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Abstract

Commitment in monetary policy leads to equilibria that are superior to those from optimal
discretionary policies. A number of interest-rate reaction functions and instrument rules have
been proposed to implement or approximate commitment policy. We assess these rules in terms
of whether they lead to a rational expectations equilibrium that is both locally determinate and
stable under adaptive learning by private agents. A reaction function that appropriately depends
explicitly on private sector expectations performs particularly well on both counts.
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I. Introduction

Many recent models of monetary policy emphasize the importance of for-
ward-looking aspects of the economy, where expectations of private agents
significantly influence the economic outcome. If expectations about the
future are part of the equilibrating mechanisms in the economy, it is well
known that standard intertemporal optimization of economic policy by the
government is in general subject to the problem of time inconsistency, so
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16 G. W. Evans and S. Honkapohja

that a policymaker has incentives to deviate, in later periods, from the
optimal plan obtained in the first period. In contrast, discretionary policies
are obtained through policy optimization separately in each period and are
time consistent, but typically the resulting sequence of discretionary policy
decisions will not lead to the overall intertemporal optimum. The losses from
discretionary policies can be quantitatively significant, and this has provided
an impetus for finding ways to achieve the optimum or at least to improve
the outcome.

While earlier papers on time consistency focused on the inflation bias in
monetary policy, recent work has shown that even if inflation bias does not
arise under appropriate goals of the policymaker, the issue of commitment
vs. discretion still obtains. Discretion leads to what is called a “stabilization
bias” and there are gains to commitment; see Clarida, Gali and Gertler
(1999), McCallum and Nelson (2004), Svensson and Woodford (2005) and
Woodford (1999a, 1999b).

Woodford (1999a, 1999b) suggests that monetary policymaking should be
based on the timeless perspective. This concept is a rule-based policy that is
obtained by respecting the optimality conditions from the full intertemporal
optimization under commitment, except for the current decision-making
period. In other words, according to Woodford (1999a, p. 293), the policy-
maker follows “the pattern of behavior to which it would have wished to
commit itself at a date far in the past”. The gains from committing to this
policy, relative to the discretionary policies, can be significant; see
McCallum and Nelson (2004). In this paper we adopt the timeless perspec-
tive formulation and refer to the corresponding optimal monetary policy as
the “commitment solution”.

Most of the recent literature on monetary policy, including all of the
references above, has been conducted under the hypothesis of rational
expectations (RE). However, this may not be an innocuous assumption, as
shown by Bullard and Mitra (2002) and Evans and Honkapohja (2003b). The
assumption of RE should not be taken for granted, since expectations can be
out of equilibrium, at least for a period of time, as a result of exogenous
events such as structural shifts in the economy. Economic policies should be
designed to avoid instabilities that can arise from expectational errors and
the corrective behavior of economic agents in the face of such errors.

The issue of temporary errors in forecasting, and the consequent correc-
tion mechanisms, have been widely studied in recent research using the
adaptive learning approach.' Bullard and Mitra (2002) consider the stability
of equilibria when monetary policy is conducted using some variant of the

! Evans and Honkapohja (2001) is a treatise on adaptive learning and its macroeconomic
implications. Evans and Honkapohja (1999), Marimon (1997) and Sargent (1993) are surveys
of the field.
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Taylor interest-rate rule and argue that monetary policymaking should take
into account the constraints on the policy parameters implied by learnability.
Evans and Honkapohja (2003b) show that certain standard forms of optimal
discretionary interest-rate setting by the central bank lead to instability as
economic agents unsuccessfully try to correct their forecast functions over
time, so that the economy fails to converge to the desired rational expecta-
tions equilibrium (REE). We there propose an alternative way to implement
optimal discretionary policy that always leads to stability under learning.

The research on adaptive learning and monetary policy has so far focused on
the performance of discretionary optimal policies or ad hoc interest-rate rules.
This paper takes up optimal policy under commitment and studies whether this
facilitates convergence of private expectations to the optimal REE. On intui-
tive grounds one might think that commitment favors stability under learning
by leading to more forecastable dynamics than when policy is re-optimized
every period. We argue that while this can indeed be the case, stability depends
critically on the way the policy is implemented. Certain standard forms of
central bank reaction functions do not or do not always provide stability under
learning. However, there is another implementation, depending explicitly on
private expectations, that always performs well in this respect.

A related concern addressed by Bernanke and Woodford (1997), Svensson
and Woodford (2005), Woodford (1999b) and others is that it is desirable for
policy rules to yield determinacy, i.e., locally unique REE, to ensure that
there are no nearby suboptimal REE. We show that for all parameter values,
our proposed “expectations-based” rule satisfies the dual criteria of deter-
minacy and stability under learning.

II. The Model

We use a linearized model that is very common in the literature; see Clarida
et al. (1999) for this particular formulation and references to the literature.
The original non-linear framework is based on a representative consumer,
a continuum of firms producing differentiated goods under monopolistic
competition and subject to constraints on the frequency of price changes,
as originally suggested by Calvo (1983).

The behavior of the private sector is described by two equations:

Xy = —<P(iz - Ez*WrJrl) + E,*x,+1 + & (1)

which is the “IS” curve derived from the Euler equation for consumer
optimization, and

2 The literature on learning and monetary policy is surveyed in Evans and Honkapohja (2003a).
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T = AX; + BE T + uy, (2)

which is the price-setting rule for the monopolistically competitive firms.
The interpretation of (1) and (2) is discussed further in the Appendix on
temporary equilibrium.

Here x; and 7, denote the output gap and inflation for period ¢,
respectively. i; is the nominal interest rate, expressed as the deviation
from the steady-state real interest rate. The determination of i, is dis-
cussed below. E; x| and E;m,; denote the private sector expectations of
the output gap and inflation next period. Since our focus is on learning
behavior, these expectations need not be rational (E; without * denotes
RE). The parameters ¢ and A\ are positive and 3 is the discount factor so
that 0 < 6 < 1.

The shocks g, and u, are assumed to be observable and follow

()=1) o (B) weer=(02) o0
Uy U1 Uy 0 p

0 < |ul, lp] <1, and g, ~ iid(0, 03), @i; ~ iid(0, 0;) are independent white
noise. g; represents shocks to government purchases and/or potential output.
u, represents any cost-push shocks to marginal costs other than those enter-
ing through x,.> The u, shock is important for policy issues since the g, shock
can be fully offset by appropriate interest-rate setting. x4 and p are assumed
known (if not, they could be estimated).

Assume RE for the moment. Monetary policy is derived from minimiza-
tion of a quadratic loss function:

E’ Z /6” (ﬂ-ters + axters)' (4)
s=0

This type of optimal policy is often called “flexible inflation targeting” in
the current literature; see e.g. Svensson (1999, 2003). « is the relative weight
on the output target and pure inflation targeting would be the case o = 0.
Note that, first, the policymaker is assumed to have the same discount factor
as the private sector and, second, the target value of the output gap is set
at zero, implying that the classical problem of inflation bias does not arise.
For brevity, the inflation target is also set at zero (introducing non-zero
targets would not change the conclusions of our analysis). We treat the

3 For possible interpretations of the u, shock, see Clarida et al. (1999), Erceg, Henderson and
Levin (2000) and Woodford (2003, Ch. 6).
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policymaker’s preferences as exogenously given. It is also well known, as in
e.g. Rotemberg and Woodford (1999), that the quadratic loss function (4)
can be viewed as an approximation of the utility function of the representa-
tive consumer.”

The full intertemporal optimum under RE, usually called the commitment
solution, is obtained by maximizing (4) subject to (2) for all periods ¢, # + 1,

t + 2, ... The first-order conditions are written as
)\7T, = —QXy (5)
)\7rt+s = _a(xt+.v - xH»Sfl)v (6)

for s = 1,2, 3 ... The time inconsistency of the commitment solution is
evident from (5), since this places a requirement that is specific to the
current period and is different from the corresponding requirement (6) for
later periods.

As noted in the introduction, the timeless perspective resolution to the
problem of the time inconsistency of optimal policy is that the policymaker
should respect the optimality conditions above, except for the current period
when the optimization is done. In our context this amounts to using (6) also
for the current period (and neglecting (5)). This yields the commitment
optimality condition:®

A= —alx, — x1). (7)

We remark that (7) is sometimes called a “specific targeting rule” in the
literature.

We next compute the REE of interest. It can be shown that the dynamic
system in x; and 7, defined by (2) and (7) has a unique non-explosive RE
solution. This solution can be expressed as a linear function of the state
variables x,_; and u, and is known as the “minimal state variable” (MSV)
solution; see McCallum (1983). It is obtained by using the method of
undetermined coefficients, expressing the REE as

X; = byxi_ + cxuy (8)
T = brx,_1 + Cruy. (9)

As shown by McCallum and Nelson (2004), imposing RE implies that b,
must satisfy

4 Like much of the literature on monetary policy, we do not explicitly introduce the budget
constraint of the government. This is justified by assuming that fiscal policy is set “passively”
in the sense of Leeper (1991) and ensures that the intertemporal budget constraint of the
government is satisfied.

> Clarida et al. (1999, p. 1681), McCallum and Nelson (2004), Woodford (1999b, Sec. 3.1)
and Woodford (1999a, Appendix) present this optimality condition.
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BB — by +1=0,

where ¥ = 1 + 8 4+ A*/a. This has two solutions, but the one of interest is®

be=(28)""ly - (* — 4B)'2). (10)

This delivers a stationary REE for all values of structural parameters, since
0 < b, < 1, and corresponds to the policy optimum. The other coefficients
are

br=(a/N(1=by), ex=—[\+Bbr+(1=Pp)(a/N] ", e=—(a/Nex.
We refer to this REE as the optimal REE.

I1I. Optimal Interest-rate Setting

Thus far we have formulated the concept of optimal monetary policy under
RE and reviewed the derivation of the corresponding REE using the existing
literature. This derivation did not rely on the aggregate demand curve (1),
which depends on the interest rate and which can be used to determine the
interest rate that implements the desired optimal equilibrium. Computation
of the appropriate interest rate leads to a functional relationship that is often
called a reaction function, since the optimality condition (7) will be exactly
met. Interest-rate rules that respond to endogenous and exogenous variables,
but do not respect (7), are instead called instrument rules; we analyze some
instrument rules below in Section V.’

As has become apparent from the earlier literature, interest-rate setting in
the form of a reaction function can be implemented in different ways
depending on what is assumed to be known in the policy optimization. In
this paper we consider several possibilities, extending the analysis in Evans
and Honkapohja (2003b) for discretionary policy. For each reaction function
we test its performance in two ways.

First, we determine if the resulting REE is determinate, i.e., that it is the
unique stationary REE under the reaction function. If a solution is indeter-
minate, there exist other stationary RE solutions nearby and, as is well
known, these can include a dependence on extraneous variables or “sun-
spots”. Second, we determine whether the REE corresponding to the reac-
tion function implementing optimal policy is stable under adaptive learning
by private agents. Here we formally analyze whether the RE solution is

6 The other root for b, is always larger than one and therefore generates explosive time paths.
7 Our terminology largely agrees with that of Svensson (2003) and Svensson and Woodford
(2005). They call the optimality condition (7) a “specific targeting rule” and the setting of the
interest rate instrument, with (7) satisfied, a “reaction function” of the policymaker.
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E-stable, since E-stability is known to determine whether the solution is
locally stable if private agents update their forecasts using least squares or
closely related learning schemes. We remark that these are independent
criteria. Our aim is to look for reaction functions for the interest rate that
induce both determinacy and stability under learning.

The Fundamentals-based Reaction Function

A possible interest-rate rule to implement the optimal REE is obtained by
computing

Et7rl+l = BWB.Yxlfl + (BWE,Y + Ewp)ut
Eixip1= Efxr—l + (];»c + P)Exura

inserting these expectations and (8) into (1), and solving for the interest rate:

Ip = UxXio1 + g8 + Yuuy, (11)
where
b =by[p™" (by = 1) + by]
="
Yu=[br + ¢ (by + p— 1)]ex + Cxp.

We refer to (11) as the fundamentals-based reaction function, since its
derivation is based solely on models (1) and (2), the optimality condition
(7) and the assumption that the economy is in a stationary REE. The
corresponding reaction function under discretion is identical, except that
1, = 0. Comparing discretion to (11) we see that the former is an open-
loop policy whereas (11) has a feedback from lagged endogenous variables.

We emphasize that the derivation of this interest-rate rule presupposes RE
on the part of both the private agents and the policymaker. The dependence
on a lagged output gap reflects the commitment aspect of the optimal policy.
We note that interest-rate setting according to (11) is quite similar to the
“reaction functions” in equation (2.30) in Svensson and Woodford (2005)
and equation (3.5) in Svensson (2003). Their models differ from the model
in this paper, but the setting of interest rates according to lagged output and
observable exogenous variables is the key common feature for their setups
and (11).%

We now analyze the model with interest-rate rule (11) for determinacy
and stability under learning. For this purpose, combining (1), (2) and (11),

8 Our model does not include the unobservable judgement variables that are introduced in
Svensson (2003) to capture further model uncertainties.
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we write the reduced form of the model in terms of general (possibly non-
rational) expectations as

Xy B 1 %2 E,*.xt+]
T A ﬂ + )\SD E[*7Tf+1
—(piﬂx 0 Xi—1 _9077[}11
+ U . (12)
—Apy 0 )\ Ty 1 — Aoy,

Does the Fundamentals-based Reaction Function Yield Determinacy?

To analyze determinacy, we apply well-known methodology; see e.g. the
Appendix to Chapter 10 in Evans and Honkapohja (2001). The basic steps
are to rewrite the model in first-order form and to compare the number of
non-predetermined variables with the number of eigenvalues of the forward-
looking matrix that lie inside the unit circle. When these numbers are equal,
the model is determinate and has a unique non-explosive solution.
Intuitively, each root inside the unit circle provides a side condition that
ties down one non-predetermined variable. If there are fewer eigenvalues
inside the unit circle than non-predetermined variables, then the model is
indeterminate and there exist multiple non-explosive solutions. In particular,
in the indeterminate case there exist multiple stationary solutions that depend
on sunspot variables. In contrast to the optimal REE, these other REE will
not satisfy (7), the necessary conditions for an optimum.’

Whether the determinacy condition holds depends on the structural
parameters:

Proposition 1. Under the fundamentals-based reaction function there are
parameter regions in which the model is determinate and other regions in

which it is indeterminate.

As an illustration we consider three different calibrations found in the
literature.'®

Calibration W: = 0.99, ¢ = (0.157) " and A\ = 0.024.

° Other stationary REE that satisfy (2) cannot satisfy (7) because, as previously noted, the
system (2) and (7) has a unique stationary RE solution.

1% The calibrations on both Clarida, Gali and Gertler (2000) and Woodford (1999b) are for
quarterly data. However, Woodford (1999b) uses quarterly interest rates and measures infla-
tion as quarterly changes in the log price level, while Clarida et al. (2000) use annualized rates
for both variables. We adopt the Woodford measurement convention, and therefore our CGG
calibration divides by 4 both the o and « values reported by Clarida et al. (2000).
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Calibration CGG: [ = 0.99, ¢ = 4 and A = 0.075.
Calibration MN: 5 = 0.99, ¢ = 0.164 and A\ = 0.3.

These are taken, respectively, from Woodford (1999b), Clarida et al. (2000)
and McCallum and Nelson (1999). Straightforward numerical calculations
show that for small values of « the steady state is indeterminate, while for
larger values of « the model is determinate. (With the calibrated parameter
values the borderlines are approximately o = 0.16, 0.47 and 278, for the three
calibrations.) Determinacy thus arises only for some values of «. The domain
of values for o that gives determinacy depends sensitively on the calibration
but, in general, sufficient flexibility in inflation targeting is needed to ensure
determinacy of equilibrium under the reaction function (11).

We remark that we are treating « as a free policy preference parameter as
is often done in the applied literature. If instead (4) is obtained as an
approximation to the welfare of the representative consumer, «, ¢ and A
all depend on deep preference and price-setting parameters. Because there
are more than three deep structural parameters, however, there are degrees of
freedom for « given 3, ¢ and \."!

Learning Instability with the Fundamentals-based Reaction Function

Derivation of the interest-rate reaction function (11) presupposed that eco-
nomic agents in the model have RE. However, suppose now that private
agents have possibly non-rational expectations, which they try to correct
through adaptive learning. We assume that the policymaker does not expli-
citly take this private agent learning into account, and continues to set policy
according to (11). We are thus analyzing whether, under (11), the optimal
REE is robust to transient errors in forecasting by private agents.

We apply the standard methodology of adaptive learning; see footnote 1
for references. The system under adaptive learning, more specifically under
least squares learning, and stability of an REE under learning are formulated
as follows.

The central assumption is that at each period ¢ private agents have a
perceived law of motion (PLM) that they use to make forecasts. In vector
notation the PLM is

ye=a,+by,1+c¢v, wherey, = <?)a"z = <gt>- (13)

t Uy

"' In Rotemberg and Woodford (1999), ¢ is determined by a parameter of the utility function
for aggregate consumption. o and A depend on this and two other preference parameters as
well as independent price-setting parameters. Analysis of the feasible range of (a, ¢, A) would
require a separate study.

© The editors of the Scandinavian Journal of Economics 2006.
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The parameters (a;, b;, ¢;) are updated over time using least squares. (This
updating might, for example, be done by an econometric forecasting firm
that supplies forecasts to the agents.) Note that for the reduced form (12) the
optimal REE can be written as

yi=a+by, i +ov,

where @ = 0 and where the second column of b is zero. The PLM (13) has
the same form as this REE but, in general, (a,, b,, ¢;) need not equal the REE
values (0, b, ¢).

Given the PLM and the current value of v,, the forecast functions of the
private agents are £y, .1 = a, + bEy, + ¢,E]v;41 or

E,*ym =a;+ br(at + btyH + CtVr) + ¢ Fyy, (14)

where (a,, b,, ¢;) are the parameter values of the forecast functions that agents
have estimated on the basis of past data up to and including period ¢ — 1.
Note that we are assuming that current exogenous variables, and lagged but
not current endogenous variables, are in the information set when forecasts
are made. This is in line with much of the literature. At certain points in the
text we consider an alternative information assumption in which expecta-
tions depend on current endogenous variables.

These forecasts are used in decisions for period #, which yields the
temporary equilibrium, also called the actual law of motion (ALM), for
v = (x;, m) with the given PLM. The temporary equilibrium or ALM
provides a new data point and agents are then assumed to re-estimate the
parameters (a,, b, ¢;) with data through period ¢ and use the updated
forecast functions for period ¢ + 1 decisions. Along with v,, these in turn
yield the temporary equilibrium for period # + 1 and the learning dynamics
continues with the same steps in subsequent periods. The REE (0, b, ¢)
is said to be stable under learning if the sequence (a,, b,, c¢,) converges to
(0, b, ¢) over time.

The Appendix gives the stability conditions for convergence to an REE
under least squares learning. The central idea is to obtain a mapping 7 from
the PLM parameters (a, b, ¢) to the implied ALM parameters, T'(a, b, ¢). The
REE corresponds to a fixed point of this map and a stability condition,
known as E-stability, can be defined in terms of a differential equation
describing partial adjustment of the PLM parameters towards the ALM
parameters. E-stability turns out to provide the conditions for stability of
an REE under least squares and closely related learning rules.

In earlier work, we showed that discretionary policy, using interest-rate
setting based on fundamentals, leads to instability because learning by
private agents fails to lead the economy to the REE corresponding to the
optimal policy without commitment; see Evans and Honkapohja (2003b). It
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would seem possible that the full commitment policy implemented with (11)
might perform better than discretion in this respect, because of the feedback
of the output gap on interest rates. However, we have:

Proposition 2. The fundamentals-based reaction function leads to instab-
ility under learning for all structural parameter values.

The proof is given in the Appendix. The source of instability lies in the
interaction between the IS curve (1) and the price-setting curve (2). Some
intuition is obtained by considering a PLM (a, b, ¢) in which all parameters
are held fixed at the optimal REE values, except for the inflation intercept
term a,. In this case the mapping from PLM to ALM becomes one-dimen-
sional and takes the form

T, (ar) = constant + (B + \p)a;.

Since (3 is close to one, for most parameter values we have 5 + Ap > 1.
a, will therefore tend to be adjusted away from the equilibrium value.
Intuitively, a, > 0 corresponds to an exogenous positive shock to inflation
expectations. This directly increases inflation by [ times the shock. In
addition, via (1) the inflation expectations shock lowers the real interest
rate, thereby increasing output by ¢ times the shock, and through (2) this
raises inflation indirectly by Ap times the shock. These revisions of expected
inflation toward actual inflation lead to a cumulative movement away from
equilibrium. Under least squares learning the dynamics are, of course, much
more complicated and in particular all of the parameters (a, b, ¢) adjust to
forecast errors. The proof of Proposition 2 shows that under the fundamen-
tals-based interest-rate policy, the system is always locally unstable, even in
the case § + \p < 1.12

In Evans and Honkapohja (2004) we illustrate the instability result by a
simulation that shows an explosive path for the inflation rate that
emerges after about 110 periods. Other simulations for the fundamentals-
based rule show a variety of unstable paths. Of course, faced with such a
path, the policymaker would alter the policy rule and private agents would
also be motivated to alter their learning rule. However, such simulations
illustrate the stability problems inherent in the fundamentals-based rule:
under this policy rule the economy will be subject to expectational
instability.

2 An interesting question is whether instrument rules of the form i, = ¥\x,_| + Vgg; + Yo,
yield unstable REE under learning even when the coefficients are not chosen to deliver the
optimal reaction function. It can be shown that stable (and determinate) cases do exist if
1 — 3 =B >0.
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In summary, under private agent learning, the policymaker’s ability to
commit to optimal policies is not sufficient to stabilize the economy, if the
policy reaction function is based on observable exogenous shocks and the
lagged output gap in the way suggested by the standard theory for optimal
policy. We emphasize that under the fundamentals-based rule, the problem
of instability arises even if the optimal REE is determinate.

An Expectations-based Reaction Function

The computation above deriving the fundamentals-based reaction function
relied heavily on the assumption that the economy is in the optimal REE.
We now obtain a different interest-rate reaction function, under optimal
policy, which does not make direct use of the RE assumption. Recognizing
the possibility that private agents may have non-rational expectations
during the learning transition, the policy rule is obtained by combining the
optimality condition, the price-setting equation and the IS curve, for given
private expectations. This leads to a policy rule in which interest rates
depend on observed private expectations as well as on fundamentals. We
call this rule the expectations-based reaction function.

Formally, combine the price-setting equation (2) and the optimality con-
dition (7), while treating private expectations as given. This leads to

Xt

AT .
= m {thfl - ﬂEr 1 — Ur]-
Next, substitute this expression into the IS curve (1) and solve for i,. This

yields the expectations-based reaction function for interest-rate setting:

ir = (SL.X[_] + 67FE[*7TH—1 + 6xEt*xl‘+] -+ 6gg[ + 6,4”1, (15)
where
bp=——-c, Op=l4+— b6,=6,= , Oy =—————.
L a2 platy 7T pla+ )

Looking at the rule (15), it can be seen that its coefficients stipulate
a relatively large response to expected inflation (6, > 1) and that
effects coming from the expected output gap and the aggregate demand
shock are fully neutralized (6, = 6, = © 1. The positive coefficients on
private expectations are crucial for ensuring stability of the REE and the
sizes of the coefficients are chosen so that the economy is led to the optimal
REE.

We now consider determinacy and stability under learning for the expec-
tations-based reaction function (15). The reduced form of the economy under
(15) is
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A .
X - o +ﬂ/\2 E[ X1
- of T
m) o\ e )\ B
« A
— 0 Xi—1
a+ 22 Tar N
o +| AN |u (16)
—7 0 -
o+ N2 -1 a—+ N2

It is clearly a desirable property of our proposed monetary policy rule that
it does not permit the existence of other suboptimal stationary REE.
However, as we have seen in the case of the fundamentals-based reaction
function, having a determinate REE does not always ensure that it is attain-
able under learning. To analyze stability under learning we can again use the
general matrix framework in the Appendix. As in the preceding section we
endow private agents with the PLM, compute the corresponding forecast
function and substitute them into (16). This yields the temporary equilibrium
or ALM and we can study whether least squares learning converges to the
REE under the expectations-based reaction function (15) by computing
E-stability conditions.

The next proposition shows that our interest-rate rule performs well (see
the Appendix for the formal proof).

Proposition 3. Under the expectations-based reaction function (15), the
optimal REE is both determinate and stable under learning for all structural
parameter values.

The key to our stability results is that monetary authorities raise interest
rates, ceteris paribus, in response to increases in inflation and output fore-
casts by private agents, and lower interest rates in response to decreases
in private expectations. Some intuition can be gained from the reduced
form (16). An increase in inflation expectations now leads to an increase
in actual inflation that is smaller than the change in expectations since
afl(c + N?) < 1. This dampened effect arises from the interest-rate reaction
to changes in Em,1 and is a crucial element of the stability result.

The results of Proposition 3 can also be viewed in a different way. Under
(15), the optimality condition (7) is satisfied for all possible expectations.
Thus, the reduced form (16) is obtainable directly from (7) and (2), and it is a
corollary that the specific targeting rule (7), advocated e.g. by Svensson
(2003), is determinate and stable under learning for all parameter values. The
point of Proposition 3 is precisely to show how implementation of (7) can be
achieved using an interest-rate reaction function.

© The editors of the Scandinavian Journal of Economics 2006.



28 G. W. Evans and S. Honkapohja

In summary, Proposition 3 provides a remarkably strong result: the reac-
tion function (15) passes both of the performance tests we earlier set forth.
These positive results show that our analysis of optimal discretionary policy
in Evans and Honkapohja (2003b) can be extended to implement optimal
policy with commitment.

IV. Discussion

Thus far we have treated expectations as determined before the current
values of endogenous variables are realized, as is evident from (14). This
would be natural if agents obtain these forecasts from an econometric
forecasting firm prior to entering the market-place. We briefly consider an
alternative possibility that allows forecasts to be functions also of the current
values of endogenous variables, so that

E'viyi=a,+ by + ciFv,.

This means that current decisions and forecasts of the agents are determined
simultaneously. Private agents now have to be regarded as entering the mar-
ket-place with the most recent estimates of the forecast functions (obtained
from the forecasting firm), which are incorporated into the consumption and
pricing plans. We remark that this stronger information assumption gives
additional scope to monetary policy, since changes in interest rates will also
have an immediate indirect effect on expectations.

Indeterminacy under the fundamentals-based reaction function is, of
course, not affected since this is a property of the model under RE.
Stability under learning can, in general, be affected by the alternative
information assumption. It turns out that under the alternative information
assumption and the fundamentals-based reaction function, there are para-
meter regions in which the model is stable under learning and other
parameter regions in which it is unstable under learning. Instability arises
for sufficiently small values of «. For example, for the MN calibration the
borderline is approximately o = 1.830. In contrast, we continue to have
stability under the expectations-based reaction function; see Evans and
Honkapohja (2004) for details and the proof.

Proposition 4. Under the alternative information assumption and the
expectations-based reaction function (15), the optimal REE is stable
under learning for all structural parameter values.

Several further points should be made concerning our results. First,
although we have demonstrated our results in the context of least squares
learning, the stability results will obtain under various generalizations of
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least squares.'® In fact, the stability results for the expectations-based reac-
tion function hold even for some forecast rules that do not converge to RE.
This is true, for example, if private agents forecast both output and prices
using simple adaptive expectations rules.

There are two potential limitations to implementing policy using our
expectations-based rule.'* One limitation is that high-quality contempora-
neous observations of expectations may not be available. One possible way
of dealing with this problem would be to construct proxies for private
expectations. The central bank might then use forecasts based on recursive
VARs, i.e., apply the same procedure that we are assuming is used by private
agents. This procedure can achieve convergence under plausible auxiliary
assumptions even if their priors differ. A second limitation is the assumption
that the coefficients of the structural model (1) and (2) are known to the
policymaker. With discretionary policy, it was shown in Evans and
Honkapohja (2003b) that for an expectations-based policy implemented
using estimated structural parameters, the REE remains locally stable
under simultaneous learning by private agents and policymakers. An analo-
gous argument can be made in the current case of optimal policy with
commitment.

We remark that Jensen and McCallum (2002) have recently shown that
modifying the optimality condition (7) to Am, = —a(x, — (x,_1) appears to
improve the policy performance, because it partially compensates for the
timeless perspective neglect of the first-period optimality condition.
Fundamentals- and expectations-based reaction functions can be derived
which correspond to this modified optimality condition. It can be shown
that our stability and instability results remain unchanged.

V. Alternative Policy Rules

The fundamentals-based rule (11) is specified in terms of lagged output. We
might now ask whether stability can be achieved if the rule were expressed
in terms of the lagged price level. The commitment optimality condition (7)
can be written as A(p; — p,_1) = —alx; — x;_1), where p;, is the log of the
price level. This will be satisfied if x, = —(NMa)p; + k, for any constant .
It can be verified that the optimal REE satisfies

D = Bxp,_l + Cpup + a,

Xt = bppr—l + Cxly + dy,

13 See e.g. the weighting schemes in Marcet and Sargent (1989) and inertial behavior in Evans,
Honkapohja and Marimon (2001).
14 For further discussion and formal details, see Evans and Honkapohja (2003a).
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for appropriate parameters with b, as before. Following the earlier proced-
ures, we can obtain an alternative fundamentals-based reaction function of
the form

i = Mppit + 0~ g+ Mty + Mo

It can be shown that the optimal REE leads to instability when ¢ > (M«)."

Above we chose our recommended rule carefully to ensure both deter-
minacy and stability under learning for all parameter values. In the litera-
ture alternative interest-rate rules have appeared, which can be interpreted
as expectations-based reaction functions but which do not meet our tests.
Consider the interest-rate reaction function

. A _
Iy = (1 —)EﬂT,H + @ 1gla
ap

suggested in Clarida et al. (1999, Sec. 4.2.2). Replacing Em,; with Ef w1
leads to a policy reaction function based in part on observed expectations.
This policy rule is consistent with the optimal policy under commitment
under the RE assumption. However, this reaction function can lead to
indeterminacy and, furthermore, if 5 + A%« > 1 the optimal REE is not
stable under learning.

McCallum and Nelson (2004) have recently suggested that, in place of
interest-rate setting by a reaction function satisfying the optimality condition
(7), there are well-performing instrument rules that can approximate (7).
These instrument rules specify that the interest rate is moved towards a
specified target value in response to deviations from commitment optimality.
To begin, consider instrument rules of the form

iy = m + 0 + (a/ ) (xr — x21)], 0 >0. (17)

We call this the approximate targeting rule. Numerical results (details are
given in the working paper version) indicate that, under (17), the steady state
seems to be determinate and stable under learning for all values of « and 6.

As pointed out by McCallum and Nelson (2004), a difficulty with the
approximate targeting rule (17) is that it presupposes that the policymaker
can observe current output gap and inflation when setting i,. If neither x, nor
m, are observable at #, they find that a forward-looking version performs best
under RE, e.g.

i = Eﬂm-l + Q[Eﬂm—l + (Q/A><szr+1 - E,xt)], (18)

where E,(-) denotes the expectations of the policymaker. Suppose that the
expectations of the policymaker are formed like those of private agents.

15 Formal details are available in the working paper version, cf. Evans and Honkapohja (2004).
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Table 1. Critical values 0, 6 for indeterminacy and instability

o 0.01 0.05 0.1 0.5 1.0 2.0
Indeterminacy 1.643 0.365 0.185 0.037 0.019 0.009
Instability 3.495 0.413 0.197 0.038 0.019 0.009

Determinacy and learnability for the rule (18) now depend on the values of
the parameters. As an illustration we consider the CGG calibration.
Determinacy obtains for sufficiently small values of the reaction parameter
¢, but larger values ¢ > ¢ lead to indeterminacy. Correspondingly, learning
stability obtains for sufficiently small values of 6, while larger values 6 > 6
can destabilize the economy. The boundaries 6 and 6 depend on the model
parameters and, in particular, on the degree of flexibility « in inflation
targeting. This is illustrated in Table 1. We remark that for § < 6 < § we
have stability but indeterminacy. Restricting 6 to be relatively small to
achieve stability is problematic since, under RE, rules with a small value
of 6 imply that deviations from optimality lead to only small corrections
towards meeting the optimality condition. In some cases, the welfare losses
can be substantial when 6 is restricted to values consistent with stability.'®

VI. Concluding Remarks

In this paper we have analyzed determinacy and stability under learning for
alternative interest-rate reaction functions that aim to implement optimal
monetary policy under commitment. Determinacy is desirable because it
implies that there do not exist other (non-optimal) REE near the solution
of interest. Stability under learning is desirable because it indicates that if
private agents follow least squares learning they will converge over time to
the optimal REE. These are independent criteria, as is evident from our
results in Sections III and V.

Our analysis leads to the conclusion that the two desiderata are met by a
policy that sets interest rates according to our expectations-based reaction
function. In this monetary policy reaction function, interest rates respond to
private expectations as well as to fundamentals, i.e., exogenous shocks and
the lagged output gap. This interest-rate reaction function unambiguously
delivers both determinacy and stability under learning for the economy, with
the economy converging over time to the optimal REE.

In contrast, the fundamentals-based formulation does not perform well
and problems with both indeterminacy and instability under learning arise.

16 For further details see Evans and Honkapohja (2003a, 2004).
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The dependence on the lagged output gap implied by commitment is not
sufficient to guarantee convergence under learning when interest-rate setting
is based solely on fundamentals.

We also discussed alternative policy rules that aim to implement optimal
policy. With the exception of the approximate targeting rule using contem-
poraneous information on inflation and output gap, which is questionable
from the viewpoint of operationality, all of the alternatives examined had
problems with determinacy and stability under learning. More generally, we
reiterate that in monetary policy design, expectations have to be treated as
subject to deviations from rational expectations with private agents follow-
ing a natural econometric forecasting procedure. Optimal policy should be
designed so that under private agent learning the economy is guided to the
REE.

Appendix
Stability under Learning, General Methodology

Temporary Equilibrium. The starting point for models of adaptive learning is that agents
have less information than is presumed under RE. Instead, private agents optimize using
subjective (possibly non-rational) probability distributions over future variables. Given
these subjective distributions, the standard Euler equations provide necessary conditions
for optimal decisions, and we assume that the Euler equations for the current period
specify the behavioral rule that gives current decisions as functions of the expected state
next period. These Euler equations are then supplemented by rules for forecasting next
period’s values of the state variables. Thus, given their forecasts, agents make decisions
for the current period according to the Euler equations. This kind of behavior is
boundedly rational but, in our view, reasonable, since agents are attempting to make
optimal decisions based on a perceived law of motion for the state variables."”

For the model at hand we provide a detailed discussion making use of the general
equilibrium framework presented in Woodford (1996). Although we maintain the
representative agent assumption, so that agents have identical expectations and make
the same decisions, it will be useful to let i index individual firms or households.
Consider first the Phillips curve (2). Let Pi be the price set by those firms that can do
so, P, the average price index and 75; the deviation of the relative price Pﬁ /P, from its
stationary value. Woodford shows that 75; can be expressed as a linear function of
current output and discounted sums of expected future outputs and inflations. This
derivation can be viewed as using subjective expectations that need not be rational.
Assuming that the law of iterated expectations holds at the level of the individual

17 Recently, Preston (2005) has studied standard instrument rules for monetary policy when
agents have a different behavioral rule in which long-horizon forecasts matter. The E-stability
conditions appear to be unchanged; see Honkapohja, Mitra and Evans (2002) for further
discussion.
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agent, quasi-differencing allows us to express P as a linear function of E* 73, 41> X, and
E’ w1, where, of course, E’* denotes the expectation of firm i. However, 73, = P,H
and there is a proportlonal relationship between inflation and 73, Firms will thus
observe from the data that 73', is exactly proportional to 7, and thus ’P, can be rewritten
as a linear function of expected inflation E*7,,; and current output x.'® This defines
the optimal price-setting schedule for Pi, as a function of P, x, and E*m.;, which
firms take to the market-place. In addition, we allow for an exogenous shock u, to the
price-setting schedule. In the temporary equilibrium, with identical firms and
homogeneous forecasts, and using again the relationship between P, and inflation, we
obtain (2).

Consider next the IS curve (1). The linearized Euler equation, which is standard,
is given by ¢/ = E¢i, | — cp(i, — E§*7r,+1).19 (Government purchases are assumed to
enter the utlhty functlon in an additively separable way.) Although ¢, ; will be deter-
mined by the household itself, a forecast is required to determine its optimal
current consumptlon Let &, denote the proportlon of govemment purchases in GDP,
and let §, —In(1 - ¢&). From market clearing ¢, = ¢; = x;, — 5, Assume households
observe from past data that ¢} = 5, and make use of this relationship for forecasting
their future consumption. For convenience, assume that & follows a known AR(1)
process E, ,uf, 1+ f, Then E’* ’ = E X4l — E &,+1, which leads to the consump-
tion schedule

Ci = Ef*x,+1 — (i — Ei*ﬂtﬂ) - Mét

submitted to the market-place. Assuming that the government comes to the market-place
with its plan to purchase proportion &, of output, we obtain (1), where g, = (1 — ,u)é,, in
temporary equilibrium with identical households and homogeneous forecasts.

Given private expectations, these schedules along with the monetary policy rule determine a
temporary equilibrium according to (1) and (2). Thus the values of 7, x; and i, are simulta-
neously determined through market clearing, in the usual way, by the pricing and consumption
schedules. To complete the description of the temporary equilibrium, we have to specify
how expectations are formed. The main case considered in the text assumes that expectations
are functions only of lagged endogenous variables and observable current shocks and are
thus predetermined when the plans are brought to the market. This would be natural if
forecasts were obtained from an econometric forecasting firm before going to the market-
place. In the alternative information assumption in Section IV, the agents instead
obtain forecasting functions from the firm and plug in observations of current endogenous
variables at the market-place, so that 7, x, i, and the forecasts are all determined
simultaneously.

The temporary equilibrium for the current period provides a new data point for the
agents. Given these new data, the forecast functions are updated at the start of the
following period using least squares. The stability question is whether this kind of
(adaptive) learning behavior converges over time to REE of interest.

% We make the simplifying assumption that potential output is constant so that output can be
identified with x,. This assumption is easily relaxed.
19 See e.g. McCallum and Nelson (1999) or Woodford (1996).
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Stability Conditions. When agents adjust their forecast functions over time, the dynamics
of the economy is mathematically specified by a stochastic recursive algorithm, which is a
special type of non-linear time-varying stochastic system. The conditions for convergence
of such dynamics are formally obtained from the local stability conditions of an associated
ordinary differential equation.”® The latter conditions are in turn governed by what are
called expectational or E-stability conditions. Evans and Honkapohja (2001) provide an
extensive analysis of adaptive learning and its implications in macroeconomics; see also the
other references in footnote 1. In this paper we simply present the E-stability conditions for

a general matrix model

yi=A+ME 'y 1+ QEy;+ Ny, + Py,
- (A1)
ve=Fvi1+ v,

where v, is multivariate white noise. This setup is sufficiently general to cover all rules
considered in the paper. Usually either Q = 0 or N = 0.

For (Al) with N # 0, the REE of interest take the form y, = @ + by, | + év,. To
define E-stability we consider PLMs

yi=a+by._1+cv.
Using the methods in Evans and Honkapohja (2001, Ch. 10), for (A1) the mapping from
PLM to ALM is given by
T(a,b,¢) = (A+ (Q + M(I+ b))a, Mb* + Qb+ N, Oc + M(bc + cF) + P).

The E-stability conditions can be stated in terms of the derivative matrices

DT, = Q + M(I +b) (A2)
DTy =0 @oM+I1@Mb+1®Q (A3)
DT, =F @M+10Mb+1®Q, (Ad)

where ® denotes the Kronecker product and 5 denotes the REE value of b.

Remark Al. The necessary and sufficient conditions for E-stability are that all eigen-
values of DT, — I, DT}, — I and DT, — I have negative real parts.*'
When N = 0, the MSV solution takes the form
v, =a+ hv,,

where in the REE the coefficients satisfy a = (M + Q)a and h = MhF + Qh + P.
E-stability conditions now require that the eigenvalues of the matrices

DT,—I=M+Q-1
DT, —I=F oM+I®Q -1

have negative real parts.

20 This approach was first exploited in a learning context by Marcet and Sargent (1989).
21 We exclude the exceptional cases where one or more eigenvalue has zero real part.
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Derivations and Proofs

To assess determinacy we write the system as

Xt X+l

m | =J| mg1 | + other, (AS)
L L

X X1

where xtL = Xx,_1. Since there is one predetermined variable, determinacy holds when J

has two eigenvalues inside and one outside the unit circle.

Proof of Proposition 1. From the reduced form (12) we obtain

0 0 1
J= 0 8 A
()™ wrt ()

Straightforward numerical calculations for the calibrated example show that two eigen-
values of J lie outside the unit circle, and one lies inside, for small values of «, so that the
steady state is indeterminate, while for larger values of « exactly one root lies outside the
unit circle, and the model is determinate. We remark that continuity of eigenvalues
implies that both regions contain open sets of parameters.

Proof of Proposition 2. We apply the E-stability conditions above, when the general
model (A1) takes the specific form (12). In this case Q = 0 and

1 @ —pe 0 _ (0 —pt
M*(A ﬁ+/\s0)’ (—Asowx 0) and P*(o I—Asmpu)‘

In the E-stability conditions (A2)—(A4), the condition for b is independent of the other
variables, while the conditions for @ and ¢ are dependent on b but not on each other.
Because of this recursive structure, a necessary condition for stability is that DT, — I,
evaluated at the REE, has eigenvalues with negative real parts. This condition is equiva-
lent to tr(DT, — 1) < 0 and det(DT, — I) > 0.

Using the notation b = (b;), j = 1, 2, and evaluating variables at the REE, we have
b1 = by, byy = b, and by, = by, = 0. The coefficient matrix for a in (A2) for the
reduced form (12) has the explicit form

= B /;x+g05,r ~ ")
Pl 1_(>‘(bx+1)+(ﬁ+/\go)bﬂ ([3+,\<p)_1)' (A6)

The determinant of the coefficient matrix (A6) is (8 — Db, — b, — Ap < 0 since
0 < B < 1land A, ¢, b, and b, > 0. The result follows.

Proof of Proposition 3. From the reduced form (16) we obtain

0 0 1
J=10 g A
0 B\a (a+M)/a
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The roots of J are 0 and

(2(1)71 (Oé+aﬁ+)\2 + \/(a+aﬁ+)\2)2 _40525)

The non-zero roots are real and positive, with one root less than one and the other
root larger than one. Since exactly two roots are inside the unit circle, determinacy
follows.

Turning to E-stability, we have

_ﬁ/\l;n— _5)\l;x

at+ A o+ N2 0 0
Otﬂl;,r O‘ﬁgx
DTy—I=| “iw aix b 0 0 (A7)
0 0 -1 0
0 0 0 -1
_)\/Bb_ﬂ' Aﬁp
a+ A - o+ N2 0 0
afb, afp
DTC —I= a4+ 2 a4+ 2 - 0 0 (A8)
0 0 -1 0
0 0 0 -1
Db =B
a+ N\ a+ N\
DT, —I= ) . (A9)
afb, af

a+ X a+ A

DT, — I has two eigenvalues equal to —1. The remaining two eigenvalues are those of
the 2 x 2 matrix in the top left corner of DT, — I. The trace of this 2 x 2 matrix is
(o + A" (=BAb, + afBb,) — 2, which is negative since the only positive term is less
than one. Its determinant is (o + A%)~'(3\b, — a8b,) + 1, which is positive as the only
negative term is less than one absolute value (since 5 < 1 and 0 < b, < 1). Thus, all of
the eigenvalues of (A7) have negative real parts.

The matrix (A8) has two eigenvalues equal to —1 and the remaining two are those of
the 2 x 2 matrix in the top left corner. The trace of this 2 x 2 matrix is
(o + A" (=BAb, + afBp) — 2. The only positive term (if p > 0) is less than one and
so the trace is always negative. (If p < 0, all terms are negative.) Its determinant is
(v + A1 (BAb, — afp) + 1 and the only (possibly) negative term is less than one, so
the determinant is positive. Thus DT, — [ is a stable matrix. Finally, we note that the top
left 2 x 2 matrix with p = 1 is identical to the matrix (A9), so that the latter is also a
stable matrix.
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