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Introduction

�Macroeconomic models are usually based on optimizing agents in dynamic,
stochastic setting and can be summarized by a dynamic system, e.g.

yt = Q(yt�1; y
e
t+1; wt);

or yt = Q(yt�1;
n
yet+1

o1
j=0

; wt);

yt = economic variables at time t (unemployment, in�ation, investment, etc.),
yet+1 = expectations of these variables, wt = exogenous random factors at t

�The presence of expectations yet+1 makes macroeconomics inherently dif-
ferent from natural science. But how are expectations formed?

� Since Lucas (1972, 1976) and Sargent (1973) the standard assumption is
rational expectations (RE).



�RE assumes too much knowledge & coordination for economic agents. We
need a realistic model of rationality What form should this take?

�My general answer is given by the Cognitive Consistency Principle: eco-
nomic agents should be about as smart as (good) economists, e.g.

� model agents like economic theorists �the eductive approach, or

� model them like econometricians �the adaptive learning approach

�These provide possible mechanisms of coordination. Today I will follow the
adaptive approach. Agent/econometricians must select models, estimate para-
meters and update their models over time.



Outline

The talk reviews my research (and some others�) on expectations and adaptive
learning in the context of stock prices.

My interest in asset-price bubbles began with �A Test for Speculative Bubbles
in the Sterling-Dollar Exchange Rate: 1981-84� (AER, 1986).

I will discuss:

� Rational bubbles (without learning)

� Instability of rational bubbles under learning



� Asset prices under adaptive learning

�constant gain learning of fundamentals solution
�underparameterized dynamics
�dynamic predictor selection: rules of thumb
�dynamic predictor selection with least-squares learning

� Learning about risk and return: a simple model of bubbles and crashes

� Near-rational exuberance

� Conclusions



Rational Bubbles

A good place to start is �rational bubbles�, which featured early in the multiple
equilibria literature.

The usual consumption Euler equation with risk neutral preferences implies

pt = (1 + r)�1Et(pt+1 + dt+1), where r = ��1 � 1 > 0;

where dt is exogenous. The standard �fundamentals�solution is

pt = �pt �
X1

j=1
(1 + r)�jEtdt+j:

�pt inherits the time-series properties of dt, e.g. if dt has a unit root (e.g. is a
random walk) then pt does, and also pt; dt are cointegrated, i.e. pt� r�1dt is
stationary.



There are also explosive �bubble�solutions

pt = �pt +Bt where

Bt = (1 + r)�1EtBt+1

Bubble solutions, which can be viewed as a kind of sunspot, are explosive since

EtBt+j = (1 + r)jBt:

It seems that one might be able to test empirically for the presence of bubbles
by determining whether pt has an explosive root and whether pt and dt are
cointegrated.

However in Evans (AER, 1991) I show that �periodically collapsing�bubbles
exhibit pseudo-stationarity in �nite samples. Although the excess volatility
would be observable, standard unit root and cointegration tests would fail to
detect bubbles. (See Figure).





Despite the apparent appeal of rational bubbles there are several objections to
them:

(i) theoretical arguments against explosive solutions (that lean heavily on RE),

(ii) the assumed coordination of agents on a suitable and observable sunspot
Bt, and

(iii) instability under adaptive learning.

We next consider this last point.



Outline of Adaptive Learning Approach

� At t, given exogenous and pre-determined variables, agents form expecta-
tions E�t pt+1 using a previously estimated forecasting model.

� E�t pt+1 together with the exogenous variables (e.g. dividends), determines
the market (�temporary equilibrium�) price pt.

� Using time t data, the estimated forecast model parameters are then up-
dated, e.g. by recursive least-squares.

� We then move to t+ 1, and the process continues ...

� Is there convergence to RE or another stochastic process?



Instability of rational bubbles under adaptive learning

Consider again

pt = �E�t pt+1 + dt;

where now E�t pt+1 is the possibly nonrational expectation 0 < � < 1 and dt
is the dividend, assumed paid at the beginning of t.

To analyze stability under LS (least-squares) learning consider the special case

dt = k + ut;where ut is white noise,

so that

�pt = (1� �)�1k + ut:



We will see whether agents can learn the dynamics of the bubble. For any
bubble Bt, since Bt = �EtBt+1, we can write

Bt+1 = ��1Bt + "t+1

for some martingale di¤erence sequence (mds) "t. Using Bt = (1� ��1L)"t
and allowing the mds to depend on ut we can write the bubble solutions as

pt = ���1k + ��1pt�1 � ��1ut�1 + �ut + "t;

where � is arbitrary and "t is an arbitrary mds. Note explosive root in pt.

To look at stability under LS learning consider a perceived law of motion (PLM)
general enough to include fundamentals and bubble solutions as special cases

pt = a+ cpt�1 + h0ut + h1ut�1 + f�t:

This gives 1-step ahead forecasts E�t pt+1 = a+ cE�t pt + h1ut; or

E�t pt+1 = a(1 + c) + c2pt�1 + (h1 + ch0)ut + ch1ut�1 + cf�t:



Substituting into the model gives the corresponding actual law of motion (ALM)

pt = k+ �a(1+ c) + �c2pt�1+ (1+ �(h1+ ch0))ut+�ch1ut�1+�cf�t:

The T mapping from PLM to ALM is

T (a; c; h0; h1; f) = (k + �a(1 + c); �c2; (1 + �(h1 + ch0)); �ch1; �cf):

Fixed points of T include both fundamentals and bubble solutions

�a = k(1� �)�1; �c = �h1 = �f = 0; �h0 = 1 and
�a = ���1k; �c = ��1; �h1 = ���1; and �h0; �f arbitrary.

Stability under LS learning is generally governed by E-stability, i.e. by

d�

d�
= T (�)� �

where � = (a; c; h0; h1; f): The di¤erential equation governing c is

dc

d�
= �c2 � c:
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Learning Instability of Rational Bubble

The fundamentals coe¢ cient �c = 0 is locally stable, whereas the bubble value
�c = ��1 is unstable.



Under LS learning initial estimates for the coe¢ cient c will tend to either con-
verge to zero (for initial beliefs less than ��1) or explode (for initial beliefs
more than ��1).

If c! 0 then the other coe¢ cients go to their fundamentals REE values.

This argument can be read as ruling out bubbles, but it can also be viewed as
providing a source of bubbles, if they can be �tamed.�



Asset-pricing under adaptive learning

I will next look at several ways to obtain interesting asset price dynamics under
adaptive learning that are less radical than rational bubbles. Later I will return to
(near-rational) bubbles under adaptive learning. I�ll review each of the following

� constant gain learning of fundamentals solution

� underparameterization of dynamics

� dynamic predictor selection: rules of thumb

� misspeci�cation equilibrium (dynamic predictor selection with LS learning).



Constant Gain Learning of Fundamentals Solution

This is a minimal deviation of adaptive learning to give persistent dynamics.

The idea goes back to Timmermann�s (1993): transitional learning dynamics
gives excess volatility. Constant gain learning, or �discounted LS�, gives a con-
stant weight to current data and discounts older data. This leads to persistent
learning dynamics.

The motivation for constant gain learning is robustness to unknown structural
change.

Simple example. Letting dt = �+ vt, where vt is white noise we have

pt = �+ �E�t pt+1 + vt:



The fundamentals solution is

pt = �a+ vt where �a = (1� �)�1�:

We suppose agents try to learn �a statistically by running a regression on an
intercept.

Under ordinary LS learning we have

at = at�1 + t�1(pt�1 � at�1);
E�t pt+1 = at;

pt = �+ �at + vt:

It can be shown that at ! �a as t ! 1; i.e. LS learning converges to the
fundamentals solution.

Now replace t�1 by 0 < 
 < 1 (e.g. 
 = 0:05). Then

at = at�1 + 
(pt�1 � at�1):



Using E�t pt+1 = at and pt = �+ �at + vt it can be shown that

pt = (1� 
(1� �))pt�1 + �
 + vt � (1� 
)vt�1:

with (asymptotic) variance

var(pt) =

 
1 + (1� 
)(1� 2�)

1 + (1� 
)(1� 2�)� 
�2

!
var(vt):

See Evans and Honkapohja (2001) for details. Constant gain learning leads to
excess volatility. With � = 0:99 and 
 = 0:02, var(pt) is twice that of RE.

Can be extended to more general dt processes, in which agents regress pt on
dt (and possibly lags).

The results carry over to in�nite-horizon PV (present value) pricing.

Another application: exchange rates and the forward premium puzzle (Chakraborty
and Evans, JME 2008).



Underparameterization of Dynamics

Another �small�deviation from RE: If agents use a misspeci�ed model to forecast
this can also lead to novel dynamics. An example is Fuster, Hebert and Laibson
(NBER Macro Annual, 2011).

They assume �dt � AR(n) where n is large (e.g. n = 30), but agents �t
a parsimonious model with n < 10. In the data dt appears mean-reverting
over long periods, if we choose n large, but if we �t an AR(n) with n small,
forecasts extrapolate dividend shocks.

Using a Lucas-type model with CARA preferences they show this can �t many
asset price anomalies.

From the adaptive learning viewpoint this is an RPE (restricted perceptions
equilibrium). It would be natural to also add LS learning of the forecast rule
parameters.



Dynamic Predictor Selection with Rules of Thumb

Another approach to asset pricing with bounded rationality emphasizes hetero-
geneous expectations and rules of thumb. Brock and Hommes (JEDC, 1998)
is an example. Hommes and coauthors have many recent applications.

The set-up has the usual 1-step ahead structure, except that there is additionally
an asset supply shock (due to new issues, repurchases, insider lock-up, etc.),
and the equation arises from mean-variance preferences.

Each agent type j = 1; : : : ; J solves

max
zj

RWt + E
j
t (pt+1 + yt+1 �Rpt) zjt �

a

2
�2E

j
t z
2
jt



where �2 = V art(pt+1+yt+1�Rpt) is the subjective conditional variance of
the excess rate of return, assumed constant over time. This leads to the risky
asset demand for type j of

zjt =
1

a�2
E
j
t (pt+1 + yt+1 �Rpt)

Financial market equilibrium requires that price adjusts to ensure market clear-
ing. For simplicity assume J = 2.

Let n denote the fraction of agents with expectations E1t . In equilibrium,

nz1t + (1� n)z2t = zst

which leads to the equilibrium process for stock prices,

pt = �
h
nE1t pt+1 + (1� n)E2t pt+1

i
+ ��yt � �a�2zst



Belief types j = 1; 2 are selected from some simple rules, e.g.

pet+1 = 0:65pt�1 + 0:35p
e
t , adaptive expectations

pet+1 = pt�1 + 1:3(pt�1 � pt�2), strong trend-setting.

The proportions of agents using each rule depend on forecast performance

Uj;t = �j;t�1 + �Uj�1;t where 0 � � < 1;

where �j;t�1 is the rate of return obtained last period using forecast rule j,
and nj;t is given by the logit formula

n1;t = exp( U1;t)=(exp( U1;t) + exp( U2;t)) and n2;t = 1� n1;t;

where  > 0 measures the �intensity of choice.�

Brock and Hommes show that complex price dynamics, including bubble-like
behavior, can arise with this set-up.



Dynamic predictor selection with least-squares learning

Branch and Evans (Rev. Financial Studies, 2010)

Branch and Evans (2010) use an approach that combines dynamic predictor
selection with LS learning.

As with BH we assume that agents select between alternative underparameter-
ized forecasting models.

However we assume that each forecasting model regresses pt on an explanatory
variable. The exogenous observables, dividends ŷt and share supply ẑst; are
AR(1):

ŷt = (1� �)y0 + �ŷt�1 + "t

ẑst = (1� �)s0 + �ẑs;t�1 + vt:



The two forecasting models use either

PLM1 : pt = b10 + b11ŷt + �t

PLM2 : pt = b20 + b21ẑst + �t:

Agents choose between these two alternative misspeci�ed forecasting mod-
els, each updated using LS learning.

Motivation: forecasters recommend using parsimonious models.

We show theoretically that in this set-up there can be multiple �misspeci�cation
equilibria� in which agents mainly use one of the two models. These have
di¤erent expected rates of return and di¤erent measures of risk.

Let F = U1 � U2 where Uj is risk-adjusted expected excess returns.
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Multiple equilibria for large  . n is proportion using model 1 vs. model 2.
n! 0 and n ! 1 are both equilibria.

We then add constant-gain adaptive learning of (i) coe¢ cients of each PLM,



(ii) estimates of �tness for each PLM. Under real-time learning this can gen-
erate a pattern of regime-switching and parameter drift, as agents shift
periodically between a high return-high risk equilibrium and a low return-low
risk equilibrium. This can match empirical regime-switching models.

These qualitative results hold even if a bivariate regime-switching model is
included as a third forecasting model. This would include RE as a special case.
But with �nite gains the economy under learning tend to switch between all
three forecasting models and regime-switching in the data is reinforced.



Learning about Risk and Return: a simple model of bubbles and
crashes

(Branch and Evans, AEJ Macro 2011)

Thus, this vast increase in the market value of asset claims is in part the indirect
result of investors accepting lower compensation for risk. Such an increase
in market value is too often viewed by market participants as structural and
permanent . . . Any onset of increased investor caution elevates risk premiums
and, as a consequence, lowers asset values and promotes the liquidation of the
debt that supported higher asset prices. This is the reason that history has not
dealt kindly with the aftermath of protracted periods of low risk premiums.

Alan Greenspan (2005).



We now come back to bubbles and try to tame them under adaptive learning.

We need a mechanism to prevent prices from exploding to in�nity (or to zero).
Three natural possibilities:

1) Impose a �projection facility� on forecasts that prevents forecasts from be-
coming too extreme (e.g. Adam, Marcet & Nicolini).

2) Ensure a proportion of �fundamental� forecasters in the economy (e.g.
Hommes & colleagues)

3) Include a role for estimates of risk (Branch & Evans, 2011).



We use a simple mean-variance linear asset pricing model, as above.

There is a risky asset with dividend yt and price pt and a risk-free asset that
pays the rate of return R = ��1, where 0 < � < 1. Demand for the risky
asset is

zdt =
E�t (pt+1 + yt+1)� ��1pt

a�2t
;

where E�t are (possibly) non-rational expectations and

�2t = V ar�t (pt+1 + yt+1 �Rpt):

We allow for the possibility of �2t varying over time.



Writing zst for risky asset supply and setting zdt = zst we have

pt = �E�t (pt+1 + yt+1)� �a�2tzst:

a > 0 measures risk-aversion.

This is a very simple model that incorporates risk. We keep it simple because
we are going to add learning.

We also assume: (i) Dividends yt are a constant plus white noise, and (ii) asset
supply zst = z0+ vt, white noise, unless price falls below a small proportion of
its fundamental value. This implies that the price dynamics are entirely driven
by learning.



Rational Expectations Equilibria

Under RE, with exogenous supply, there are two solution classes.

�Fundamentals solution:

pt =
�(y0 � a�2s0)

1� �
� �a�2vt

Here �2 is an equilibrium object.

�Rational bubbles solutions

pt = a�2s0 � y0 + ��1pt�1 + a�2vt�1 + �t;

where �t is an arbitrary MDS, i.e. Et�t+1 = 0.

Since 0 < � < 1 the bubbles solutions are explosive in conditional mean.



Stability under Learning

We give agents a PLM (perceived law of motion) that nests the fundamentals
solution and also allows for the bubble term in pt�1,

pt = k + cpt�1 + "t;

�2 = V art(pt+1 + yt+1)

where "t is perceived white noise with constant variance.

Under learning agents estimate k; c and �2 using an adaptive learning algo-
rithm: (recursive) LS learning for k; c and a recursive estimate of �2:

Proposition: (1) The fundamentals REE is locally stable under learning. (2)
The bubbles REE are unstable under learning.



However, the transitional learning dynamics exhibits paths in which the
agents�PLM escapes to a random walk, k = 0; c = 1, with asset prices
sensitive to changed estimates of risk, leading to bubbles and crashes.

The random walk PLM behaves like a near-rational bubble.

Discounted LS. Furthermore, under discounted (or �constant gain�) learn-
ing (in which agents discount past data at a geometric rate) there can be
recurring bubbles and crashes.

If the gains (discounting) are small, the dynamics stay near the fundamentals
RE. For larger gains (discounting) there are more frequent escapes.



Stochastic simulations.

Frequent bubbles and crashes arise when the gain on the estimate of risk (
2)
is relatively large. We vary 
2 = 0:001 to 0:04.

Starting from the fundamentals RE, crashes and bubbles can arise from
various sequences of random shocks, e.g.

ut � 0,vt � 0!# �2t ! " pt ! random-walk beliefs.

Random-walk beliefs are almost self-ful�lling and have price high volatility.

Explosive price bubbles !" �2t ! crashes.
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ARCH learning

A natural extension would be to allow agents to use a more sophisticated
estimate of risk, e.g. based on an ARCH model

�2t = �0 + �1�
2
t�1 + �t;

where estimates of �0; �1 are updated using a constant-gain recursive algorithm
based on observed squared forecast error for stock price returns.

We examine this for random walk beliefs in Branch and Evans (Economics
Letters, 2013).

We �nd that when agents allow for ARCH e¤ects in their estimation of risk
this strengthens the e¤ect that risk has in generating bubbles and crashes.



A Model of Near-rational exuberance
(Bullard, Evans and Honkapohja, MD 2010)

I consider one last wrinkle on nearly self-ful�lling expectations.

We again use the simple one-step ahead mean-variance asset pricing framework,
pet+1 + d� ��1pt = st, with now a �xed dividend d and a constant estimate
of risk. st is a linear function of the risky asset supply, assumed iid exogenous
and unobserved. This gives

yt = �yet+1 + ut, 0 < � < 1;

where yt = pt � �p and ut = ��(st � �s), with �p assumed known.

We consider the possibility that agents add �judgment� �t to an econometric
forecast E�t yt+1

yet+1 = E�t yt+1 + �t:



This is in line with what Central Banks and expert forecasters actually do, based
on the belief that econometric models omit unmeasured factors. We assume
�t has positive �rst-order autocorrelation �.

What if �t is extraneous? We look for an �exuberance equilibrium� with
three properties:

1. Consistent expectations: The econometric forecast E�t yt+1 matches the
time-series properties of yt (here an ARMA(1,1)).

2. Incentives to include judgment: an individual�s mean squared forecast error
is lower if they include judgment than if they do not.

3. Learnability: The econometric forecasting rule is stable under adaptive
learning (RML).



Theorem: For � > 0:5 there exist suitable �t such that an exuberance equi-
librium exists. These equilibria have excess volatility.

Numerical examples show the SD of price can be over 10 times as high as under
RE.

Exuberance equilibria are not fully rational (the forecasts errors are systematic)
but they are �near-rational.�For �� near one, very large sample sizes would be
required to detect deviation of forecasts from full rationality.

Conclusion: waves of �judgment�to adjust for perceived omitted fundamentals
might become self-ful�lling if the feedback is high.



Conclusions

� Asset price models are forward-looking with strong positive feedback given
by 0 < � < 1, with � near 1.

� Adaptive learning in this setting can yield a range of new price dynamics:
�asset price volatility and other �puzzles�can be explained by small con-
stant gain learning and/or misspeci�ed dynamics.

� judgmental adjustments can be almost self-ful�lling.

�dynamic predictor selection can lead to regime-switching dynamics

�near-rational bubbles and crashes can arise from parameter �escape dy-
namics.�This can happen with constant-gain estimates of risk.



� Key insight: � < 1 with � near 1 opens the door to nearly self-ful�lling
equilibria under adaptive learning.

� An open question (in my view). In explaining bubbles and asset price
dynamics, how important is heterogenous expectations or agents?
� Heterogeneity plays a role in some models, but (i) bubbles can arise
without heterogeneity, and (ii) a similar role can be provided by model
averaging. Heterogeneity is clearly present, but does it play a critical role?

� Back to the Cognitive Consistency Principle: modeling agents as economic
theorists (eductive) or econometricians (adaptive) is attractive because it
de�nes the limits of genuine rationality.


