

does not affect equilibrium outcomes if current aggregates are in the information set.

However, stability under adaptive learning is altered. The common assumption that

exogenous shocks are observable to forward-looking agents has been questioned by

prominent authors, including Cochrane (2009) and Levine et al. (2012). We exam-

ine the implications for equilibrium selection of taking the shocks as unobservable.
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Within the context of a simple model, we establish that determinacy implies the ex-

istence of a unique robustly stable rational expectations equilibrium. Our results also

cover the indeterminate case. As an important application of our results, we examine

the concerns raised in Cochrane (2009, 2011) about the New Keynesian model.

A rational expectations equilibrium (REE) may be defined as a sequence of con-

ditional distributions for a model’s endogenous variables that are consistent with the

decisions of agents who themselves are making forecasts optimally against these dis-

tributions. Importantly, for an REE to be well-defined, the information sets available

to agents when forecasts are made must be precisely specified. Most often, the in-

formation sets are implicitly specified during the construction of the corresponding

model.

Even while being sharply criticized both theoretically and empirically, the as-

sumption of rational expectations remains standard among researchers and policy

makers, and serves as the primary benchmark against which any natural alternative

is compared. The reasons for the profession’s love-affair with rationality are (at least)

two-fold: first, from a strictly practical point of view, rational expectations models

are straightforward to analyze; second, and much more fundamentally, RE, by defi-

nition, uniquely identifies an expectations formation mechanism that the associated

agents cannot improve upon — there are no twenty dollar bills left on the roads of RE

models.

Among the theoretical criticisms levied at the RE assumption, three stand out: the

unrealistic structural knowledge apparently required by agents; the need for a story

for how agents coordinate on an REE; and the potential for equilibrium multiplicity.

The first two criticisms can be described together. When economists compute an

REE we do so with knowledge of the full structure of the economy, including all the

relevant structural parameters. It does not seem plausible that agents would have

the needed knowledge of economy-wide parameters, given especially that in practice

economists need to estimate them. In addition, a crucial feature of macroeconomic

models is that outcomes depend on expectations, introducing a self-referential aspect

to the economy: it is rational to have RE, i.e. the expectations corresponding to an

REE, only if other agents have RE. Through what mechanism would agents come to

coordinate on having RE?

Finally there is the issue of multiplicity of RE solutions. Even simple linear RE

models typically have multiple RE solutions. Which solution should be chosen? In

many cases (when “determinacy” holds) there is a unique non-explosive RE solution,

and in this case it is common practice to pick this solution. This choice has theoretical

support when the explosive paths can be shown not to be legitimate equilibrium

paths based on transversality conditions or on no-Ponzi-game or other constraints.

However, there are cases in which explosive RE paths meet all the relevant equilibrium

conditions. Furthermore, there are many models in which there are multiple non-
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explosive RE solutions. The latter can take various forms, including models with a

unique but “indeterminate” steady state (with multiple stationary RE solutions in

any neighborhood of the steady state) and models with multiple RE steady states.

The literature on adaptive learning arose in part to mitigate these concerns. Under

this approach agents are assumed to form expectations using forecasting models,

which they update over time in response to observed data. The now well-developed

theory of adaptive learning allows the researcher to assess whether agents, using least-

squares updating of the coefficients of their forecasting model, will come to behave in

a manner that is asymptotically consistent with rational expectations. In this case

we say that the associated equilibrium is stable under adaptive learning. It has been

found, in many cases, that stability under adaptive learning can be used to justify

reliance on RE: see Marcet and Sargent (1989) and Evans and Honkapohja (2001) for

a careful treatment.

In addition, in settings with multiple REE, adaptive learning has played an effec-

tive role as an equilibrium selection device: reducing consideration to REE that are

locally stable under learning dynamics can either select a unique equilibrium or at

least restrict attention to a subset.1 Even in the cases in which multiplicity remains,

adaptive learning resolves the multiplicity problem in the sense that it provides a full

description of the path of the economy that is generated when agents use a given

forecasting model, and updating procedure, and when initial beliefs are specified.

Under the adaptive learning approach a stand must still be take on what informa-

tion is available to forecasting agents. The common, though by no means ubiquitous,

assumption is that agents are able to condition time  forecasts on -dated variables,

including any -dated exogenous shocks. While in some environments this assump-

tion may be quite natural, in others it is quite difficult to defend. Should aggregate

productivity shocks be taken as observable? Certainly one cannot look up the cur-

rent value in a newspaper. Perhaps the shocks can be “backed-out” using, e.g. the

Solow residual, but this requires estimation, and so at best, we might take a proxy

as observable. And what about taste shocks? Are these observable? Even shocks to

someone else’s taste? These issues have been raised recently in policy-related litera-

ture: Cochrane (2011) has argued that the New Keynesian model’s exogenous shocks,

specifically the monetary policy shocks, are most naturally taken as unobservable, and

that this unobservability has important consequences: more on this later.

Of course it is not necessary to abandon RE even if one imagines that shocks, at

least contemporaneous shocks, should not be assumed observable: the information

sets available to agents can simply be specified to exclude certain variables and, in

this way, RE can still be embraced. Lucas (1973) did precisely this in his famous

1Using the standard linear three-equation reduced-form set-up, with alternative Taylor rules,

stability under adaptive learning in New Keynesian models was first studied by Bullard and Mitra

(2002).
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islands model, and Mankiw and Reis (2002) have exploited the same idea in their

sticky information DSGE environment. In this paper, we explore the connection

between observability and equilibrium selection. We take as our point of departure

the possibility that contemporaneous exogenous shocks are not observable to agents.

In Section 2 we consider a simple forward-looking model with an exogenous serially

correlated shock, and formulate the REE in two cases: when the shock is observable

and when it is not. In setting up the framework we look ahead to the subsequent

sections on stability under adaptive learning, and define an REE as requiring agent

beliefs to satisfy the property that the probability distribution of the resulting data

generating process coincide with the beliefs.2 Starting with the case with observ-

able shocks, we identify two REE of interest: the fundamental, or “minimum state

variable” (MSV) solution, which is always stationary; and a non-fundamental (NF)

solution, which may or may not also be stationary. We then show that when shocks

are not observable there are RE beliefs that reproduce these solutions. The forecast

rules that generate the REE use lags of the observable endogenous variable in effect

to uncover the information in the unobservable exogenous variables needed to make

optimal forecasts.

We then, in Section 3, turn to stability under learning. In a model with observable

shocks, McCallum (2009a) showed that determinacy implies that only the fundamen-

tal MSV solution is stable under learning. However, Cochrane (2009, 2011) argued

that McCallum’s stability results hinged on observability of these shocks. In Section

3 we conduct a careful study of stability under learning of the two solutions when

the exogenous shocks are unobservable. Since it will not be obvious to agents how

many lags of the observable endogenous variable to use in the specification of their

forecasting model, our criterion for stability under learning, which we call “robust

stability,” is that the REE be locally stable under learning even if the forecast rule

contains more than the minimum number of lags needed to represent the REE. The

central result of our paper is that the MSV solution is robustly stable under learn-

ing, provided only that the positive feedback from expectations is not too large. In

contrast the NF solution is never robustly stable under learning.

Section 4 studies two applications. Both applications are developed from micro-

founded agent-level models. In both examples a key step is to obtain what is called

the “temporary equilibrium map,” which gives the time  market outcomes, i.e. the

market-clearing prices and quantities, that result from the supply and demand sched-

ules of agents conditional on their expectations of relevant variables.3 In each case

the temporary equilibrium map, when linearized, matches the framework developed

Sections 2 and 3.

2In the language of Adam and Marcet (2011) the beliefs are externally as well as internally

rational.
3The temporary equilibrium concept was originally introduced by Hicks (1939).
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The first application of Section 4 is an overlapping generations model with pro-

duction and money. This leads to a temporary equilibrium map in which the goods

price of money depends on its expected price in the following period. This model

can be either determinate (in which case the MSV solution is the unique stationary

solution) or indeterminate (in which case the NF solution is also stationary). We

show that in either case the MSV solution is robustly stable under learning and the

NF solution is not.

The second application is a New Keynesian (NK) model. We use the flexible-

price NK model employed by both McCallum (2009a) and Cochrane (2009) in their

interchange. Again, we build up the model from the agent level to obtain the system

of equations that define the temporary equilibrium, and then we discuss how the

temporary-equilibrium variables are affected by a change in expected inflation. The

linearized model again can be put in the form analyzed in the earlier sections, and

provided that the interest-rate rule satisfies the Taylor principle the MSV solution

is both the unique non-explosive solution and the unique robustly stable REE under

learning.

To summarize: adaptive learning provides a natural mechanism by which agents

can learn to coordinate on an REE. In the two applications we study, it also acts

as a selection criterion even if the exogenous shocks are unobservable. In particular,

in the NK model adaptive learning selects the REE solution typically adopted by

practitioners.

2 Observability and rational expectations

Is it natural to assume exogenous shocks are observable? Certainly it is in some cases.

For example, it is common to take the exogenous components of government spending

and taxes as observable to forecast-forming agents. One the other hand, assuming

agents condition their expectations on technology shocks (which economists them-

selves can only estimate) or taste shocks (which are only revealed ex-post via choices)

is more difficult to defend. The examination of models under different informational

restrictions has a long history. An early example is provided by Lucas (1973): he as-

sumed aggregate price levels were unobserved, and he leveraged this friction to impart

real effects of surprise money on output; these same types of informational frictions

underlie the modern literature on rational inattention: see Mankiw and Reis (2002)

and Sims (2003).

The specific assumption that certain exogenous shocks are unobserved has also

been explored and exploited in a variety of models. Within the Real Business Cycle

framework, it is common to assume certain types of productivity shocks are unob-

served: see King and Rebelo (1999) for examples and further references. Similar

examinations have been conducted in the New Keynesian model: Woodford (2003)
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considers the possibility that expectations are formed before certain shocks are real-

ized; and more recently, and again in a New Keynesian model, Levine et al (2012)

find that the assumption that shocks are not observed by agents leads to improved

empirical performance.

Our interest here is in the relationships among observability, equilibrium multi-

plicity, and equilibrium selection. The most closely related works are Cochrane (2009)

and McCallum (2009a,b). In his papers, Cochrane considers a simple New Keynesian

model, and argues that the monetary policy shock (which is captured by an inno-

vation associated to an instrument rule) should not be taken as observable; and he

finds that, in this case, there are multiple learnable equilibria even when the model

is determinate. Cochrane’s work motivates some of our work here, and we will have

more to say on his results and related issues in Section 4.2.

2.1 The model

To explore the relationship between observability and expectations formation within

an RE framework, we adopt a simple, linear model as our laboratory, written in a

manner consistent with the literature on rational expectations:

 = +1 +  (1)

 = −1 +  where 0    1, (2)

B = boundary conditions

Here  captures a positively autocorrelated stationary exogenous process, with 
zero mean,  and having bounded support.4 The parameter  measures the expec-

tational feedback in the model. We exclude the non-generic cases in which || = 1
or  = 1. The expectational feedback parameter  plays an important role in the

assessment of equilibriummultiplicity. For convenience we do not include an intercept

in (1); thus  should be interpreted as in deviation from mean form.5 Finally, the

symbol B represents the (possibly empty) set of all additional boundary conditions
needed to characterize the collection of equilibrium outcomes: for example, it may

be required that candidate processes  are asymptotically stationary or uniformly

bounded almost everywhere.

In this section we embrace the rational expectations hypothesis, which may be

characterized as follows: agents are assumed to form forecasts optimally given their

available information and beliefs, and in (a rational expectations) equilibrium, agents

have no incentive to modify their beliefs. The symbol  is typically taken to represent

4We focus on the case of positively serially correlated shocks as this is the empirically realistic

case. Negative serial correlation of  would not make the NF solution robustly stable under learnng.
5The omission of an intercept is without loss of generality because we include a constant in the

agent’s forecasting model to ensure robustness in learning the steady state.
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the conditional expectations operator, where the conditioning is taken against the -

algebra F generated by the collection of all random variables assumed observable

at the time , that is, when expectations are formed. In general, agents could also

condition their forecasts on extrinsic shocks (i.e. “sunspots”), in which case these

variables would necessarily be taken as observable and thus measurable against the

-algebra F. Because our focus here is on the implications of not observing exogenous

shocks, in this paper we exclude expectations conditioned on sunspots.

If the values of both the endogenous and exogenous variables are known to agents

then our interpretation of  as a conditional expectations operator raises no issues;

however, a subtlety arises when the exogenous shocks are unobserved: in this case,

 will be measurable with respect to F, but realizations of  cannot be explicitly

used by agents to form forecasts. To deal with this subtlety we draw inspiration from

Adam and Marcet (2009) and develop a precise specification of rational expectations,

and the associated equilibrium concept, in two stages: first, we require that agents

be internally rational in that they form expectations optimally given their beliefs;

and second, in equilibrium we require that the agents be externally rational, i.e. their

beliefs coincide with the distribution implied by the true data-generating process

(DGP). The related but distinct behavioral assumptions of internal and external

rationality do not introduce a new solution concept — the associated equilibrium is

an REE, and in any REE agents are both internally and externally rational; instead,

as will be seen in the following subsections, these behavioral assumptions allow for

a careful and rigorous approach to the incorporation of structural assumptions on

agents’ forecasting models.

2.2 RE with observable shocks

Let  and  be copies of R∞, that is, vector spaces of real sequences. Assume
that agents are identical, and hold beliefs characterized by a probability distribution

P over  ×  , that is, over possible realizations of the pair of stochastic processes

({} {})∈N Letting  and  be the respective history vectors, the beliefs P deter-
mine the perceived distribution of +1 conditional on the histories 

 and . We say

that agents are internally rational if they form expectations against these perceived

conditional distributions: +1 = P (+1| ). The superscript P tracks the

underlying joint distribution being used to form the expectations; similar notation is

used below.

Incorporating internally rational agents with beliefs P into model (1) yields the

data-generating process

 = P ¡+1| ¢+  (3)

This DGP determines a realized probability distribution  (P) over  ×  that de-

pends on the agents’ beliefs P, as is indicated by the notation used. We say that
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internally rational agents are also externally rational provided that the realized dis-

tribution coincides with their beliefs, i.e.  (P) = P. If agents are externally rational,
and if the corresponding process , as determined by (3), satisfies the boundary con-

ditions B, then  is a rational expectations equilibrium in the usual sense of the term.
Formally,

Definition 1 A rational expectations equilibrium of the model (1), under the as-

sumption that  is observable, is a probability distribution P over  ×  and a

stochastic process  satisfying equations (3) and  (P) = P, and the conditions B.

We again emphasize that no new equilibrium concept has been introduced: if

 is an REE of (1) in the usual sense then choosing beliefs P to correspond to the

associated distribution over  × shows that it is is an REE in the sense of Definition
1; and if  is the stochastic process associated to an REE in the sense of Definition

1 then  (P) = P implies that agents are forecasting optimally along the equilibrium
path; thus they have no incentive to modify their beliefs and  is an REE in the

usual sense. The distinction between Definition 1 and the usual definition of an REE

is the emphasis placed on agents’ beliefs.

To operationalize Definition 1, and thus use it to compute equilibria, it is helpful

to stress how certain beliefs structures P may be constructed from, and characterized
by, forecasting models. Suppose agents believe that the process  is given by (2) and

that  follows

 = +

X
=1

− +
X
=0

− (4)

In general we will refer to a forecasting model like this as a Perceived Law of Motion

(PLM).6 Together with initial conditions, (4) and (2) characterize a distribution over

 ×  . As terminology we say that the PLM generates the distribution P The
implied forecasts are given by

P ¡+1| ¢ = +

X
=1

+1− +
X
=1

+1− + 0

where agents are assumed to know  and use (2) to forecast +1. We emphasize that

agents are assumed to use  to forecast +1.
7 These expectations can be joined with

equation (3) to determine the DGP, which is also referred to as the Actual Law of

Motion (ALM). Note that the PLM includes an intercept, so that under adaptive

6Agents engaged in real-time least-squares learning would also include a random error term.
7An alternative assumption sometimes considered is that the exogenous shock is observable but

the contemporaneous aggregate endogenous variable is not observable. We do not consider this case

since our focus is on the implications of not observing exogenous shocks.
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learning agents will in effect need to learn the steady state as well as the other

coefficients.

If B is empty it is straightforward to show that there are necessarily many equilib-
ria. We emphasize two here: the minimal state variable (MSV) solution, sometimes

also called the fundamentals solution, and the particular non-fundamental (NF) solu-

tion studied by McCallum (2009a) and Cochrane (2009).8 When the model is deter-

minate, the MSV solution is the unique stationary solution and all non-fundamental

solutions are explosive and are often referred to as bubbles.

The MSV solution arises from beliefs generated by a forecasting model of the form

 = 0. When 0 = (1 − )−1, forecasts based on P and  (P) coincide. The
NF solution that we consider corresponds to a forecasting model that also includes a

perceived dependence on lags:

 = 1−1 + 0

Here, when 1 = −1 and 0 = −()−1 forecasts based on P and  (P) are coincident.
For reference, we name and record the associate equilibrium processes here:

MSV:  = (1− )−1 (5)

NF:  = −1−1 − 1


 (6)

The MSV solution is the REE exhibiting dependence on a minimal set of regressors.9

The NF solution, which is not minimal in the sense that it also depends on −1
(and is self-fulfilling in the sense that the lag is present if and only if agents perceive

its presence), is explosive almost surely when  ∈ (−1 1), i.e. when the model is
determinate.

Most macroeconomic models of the form (1) include a non-trivial set of boundary

conditions B. These conditions may arise from physical constraints (e.g. consumption
cannot be negative), institutional constraints (e.g. borrowing cannot be greater than

a certain proportion of collateral value), or additional optimality conditions (e.g.

TVC). The presence of boundary conditions may or may not preclude the existence

of multiple equilibria. If, in our example above, B specifies only that solutions not
grow at a rate faster than −1 +  for some   0 then both the MSV and NF

solutions are REE even in the determinate case. If, on the other hand, B includes
the requirement that the sequence {} be uniformly bounded almost surely, then, in
the determinate case, the NF solution is not an REE.

8See McCallum (2009a), equation (9) on p. 1103 and Cochrane (2009), equation (11) on p. 1112.

There are other NF solutions consistent with (4): see Appendix B for details.
9Using the method of undetermined coefficients, it is straightforward to show, for this model,

that the MSV solution is unique. McCallum (1983) shows how to define a unique MSV solution in

more general models that include lags.
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This latter condition, that REE be uniformly bounded almost surely, is commonly

imposed by modelers: it is seen as capturing the need for the solution to satisfy agents’

TVCs, and possibly for the solution to respect that the model under examination is

really a first-order approximation to a nonlinear system. Because of its prominence

in the literature, we label and examine this condition more closely, and within the

context of the related notion, determinacy.

Definition 2 A stochastic process {} satisfies the uniform boundedness condition

(UBC) if there exists   0 so that kk∞   for all  ≥ 0.10

The UBC is a standard, but not ubiquitous boundary condition; however, we know

of no common boundary conditions that are more restrictive. For this reason, we will

assume that if a potential solution satisfies the UBC then it satisfies all conditions B;
in particular, the MSV solution always satisfies the conditions B.
The closely related concept of determinacy is defined as follows:

Definition 3 The model (1) is determinate if there is a unique REE satisfying the

UBC.11

We note that if ||  1 then the NF solution does not satisfy the UBC. In fact,

we have the following well-known result:

Proposition 1 The model (1) is determinate if and only of ||  1

All proofs are in the Appendix.

Determinacy is an appealing model characteristic: it is straightforward to assess;

and it implies, in a natural sense, local uniqueness of the REE. In fact, determinacy is

often taken as equivalent to uniqueness of REE in macroeconomic models. However,

as our discussion in this Section emphasizes, if B does not include the UBC (or

some closely related condition) then determinacy does not necessarily imply that the

model pins down the equilibrium. Cochrane (2011) makes this point forcefully, where

he argues that determinacy in the New Keynesian model does not imply the existence

of a unique REE; in fact, according to Cochrane, certain bubble solutions satisfy the

boundary conditions imposed by the model. We will return to this point later.

10Here, k · k∞ refers to the essential supremum norm, which, in the parlance of probability theory,

may be defined as follows: if  is a real-valued random variable then

kk∞ = inf{ ∈ R : (||  ) = 0}

11If the model is non-linear, determinacy is a local notion.
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2.3 RE with unobservable shocks

As emphasized by Cochrane (2009, 2011), it may not be natural or reasonable to

assume that a given model’s exogenous shocks are observable. To model shocks as

fundamentally unobservable, we restrict agents beliefs P to distributions only over 
(instead of  × ), and allow them to form forecasts conditional only on current and

past values of : +1 = P(+1|). The DGP implied by beliefs P is given by

 = P ¡+1|¢+  (7)

which determines a realized probability distribution  (P) over  . This leads to the
following analogue to Definition 1:

Definition 4 A rational expectations equilibrium of the model (1), under the as-

sumption that  is not observable, is a probability distribution P over  and a sto-

chastic process  satisfying equations (7) and  (P) = P, and the conditions B.

We note that an equilibrium in the sense of Definition 4 is an equilibrium in the sense

of Definition 1: if P is an equilibrium distribution over  generating the equilibrium

process  then the joint distribution P 0 over  ×  implied by (7) defines an equi-

librium in the sense of Definition 1. In particular, if the model is determinate then

there will be at most one equilibrium satisfying the UBC regardless of the choice of

definitions.

The MSV and NF solutions are equilibria in the sense of Definition 4. This can

be seen most easily by using (2) to represent these solutions as follows

MSV:  = −1 + (1− )
−1

 (8)

NF:  =
¡
−1 + 

¢
−1 − −1−2 − 1


 (9)

Motivated by these representations, we now consider belief structures that will sup-

port these solutions as REE in the sense of Definition 4.

As in the previous section, specific beliefs P are predicated upon forecasting mod-
els. It will be useful to consider PLMs allowing for a finite number of lags of , and

so we modify the PLM (4) accordingly:

 = +

X
=1

− +  (10)

where  represents the agent’s perceived error term, assumed to be a zero mean 

stochastic process independent of lagged . Notice that agents’ beliefs are summarized

by the vector  = ( ), where  = (1     ).
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Given their beliefs, agents form expectations optimally:

P


¡
+1|

¢
= +

X
=1

+1−

Again, we emphasize that agents are assumed to use  to forecast +1. Joining

these forecasts to the model (1) leads to the ALM as before. Using (2) and letting

(1) = (1− 1)
−1, we have the ALM

 = (1)(1− ) + −1 + (1) for  = 1

 = (1)(1− ) + (+ (1)2)−1 − ((1)2) −2 + (1) for  = 2

 = (1)(1− ) + (+ (1)2)−1 + (1)

−1X
=2

(+1 − )−

− ((1)) − + (1) for  ≥ 3
The functional forms of the forecasting model and the data generating process exhibit

the same linear dependency. This allows us to identify a map

 : R⊕ R → R⊕R

between the respective coefficients, where the subscript  on the map tracks the

number of lags of  in the PLM. Just as the PLM generates the distribution P, so
the ALM generates the distribution  (P). It follows that a fixed point of the map
 identifies a fixed point of  .

The following notation will be useful: set

 = (0 ) and  = (0 −1 + −−1)
corresponding to equations (8) and (9). Define


 = (  0     0| {z }

−1 terms

) for  ≥ 1


 = (  0     0| {z }

−2 terms

) for  ≥ 2

Note that 
1 =  and 

2 =  . The following result characterizes the

fixed points of  .

Proposition 2 The unique fixed point of 1 is 
  For  ≥ 2 the fixed points of

 are given by 

 and 

 

This proposition shows that there are precisely two equilibrium processes  con-

sistent with forecasting models of the form (10), and that they correspond to the

MSV and NF solutions. In particular, both the MSV solution and the NF solution

may be realized as REE in the sense of Definition 4.
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3 Observability and equilibrium selection

In models of the form (1) Cochrane (2011) and others have noted that the set of

conditions B which organically emerge from a micro-founded model may not be suf-

ficiently restrictive to preclude the relevance of the NF solution: determinacy may

not determine the equilibrium path. In such cases, i.e. when equilibrium multiplicity

prevails, adaptive learning offers a natural equilibrium selection mechanism. McCal-

lum (2007, 2009a) has shown, using E-stability analysis along the lines of Section

3.1, below, that if the exogenous shocks are taken as observable then only the MSV

solution is learnable: he concludes that the NF solution is of little interest and that

determinacy is the appropriate condition to ensure that there is one relevant equilib-

rium.12 Cochrane subsequently argued that, at least within the context of a simple

New Keynesian model, it is unrealistic to assume the exogenous shocks are observable,

and he suggests that if they are taken as unobserved then, in fact, the NF solution

will be learnable and that the MSV solution is not learnable. In the current section

we adopt this position on observability and assess whether the MSV solution and the

NF solution are learnable.

3.1 Adaptive learning and E-stability

Our discussion and development will be compact; for details see Marcet and Sargent

(1989) and Evans and Honkapohja (2001). We focus here on the case of unobserved

shocks. Under adaptive learning agents use available data to estimate a forecasting

model of the form (10). Thus at time  agents have parameter estimates  = ( ),

obtained using data through time − 1, and under adaptive learning P
 (+1|) is

replaced by forecasts13

̂+1 =  +

X
=1

+1−

The implied DGP is then given by

 = ̂+1 + 

The additional data point  at time  is then used to update the forecast model

coefficients to +1, which can be done efficiently using recursive least squares. The

updated coefficients are then used in the forecast rule in period +1 and the process

continues. This model of expectation formation adheres to the “cognitive consistency

12In general, when the model is determinate, when shocks are observable and when the model has

no endogenous lags, the MSV solution is the unique E-stable solution. See also Evans (1989).
13Adam and Marcet (2009) show that in certain models adaptive learning is consistent with

internal rationality.
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principle” in which the level of bounded rationality of agents is in line with that of

economists themselves.14

If the resulting forecasts and the implied decisions induce model dynamics that

converge in an appropriate sense to a particular REE, that REE is said to be sta-

ble under learning. Many authors, including McCallum (2007, 2009a), have argued

forcefully and effectively that stability under learning is a natural and reasonable

equilibrium selection mechanism for macroeconomic models: if a particular REE is

stable under learning then it may be viewed as a plausible equilibrium outcome for

the model under examination; and if, among multiple equilibria, there is a unique

stable REE then the model may be considered to produce a precise outcome.

The examination of stability under learning is greatly facilitated by the E-stability

principle as developed, for example, in Evans and Honkapohja (2001), and which we

now apply in the current setting. We imagine that agents use a forecasting model of

the form (10), for some  ≥ 1. Summarizing the beliefs coefficients by  = ( ),

we may consider the following system of differential equations:




= ()−  (11)

where  is a notional time variable (which can, however, be linked to calendar time).

A rest point of this differential system coincides with a fixed point of the map  ;

thus both the MSV solution and the NF solution may be represented as rest points

of (11).

An REE corresponding to a fixed point  of  is said to be E-stable if  a

Lyapunov-stable rest point of (11). According to the E-stability Principle, an E-

stable REE is (locally) stable under adaptive learning provided agents use recursive

least-squares or closely related updating algorithms. While the connection between

the system of differential equations (11) and the convergence of recursive learning

algorithms is quite deep, the intuition is straight-forward: The right-hand-side of

(11), ()−, may be thought of as “truth” minus “perception,” that is, a type of

forecast error. The system (11) moves beliefs in the direction of this forecast error,

and this movement leads to convergence to the (fixed-point associated to the) REE

provided that the REE is E-stable. Since learning algorithms behave similarly in that

they adjust parameter estimates in the direction indicated by the forecast error, their

convergence is also, then, implied.

3.2 Robust stability and equilibrium selection

It is not a priori obvious how many lags agents should include in their forecasting

model, and because of this, our equilibrium selection mechanism requires modifica-

14See Evans and Honkpohja (2009).
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tion. Recall that the subscript  in 
 and 

 denotes the number of lags of 

in the agent’s PLM. We have the following definition:

Definition 5 The MSV solution is robustly stable under learning provided 
 is

a Lyapunov-stable rest point of (11) for all  ≥ 1. The NF solution is robustly stable
under learning provided 

 is a Lyapunov-stable rest point of (11) for all  ≥ 2.

A robustly stable REE continues to be stable under learning when the PLM includes

more lags of  than the minimum needed for its specification. Since it is not obvious

how many lags agents should/would include in their forecasting models, we think of

robust stability as a natural selection mechanism for this and related models.

We have the following theorem, which is the main result of the paper:

Theorem 1 If the exogenous shocks are not observable in the model (1) then

1. the MSV solution is robustly stable under learning when   1 and not robustly

stable under learning if   1;

2. the NF solution is never robustly stable under learning.

The proof is in the Appendix, and its subtlety warrants comment. Assume, for

this discussion, that B is empty. Then both the MSV solution and the NF solution
are REE. It is reasonably straightforward to show that the MSV solution is robustly

stable. Showing the NF solution is not robustly stable requires more work: for  = 2

the NF solution does correspond to a Lyapunov-stable fixed point; however, for  ≥
3 the differential system (11) has an eigenvalue with zero real part, and a center-

manifold reduction argument yields that the rest point of (11) corresponding to the

NF solution is not Lyapunov stable. Thus in fact the instability result for the NF

solution is even stronger than stated in the theorem: the NF solution fails to be

E-stable for each  ≥ 3 Furthermore, we note that when   1 no fixed point of 
is Lyapunov stable; that is, when   1 no solution is stable under learning.

Theorem 1 applies whether the model is determinate or indeterminate. In either

case the MSV solution is stationary and robustly stable under learning. In the in-

determinate case the NF solution is also stationary while in the determinate case it

is an explosive ‘bubble.’ However in both cases the NF solution fails to be robustly

stable under learning.

McCallum (2007) showed that determinacy implies E-stability of the MSV so-

lution, and McCallum (2009a) established that the NF solution is not E-stable. A

number of authors including Cochrane have questioned whether it is natural to as-

sume that exogenous shocks are observable; furthermore, Cochrane (2011) argues
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that McCallum’s results hinge on the observability of exogenous shocks, and that if

they are taken as unobserved then the NF solution can be E-stable even when the

model is determinate. Theorem 1 dispels this notion, and extends McCallum’s result

to unobservable shocks.15

4 Applications

The generality of the simple, forward-looking model (1) allows for a variety of appli-

cations. In this subsection, we consider two: the overlapping generations model, as

developed in Section 4.1, provides one natural example, in which we emphasize the

indeterminate case; and a simplified version of the benchmark New Keynesian model,

as examined by Cochrane (2011), in which the determinate case is examined.

4.1 Equilibrium selection in the OLG model

In this section, we develop a simple overlapping generations model with productivity

shocks as the exogenous stochastic driver. There is a continuum of agents born at

each time  indexed by  ∈ Ω. Each agent lives two periods, works when young

and consumes when old. The population is constant at unit mass. Each agent owns

a production technology that is linear in labor and produces a common, perishable

consumption good. The technology is subject to idiosyncratic productivity shocks.

The agent can sell his produced good in a competitive market for a quantity of fiat

currency, anticipating that he will be able to use this currency when old to purchase

goods for consumption.

Let  ∈ Ω be the index of a representative agent born in time . This agent’s

problem is given by

max

+1() () ()

̂() ((+1())− (()) (12)

subject to ()() = () and +1() = +1()

Here, () is the agent’s labor supply when young, () is a positive productivity

shock, and ()() is his output. Also,  is the time  goods price of money and

+1() is the agent’s planned consumption when old. The expectations operator

̂() (·) denotes the expectation of agent  at time , taken with respect to his

15The assumption that contemporaneous values of the endogenous variables are used when fore-

casts are made is central here. To assume otherwise, i.e. that no contemporaneous variables are

observable, raises a number of fundamental issues regarding the appropriate notion of equilibrium.

This is a topic of current research.
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subjective beliefs conditional on the information available to him. This information

includes (), (), () and current and lagged values of 

The first order condition is given by

 0(()) = ̂ ()

µ
()

+1


0 (+1())

¶
 (13)

and to make our model particularly tractable, we assume that  0 = 1 and

() =
1

1− 

¡
1− − 1¢ 

With simplification, we obtain agent ’s decision rules:

() =

Ãµ
()



¶1−
̂()

¡
1−+1

¢! 1


() =

µ
()


̂()

¡
1−+1

¢¶ 1


;

and we note that, as is natural, the quantity of money demanded by agent  at time

, depends on, among other things, the price at time .

Assuming a constant (unit) supply of money, we obtain the market-clearing con-

dition Z
Ω

() = 1

which yields

 =

µZ
Ω

³
()̂()

¡
1−+1

¢´ 1




¶

 (14)

Equation (14) characterizes the equilibrium price path.

As written, the system (14) is quite complicated, involving, as it does, aggrega-

tion, expectations and non-linearity. Also, the model is not yet closed: the details of

expectations formation have not been specified. The standard protocol is to impose

rational expectations. This assumption eliminates heterogeneity, thus simplifying ag-

gregation, and the equilibrium price path may then be approximated by linearizing

the dynamic system around a non-stochastic steady state and applying standard tech-

niques. Here, to emphasize the particulars of observability, we first provide a useful

specification for the productivity shocks; then we linearize the model and contemplate

rationality.

We assume agent ’s productivity shock includes both an idiosyncratic and an

aggregate component. Specifically

log (()) = log () + log (())

log () =  log (−1) + 
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where the log (()) are  mean zero and independent across agents,  is  zero

mean with small support and the log (()) and  are independent processes.
16 An

implication of this assumed structure is that

 = 

µZ
Ω

³
()̂()

¡
1−+1

¢´ 1




¶

 (15)

In particular, note that for every agent  the contribution of () to  is negligible.

It follows that () can be useful for forecasting +1 only through is correlation with

. Furthermore if the variance of the idiosyncratic shock is large relative the variance

of the aggregate shock then the information content of () for forecasting +1 is

small.

Under RE the equilibrium price process can be represented as depending explicitly

on the  process. Indeed, an REE is characterized by

 = 
1−
+1  where 

1
 =

Z
Ω

()
1
 

However, it is neither natural nor necessary to assume agents observe  when making

rational forecasts. What the agent needs to predict is the future price level +1 and,

along the lines of the Section 2.3 discussion, the required information under RE is

encoded in the current price level . Thus under RE agent  has no reason to

condition his forecast on (). We assume this behavior extends outside of RE as

well.

Returning to the analysis of the model, all agents are assumed to hold the same

forecast of (functions of) aggregates, i.e. ̂()(+1) = ̂(+1) for all  and well-

behaved functions  . With this assumption, the unique, monetary, non-stochastic

steady state is given by  = 1. Provided that the expectations operators of agents

are reasonably well-behaved (e.g. are linear, respect first-order approximations, fix

constants, etc.), we may linearize (14) around this steady state and simplify to obtain

log  = (1− )̂ log +1 +

Z
Ω

log ()

Noting that, by independence,
R
Ω
log () = log , we obtain

log  = (1− )̂ log +1 + log  (16)

which reduces to our model (1) with  = log  and  = log  We remark that the

model (16) is indeterminate when   2.

16The assumption that log (()) are  is stronger than needed; however, it is essential that

they are mean zero and independent across agents.
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The analysis of Section 2 implies that the model (16) has both the MSV solution

and the NF solution as stationary equilibria when   2. However, Theorem 1 shows

that the MSV solution, but not the NF solution, is robustly stable under learning.

When  ∈ (0 2) the model is determinate. The MSV solution is stationary and
robustly stable. The NF solutions diverge away from the steady state and converge

either to infinity or zero almost surely. Whether the explosive path represents a

genuine equilibrium depends on interpretation of model details, but in any case the

NF solution is not robustly stable under learning.17

4.2 Equilibrium selection in the New Keynesian model

We investigate the application of our results to a New Keynesian (NK) environment.

The standard version of this is the three-equation linearized NK model

 = +1 − −1( −+1)

 = +1 + 

 =  +  + 

where  is the output gap,  is the nominal interest rate, and  is the inflation

rate, with all variables written in proportional deviation from mean form. The first

equation is the NK “IS curve,” based on the consumption Euler equation. The second

equation is the NK “Phillips curve,” where here 0    1 is the household’s discount

factor. The third equation is the standard Taylor rule for setting interest rates; when

  1 the Taylor principle is said to be satisfied.

When, for example,  = 0, the Taylor principle implies determinacy: there is a

unique non-explosive solution to the system. Some authors have assumed that explo-

sive solutions are not legitimate equilibria in this model, in which case determinacy

provides for equilibrium uniqueness. Cochrane (2009, 2011) has argued prominently

that in some cases explosive solutions are legitimate. His arguments on this point are

most clearly made within a flexible-price environment. In this case prices adjust im-

mediately to their market-clearing levels, which simplifies the system by eliminating

the Phillips curve and making the output gap zero.

It is within the flexible-price environment that Cochrane and McCallum pursued

their debate on whether the NK model uniquely identifies an equilibrium. McCallum

(2009a,b) argued that the explosive paths are not learnable, regardless of whether

they are legitimate equilibria. Cochrane (2009) on the other hand contended that

McCallum’s result hinged on the observability of exogenous shocks; indeed Cochrane

claimed that when exogenous shocks are not observable the MSV solution is not stable

17In a related nonstochastic endowment economy Lucas (1986) showed that the path to autarky

(corresponding here to  → 0) was not stable under a simple learning rule.
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under learning and the bubble (NF) solution is stable under learning. As we have

discussed, we find compelling the argument that exogenous shocks are not observable.

We now revisit this debate on learning and equilibrium selection using the tools

we have developed. To make clear the connection between learning and temporary

equilibrium outcomes we start with a micro-founded “agent-level” formulation of a

flexible price economy, isomorphic to those used by Cochrane and McCallum.

The general environment is an endowment economy with competitive markets

for money, goods, and one-period risk-free claims, flexible prices and infinitely-lived

agents. There is a unit mass of households indexed as  ∈ Ω. Each household aims to

maximize discounted expected utility with discount factor 0    1. Expectations

are formed against subjective beliefs, and the utility flow is given by

(()−1()) =
1

1− 

¡
()

1− − 1¢+ logµ−1()


¶


with   0. Here  is consumption,  is real balances and  = −1 is the inflation
factor. Note that−1() =−1()−1, where−1() is nominal money holdings
at the end of time −1, so that −1() =−1() is the agent’s real balances
at the beginning of time .

The budget constraint of the household is

() +() + () =
−1()


+

−1


−1() + E() + T

 (17)

where E() is household ’s time  real endowment of the perishable consumption

good, −1 is the nominal interest rate factor, () is the household’s real bond hold-
ings in , and T is nominal monetary injections (which may be positive or negative).
For simplicity we assume E() = 1 for all  ∈ Ω. Finally, we take as implicit that

households cannot run Ponzi schemes.

The first-order conditions of household  may be written

()
− = ̂()

µ
+1()

−

+1

¶
(18)

() = 

µ


 − 1
¶
()

 (19)

Equation (18) is household ’s Euler equation capturing the trade-off between con-

sumption and savings via risk-free claims, and equation (19) is money demand.

The government prints money and provides nominal injections (transfers). The

government’s real flow constraint is given by 
 = 

−1+T, which in nominal
terms is simply


 −

−1 = T (20)
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Through transfers, the government can choose the nominal money supply
 so that

the nominal interest rate satisfies a Taylor rule:

 = 1 + () where () = (
∗ − 1)

³ 

∗

´( ∗
∗−1)

 (21)

Here  captures a serially correlated policy shock, and taken to be a stationary AR(1)

process in logs, with unit mean. Finally, the inflation target ∗ and the interest rate
target ∗ are assumed to satisfy ∗ = ∗.

Market clearing provides the following restrictions:Z
Ω

() =

Z
Ω

E() = 1 (22)Z
Ω

() =





(23)Z

Ω

() = 0 (24)

where the second equality in the first line follows from the assumption that E() = 1
for all  ∈ Ω.

To keep the analysis simple we assume homogeneity of expectations and of initial

wealth, i.e. −1() = 0 for all . Because of this, in equilibrium all agents consume

their endowment every period. To close the model we must specify precisely how

consumption plans and expectations are formed. In contrast to the OLG example,

here our agents are infinitely-lived, and there are alternative approaches to boundedly-

rational decision-making. We adopt the Euler-equation learning approach for its

simplicity and because it aligns with the one-step ahead framework used in Sections

2 and 3 and which was the focus of the debate between McCallum and Cochrane.18

We leverage this observation to assume that agents correctly forecast next period’s

consumption to equal the endowment. It follows therefore that agent ’s consumption

() =  satisfies

 =
³
̂

¡
−1+1

¢´− 1


 (25)

and following the Euler-equation learning approach, we treat (25) as a behavioral

primitive, giving the consumption demand of agent . The corresponding nominal

money demand equation for agent  is () =, where

 = 

³
( − 1) ̂

¡
−1+1

¢´−1
 (26)

18Other possible implementations of adaptive learning include the long-horizon approach of Pre-

ston (2005) and versions of the Adam and Marcet (2011) internal rationality approach. In both of

these approaches agents fully solve their dynamic program given beliefs. Our implementation can

be viewed as a bounded optimality approach, which is shown in Evans and McGough (2015) to be

asymptotically optimal. See also Evans and Honkapohja (2006).
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Given , −1 and 
−1, temporary equilibrium values (   


 T)

are determined by the following equations:

 = 1 + ()

 = 

³
( − 1) ̂

¡
−1+1

¢´−1
=



 =
³
̂

¡
−1+1

¢´− 1


= 1


 = T +

−1
 = −1

where expectations ̂

¡
−1+1

¢
are allowed to depend on current endogenous variables.19

Bond market clearing is implied by Walras’s Law, and homogeneity then implies

() = 0 for all .

To see how the temporary equilibrium arises, it is helpful to consider a thought

experiment in which we start in equilibrium and consider a reduction in expected infla-

tion, or more precisely an increase in ̂

¡
−1+1

¢
. For simplicity suppose that ̂

¡
−1+1

¢
is predetermined, i.e. independent of current . The increase in the expectations

term ̂

¡
−1+1

¢
acts to reduce both goods demand and money demand, and to raise

the supply of saving. The fall in goods demand puts downward pressure on prices 
(and ), and the rise in savings corresponds to an increase in bond demand, which,

because bonds are in zero net supply, puts downward pressure on interest rates.

In the temporary equilibrium the resulting fall in  increases consumption de-

mand, eliminating the excess supply of goods. The extent to which  and  fall is

determined by the Taylor rule, which is implemented by changes in 
 via transfer

payments.20 To summarize, an exogenous reduction in expected inflation leads to

lower inflation and interest rates in the temporary equilibrium. While our discussion

presumed that ̂

¡
−1+1

¢
is predetermined, this is not necessary. If ̂

¡
−1+1

¢
depends

on current  this introduces additional simultaneity into the temporary equilibrium

system, but the central intuition is unchanged and equilibrium is still well-defined.

To complete this example and bring to bear the analysis of Sections 2 and 3,

we follow standard practice under RE and log-linearize the system around the non-

stochastic steady state ̄ = 1 and ∗ = ∗. Log-linearizing the consumption demand
equation (25) and the Taylor rule (21) yields

 = −1


³
 − ̂+1

´
(27)

 =  +

µ
1− 

∗

¶
 (28)

19More generally ̂

¡
−1+1

¢
may depend on aditional lags of variables.

20Real money balances increase in the temporary equilibrium. Nominal money supply increases

provided   ∗ − 1.
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where all variables are now written as proportional deviations from means. Because

in equilibrium  = 0, equations (27)—(28) simply reduce to

 =
1



̂+1 +  (29)

where  is the stationary AR(1) process given by  = −
−1(1− (∗)−1). Within

a linearized framework this equation captures the key temporary equilibrium rela-

tionship. As usual, under RE this model is determinate provided the Taylor principle

  1 is satisfied; however, as Cochrane has emphasized, there remain multiple

legitimate RE solutions. In contrast, under adaptive learning a forecasting model

is precisely specified, and given this forecasting model a unique equilibrium path is

pinned down.21

The set-up is now in our standard form (1) and thus we can invoke our earlier

results for the case in which the shocks are unobserved. By Theorem 1, if the Taylor

principle is satisfied then the MSV solution is the unique robustly stable RE equilib-

rium under learning. This result may be interpreted as follows: regardless of the lag

length of the agent’s PLM, the temporary equilibrium path will converge to the MSV

solution provided initial beliefs are not too far from the MSV coefficients; and further,

the bubble solutions lack this critical stability property. We conclude that stability

under adaptive learning does operate as a selection criterion in this model, and that

it singles out the MSV solution, i.e. the usual RE solution adopted by proponents of

the NK model.

Cochrane (2009, 2011) raises a number of concerns about the NK model in the

determinate case that can be addressed using the agent-level development above.

First, Cochrane has suggested that there is no mechanism in the NK model that pins

down prices. Specifically Cochrane (2011, p. 580) writes:

There is no corresponding mechanism to push inflation to the new-Keynesian

value [given by theMSV solution]... [S]upply equals demand and consumer

optimization hold for any of the alternative paths ... [W]e are finding the

unique locally bounded equilibrium, not the unique equilibrium itself.

He bases this position in part on his assertion (p. 582) that “[t]he equations of the

[NK] model do not specify a causal ordering. They are just equilibrium conditions.”

Within the perfect-foresight environment, his argument has merit. To see this, we

return to the nonlinear model and suppose that  ≡ 1 and that we are given −1
and 

−1. Using (18) with () ≡ 1, and the Taylor rule (21), it follows that there
21In the nonlinear environment above the precise forecasting model was not discussed; here, in

our linear environment, agents base their forecasts ̂+1 on PLMs as discussed in Section 2.3.
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is a continuum of perfect foresight paths {+}≥0  indexed by , with  = −1,
satisfying

++1 =  (1 + (+))  for  ≥ 0
Any such path identifies a legitimate equilibrium, with the values of the remaining

variables given by

+ = 1 + (+)

+ = ++−1

+ = ++ (+ − 1)−1 
T+ = + −+−1

We note, in particular, that when   ∗−1 it follows that  → ∞ along this

equilibrium “bubble” path.

The absence of causality noted by Cochrane results from adopting RE as a primi-

tive rather than viewing it as an emergent outcome of an agent-level learning process.

Under adaptive learning the causal ordering is as follows. At each point in time

agents form expectations of key economic variables based on an estimated forecasting

model and on observed data; they then form supply and demand schedules, based on

these expectations and other agent-level variables like wealth. Market clearing gives

the “temporary equilibrium” prices and quantities. In the next period agents revise

the coefficients of their forecasting model, e.g. using least-squares updating, and the

process continues. This fully specifies a recursive system that defines an equilib-

rium path under learning. When a rational expectations equilibrium is stable under

adaptive learning, it can then be viewed as a emergent outcome of this process.22

In a related point, Cochrane suggests in various places that adopting the MSV

solution in the NK paradigm requires that the government be interpreted as threaten-

ing to “blow up” the economy if that solution is not selected. For example, Cochrane

(2011, Appendix B, p. 3) asks: “Is inflation really determined at a given value be-

cause for any other value the Fed threatens to take us to a valid but “unlearnable”

equilibrium?” As we have now clearly laid out, the answer is no: inflation is deter-

mined in temporary equilibrium, based on expectations that are revised over time in

response to observed data. Threats by the Fed are neither made nor needed.

A final issue raised by Cochrane (2009, p. 1111 and 2011, Appendix B, p. 2)

concerns econometric identification. Specifically, he correctly points out that in the

MSV solution the Taylor-rule parameter  is not identified. He suggests that this

undermines the adaptive learning approach. However this misunderstands adaptive

learning by private agents as requiring knowledge of the structural parameters. Under

22In related work Garcia Schmidt and Woodford (2015) examine the relevance of perfect fore-

sight equilibria under an iterative process of belief revision. We regard our analysis and theirs as

complementary approaches.
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adaptive learning agents need to forecast in order to make decisions, but they do

not generally need to know or estimate structural parameters in order to forecast.

Instead they make forecasts the same way that time-series econometricians typically

forecast: by estimating least-squares projections of the variables being forecasted on

the relevant observables.

5 Conclusion

In the benchmark macroeconomic framework in which current aggregate endogenous

variables are observable, rational expectations solutions are unaffected by whether

or not the exogenous aggregate shocks driving those solutions are observable. This

equivalence is established formally in Section 2 and holds both for determinate models,

in which there is a unique non-explosive RE solution, and for indeterminate models

with a multiplicity of such solutions. The observability issue is of importance because

observability of key aggregate shocks to productivity and preferences, as well as to

monetary policy, has forcefully been called into question.

An issue of central importance, since even the simplest forward-looking macro-

economic models have multiple RE solution paths, is the stability of the different

REE under adaptive learning. As stressed by Cochrane (2011), when New Keynesian

models are determinate, as when the interest rate rule satisfies the Taylor princi-

ple, RE solutions with explosive inflation paths (inflation bubbles) remain legitimate

equilibria. While McCallum (2009) showed that the MSV solution, typically adopted

by practitioners, is stable under learning, and the explosive inflation paths are not

stable under learning, Cochrane (2009, 2011) argued that McCallum’s results hinged

on observability by agents of the exogenous shocks.

In Section 3 we addressed the critical issue of the stability of REE under adaptive

learning when agents do not observe the exogenous aggregate shocks. We use standard

adaptive learning tools, in which agents, like econometricians, are assumed to forecast

key variables like inflation using a time-series forecasting model that is updated over

time in response to observed data. Our key result is that MSV solutions are robustly

stable under learning, while nonfundamental solutions, including inflation bubble

solutions, are not robustly stable under learning.

In Section 4, which provides applications to the overlapping generations and New

Keynesian models, we also addressed the important related issue raised by Cochrane

of describing the causal mechanisms when agents forecast using adaptive learning. To

do this we made explicit the temporary equilibrium setting in which market clearing

occurs, building this up from agent-level decision making based on their forecasts of

key aggregate variables. An equilibrium path with adaptive learning is then defined

recursively: at each point in time market clearing delivers prices and quantities given

agents’ expectations; forecast-rule parameters are then updated and the revised rule
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is used to form expectations in the next period.

In concluding, we remark that using adaptive learning as a selection criterion

to choose the MSV solution does preclude treating the adaptive learning dynamics

themselves as of interest. Variations such as “constant gain” least-squares learning,

in which past data is geometrically discounted, result in persistent learning dynamics

around the MSV solution, and in some cases can include the possibility of temporary

“escape” dynamics.23 However, in these settings, the stable MSV solution remains

the anchor for these extended learning dynamics.

23Constant gain learning dynamics have been emphasized, for example, in the New Keynesian

model by Milani (2007) and in the RBC model by Eusepi and Preston (2010) and Mitra et al.

(2013). Escape dynamics are a central focus in Cho, Sargent and Williams (2002), McGough (2006)

and Branch and Evans (2011).
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Appendix A: Proofs of Results

Proof of Proposition 1. While this result follows from, and corresponds to, the well-

known Blanchard-Kahn conditions, it is worthwhile developing its simple argument

within the context of Definition 1. Thus assume ||  1, and let beliefs P be a

collection of beliefs identifying an equilibrium process . Let

+1 = +1 − (P)(+1| )
and note that  is a martingale difference sequence with respect to the distribution

 (P). Since
 (P)(+1| ) = P(+1| )

and since  must satisfy (3), we have

 = −1−1 +  − −1−1 (30)

Standard arguments show that if
¯̄
−1

¯̄
 1 then  is explosive almost surely, unless

 = (1−)−1; in this latter case, the recursion (30) reduces to the MSV solution.
This shows sufficiency. Necessity is simpler: if ||  1 then the NF solution satisfies
the UBC.

Proof of Proposition 2. Recall that with (1) = (1 − 1)
−1 the map 1

is given by  → ((1− )(1))  and 1 → , and the map 2 is given by  →
((1− )(1)) , 1 → + (1)2 and 2 →− ((1)2). For  ≥ 3, the map
 is given by

 → ((1− )(1))  (31)

1 → + (1)2 (32)

 → (1)(+1 − ) for  = 2      − 1 (33)

 → − ((1))  (34)

Direct computation shows that  is the unique fixed point of 1 and that 



is a fixed point of  for  ≥ 2. It is similarly straightforward to verify that 
 is

a fixed point of  for  ≥ 2.
To show that all fixed points of  look like either 


 or 

 , let ∗ = (∗ ∗)
be any fixed point of  for  ≥ 2, and assume ∗ 6= 

  Notice that if ∗2 = 0
then ∗1 6= 0. It follows that there is a smallest ̃ ∈ {1     } so that ∗̃ 6= 0.

Further, ̃ ≥ 2: indeed ̃ = 1 implies ∗ = 
 

We claim that −(∗1) = 1. If ̃ =  the we are done by (34). If ̃   then,

since ̃ ≥ 2 and since ∗̃+1 = 0, the claim follows by (33).

Having established −(∗1) = 1, we derive that ∗1 = −1 + . Then by (32)

∗2 =
∗1 − 

(∗1)
= −
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Finally, if  ≥ 3 we may recursively compute, for  ≥ 3, that

∗ =

µ
1

(∗1)
+ 

¶
∗−1 = 0

It follows that ∗ = 
 , completing the proof.

Proof of Theorem 1. We need to assess E-stability of the MSV and NF solutions

for each  using (11) by obtaining the derivative matrix of  evaluated at 


and at 
 . Let  

 denote the map (31) and 

 denote the map given by (32)-(34).

Because the T-map decouples, E-stability can be analyzed by focusing on 

 
 and





 , separately.

We first consider 
 . Evaluated at this fixed point, we have




 
 =

(1− )

1− 


Also, 

1 1 = 0 and, for  ≥ 2,



0


 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 

1− 0 0 0 · · · 0

0 − 

1−


1− 0 0 · · · 0

0 0 − 

1−


1− 0 · · · 0
...

...
...

. . .
. . .

. . .
...

...
...

... 0
. . .

. . . 0

0 0 0 0 0 − 

1−


1−
0 0 0 0 · · · 0 − 

1−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


which yields eigenvalues of 0 and − 

1− . For E-stability we need − 

1−  1 and
(1−)
1−  1. Since 0    1 it is straightforward to verify that E-stability holds if

and only if   1. This completes the proof of Part 1.

We now turn our attention to 
 . We have




 
 = −

1− 




which satisfies 

 
  1 since 0    1. We next compute



0


 −  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1

− 1 −1


0 0 0 · · · 0

1


0 −1


0 0 · · · 0

0 0 0 −1


0 · · · 0
...

...
...

. . .
. . .

. . .
...

...
...

...
...

. . .
. . . 0

0 0 0 0 0 0 −1


0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 (35)

28



where  is the  × identity matrix. A necessary condition for E-stability is that

the eigenvalues of (35) be less than or equal to zero. If  = 2, then the eigenvalues

are −1 and − 1

. If   2 then the eigenvalues are just as with  = 2 plus a zero

eigenvalue with multiplicity  − 2. It follows that if   0 then 
 is not E-stable

for any  ≥ 2, and again the result follows. We thus now assume that   0.

Returning to the case  = 2, we conclude that with   0 the fixed point 
2

is E-stable. If instead   2 then the presence of zero eigenvalues implies that

the dynamic system (11) is non-hyperbolic at the fixed point 
 , and higher-order

stability analysis is required.

To assess the stability 
 for  ≥ 3, we first study the case  = 3; the

remaining cases will be addressed by induction. For notional simplicity, let ∗ be
the lag coefficients 

3 . We begin by changing coordinates:  =  − ∗. Define
 : R3 → R3 by

 () = 

3 (+ ∗)− (+ ∗)

Because  is obtained from 

3 − 3 by an affine transform, the stability of 

∗ as a
fixed point of the system  = 


3 ()− is equivalent to the stability of the origin

as a fixed point of  =  (). Thus we study the latter system.

Diagonalize the derivative of  as  (0) = Λ−1:⎛⎜⎜⎝
− 1


− 1 −1


0

1


0 −1


0 0 0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
− −1







1 1 −+1



0 0 1

⎞⎟⎟⎠

×

⎛⎜⎜⎝
−1 0 0

0 − 1


0

0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎝



1−
1

1−
1

−2


−1
1

−1 + 1 
³

1
−1 + 1

´
0 0 1

⎞⎟⎟⎟⎠ 

Then, by Taylor’s theorem, we may write  () =  (0) + ̂(), where ̂() ≡
 ()− (0) is zero to first order.

Now change coordinates:  = −1. It follows that

 = −1 = −1 () (36)

= −1 (0)+ −1̂()

= Λ + −1̂() or

 = Λ +() (37)

where the last equality defines notation. The stability of the origin as a fixed point

of  =  () is equivalent to the stability of the origin as a fixed point of (37).
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The system (37) has two stable eigenvalues and one zero eigenvalue. By the center-

manifold theorem there is a neighborhood of the origin,  ⊂ R3, and one-dimensional,
smooth “center” manifold W ⊂  , so that the following hold:

1. The manifold W is an invariant subspace of the dynamic system (37).

2. There exists an open set  ⊂ R containing the origin, and smooth real-valued
functions  :  → R, for  = 1 2 so that

W = {(1(3) 2(3) 3) : 3 ∈  }

3. The functions  are zero to first order: (0) = 0(0) = 0 for  = 1 2.

4. The local dynamics of the system (37) are asymptotically equivalent to dynamics

of system (37) restricted to W.

Items 2 and 4 imply that the origin in R3 is a Lyapunov-stable steady state of
(37) if and only if the origin in R is an Lyapunov-stable steady state of

3 = 3 (1(3) 2(3) 3)  (38)

where a superscript indicates the coordinate in the range, i.e.  = (1 2 3)0.

We are required now to determine the explicit form of 3. Since the last row of

−1 is (0 0 1) by equation (36) we have that 3 =  3() =  3(). Since the

last row of Λ is (0 0 0) by equation (37) we have that 3 = 3(). It follows

that 3() =  3(). We compute the third coordinate of  as

 3() = 
3
3 (+ ∗)− (+ ∗)

= − 

1− (1 + ∗1)
3 − 3

=
3

1 + 
− 3

= − 13
1 + 



where the second equality uses ∗1 = −1 + . Continuing, we have

3() =  3() = −3(−1 − −12 + −13)
− 1 − −12 + −13

 or

3() =
3(2 − (3 − 1))

(3 − 1)− 2 + 2
 (39)

We conclude that

3 =
3(2(3)− (3 − 1(3)))

(3 − 1(3))− 2(3) + 2
= (3)
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where the second equality defines notation.

Writing (3) = 3 (1(3) 2(3) 3) we may compute

0 = 3
1

0
1 +3

2
0
2 +3

3

00 = (3
11

0
1 +3

12
0
2 +3

13)
0
1 +3

1
00
1

+ (3
21

0
1 +3

22
0
2 +3

23)
0
1 +3

2
00
2

+ 3
31

0
1 +3

32
0
2 +3

33

where the arguments have been suppressed to ease notation, and, for example, 3
 =

23. Using (39) it is immediate the 
3
 = 0 for  = 1 2 3. Also, by item

3 above, we have that  = 0 = 0 for  = 1 2. It follows, then, that 0 = 0 and

00 = 3
33. Again using (39), we compute directly that 

00 = −2
2
.

The above computations allow us to use Taylor’s theorem to write

3 = −


2
23 +O(|3|3)

It follows that the origin is not a Lyapunov stable fixed point of (38): there exists

   0 so that if the system (38) is initialized in the interval (− 0) the corresponding
trajectory will exit the interval (− ) in finite time. We conclude that 

3 is not a

Lyapunov-stable fixed point of (11).

Having showing instability for  = 3, we now proceed by induction. Some more

notation is needed. Denote by ∆ the metric on R induced by the max-norm: kk =
max || Next, recalling the observation above that we may ignore the constant term
in the PLM, we denote by () ∈ R a beliefs parameter corresponding to a PLM

with no constant term and  lags, and let ∗() be the lag coefficients of the fixed
point 

 . Let () be the -ball with respect to the metric ∆, centered at 
∗().

Finally, let () be the beliefs time-path implied by




() = 


(())− ()

corresponding to the initial condition 0().

Assume instability for the  − 1 dimensional system. Let   0 be such that for
all 0    , there exists a point 0(−1) ∈ −1() such that 

(−1) eventually
exits −1(). Now let 

0() = ((0( − 1)) 0) ∈ (). It suffices to show that

() eventually exits (). By looking back at the definition of the T-map, notice

that

() = (−(1())− 1)()
Since the initial condition has 0() = 0, this differential equation implies that

() = 0 for all . Now consider again the T-map, this time focusing on the
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implied dynamics of −1:

−1() = (1())(()− −1())− −1()

= (−(1())− 1)−1();

the second equality obtains from the fact that () = 0. But this is precisely

the differential equation determining the path −1( − 1). From the recursive

construction of the T-map, (32)-(33), it further follows that, for    − 1, the
differential equation determining the path of (−1) is functionally identical to the
differential equation governing the dynamics of (). We conclude that if 

0() =

(0( − 1) 0) then for  ≤  − 1, () = ( − 1). By the induction hypothesis,
there exists a  and an  ∈ {1      − 1} so that | ( − 1)|  ; since  () =

 ( − 1), the proof is complete.
Appendix B: Nonfundamental Equilibria

Recall the dynamic system (1)-(2), rewritten here for convenience:

 = +1 +  (40)

 = −1 + 

We are interested in solutions to (40) that are consistent with PLM (4), also rewritten

here for convenience:

 = +

X
=1

− +
X
=0

− (41)

We have the following result:

Proposition 3 The process  is a solution to (40) consistent with PLM (41) if and

only if

 = −1−1 −
¡
−1 + 

¢
−1 +  (42)

for some  ∈ R

Proof. If  satisfies

 = −1−1 − −1−1 +  (43)

for some martingale difference sequence  then  is solution to (40). Now let  ∈ R
and set

 =  =  ( − −1)  (44)

It follows that

 = −1−1 −
¡
−1 + 

¢
−1 + 
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Thus any process  satisfying (42) is a solution to (40) consistent with PLM (41).

Now suppose  is solution to (40) that is consistent with PLM (41). Then

0 =  −−1 = 

where the second equality follows from (43). Setting  = 0 and using (44) completes

the argument.

By Proposition 3, every solution to (40) consistent with PLM (41) takes the form

(42), and thus the MSV and NF solutions must correspond to particular values of

 When  = − ()−1, the NF solution is recovered, and when  = (1− )
−1
,

canceling the common factor 1− −1 provides the MSV solution.

Even though there are many non-fundamental solutions to (40) consistent with

PLM (41), our NF solution is unique in that it has an autoregressive representation

of finite order. Specifically, we have the following result:

Proposition 4 If  is solution to (40) consistent with PLM (41) and if

 =

X
=1

− +  (45)

for some innovations , then  is either the MSV or the NF solution.

Proof. If  satisfies (40), (41) and (45) then  = 0 =  − −1 =  Writing

−1 = −1( − ) and using (43) and that  = (1− )
−1

, we have

 = −1−1 − ()−1 ( − ) + 

= −1−1 + ()
−1

 − ()−1 (1− )
−1

 + 

=
¡
−1 + 

¢
−1 − −1−2 − ()−1  + (1− )

¡
 + ()

−1

¢
 or

 =
¡
−1 + 

¢
−1 − −1−2 +  −

¡
+ −1−10

¢
−1 (46)

where the third equality follows from acting on each side by 1 − , and the fourth

by replacing  and  with  and −10 , respectively. For (45) and (46) to be

consistent, it must be that  ≤ 2. If  = 2 then + −1−10 = 0. Solving, we obtain

0 = − ()−1  which provides the NF solution. If  = 1 then there must be a

common factor which cancels the second lag of . Equation (46) may be written

(1− −1)(1− ) =
¡
1− ¡+ −1−10

¢

¢


Since + −1−10 6= , we consider only the case in which + −1−10 = −1 Solving,
we obtain 0 = (1− )

−1
, which is the MSV solution.

In this paper we focused on solutions to (40) that are consistent with the PLM

(41). By Proposition 3 any such solution takes the form (42). In Section 2.2 we
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identified two particular solutions of interest: the MSV solution and the NF solution.

By Proposition 4 we established that these are precisely the solutions to (40) that are

both consistent with the PLM (41) and allow for finite order autoregressive (AR(p))

representations. The existence of AR(p) representations considerably simplifies the

asymptotic analysis of learning dynamics when the exogenous shocks are taken as not

observed because the recursive least-squares estimator may be applied. For general

 ∈ R, solutions of the form (42) have ARMA(2,1) representations. The corresponding
recursive estimators are more involved and additional technical apparatus is required

for the asymptotic analysis. See Evans and Honkapohja (1994) for details.
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