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Abstract

We examine robustness of stability under learning to observability of exogenous

shocks. Regardless of observability assumptions, the minimal state variable

solution is robustly stable under learning provided the expectational feedback is

not both positive and large, while the nonfundamental solution is never robustly

stable. Overlapping generations and New Keynesian models are considered and

concerns raised in Cochrane (2011, 2017) are addressed.
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1 Introduction

We explore the connection between shock observability and equilibrium selection un-

der learning. Under rational expectations (RE) shock observability does not affect

equilibrium outcomes if current aggregates are observable, but stability under adap-

tive learning is altered. The common assumption that exogenous shocks are observ-

able to forward-looking agents has been questioned by prominent authors, including
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inspired by early conversations with Bennett McCallum and Pei Kuang. Financial support from

National Science Foundation Grant No. SES-1559209 is gratefully acknowledged.
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Cochrane (2009) and Levine et al. (2012). We examine the implications for equi-

librium selection of taking the shocks as unobservable. Using a simple model, we

establish that determinacy implies the existence of a unique robustly stable rational

expectations equilibrium. Our results also cover the indeterminate case.

As an important application of our results, we examine the concerns raised in

Cochrane (2009, 2011, 2017) about the New Keynesian model. These concerns arise

in large part by his adoption of RE as a modeling primitive. We view RE as more

naturally arising as an emergent outcome of an adaptive learning process, and we find

that by modeling agents as adaptive learners Cochrane’s concerns vanish.

Rational expectations models typically have multiple equilibria. Which solution

should be chosen? In many cases (when “determinacy” holds) there is a unique non-

explosive RE solution, and in this case it is common practice to pick this solution.

This choice has theoretical support when the explosive paths can be shown not to be

legitimate equilibrium paths based on transversality conditions or on no-Ponzi-game

or other constraints. However, there are cases in which explosive RE paths meet all

the relevant equilibrium conditions. Furthermore, there are many models in which

there are multiple non-explosive RE solutions.

Adaptive learning provides a natural equilibrium selection device. Under adap-

tive learning agents are assumed to form expectations using forecasting models, which

they update over time in response to observed data. There is a well-developed theory

that allows the researcher to assess whether agents, using least-squares updating of

the coefficients of their forecasting model, will come to behave in a manner that is

asymptotically consistent with RE, i.e. whether the rational expectations equilib-

rium (REE) is stable under learning: see Marcet and Sargent (1989) and Evans and

Honkapohja (2001).1 For the cases of equilibrium multiplicity studied in this paper

we adopt stability under adaptive learning as our selection criterion.

Both RE and the adaptive learning approach require precise specification of the

information structure. A common assumption is that agents are able to condition

time  forecasts on -dated exogenous shocks. While in some environments this as-

sumption may be quite natural, in others, e.g. for aggregate productivity or taste

shocks, it may be difficult to defend. These issues have been raised recently in policy-

related literature: Cochrane (2009, 2011) has argued that the New Keynesian model’s

exogenous shocks, specifically the monetary policy shocks, are most naturally taken

as unobservable. RE models that exclude from information sets certain contempora-

neous variables have been prominent: Lucas (1973) did precisely this in his famous

islands model, and Mankiw and Reis (2002) have exploited the same idea in their

sticky information DSGE environment. A central part of this paper is to explore the

connection between observability and equilibrium selection.

1Using the standard linear three-equation reduced-form set-up, stability under adaptive learning

in New Keynesian models was first studied by Bullard and Mitra (2002).
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In Section 2 we develop a general theory within the context of a simple forward-

looking model with an exogenous shock. We identify two REE of interest: the funda-

mental, or “minimal state variable” (MSV) solution, also referred to as the backward-

stable solution, which is always stationary; and a “non-fundamental” (NF) solution,

which may or may not be stationary. We then turn to stability under learning. In a

model with observable shocks, McCallum (2009a) showed that determinacy implies

that only the MSV solution is stable under learning. However, Cochrane (2009, 2011)

argued that McCallum’s stability results hinged on observability of these shocks. We

study stability under learning of the two solutions, taking into account the possibility

of unobserved exogenous shocks. The central result of our paper is that, regardless of

the observability assumption, the MSV solution is robustly stable under learning, pro-

vided only that the positive feedback from expectations is not too large. In contrast

the NF solution is never robustly stable under learning.

While our analysis is done in a general framework, the motivation for this study is

the collective issues raised by Cochrane (2009, 2011, 2017) in connection with the NK

model. To address these issues, Section 3 studies three applications. The first is the

flexible-price NKmodel employed by McCallum (2009a) and Cochrane (2009) in their

interchange.2 We find that provided the interest-rate rule satisfies the Taylor principle

the MSV solution is both the unique non-explosive solution and the unique robustly

stable REE under learning, regardless of shock observability. In particular, in the NK

model adaptive learning selects the REE solution typically adopted by practitioners.

The second application is a discrete-time version of the sticky-price NK model used

by Cochrane (2017) to study the backward-stable solution under an interest-rate peg.

We demonstrate that this solution is not stable under learning. The last application

is an overlapping generations model with production and money. This model can be

either determinate (in which case the MSV solution is the unique stationary solution)

or indeterminate (in which case the NF solution is also stationary). We show that in

either case the MSV solution is robustly stable under learning and the NF solution is

not.

2 Model and Results

Our key results can be presented most effectively in a linear univariate framework.

The model is given by

 = +1 +  and  = −1 +  where 0    1. (1)

Here  captures a positively autocorrelated stationary exogenous process, with  zero

mean,  and having bounded support. The parameter  measures the expectational

2McCallum (2012) provides detailed comments on this interchange and discusses further the issue

of equilibrium selection.
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feedback in the model. We exclude the non-generic cases in which || = 1 or  = 1.
The expectational feedback parameter  plays an important role in the assessment of

equilibrium multiplicity. For convenience we do not include an intercept in (1); thus

 should be interpreted as in deviation from mean form.3 We assume throughout that

 is in the information set at time . Under adaptive learning it can matter whether

or not  is assumed to be observable by agents at time ; under RE, even if  is

assumed unobservable, agents can deduce at time  its value.

An REE is a stochastic process  that satisfies (1) plus possibly additional bound-

ary conditions. If no boundary conditions are imposed, the model (1) has multiple

REE regardless of the magnitude of . If ||  1 there is a unique nonexplosive REE:
this is the determinate case. The indeterminate case occurs when ||  1, which

results in multiple nonexplosive REE.

We use adaptive learning as our selection mechanism. The representative agent is

assumed to use a forecasting model, usually referred to as a perceived law of motion,

or PLM, to form expectations. The PLM depends on parameters that are estimated

and updated over time as new data become available. An REE is stable under learning

if the parameter estimates converge to values that deliver RE forecasts.

We consider two types of equilibria that are of central focus in the literature: the

minimal state variable solution and a non-fundamental or “bubble” solution. These

solutions are given by

MSV:  = (1− )−1 (2)

NF:  = −1−1 − 1


 (3)

Economists frequently adopt the MSV solution as the equilibrium of interest, both in

determinate and indeterminate cases. As we note below, this solution can be viewed

as corresponding to the backward-stable solution emphasized by Cochrane. Although

the NF solution is explosive in the determinate case, this solution has also been of

interest in the literature.4 We use adaptive learning to select between these equilibria.

The results depend on whether  is observable.

2.1 Observable shocks

In this section we assume that  is observable to learning agents. To assess stability

of the MSV and NF solutions, we employ the E-stability principle. In each case we

3The omission of an intercept is without loss of generality because we include a constant in the

agent’s forecasting model to ensure robustness in learning the steady state.
4While there are many non-fundamental solutions, (3) is uniquely identified as having a finite

AR-representation.
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provide agents with a PLM consistent the solution under consideration:

MSV PLM:  = + , or NF PLM:  = + −1 + 

Let  denote the PLM parameters, i.e.  = ( ) or  = (  ). The data generating

process implied by the PLM specifies a map  () taking PLM parameters to their

actual law of motion (ALM) counterparts. A fixed point ∗ of this  -map corresponds
to an REE. If the differential equation ̇ =  ()− is Lyapunov stable at ∗ the REE
is said to be E-stable. The E-stability principle states that E-stable REE are stable

under least-squares and closely related updating rules.

The REE parameters for the MSV and NF solutions are ∗ = (0 (1 − )−1)
and ∗ = (0 −1−()−1), respectively. Because we have assumed  is in devia-

tion from mean form, learning  = 0 corresponds to agents correctly learning the

steady state. The MSV PLM implies that ̂+1 =  + , where ̂+1 denotes

the conditional expectation of learning agents based on  and . The corresponding

T-map is  ( ) = ( 1 + )  and it is easily verified that ∗ = (0 (1 − )−1)
is E-stable and hence stable under least-squares learning. The NF solution PLM

parameters (  ) = (0 −1−()−1) correspond to an REE. However, observabil-
ity of  and the fact that ̂+1 =  +  +  imply the T-map  (  ) =

(1− )
−1
( 0 1 + ) for  6= −1 It follows that the NF solution corresponds

to a singularity in the T-map at  = −1. As is well known,5 this singularity implies
the NF solution cannot be E-stable: for ( ) near (0−()−1) and   −1 close
to −1,  = (  ) instead converges to the MSV solution under ̇ =  ()− . The

following Theorem, known to the literature, summarizes these results:

Theorem 1 If the exogenous shocks are observable in the model (1) then (i) the MSV

solution is stable under learning when   1 and not stable under learning if   1,

and (ii) the NF solution is not stable under learning.

In fact, the MSV solution is robustly E-stable in the sense that it is locally stable

even when the PLM is overparameterized by including any finite number of lags.6

2.2 Unobservable shocks

We now assume that  is not observable to learning agents. To determine the appro-

priate PLMs we rewrite the MSV and NF solutions in terms of lags of :

MSV:  = −1 + (1− )
−1

 (4)

NF:  =
¡
−1 + 

¢
−1 − −1−2 − 1


 (5)

5See Evans (1989), Evans and McGough (2005) and McCallum (2009a).
6In the indeterminate case there are many non-explosive “sunspot” solutions. If   1 these

solutions are not stable under learning; if   −1 then there exist PLMs that impart stability under
learning to these solutions. See, for example, Evans and McGough (2011).
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We consider PLMs allowing for a finite number of lags of :

 = +

X
=1

− +  (6)

where  represents the agents’ perceived error term, assumed to be a zero mean 

stochastic process independent of lagged . Notice that agents’ beliefs are summarized

by the vector  = ( ), where  = (1     ).

Given their beliefs, agents form expectations as ̂+1 =  +
P

=1 +1−
Again, agents are assumed to use  to forecast +1. Joining these forecasts to the

model (1) leads to the ALM as before. Using  = −1 +  and letting (1) =

(1− 1)
−1, we have the ALM

 = (1)(1− ) + −1 + (1) for  = 1

 = (1)(1− ) + (+ (1)2)−1 − ((1)2) −2 + (1) for  = 2

 = (1)(1− ) + (+ (1)2)−1 + (1)

−1X
=2

(+1 − )−

− ((1)) − + (1) for  ≥ 3
The functional forms of the forecasting model and the data generating process exhibit

the same linear dependency. This allows us to identify the  -map as usual, which

we label as  to track the number of lags of  in the PLM. The corresponding

E-stability differential equation is

̇ =  ()−   (7)

Set  = (0 ) and  = (0 −1+−−1) corresponding to equations (4)
and (5). Define


 = (  0     0| {z }

−1 terms

) for  ≥ 1 and 
 = (  0     0| {z }

−2 terms

) for  ≥ 2

Note that 
1 =  and 

2 =  . The following result characterizes the

fixed points of  .

Lemma 1 The unique fixed point of 1 is 
  For  ≥ 2 the fixed points of 

are given by 
 and 

 

The proof of this and all results are in the Appendix. This Lemma shows that there

are precisely two equilibrium processes  consistent with forecasting models of the

form (6), and that they correspond to the MSV and NF solutions.

It is not a priori obvious how many lags agents should include in their forecasting

model. To account for this we adopt the following definition of robust stability:
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Definition 1 The MSV solution is robustly stable under learning provided 
 is

a Lyapunov-stable rest point of (7) for all  ≥ 1. The NF solution is robustly stable
under learning provided 

 is a Lyapunov-stable rest point of (7) for all  ≥ 2.

A robustly stable REE continues to be stable under learning when the PLM includes

more lags of  than the minimum needed. We have

Theorem 2 If the exogenous shocks are not observable in the model (1) then (i) the

MSV solution is robustly stable under learning when   1 and not robustly stable

under learning if   1, and (ii) the NF solution is not robustly stable under learning.

This shows how the stability results in the observable case extend to the unobservable

case. Further, we note that the instability result for the NF solution is even stronger

than stated in the theorem: the NF solution fails to be E-stable for each  ≥ 3
We remark that when   1 the MSV solution is robustly stable under learning

regardless of whether the model is determinate or indeterminate. Conversely, when

  1 the MSV (backward-stable) solution is not robustly stable under learning —

we return to this case in an example below. The NF solution is stationary when

||  1 and explosive when ||  1; however, in both cases the NF solution fails to

be robustly stable under learning.

2.3 Discussion: the backward-stable solution

Before turning to applications, we introduce a particular solution concept, the backward-

stable solution. It is convenient to develop the concept in the indeterminate case

||  1, and we start with the nonstochastic version of the model  = +1. The

collection of perfect foresight solutions takes the form  = −, for any  ∈ R.
Observe that if  6= 0 then ||→∞ as → −∞. In this sense a “backward-stable”
solution requires  = 0. This REE corresponds to the MSV solution  = 0.

The concept can easily accommodate the stochastic version of our model (1).

Continuing to set  = 0, backward iteration provides that

 =
X
≥1

−− +
X
≥0

−−, (8)

where  is an arbitrary martingale difference sequence (mds) capturing rational

forecast errors. If the process  is  then , as defined by equation (8) is sta-

tionary, and thus in a natural sense is both backward and forward stable. Letting

 = (1− )
−1

, the solution (8) reduces to  = (1− )
−1

, i.e. to the MSV

solution (2). Because the MSV solution is the “minimal” backward-stable solution,

and in particular does not depend on extraneous exogenous variables, it can be viewed

as the natural extension of the backward-stable solution to the stochastic case.
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3 Applications

We consider three applications: a flexible-price version of the benchmark New Keyne-

sian model; the standard New Keynesian model; and a simple overlapping generations

model.

3.1 A flexible-price endowment economy

We first consider the flexible-price environment in which Cochrane andMcCallum pur-

sued their debate on whether the NK model uniquely identifies an equilibrium. The

general environment is an endowment economy with competitive markets for money,

goods, and one-period risk-free claims, flexible prices and infinitely-lived agents. The

representative household aims to maximize discounted expected utility with discount

factor 0    1. Expectations are formed against subjective beliefs, and the utility

is given by (−1) = (1− )
−1 ¡

1− − 1¢ + log ¡−1
−1


¢
 with   0. Here 

is consumption,  = −1 is the inflation factor, and −1 = −1−1, where
−1 is nominal money holdings at the end of time  − 1. The budget constraint is
++ = −1

−1
 +−1

−1
 −1+E+T−1  where E is the household’s time  real

endowment of the perishable consumption good, −1 is the nominal interest rate fac-
tor,  is the household’s real bond holdings in , and T is nominal monetary injections
(which may be positive or negative). For simplicity we assume E = 1. The house-
hold’s first-order conditions are − = ̂

¡
−1+1

−
+1

¢
and  =  ( − 1)−1


 .

Finally, we assume households cannot run Ponzi schemes.

There is no public spending and the government does not issue debt; it only

prints money and provides nominal injections (transfers). It follows that  = 0. The

government’s real flow constraint is given by 
 = 

−1+T, which in nominal
terms is simply 

 −
−1 = T Through transfers, the government can choose the

nominal money supply 
 so that the nominal interest rate satisfies a Taylor rule

 = 1+() where () = (
∗−1) (∗)∗(∗−1)  Here  captures a serially

correlated policy shock, and is taken to be a stationary AR(1) process in logs, with

unit mean. Finally, the inflation target ∗ and the interest rate target ∗ are assumed
to satisfy ∗ = ∗. The model is closed by imposing market clearing.

There are alternative approaches to decision-making under adaptive learning. We

adopt the Euler-equation learning approach for its simplicity and because it aligns

with the one-step ahead framework, which was the focus of the debate between Mc-

Callum and Cochrane.7 We assume agents have homogeneous expectations. It follows

7Other possible implementations of adaptive learning include the long-horizon approach of Pre-

ston (2005) and versions of the Adam and Marcet (2011) internal rationality approach. In both of

these approaches agents fully solve their dynamic program given beliefs. Our implementation can

be viewed as a bounded optimality approach, which is shown in Evans and McGough (2017) to be

8



that all agents consume their endowment every period. Assuming that agents take

this into account when forecasting future consumption, the Euler equation implies

the temporary equilibrium8 (TE) consumption and money demands

 =
³
̂

¡
−1+1

¢´− 1


and  = 

³
( − 1) ̂

¡
−1+1

¢´−1
 (9)

Given , −1 and 
−1, temporary equilibrium values (   


 T) are

determined by  = 1,  = 
 


 = T +

−1, the Taylor rule, and the identity
 = −1, where ̂

¡
−1+1

¢
is allowed to depend on current endogenous variables.

To see how the temporary equilibrium arises, it is helpful to consider a thought

experiment in which we start in equilibrium and consider a reduction in expected

inflation, or more precisely an increase in ̂

¡
−1+1

¢
. For simplicity suppose that

̂

¡
−1+1

¢
is predetermined, i.e. independent of current . The increase in the expec-

tations term ̂

¡
−1+1

¢
acts to reduce both goods demand and money demand, and

to raise the supply of saving. The fall in goods demand puts downward pressure on

prices  (and ), and the rise in the supply of savings corresponds to an increase in

bond demand, which, because bonds are in zero net supply, puts downward pressure

on interest rates.

In the temporary equilibrium the resulting fall in  increases consumption de-

mand, eliminating the excess supply of goods. The extent to which  and  fall is

determined by the Taylor rule, which is implemented by changes in 
 via trans-

fer payments.9 To summarize, an exogenous reduction in expected inflation leads to

lower inflation and interest rates in the temporary equilibrium. While our discussion

presumed that ̂

¡
−1+1

¢
is predetermined, this is not necessary. If ̂

¡
−1+1

¢
depends

on current  this introduces additional simultaneity into the temporary equilibrium

system, but the central intuition is unchanged and equilibrium is still well-defined.

To complete this example and bring to bear the analysis of Section 2, we follow

standard practice under RE and log-linearize the system around the non-stochastic

steady state ̄ = 1 and ∗ = ∗. Log-linearizing the consumption demand equation

(9) and the Taylor rule yield  = −−1
³
 − ̂+1

´
and  =  +

¡
1− 

∗
¢


where all variables are now written as proportional deviations from means. Because

in equilibrium  = 0, these equations reduce to

 =
1



̂+1 +  (10)

where  is the stationary AR(1) process given by  = −
−1(1−  (∗)−1).

asymptotically optimal. See also Evans and Honkapohja (2006).
8The temporary equilibrium concept was originally introduced by Hicks (1939).
9Real money balances increase in the temporary equilibrium. Nominal money supply increases

provided   ∗ − 1.
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Within a linearized framework equation (10) captures the key temporary equilib-

rium relationship. As usual, under RE this model is determinate provided the Taylor

principle   1 is satisfied; however, as Cochrane has emphasized, there remain mul-

tiple legitimate RE solutions. We use our results to select among the equilibria and

thereby connect to the interchange between Cochrane and McCallum. Specifically,

McCallum (2007) showed that determinacy implies E-stability of the MSV solution,

and McCallum (2009a) established that the NF solution is not E-stable. Cochrane

(2011) argues McCallum’s results hinge on the observability of exogenous shocks, and

that if they are taken as unobserved then the NF solution can be E-stable even when

the model is determinate. Theorem 2 dispels this notion, and extends McCallum’s

result to unobservable shocks. We conclude that stability under adaptive learning

does operate as a selection criterion in this model, and that it singles out the MSV

solution, i.e. the usual RE solution adopted by proponents of the NK model.

Cochrane (2009, 2011) raises a number of additional concerns about the NKmodel

in the determinate case that can be addressed using the agent-level development

above. First, Cochrane has suggested that there is no mechanism in the NK model

that pins down prices. Specifically Cochrane (2011, p. 580) writes: “There is no

corresponding mechanism to push inflation to the new-Keynesian value [given by the

MSV solution]... [S]upply equals demand and consumer optimization hold for any of

the alternative paths ... ”. He bases this position in part on his assertion (p. 582)

that “[t]he equations of the [NK] model do not specify a causal ordering. They are

just equilibrium conditions.”

Within the perfect-foresight environment, his argument has merit. However, the

absence of causality noted by Cochrane results from adopting RE as a primitive rather

than viewing it as an emergent outcome of an agent-level learning process.10 Under

adaptive learning the causal ordering is as follows. At each point in time agents

form expectations of key economic variables based on an estimated forecasting model

and on observed data; they then form supply and demand schedules based on these

expectations and other agent-level variables like wealth. Market clearing gives the

temporary equilibrium prices and quantities. In the next period agents revise the

coefficients of their forecasting model, e.g. using least-squares updating, and the

process continues. This fully specifies a recursive system that defines an equilibrium

path under learning. In particular, under adaptive learning, a forecasting model is

precisely specified, and given this forecasting model a unique equilibrium path is

pinned down. In this way, the adaptive learning approach can resolve the multiplicity

problem inherent in the RE version of the model.

Cochrane also suggests that adopting the MSV solution in the NK paradigm

requires that the government be interpreted as threatening to “blow up” the economy

if that solution is not selected. Cochrane (2011, Appendix B, p. 3) asks: “Is inflation

10Interpreting REE as an emergent outcome is in line with the evolutionary view discussed in

Sargent (2008).
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really determined at a given value because for any other value the Fed threatens to

take us to a valid but “unlearnable” equilibrium?” The answer is no: inflation is

determined in temporary equilibrium, based on expectations that are revised over

time in response to observed data. Threats by the Fed are neither made nor needed.

A final issue raised by Cochrane (2009, p. 1111 and 2011, Appendix B, p. 2)

concerns econometric identification. Specifically, he correctly points out that in the

MSV solution the Taylor-rule parameter  is not econometrically identified. He

suggests this undermines the adaptive learning approach. However, as also pointed

out in McCallum (2012), this misunderstands adaptive learning by private agents as

requiring knowledge of the structural parameters. Under adaptive learning agents

need to forecast in order to make decisions, but they do not need to know or estimate

structural parameters in order to forecast. Instead they make forecasts the same way

that time-series econometricians typically do: by estimating least-squares projections

of the variables being forecasted on the relevant observables.

Furthermore, the identification issue raised by Cochrane is in any case largely

mitigated in models with learning, as shown in Chevillon, Massmann and Mavroeidis

(2010) and Christopeit and Massmann (2017). These authors distinguish between the

internal forecasting problem and the external estimation problem. Adaptive learning

concerns the former problem, and, as we noted above, identification of structural

parameters is irrelevant in our setting for agents making forecasts based on observed

data. The latter problem is that of an outside econometrician making inferences about

structural parameters given the data. If the data is assumed generated in the MSV

REE, then  is not identified; however, if the data is assumed generated by learning

agents, then, strikingly,  is identified. These authors demonstrate consistency and

provide the (possibly) nonstandard asymptotic distribution.

3.2 A sticky-price NK model

We turn to stability under learning of the backward-stable REE in a discrete-time

version of the standard NK model considered in Cochrane (2017). The model is

 = +1 − −1( −+1) and  = +1 +  +  or

 = +1 +1 +2 where  = ( )
0

with appropriate 1 2. Here  is , zero mean. In Appendix B we show

that the REE associated to a given policy {} and shock path {} may be written
in terms of 1  1  2  0 as

( )
0
=  ·

ÃX
≥0

2−1− 

X
≥0

−1 +1+  

!0
≡  ·  (11)

which is the discrete-time analog of the backward-stable solution of Cochrane (2017).
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To model learning, and to provide the greatest chance of stability under learning,

we assume that agents observe  in time  and know ; their only uncertainty in-

volves the constant term. Thus agents use the PLM  =  +  from which it

follows that the ALM is given by  = B +  where B = −1 . The  -map is
thus  () = B and the E-stability differential equation is ̇ = (B − ). Because

B has a real eigenvalue 1  1, the REE  = 0 is not E-stable.

5 10 15 20

-1

1

2

5 10 15 20

-1

1

2

Figure 1: Forward instability of backward-stable solutions

We illustrate the instability using a real-time simulation. To estimate , agents

regress  −  on a constant. A recursive form of this estimator can be written as

 = −1 +  ( −  −−1) 

where  is the estimate of  using data up to time . Here  is the “gain” sequence,

which measures the responsiveness of the estimator to new data. Under “decreasing

gain” learning with  = −1 this corresponds to the usual least-squares estimator, in
which all data are given equal weight, whereas setting 1   =   0 discounts past

data and is referred to as “constant-gain” learning.

We apply this learning algorithm to a central policy experiment studied in Cochrane

(2017). Setting the shocks  to zero, we assume that, starting at time zero, the in-

terest rises from zero to 2% for 5 periods, before returning to zero. Figure 1 provides

both the REE and learning time paths. This simulation sets initial  = (−01−01)
very close to zero, forcefully illustrating the instability of this solution.

We note that Garcia Schmidt and Woodford (2015) take a different line to show-

ing the practical irrelevance of the backward-stable solution. Their analysis uses a

“reflective” approach, which is predicated on knowledge by agents of the economic

structure and a reasoning process akin to the eductive analysis advocated in Gues-

nerie (1992). While we regard our analysis and theirs as complementary, we emphasize

that our boundedly rational approach does not require that our agents have structural

knowledge of the economy.
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3.3 Equilibrium selection in the OLG model

Finally, we outline a simple overlapping generations model with productivity shocks

as the exogenous stochastic driver. There is a constant population of agents. Each

agent lives two periods, works when young and consumes when old. Each agent owns

a production technology that is linear in labor and produces a common, perishable

consumption good. Agents use fiat currency in fixed supply to transfer purchasing

power between periods. As notation  is the time  goods price of money.

To address the observability issue we allow for both aggregate and idiosyncratic

productivity shocks. Again, as notation  is the aggregate productivity shock, which

in log form is a stationary AR(1) process. This model is developed in more detail in

Appendix C, where we show that, to first order, equilibrium price satisfies

log  = (1− )̂ log +1 + log 

where  measures relative risk aversion. This reduces to our model (1) with  = log 
and  = log  This model is indeterminate and has both MSV and NF solutions as

stationary equilibria when   2. However, Theorem 2 shows that the MSV solution,

but not the NF solution, is robustly stable under learning. When  ∈ (0 2) the
model is determinate. The MSV solution is stationary and robustly stable. The NF

solutions diverge away from the steady state and converges either to infinity or zero

almost surely. Whether the explosive path represents a genuine equilibrium depends

on model details, but in any case the NF solution is not robustly stable.11

4 Conclusion

We use adaptive learning to address equilibrium selection, taking into account issues

of observability. The key results in our set-up are that provided there is not positive

expectational feedback that is too large, MSV solutions are robustly stable under

learning, while nonfundamental solutions are not robustly stable under learning under

any circumstances. In NK models these results indicate the desirability of the Taylor

principle, and the dangers of an interest-rate peg, and that when the Taylor principle

is followed, the standard solution to the NK model is the appropriate choice.

11In a related nonstochastic endowment economy Lucas (1986) showed that the path to autarky

(corresponding here to  → 0) was not stable under a simple learning rule.
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Appendix A: Proofs of Results

Proof of Lemma 1. Recall that with (1) = (1− 1)
−1 the map 1 is given by

→ ((1− )(1))  and 1 → , and the map 2 is given by → ((1− )(1)) ,

1 → + (1)2 and 2 →− ((1)2). For  ≥ 3, the map  is given by

 → ((1− )(1))  (12)

1 → + (1)2 (13)

 → (1)(+1 − ) for  = 2      − 1 (14)

 → − ((1))  (15)

Direct computation shows that  is the unique fixed point of 1 and that 



is a fixed point of  for  ≥ 2. It is similarly straightforward to verify that 
 is

a fixed point of  for  ≥ 2.
Now let ∗ = (∗ ∗) be any fixed point of  for  ≥ 2, and assume ∗ 6= 

 

Notice that if ∗2 = 0 then ∗1 6= 0. It follows that there is a smallest ̃ ∈ {1     }
so that ∗̃ 6= 0. Further, ̃ ≥ 2: indeed ̃ = 1 implies ∗ = 

 

We claim that −(∗1) = 1. Indeed, if ̃ =  the we are done by (15). If ̃  

then, since ̃ ≥ 2 and since ∗̃+1 = 0, the claim follows by (14). We conclude that

∗1 = −1 + . Then by (13), ∗2 = ((
∗
1))

−1
(∗1 − ) = − Finally, if  ≥ 3 we

may recursively compute, for  ≥ 3, that ∗ =
¡
((∗1))

−1
+ 
¢
∗−1 = 0 It follows

that ∗ = 
 , completing the proof.

Proof of Theorem 2. We need to assess E-stability of the MSV and NF solutions

for each  using (7) by obtaining the derivative matrix of  evaluated at 


and at 
 . Let  

 denote the map (12) and 

 denote the map given by (13)-(15).

Because the T-map decouples, E-stability can be analyzed by focusing on 

 
 and





 , separately.

We first consider 
 . Evaluated at this fixed point, we have  

 =

(1− )
−1
(1− ) Also, 


1 1 = 0 and, for  ≥ 2,µ



0




¶
 

=

⎧⎨⎩ (− 1)−1  if  =   1

(1− )
−1

 if  =  − 1
0 else



which yields eigenvalues of 0 and (− 1)−1 . For E-stability we need (− 1)−1  
1 and (1− )

−1
(1− )  1. Since 0    1 it is straightforward to verify that

E-stability holds if and only if   1. This completes the proof of Part 1.

Turning to 
 , we have  

 = −−1(1 − ) which satisfies  
  1
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since 0    1. We next compute

µ


0


 − 

¶
 

=

⎧⎪⎪⎨⎪⎪⎩
−()−1 − 1 if  =  = 1

−1 if  =  + 1 = 2

−−1 if  =  − 1
0 else

 (16)

where  is the  × identity matrix. The eigenvalues of (16) are −1 and −()−1,
plus a zero eigenvalue with multiplicity  − 2. E-stability requires that they be less
than or equal to zero. It follows that if   0 then 

 is not E-stable for any  ≥ 2,
and again the result follows. We thus now assume that   0.

Returning to the case  = 2, we conclude that with   0 the fixed point 
2

is E-stable. If instead   2 then the presence of zero eigenvalues implies that

the dynamic system (7) is non-hyperbolic at the fixed point 
 , and higher-order

stability analysis is required.

To assess the stability 
 for  ≥ 3, we first study the case  = 3; the

remaining cases will be addressed by induction. For notional simplicity, let ∗ be
the lag coefficients 

3 . We begin by changing coordinates:  =  − ∗. Define
 : R3 → R3 by  () = 


3 (+∗)−(+∗) Because  is obtained from 


3 −3 by

an affine transform, the stability of ∗ as a fixed point of the system  = 

3 ()−

is equivalent to the stability of the origin as a fixed point of  =  (). Thus we

study the latter system.

By Taylor’s theorem, we may write  () =  (0)+̂(), where ̂() ≡  ()−
 (0) is zero to first order. Diagonalize the derivative of  as  (0) = Λ−1,
where Λ = −1⊕−()−1 ⊕ 0. Change coordinates:  = −1. It follows that

 = −1 () = −1 (0)+ −1̂() = Λ + −1̂() or

 ≡ Λ +() (17)

where the last equality defines notation. The stability of the origin as a fixed point

of  =  () is equivalent to the stability of the origin as a fixed point of (17).

The system (17) has two stable eigenvalues and one zero eigenvalue. By the center-

manifold theorem the origin in R3 is a Lyapunov-stable steady state of (17) if and
only if the origin in R is an Lyapunov-stable steady state of

3 = 3 (1(3) 2(3) 3)  (18)

where a superscript indicates the coordinate in the range, i.e.  = (123)0,
and where functions  are zero to first order: (0) = 0(0) = 0 for  = 1 2.

We are required now to determine the explicit form of3. Since the last row of −1

is (0 0 1) we have that 3 =  3() =  3(). Since the last row of Λ is (0 0 0)
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by equation (17) we have that 3 = 3(). It follows that 3() =  3(). We

compute the third coordinate of  as

 3() = = − (1− (1 + ∗1))
−1

3 − 3 = −(1 + )−113

where the second equality uses ∗1 = −1 + . Continuing, we compute

3() =
¡
(3 − 1)− 2 + 2

¢−1
3(2 − (3 − 1)) (19)

We conclude that

3 =
¡
(3 − 1(3))− 2(3) + 2

¢−1
3(2(3)− (3 − 1(3))) ≡ (3)

where the second equality defines notation.

Writing (3) = 3 (1(3) 2(3) 3) we have 
0 = 3

1
0
1 +3

2
0
2 +3

3 and

00 = (3
11

0
1 +3

12
0
2 +3

13)
0
1 +3

1
00
1 + (

3
21

0
1 +3

22
0
2 +3

23)
0
1 +3

2
00
2

+ 3
31

0
1 +3

32
0
2 +3

33

where the arguments have been suppressed to ease notation, and, for example, 3
 =

23. Using (19) it is immediate the 
3
 = 0 for  = 1 2 3. Since  = 0 = 0

for  = 1 2, it follows, then, that 0 = 0 and 00 = 3
33. Again using (19), we compute

directly that 00 = −2−2.
The above computations allow us to use Taylor’s theorem to write 3 =

−−223 + O(|3|3) It follows that the origin is not a Lyapunov stable fixed point
of (18): there exists    0 so that if the system (18) is initialized in the interval

(− 0) the corresponding trajectory will exit the interval (− ) in finite time. We
conclude that 

3 is not a Lyapunov-stable fixed point of (7).

Having showing instability for  = 3, we now proceed by induction. Some more

notation is needed. Denote by ∆ the metric on R induced by the max-norm: kk =
max || Next, recalling the observation above that we may ignore the constant term
in the PLM, we denote by () ∈ R a beliefs parameter corresponding to a PLM

with no constant term and  lags, and let ∗() be the lag coefficients of the fixed
point 

 . Let () be the -ball with respect to the metric ∆, centered at 
∗().

Finally, let () be the beliefs time-path implied by () = 

(())−()

corresponding to the initial condition 0().

Assume instability for the  − 1 dimensional system. Let   0 be such that

for all 0    , there exists a point 0( − 1) ∈ −1() such that 
( − 1)

eventually exits −1(). Now let 
0() = ((0( − 1)) 0) ∈ (). It suffices

to show that () eventually exits (). By looking back at the definition of

the T-map, notice that () = (−(1())− 1)() Since the initial
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condition has 0() = 0, this differential equation implies that 

() = 0 for all .

Now consider again the T-map, this time focusing on the implied dynamics of −1:

−1() = (1())(()− −1())− −1()

= (−(1())− 1)−1();

the second equality obtains from the fact that () = 0. But this is precisely

the differential equation determining the path −1( − 1). From the recursive

construction of the T-map, (13)-(14), it further follows that, for    − 1, the
differential equation determining the path of (−1) is functionally identical to the
differential equation governing the dynamics of (). We conclude that if 

0() =

(0( − 1) 0) then for  ≤  − 1, () = ( − 1). By the induction hypothesis,
there exists a  and an  ∈ {1      − 1} so that | ( − 1)|  ; since  () =

 ( − 1), the proof is complete.
Appendix B: Sticky-price NK Model

Recall that we write the model as  = +1+
1+

2 where  = ( )
0.

Factor as follows: −1 = (1 ⊕ 2)
−1, where generically 1  1  2  0.

Changing coordinates to  = −1 gives

1 = 1 + 2 + 2I+1 and 2 = 2 + 1U
−1 + 2I−1 +F

 

Here  is an mds capturing the forecast errors associated with , and the remaining

terms are defined as follows:

I =
X
≥0

−1 +I =
X
≥0

2− U
 =

X
≥0

2− F
 =

X
≥0

2−

1 =
¡−−1−11

¢
2
 2 =

¡−−1−12
¢
2
 1 =

¡
−1−11

¢
1
 2 =

¡
−1−12

¢
1


Letting  = −1
2
 yields 1U

−1 +F
 = −1

2
 Finally, letting

 =  ·
µ
1 2 0 0 −1

2

0 0 2 2 1

¶
the REE associated to a given policy {} and shock path {} may be written

( )
0
=  · ¡I−1 I+1  

¢0 ≡  · 

where here we have set  = 0. This equation corresponds to (11).

Appendix C: The OLG Model

Let  ∈ Ω be the index of a representative agent born in time . This agent’s

problem is to maximize given by ̂()(+1())− () subject to ()() =

17



() and +1() = +1(). Here, () is the agent’s labor supply when

young, () is a positive productivity shock, and ()() is his output. Also, 
is the time  goods price of money and +1() is the agent’s planned consumption

when old. The agent’s information set includes (), (), () and current

and lagged values of 

Agent ’s productivity shock includes both an idiosyncratic and an aggregate

component, i.e.

log (()) = log () + log (()) and log () =  log (−1) + 

where the log (()) are  mean zero and independent across agents,  is  zero

mean with small support and log (()) and  are independent processes. Assuming

() = (1− )
−1
(1− − 1), agent ’s decision rules are given by

() =
³¡
−1 ()

¢1−
̂()

¡
1−+1

¢´ 1


and () =
³
−1 ()̂()

¡
1−+1

¢´ 1




Assuming a constant (unit) supply of money, we obtain the market-clearing conditionR
Ω
() = 1 which yields

 = 

µZ
Ω

³
()̂()

¡
1−+1

¢´ 1




¶

 (20)

Equation (20) characterizes the equilibrium price path. Clearly () can be useful

for forecasting +1 only through its correlation with . Furthermore if the variance

of the idiosyncratic shock is large relative the variance of the aggregate shock then

the information content of () for forecasting +1 is small.

An REE is characterized by  = 
1−
+1  where 

1
 =

R
Ω
()

1
  However,

it is neither natural nor necessary to assume agents observe  when making rational

forecasts. The required information under RE is encoded in the current price level

. Thus under RE agent  has no reason to condition his forecast on (). We

assume this behavior extends outside of RE as well.

Assuming all agents hold the same forecast of (functions of) aggregates, i.e.

̂()(+1) = ̂(+1) for all  and well-behaved functions  , the unique, mone-

tary, non-stochastic steady state is given by  = 1. Provided that the expectations

operators of agents are reasonably well-behaved (e.g. are linear, respect first-order

approximations, fix constants, etc.), we may linearize (20) around this steady state,

and simplify to obtain log  = (1 − )̂ log +1 + log  since, by independence,R
Ω
log () = log .
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