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1 Introduction

There has been a recent revival of interest in the effects of fiscal policy in

the wake of policy measures enacted by governments all over the world to

combat the damaging effects of the “Great Recession”.1 This recent litera-

ture includes Hall (2009), Barro and Redlick (2011), Ramey (2011b), Ramey

(2011a), Leeper, Traum, and Walker (2011), Coenen et al. (2012), and Ravn,

Schmitt-Grohe, and Uribe (2012).

One thread running through this literature is measuring the effects of fis-

cal policy through examinations of government purchases multipliers in the

context of exogenous changes in defense spending. An example often used in

these studies is that of a war that leads to temporary increases in military ex-

penditures. This interpretation is modeled by a surprise temporary increase

in government purchases as emphasized in the earlier studies of Barro and

King (1984), and Baxter and King (1993).

A common perception in the literature is that the standard neoclassical

(Real Business Cycle aka RBC) model is an inadequate model for the study

of this particular policy experiment. For example, Hall (2009), p. 185, argues

that the basic mechanism through which a temporary increase in government

purchases works its way in the RBC model leads to the inescapable conclu-

sion of very low output multipliers that are well outside the range found

in empirical studies.2 He argues that Keynesian or New Keynesian models

with an aggregate demand channel are needed to deliver sizable government

spending multipliers. It is also well known in New Keynesian models that

the presence of non-Ricardian agents increases the multiplier and that the

size of the multiplier is strongest when nominal interest rates are at its lower

bound of zero.

The recent analyses are almost invariably developed under the “rational

expectations” (RE) hypothesis. While not denying the potential importance

of aggregate demand channels for changes in government spending, a question

of considerable interest is the extent to which the generally small size of

multipliers in the RBC model depends on RE. This question is of importance

regardless of one’s views concerning the role of aggregate demand channels,

since most dynamic macroeconomic general equilibrium models incorporate

1Active fiscal strategies adopted in the US and UK include temporary tax cuts and

credits and large public works projects; see for instance Auerbach, Gale, and Harris (2010).
2We briefly discuss empirical estimates in Section 4.
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the neoclassical mechanisms that are central to the RBC model.3 Our focus

in this paper is purely on this positive issue of the size of the impact of

government spending on aggregate output when agents are adaptive learners.

Thus, in the current paper we study the impact of government purchases

in the standard RBC model with the sole modification that we replace RE

with agents who have incomplete information about the effects of policy

changes and are learning adaptively over time about these changes.4 To

make the comparison most cleanly we use the basic RBC model with lump-

sum taxes and a standard calibration.

As we have argued in Evans, Honkapohja, and Mitra (2009) and in Mitra,

Evans, and Honkapohja (2013), the assumption of RE is very strong and

usually unrealistic when analyzing policy changes. Economic agents need

to have complete knowledge of the underlying structure, both before and

after the policy change. They must also rationally and fully incorporate this

knowledge in their decision making, and do so under the assumption that

other agents are equally knowledgeable and equally rational. Our approach,

in contrast, uses an adaptive learning model in which agents have partial

structural knowledge. At each date agents’ consumption and labor supply

choices depend on the time path of expected future wages, interest rates

and taxes. In line with the standard literature of adaptive learning, we

assume agents’ forecasts of wages and interest rates are based on a statistical

model, with coefficients updated over time using least-squares. However, to

forecast the present value of future taxes, agents use the value implied by the

announced path of future government spending under the assumption this is

announced credibly by policymakers.

This approach seems very natural to us. The essence of the adaptive

learning approach is that agents do not understand the general equilibrium

considerations that govern the evolution of the central endogenous variables,

so that aggregate capital, aggregate labor and factor prices are assumed to

be forecasted statistically. On the other hand, agents can be expected to

immediately incorporate into their decisions the direct implications of credi-

ble announcements of the path of future government spending and taxes on

3Leeper, Traum, and Walker (2011) report simulated multipliers for a series of nested

models in which New Keynesian models are specified as generalizations of the RBC model.
4For discussion of the adaptive learning approach and extensive references, see, for ex-

ample, Evans and Honkapohja (2001), Sargent (2008) and Evans and Honkapohja (2013).

Policy change under learning has also been studied in Evans, Honkapohja, and Marimon

(2001), Marcet and Nicolini (2003) and Giannitsarou (2006).
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their future net incomes. Under adaptive learning output dynamics within

the RBC model can be quite different than under RE, as shown by Mitra,

Evans, and Honkapohja (2013) for cases of permanent increases in govern-

ment spending.5 Remarkably, substantial differences arise despite the fact

that Ricardian equivalence can hold under both RE and learning, see Evans,

Honkapohja, and Mitra (2012).

In the current paper our principal focus is on increases in government

purchases that are known to be temporary, and in particular on the sizes of

the multipliers for such policies. We find that, for the standard RBC model,

output multipliers for a temporary change in government purchases can be

much higher under learning than under RE, and indeed are in line with the

range provided by the empirical literature.

Using this approach, the impact of fiscal policy undertaken during times of

economic stress (negative shocks as in the Great Recession) is analyzed next.

We model a scenario designed to capture important features of fiscal policy

changes by governments to combat the Great Recession. We find that output

multipliers for changes in government purchases continue to be high under

adaptive learning in contrast to the values found under RE. This indicates

that fiscal policy can raise output and employment in deep recessions.6

As a final contribution we consider the episodes of so-called “expansionary

fiscal consolidations” that have been widely studied since the contribution of

Giavazzi and Pagano (1990). In the basic RBC model without distortions, a

permanent reduction in government spending leads to steady state reductions

in output, so our focus here is on private sector expansion. It is known that

the RBC model under RE is unable to deliver dynamics of consumption, and

especially investment, matching the empirical evidence during these fiscal

episodes. However, the introduction of adaptive learning can lead to short-

run behavior of consumption and investment consistent with the evidence

of these episodes. Thus, we are able to provide a simple theory that can

explain private sector expansion during these episodes without the need for

“special theories” for large versus small changes in fiscal policy. The need for

simple theories to explain these episodes has been strongly argued in Alesina,

5Both surprise and preannounced increases were considered in Mitra, Evans, and

Honkapohja (2013) using the methodology introduced in Evans, Honkapohja, and Mitra

(2009) for learning dynamics.
6We note that, as shown in Chari, Kehoe, and McGrattan (2007), productivity shocks in

the RBC model are observationally equivalent to changes in the efficiency wedge resulting

from changes in relative financing distortions.
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Ardagna, Perotti, and Schiantarelli (2002).

Section 2 below gives a quick overview of the basic RBC model in the

presence of learning by agents and Section 3 elaborates on the learning mech-

anism used by agents. Section 4 analyzes the implications for multipliers of

changes in government purchases. Section 5 explores robustness of these re-

sults to alternative econometric specifications of the perceived law of motion.

Section 6 analyzes the effects of fiscal stimulus of the type conducted in the

US during the Great Recession. Section 7 describes how the introduction of

learning in the RBC model can give a better match to some features of the

data observed during the “fiscal consolidations.” The final section concludes.

2 The Model

There is a representative household who has preferences over non-negative

streams of a single consumption good  and leisure 1−  given by

̂{
∞X
=

−( 1− )} where ( 1− ) = ln  +  ln(1− ) (1)

Here ̂ denotes potentially subjective expectations at time  for the future,

which agents hold in the absence of rational expectations. The analysis of

the model under RE is standard. When RE is assumed we indicate this by

writing  for ̂. Our presentation of the model is general in the sense that

it applies under learning as well as under RE. The form of the utility function

in (1) has been used frequently, e.g. Long and Plosser (1983).7

The household flow budget constraint is

+1 =  +  −  −  where (2)

 = 1−  +  (3)

Here  is per capita household wealth at the beginning of time , which

equals holdings of capital  owned by the household less their debt (to other

households),  i.e.  ≡  −   is the gross interest rate for loans

made to other households,  is the wage rate,  is consumption,  is labor

supply and  is per capita lump sum taxes. Equation (3) arises due to the

7King, Plosser, and Rebelo (1988), emphasize that log utility for consumption is needed

for steady state labor supply along a balanced growth path.
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absence of arbitrage from loans and capital being perfect substitutes as stores

of value;  is the rental rate on capital goods, and  is the depreciation rate.

Households maximize utility (1) subject to the budget constraint (2)

which yields the Euler equation for consumption

−1 = ̂+1
−1
+1 (4)

From the flow budget constraint (2) we can get the intertemporal budget

constraint (in realized terms) assuming the relevant transversality condition

holds:

0 =  +

∞X
=1

(+())
−1+ +  (5)

where + =
Q

=1

+,  ≥ 1 and  ≡  −  − 

Note that (5) involves future choices of labor supply by the household

which can be eliminated to derive the linearized consumption function. For

this we make use of the static household first order condition

(1− )
−1 = 

−1
  (6)

This relationship can be used to substitute out + in (5) and we can then

obtain an expected value intertemporal budget constraint

0 =  +  +

∞X
=1

̂(+)
−1{+ − (1 + )+ − +}

To obtain its optimal choice of consumption , the household is assumed

to use a consumption function based on a linearization around steady state

values. In particular, we assume agents linearize the expected value intertem-

poral budget constraint and the Euler equation around the initial steady state

values ̄ ̄ ̄ ̄ and ̄ = −1. This linearization point is natural since agents
can be assumed to have estimated precisely the steady state values before

the policy change that takes place.

As shown in Mitra, Evans, and Honkapohja (2013), substituting the lin-

earized Euler equation (4) into the intertemporal budget constraint, one ob-

tains the consumption function

( − ̄)
(1 + )

(1− )
= ̄( − ̄) + −1( − ̄)− ( − ̄)

+( − ̄)− (̄ − ̄)

 −   + 

  (7)
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where

 ≡
∞X
=1

+1
X

=1

(+ − ̄) (8)

  ≡
∞X
=1

( + − ̄) (9)


 ≡

∞X
=1

(
+ − ̄) (10)

denote “present value” type expressions.

Equation (7) specifies a behavioral rule for the household’s choice of cur-

rent consumption based on pre-determined values of initial assets, real in-

terest rates, wage rates, current values of lump-sum taxes and (subjective)

expectations of future values of wages, interest rates, and lump-sum taxes.

Expectations are assumed to be formed at the beginning of period  and,

for simplicity, we assume these to be identical across agents (though agents

themselves do not know this to be the case). Equation (7) can then be viewed

as the behavioral rule for per capita consumption in the economy with , 
and  simultaneously determined given expectations.

To implement its behavioral rule, the household requires forecasts for

+ 

+ and  + For taxes 


+ (and ̄) we assume that agents use

“structural” knowledge based on announced government spending rules. For

convenience, we assume balanced budgets, so that + = +. For 

+ and


+ we assume that households estimate future values using a VAR-type

model in    and , with coefficients updated over time by recursive

least squares (RLS). The detailed procedure is described below in Section 3.

Alternative assumptions could be made. For example, agents might fore-

cast future taxes adaptively in the same way that they forecast wages and

interest rates. We will be focusing below on announced temporary increases

in government spending. If agents were to forecast future taxes purely adap-

tively, they would be ignoring the information given by the announced gov-

ernment policy. For the reasons given in the Introduction we think it is

implausible that agents ignore this information. In addition, since this infor-

mation is treated as central to the rational expectations analysis of announced

policy changes this would cut out a major channel by which the path of future

government spending is usually assumed to affect current economic activity.

Nevertheless, for completeness, we briefly consider this variation in Section
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5. Other possible assumptions would be to assume that agents are unsure

about the date at which the government spending increase will end, or even

allow for the possibility that the increase in government spending may never

end. For reasons of space we do not pursue these latter extensions in the

current paper.

To complete the model, we describe the evolution of the other state vari-

ables, namely     and +1. Households own capital and labor ser-

vices which they rent to firms. The firm uses these inputs to produce output

 using the Cobb-Douglas production technology

 = 

 

1−
  (11)

where  is the technology shock that follows an AR(1) process

̂ = ̂−1 + ̃ (12)

with ̂ = (−̄) Here ̄ is the mean of the process and ̃ is an iid zero-mean
process following a normal distribution with constant variance 2

Profit maximization by firms implies the standard first-order conditions

involving wages and rental rates

 = (1− )(



) and  = (




)1− (13)

In equilibrium, aggregate private debt  is zero given our assumption of

balanced government budgets. Thus  =  and market clearing determines

+1 from

+1 = 

 

1−
 + (1− ) −  −  (14)

where  is per capita government spending.

For simulations of the model we follow standard procedures and approx-

imate the path using a linearization around the steady state values. To

analyze the impact of policy in the model, we compare the dynamics under

learning to those under RE. At this stage we remark that, as is well known,

under RE and in the absence of a policy change the endogenous variables,

+1      can be written as an (approximate) linear function of 
and , e.g. Campbell (1994). The RE solution can be written in the form

of a stationary VAR(1), in the state ̂0 ≡
³
̂ ̂

´
,µ

̂+1
̂+1

¶
= 

µ
̂
̂

¶
+

µ
0

1

¶
̃+1 where  =

µ
2 
0 

¶
 (15)
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with the other variables given by linear combinations of the state; the hatted

values are deviations from the RE deterministic steady state i.e. ̂ =  − ̄

etc. Note also that under RE forecasts of future ̂+ and ̂+ are given by

linear combinations of the forecasted future state ̂+ = ̂.

The focus of this paper is on policy changes. The method for obtaining

the impact of policy changes under RE is standard, e.g. see Ljungqvist and

Sargent (2012), Ch. 11 or Mitra, Evans, and Honkapohja (2013) for the

details. We now turn to obtaining the dynamics under learning when there

is a policy change.

3 Learning dynamics

In the standard adaptive learning approach, private agents formulate an

econometric model to forecast future taxes as well as interest rates and wage

rates, since these are required in order for agents to solve for their optimal

level of consumption. We continue to follow this approach with respect to

interest rates and wage rates, but for forecasting taxes agents are assumed

to understand the future course of taxes implied by the announced policy.

Agents in effect are given structural knowledge of the fiscal implications of

the announced change in government purchases.8

As argued in the Introduction, we think this is a natural way to proceed,

since changes in agents’ own future taxes have a quantifiable direct effect,

while future wages and interest rates are determined through dynamic gen-

eral equilibrium effects. According to the adaptive learning perspective it is

unrealistic to assume that agents understand the economic structure suffi-

ciently well to improve on reduced form econometric forecasts of aggregate

variables like wages and interest rates. Thus we assume that when a policy

change is announced, agents calculate   using the announced changes. To

keep things simple, we assume that the government operates and is known to

operate under a balanced-budget rule. The assumption of balanced budget

with lump-sum taxes is often the maintained assumption in the cited works

in the Introduction for analyzing the effects of changes in government pur-

chases on output. Additionally, with lump-sum taxes, exogenous spending

and appropriate additional assumptions, Ricardian Equivalence holds under

8A related approach is followed in Preston (2006) and Eusepi and Preston (2010) in

connection with monetary policy: in some cases agents are assumed to incorporate the

announced interest-rate rule in their forecasts.
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both RE and learning, so that our results hold more generally; see e.g. Evans,

Honkapohja, and Mitra (2012).

The main policy change we examine in Section 4 is that of a temporary

increase in (per capita) government purchases,  from ̄ to ̄0 for  − 1
periods, announced to take place immediately at  = 1, i.e.

 =   =

½
̄0,  = 1   − 1

̄,  ≥ 
(16)

so that government purchases and taxes are changed in period  = 1 and this

change is reversed at a later period  (this is often termed a surprise change

in  in the literature). In our example in Section 4 we set  = 9 quarters so

that we are considering a two-year increase in .

Given their structural knowledge of the government budget constraint and

the announced path of government purchases, the agents can thus compute

the present value of the increase in their future taxes as

  =

∞X
=1

(+ − ̄) =

½


1− (̄
0 − ̄)(1− −−1), 1 ≤  ≤  − 2

0 for  ≥  − 1
Under learning, agents also need to form forecasts of future wages and inter-

est rates since these are needed for their individual consumption choice in (7).

Moreover, they need to form forecasts of these variables without full knowl-

edge of the underlying model parameters. Wage and interest rate forecasts

under learning depend on the perceived laws of motion (PLMs) of agents,

with parameters updated over time in response to the data. We consider

PLMs where, as in the stationary RE solution, future capital, wages, and

rental rates depend on the current capital stock and technological shock, 
and .

9 That is, we consider PLMs of the form

+1 =  +  + ̂ +  (17)

 =  +  + ̂ +  (18)

 =  +  + ̂ +  (19)

̂ = ̂−1 + ̃ (20)

where the PLM parameters    etc. will be estimated on the basis of

actual data. The final line is the stochastic process for evolution of the (de-

meaned) technological shock, which for simplicity is assumed known to the

9The assumption that current productivity is observed is standard under rational ex-

pectations and also typically assumed in the adaptive learning literature.
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agents. In real-time learning, the parameters in (17), (18), (19) are estimated,

and therefore time-dependent, and are updated using RLS; see for e.g. Evans

and Honkapohja (2001) p. 233. We also assume agents allow for structural

change, which includes policy changes as well as other potential structural

breaks, by discounting older data as discussed below.

In postulating that agents forecast using the PLM (17) - (20), we are

implicitly assuming that they do not have useful information from previous

policy changes. We think this is generally plausible, since policy changes

are relatively infrequent and since the qualitative and quantitative details of

previous policy changes are unlikely to be the same. In particular, previous

fiscal policy changes (if any), of the type considered in this paper, are likely

to have varied in terms of the magnitude and duration of the change in gov-

ernment spending, and the state of the economy in which it was announced

and implemented. Since older information of this type would probably have

limited value, we assume that agents respond to policy change by updating

the parameters of the PLM (17) - (19) as new data become available.10

Before discussing how the PLM coefficients are updated over time using

least-squares learning, we describe how (17) - (19) are used by agents to make

forecasts. Given coefficient estimates and the observed state ( ̂), equa-

tions (17) and (20) can be iterated forward to obtain forecasts + and ̂+
for  = 1 2    Wage and rental rate forecasts 

+ 

+ are then obtained

using the relationships (18) - (19) while interest-rate forecasts are given by

+ = 1− + +. Given these forecasts, 

 and 


 are computed from

(10) and (8), which in turn are used in (7) in determining consumption in the

temporary equilibrium. See the Appendix of Mitra, Evans, and Honkapohja

(2013) for further details.

Parameter updating by agents using RLS learning is as follows. We define

the time  parameter estimates as

 =

⎛⎝ 



⎞⎠   =

⎛⎝ 



⎞⎠   =

⎛⎝ 



⎞⎠   =

⎛⎝ 1


̂

⎞⎠ 

The RLS formulas corresponding to estimates of equation (17), (18), and

10See Evans, Honkapohja, and Mitra (2009) for an example of learning from repeated

policy changes.
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(19) are

 = −1 + −1 −1( − 0−1−1)

 = −1 + −1 −1(−1 − 0−1−1)

 = −1 + −1 −1(−1 − 0−1−1)

 = −1 + (−1
0
−1 −−1)

Note that   and , which are used in (17) - (19) to make time 

forecasts, are computed using data available at the end of time  − 1. The
initial values of all parameter estimates  and  are set to the initial steady

state values under RE.

Here it is assumed that agents update parameter estimates using “dis-

counted least squares,” i.e. they discount past data geometrically at rate

1 − , where 0    1 is typically a small positive number. In the learn-

ing literature the parameter  is known as the “gain,” and discounted least

squares is also called “constant-gain” least squares. For simplicity the gain

is assumed to be the same in all the regressions.

Constant-gain least squares is widely used in the adaptive learning liter-

ature because at  it weights recent data more heavily than older data. For

a sample see, for example, Sargent (1999), Orphanides and Williams (2007),

Carceles-Poveda and Giannitsarou (2008), and Eusepi and Preston (2011).

In the current context constant gain is particularly appealing since agents

will be aware that policy changes will induce changes in forecast-rule para-

meter values taking a possibly complex and time-varying form. The use of a

constant-gain rule allows parameter estimates to track changes in parameter

values more quickly than does “decreasing-gain” least squares.

4 Multipliers for Government Purchases

In the present section, we examine the effects of a temporary change in

. Our general aim is to compare the dynamics obtained under RE and

adaptive learning, focusing on the multiplier for output to see the effects of

such a policy. We assume that the economy is initially in the steady state

corresponding to  = ̄, and the temporary increase in  is assumed to be

fully credible and announced at the start of period 1, taking the particular

form given in equation (16). An example that is often used is a war that
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leads to a temporary increase in military expenditures, e.g. see Hall (2009),

Barro and Redlick (2011), Ramey (2011b) and Ramey (2011a).

Figure 1 compares the dynamics under RE and learning for key variables.

The variables plotted are capital (), gross investment ( = +1−(1−)),
consumption (), labor (), output () and wages (). All variables are

measured in percentage deviations from the (unchanged) steady state. In

period  = 0 all variables are in the steady state. We assume the following

parametric form for the figures:  = 4  = 0025  = 13  = 0985  =

095 ̄ = 1359 ̄ = 020 and  = 004 in the learning rule. These parameter

values conform to the ones used in the RBC literature, see e.g. King and

Rebelo (1999) or Heijdra (2009). To aid interpretation ̄ = 1359 is chosen

to normalize output to (approximately) one, specifically ̄ = 100057. The

government spending/output ratio is 21% that of investment/output ratio

is 20% and that of consumption/output ratio is 59% ̃ is assumed to be

distributed normally with zero mean and standard deviation  = 0007,

which is in line with the value used in this literature.11

Our choice of the gain parameter  = 004 is in line with most of the

literature, e.g. Branch and Evans (2006), Orphanides and Williams (2007),

and Milani (2007). Eusepi and Preston (2011) use a much smaller value for

the gain, but they do not consider changes in policy, for which a larger value

of  is more appropriate.12

For the policy exercises, there is an increase in government purchases from

̄ = 020 to ̄0 = 021 (a 5% increase) that takes place at  = 1, and lasts until
 = 9, i.e. for eight quarters (e.g. a two-year war) in equation (16). We plot

the mean time paths for each endogenous variable over 100 000 replications

in Figure 1.

Under RE the dynamics are well understood, see Baxter and King (1993)

and Mitra, Evans, and Honkapohja (2013) for details.  falls as long as the

policy change is in effect and then increases towards the (unchanged) steady

state.  falls on impact and then increases monotonically towards the steady

state. An important feature of a temporary increase in  is that consumption

11We use standard RE values for calibration since we are considereing an economy

initially in the RE equilibrium before the policy change.
12As argued in Part I of Benveniste, Metivier, and Priouret (1990), the size of the gain

should reflect the trade-off between tracking and filtering. A policy change is in effect a

stuctural change that requires a higher weight on tracking, and hence a relatively large

gain. We discuss later in this section the sensitivity of our results to different choices of

the gain parameter.
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smoothing by agents is achieved by a reduction in investment . The small

wealth effect due to a temporary, as opposed to a permanent change in ,

leads to small impact effects on , , and . The  ratio falls on impact

which raises  and lowers  on impact.  continues to be low during the

period of high , and this reduces  over time. People maintain a rising

path of  by reducing  as long as the period of increased  lasts, which also

results in a falling path of  over time. Once the period of high  is over, a

rising path of  can be maintained without the need to reduce capital and

there is an investment boom at this point and  starts increasing towards

the steady state. The  ratio starts rising, which lowers  (raises ),

leading to further declines in  as it converges towards the steady state.

Consider now the impacts of the policy under learning. The most marked

difference under learning compared to RE is the sharper fall in investment

 on impact. Under RE, agents foresee the path of low wages (high inter-

est rates) in the future which reduces initial consumption more on impact

compared to learning. With expectations of future wages and interest rates

pre-determined, and only a small rise in   (due to the temporary change),

the reduction in consumption at  = 1 is much smaller under learning than

under RE. (The impact effects on other variables are also muted under learn-

ing for the same reason). Consequently, there is a sharp fall in  with  run

down rapidly. The sizable negative impact effect of  under RE, followed

by a steady return to steady state is sometimes viewed as implausible. In

contrast under learning the response over the first five years is hump-shaped,

followed by some overshooting and eventual convergence. This hump-shaped

response is also seen in  and .

Under learning, although agents correctly foresee the period of higher

taxes, they fail to appreciate the precise form of the wage and price dynamics

that result from the policy change. The reduction in  over  = 1     −1,
leads to lower wages and expected wages, 

 , and higher interest rates and

expected interest rates,  , resulting in a period of excessive pessimism

during the period of high . The resulting reduction in  and increase in

 during this period reverses the fall in  and stabilizes  in excess of RE

levels. When the period of high  ends at  = 9, the planned reduction

in  leads to a sharp spike in  and build-up of . This leads to a period

of higher wages and expected wages, and lower actual and expected interest

rates, and thus to an extended period of correction to the earlier period of

overpessimism, before eventual convergence back to the steady state.

One way to view these results is that agents fail to foresee the full impacts
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of the crowding out or crowding in of capital from government purchases. In

the present case, agents tend to extrapolate the low wages during the period

of increased purchases, which result from the run-down of capital. While

agents understand that their future taxes will fall when the war ends, they

fail to recognize the improvement in wages that will occur after the crowding

in of capital after the war. This is the source of the excessive pessimism

during the war, with a resulting correction after the war ends.

We turn now to a comparison of the government purchase multipliers

under RE and learning. As argued by several authors, e.g. Hall (2009), the

multipliers obtained in RBC models under RE are too small to be consistent

with the data. Hall notes that US evidence from WWII and the Korean

wars suggest multipliers for GDP in the 0.7 to 1.0 range. Ramey (2011a)

concludes that for deficit-financed increases in purchases a range of 0.8 to 1.5

is likely; similarly Ramey (2011b) finds the “implied government spending

multipliers range from 06 to 12.”13

The general view is that output multipliers in RBCmodels are very small,

and unlikely to be consistent with these values. As emphasized e.g. by

Leeper, Traum, and Walker (2011), Keynesian elements need to be included

in the model to obtain an aggregate demand channel and realistic multipli-

ers. An issue that has not received attention is the potential role for adaptive

learning to provide an additional channel for the multiplier within the stan-

dard RBC model. We now take up this issue.

Figure 2 shows the results for the output, investment and consumption

multipliers for the policy experiment displayed in Figure 1. In each case

we show both the multiplier viewed as a distributed lag response and the

cumulative multiplier over time. For each graph within Figure 2, the RE and

learning responses are shown. The cumulative multipliers are computed as

a discounted sum using the discount factor . Specifically, for the output

multipliers we compute

 =
 − ̄

̄0 − ̄
and  =

P

=1 
−1( − ̄)

(̄0 − ̄)
P−1

=1 −1
 for  = 1 2 3    

13Ilzetzki, Mendoza, and Vegh (2013) look at cross-country estimates of the fiscal mul-

tipliers and find there are substantial differences in government consumption multipliers

depending, for example, on the level of development, exchange rate regime and openness

to trade. For high income countries, they find that the cumulative multiplier rises to a

long-run value of 066 and for closed economies, the long-run cumulative multiplier is 11.

For public investment, the long-run cumulative multipliers are well above one.
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with analogous formulae for the investment and consumption multipliers. We

use discounting to ensure that, e.g., small persistent values of  − ̄ do not

receive undue weight. Note that for  ≥  − 1 the (discounted) cumulative
output multiplier equals one plus the cumulative consumption multiplier plus

the cumulative investment multiplier.

The output multipliers are particularly striking. Although the impact

multiplier is larger under RE than under learning, by quarter 5 the learning

multiplier is larger than the RE multiplier and by quarter 8 the RE multiplier

is near zero, where it remains, while the learning multiplier has increased

substantially, reaching a peak of over 07 in quarter 10. The difference in

multiplier effects is captured well by the (discounted) cumulative multiplier,

which over five years is more than 08 under learning but less than 025

under RE. In fact, in the final period of the figure (year 15), the cumulative

output multiplier is 094 under learning and only 022 under RE. Strikingly,

the output multipliers obtained under learning are in line with the empirical

evidence cited above.

What accounts for the much larger output multiplier under learning com-

pared to RE? This can be seen from the consumption and investment multi-

pliers. Under both RE and learning, the higher  crowds out consumption,

but there is a hump-shaped response under learning, which declines until

quarter 10. In fact the consumption multiplier eventually (from  = 16)

turns positive, and the long-run cumulative consumption multiplier is sub-

stantially less negative under learning than RE. In the final period of the

figure, the cumulative consumption multiplier is −029 under learning and
−047 under RE. That is, overall there is significantly less crowding out of
consumption under learning than under RE.14

The biggest difference is, however, in the behavior of the investment mul-

tipliers. As discussed earlier, the negative impact effect on investment is

larger under learning than under RE, but this quickly reverses and by quar-

ter 6 the impact on investment is positive under learning and substantially

negative under RE. The cumulative investment multipliers after five years

are over 025 under learning and about −04 under RE. Thus, under RE the
overall small cumulative output multiplier reflects crowding out of investment

as well as consumption, while the longer-run cumulative output multipliers

14At the same time we acknowledge that the consumption decline during the first ten or

so quarters in Figure 1 is inconsistent with most of the empirical literature. Thus adaptive

learning does not fully reconcile the RBC model with this feature of the data.
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under learning of over 094 reflect much less crowding out of consumption

and substantial crowding in of investment.

We briefly discuss the robustness of our results to different choices of the

gain parameter. Use of a higher constant gain parameter seems to result in

higher output multipliers e.g. in year 15 this multiplier is 097 with a gain

of 01 while it is 085 and 070 with gains of 002 and 001 respectively. On

the other hand, if agents use a constant gain during the policy change and

then switch to a decreasing gain, the cumulative output multiplier can even

exceed one. For example, use of the baseline gain of 125 for  ≤  − 1 and
(25 +  −  + 1)

−1 for  ≥  results in a cumulative output multiplier of

105 in year 15 while the corresponding multiplier rises to 110 if these gains

are replaced by 110 and (10 + −  + 1)
−1 respectively.

We remark that adaptive learning can shed some light on the controver-

sial issue of the qualitative response of consumption to a rise in government

purchases. As noted by Ramey (2011b), some empirical studies find negative

responses of private consumption, in the short to medium term, while others

find positive responses. Under RE, it is well known that the consumption

multiplier is quite negative in the RBC model as in Figure 2. Hall (2009),

p. 198, puts it forcefully: “The model is fundamentally inconsistent with

increasing and constant consumption when government purchases rise.” Our

study indicates that under learning the distributed lag response of consump-

tion in the RBC model can eventually become positive (from quarter 16

onwards in Figure 2). Under learning we have both a negative consumption

response in the short to medium term and a positive response thereafter.

Many authors have demonstrated that the purely neoclassical (RBC)

model has no potential to produce realistic output multipliers, because of the

significant crowding out of consumption and investment, and that in order to

get acceptable output multipliers consistent with the empirical evidence, one

has to turn to models that blend neoclassical and Keynesian elements. Even

if one accepts that New Keynesian features are part of a realistic mechanism

by which government purchases affect output, it is useful to understand how

large the multiplier can potentially be in RBC models as some of the micro-

foundations are common in neoclassical and New Keynesian models. Our

principal finding is that the introduction of adaptive learning to the RBC

model can by itself rectify the apparent inability of this model to fit the

evidence on output multipliers. RBC models with learning are capable of

delivering higher multipliers and indeed are even within the range found in

empirical studies.
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5 Variations

In this section we consider three variations of our technique which give al-

ternative estimates of multipliers under learning. This allows us to asses the

robustness of our earlier results.

5.1 Adaptive learning of taxes

In the results from the previous section, it was assumed that agents under-

stood the tax path that would be followed during and after the stimulus.

Although we feel this is plausible in the context of a credible fiscal policy it

may be of interest to see how the results will change if expectations about fu-

ture taxes are formed using adaptive learning. Because taxes do not depend

upon the capital stock or productivity levels we assume a simple learning rule

in which the agents update their estimate of the expected future taxes based

on the observed actual taxes. Specifically,  + =  for  ≥ 1 where

 = −1 + ( − −1)

It follows that

  =


1− 
( − ̄)

where ̄ = ̄ is the initial level of steady state taxes.

We have re-run the simulations under this assumption and the results

are quite similar both qualitatively, in terms of the paths of the variables,

and quantitatively in terms of the sizes of the responses. In particular, the

peak of the distributed lag output multipliers occurs in period 9 and is equal

to 0770. The cumulative multipliers in period 10 is 0770 in period 20 is

0888 in period 40 is 1007 and in period 60 is 1034.15 This compares to the

baseline results in which peak of the distributed lag output multipliers again

occurs in period 9 and is 0722 and the the cumulative multipliers in period

10 is 0593 in period 20 is 0827 in period 40 is 0917 and in period 60 is

0945.16 Thus, with adaptive learning of taxes there is a slight strengthening

of our earlier results in which the path of taxes is correctly foreseen.

15The numerical results with adaptive learning of taxes are obtained using 20 000 repli-

cations.
16These baseline numerical results corresponding to Figures 1 and 2 used 100 000 repli-

cations.
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5.2 Reversion to RE coefficients at end of policy

The results in Section 4 assume that agents continue to learn, i.e. to update

the parameters of their forecast rules, after the end of the fiscal stimulus. An

alternative assumption might be that agents revert to the original RE para-

meter values corresponding to the initial steady state to which the economy

will again converge. The argument for this would be that since the stimulus

is now over, there is no reason for the dynamics of the economy and hence the

parameters of the forecast rule to be different from what they were before the

policy was implemented. Against this agents might wonder if the stimulus

will have a persistent effect on the dynamics of the economy that outlasts the

stimulus. This might seem plausible given that the level of the capital stock

is quite far from its steady state value at the end of the stimulus. Continuing

to update parameter estimates also seems to us likely if the agents have had

no prior experience of a policy stimulus of comparable size and duration.

Since both arguments have plausibility we consider the implications of

agents using forecast rules in the post stimulus period that are a weighted

average of the original RE parameters and those that result from continued

constant gain learning. Thus, we assume that in the post stimulus period

agents use forecast rule coefficients

̃ = ̄ + (1− )

where  =   and 0 ≤  ≤ 1. Here ̄ denotes the the RE parameter
values at the steady state and  denotes the parameter values obtained

from constant gain learning when agents are using these forecast rules.

When  = 0 we get the results of Section 4. These baseline results

for output multipliers were summarized immediately above. In the polar

opposite case of  = 1 the peak of the distributed lag output multiplier occurs

in period 8 and takes the value 0683.17 The cumulative output multipliers

in period 10 20 40 and 60 are respectively 0431 0421 0436 and 0440 It

can be seen that the effect of reverting to RE coefficients at the end of the

stimulus is to largely eliminate additional multiplier effects in the post policy

period. Even in this case the cumulative multipliers under learning are about

twice the values that arise in the rational expectations equilibrium.

For values 0    1 we naturally get intermediate values of the multi-

pliers. For  = 08 the peak of the distributed lag output multiplier occurs

17The numerical results for   0 are obtained using 20 000 replications.
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in period 8 and takes the value 0677 The cumulative output multipliers in

period 10 20 40 and 60 are respectively 0462 0494 0527 and 0535. For

 = 05 the peak of the distributed lag output multiplier occurs in period 8

and takes the value 0683 The cumulative output multipliers in period 10

20 40 and 60 are respectively 0503 0611 0670 and 0686.

5.3 Dummy variables for policy regime

An alternative method by which agents could allow for an abrupt change in

parameter estimates at the end of the policy period would be to include a

suitable dummy variable in the forecasting equations. In particular, suppose

that agents model the coefficients of the estimated law of motion for capital,

wages and rental rates as shifting discretely during the period of the policy

change. To do this they include a dummy variable in the equations (17), (18)

and (19) that takes the value ̄0− ̄  0 during the period of high government
spending and zero once the policy change is removed.

For this procedure the crucial issue is how to initialize the coefficient of the

dummy variable in each of the forecasting equations. One possibility would

be to assume that there are also temporary government spending shocks that

follow an AR(1) zero mean process. As a result agents have experience with

fluctuations in government spending before the policy change takes place.

Earlier we argued against the use of this information by agents on the grounds

that such a policy would be sufficiently different from past experience to make

earlier fluctuations in  of limited information value. However, it is possible

that agents make at least some use of the past effects in forecasting the effects

of the new policy.

Thus we now assume that agents have the following PLM, in which ̂ is

included as an additional state variable.

+1 =  +  + ̂ + ̂ + ̄ + 

 =  +  + ̂ + ̂ + ̄ + 

 =  +  + ̂ + ̂ + ̄ + 

̂ = ̂−1 + ̃, and ̂ = ̂−1 +  where 0     1

Here the government spending process is given by

 = ̄ +̄ + ̂
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The variable ̄ is a discrete variable taking the value ̄ = ̄0− ̄ ≡ ∆̄ for

1 ≤  ≤  − 1 and zero thereafter. The RLS formulas need to be modified
suitably. See the Appendix for details.

We now discuss how to initialize the parameter estimates on the dummy

variable at  = 1.18 One possibility is that agents believe they have no

information on these values and set their initial estimates at zero. However,

if we assume that coming into  = 1 agents’ estimates of the PLM have

converged to the RE values (̄ ̄ ̄), corresponding to the stationary

environment in which  = ̄+̂, another possibility is that they treat the RE

coefficients on ̂ as useful information. More generally, and more plausibly,

agents might use

 = (1− )̄  = (1− )̄ and  = (1− )̄

for some shrinkage parameter 0 ≤  ≤ 1. The parameter  measures the
distrust agents place on the relevance of temporary spending shock for the

policy change.

In contrast to Section 4, the inclusion of the dummy variable ̄, with

initial nonzero parameter estimates, implies that agents immediately project

effects on capital, wages and interest rates during the period of the fiscal

stimulus. Furthermore, the inclusion of ̄ means that agents anticipate

from  = 1 a discrete change in expected future capital, wages and interest

rates when the policy stimulus is ended. Against this, however, to the extent

that initial estimates of the parameters on ̄ do use the experience from

temporary changes ̂, this may provide poor guidance for the effects of a

persistent fiscal stimulus of the type considered here.

Table 1 gives the results for the cumulative output multipliers in period

40 under learning for a range of  and  The corresponding cumulative

multipliers under RE are around 018 for all the cases reported in Table 1

While it is clear that the results depend on both  and  unless both 

and  are low the multipliers under learning are substantially higher than

under RE. Consider first the case when  = 1 This corresponds to prior

coefficients of zero on ̄ in the dummy variable specification. In this case

the cumulative multipliers are always above 07. This is somewhat smaller

18The RLS moment matrix estimate  is now 5× 5 and must also be initialized. For
the 4× 4 submatrix corresonding to the second-moment matrix of (1  ̂ ̂) we use the
RE value. To this we append ( 5) = (5 ) = 0 for  = 1 2 3 4 and (5 5) = (̄0− ̄)2.
This implies that in the first period   and  are simply adjusted by the forecast

error times the gain.
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than in Section 4 but remains within the empirical range. The somewhat

smaller cumulative multipliers result from agents over period  = 1     −1
anticipating a discrete change in the dynamics starting at  =  when the

level of government spending is reduced back to the old level. For high values

of  like  = 09 the results are qualitatively the same, with cumulative

multipliers for  = 09 above 065.

For smaller values of   1, the results depend on , with cumulative

multipliers increasing in . The contrast is sharpest for small values of 

and . When  = 01 and  = 03 the cumulative multiplier is small, as

it is under RE, though the paths of the variables are quite different. Under

RE there is a big impact effect at  = 1 on     and  from the policy

change. However, from  = 2 onwards, these variables all begin to return

towards the steady state. For the case  = 01 and  = 03 the impact

effect in  = 1 is in the same direction but smaller than under RE. Then,

because agents forecast using coefficients for ̄ based on the RE values

for ̂ with  = 03, in which households view the impacts of government

spending as very temporary, expected future wages are higher than under

RE and expected interest rates are lower. Thus over the next few periods,

households are overly optimistic compared to RE, so that employment and

output are lower than under RE. These expectations are eventually reversed

near , but on aggregate the cumulative output multipliers are small.

In contrast, if  = 09, so that households have priors close to zero on

the coefficients of ̄, then the situation is similar to the original analy-

sis, with an erosion of wages and growing pessimism that leads to declining

consumption, higher employment and output, and an investment recovery

after the initial negative impact. As in Section 4, there is also a surge in

investment after the government spending is reduced to previous levels and

thus the cumulative multiplier is large.

Overall, it can be seen that the basic result from Section 4, that mul-

tipliers can be much higher under learning than under RE, remains when

the dummy variable specification is used. If either the ̂ process is strongly

persistent or the agents treat as relatively uninformative the previously es-

timated coefficients on ̂, then cumulative multipliers will be much higher

under learning, in particular more than 06, which is over three times the

values under RE and is within the empirically relevant range.

One other point that should be noted is that the fiscal stimulus considered

here is, in fact strongly persistent. The policy sets ̄ = ̄0 − ̄  0 for

 = 1      − 1 and ̄ = 0 for  ≥ . The sample AR(1) coefficient for
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̄ for large  can be shown to be ̄ = ( − 2)( − 1), which for  = 9
gives ̄ = 78. Thus if  is small, agents should substantially discount the

parameters on ̂ when forming their prior, which suggests that in this case

larger values  would be more plausible. From Table 1 it can be seen that

for  ≥ 05, the multiplier under adaptive learning is over twice the value
obtained under RE for all values of  shown.

5.4 Nonlinear temporary equilibrium relations

Our analysis so far has assumed that linear approximations are satisfactory

for studying the impact of fiscal policy both under RE and when agents are

making decisions based on adaptive learning. Given the complexity of the

agents’ problem we continue to assume that agents make their consumption

decisions based on the consumption function (7). We also continue to assume

that agents use linear forecasting rules based on PLMs of the form (17), (18)

and (19). However, for the remaining relationships we use the exact nonlinear

equations. In particular, we use the exact static first order condition between

consumption and labor supply (6), the production function (11), the wage

rate and the rental rate equations (13) as well as the market clearing condition

that gives the capital accumulation equation (14).

Simulations using these nonlinear temporary equilibrium equations under

learning are considerably slower: using Mathematica 9 we have found this is

approximately 150 times slower than working with the linear approximations.

We briefly describe the differences in the adaptive learning results for the

baseline case described in Section 4.

Qualitatively, the results are quite similar both in terms of the paths of

the variables, and the shapes of the distributed lag and cumulative multipli-

ers. Quantitatively we find that the results are also similar. To make the

comparison as close as possible we simulate both the linear and nonlinear

systems over 40 periods for 2 000 replications using the same seed of random

numbers. In the linear case the peak of the distributed lag output multipliers

occurs in period 9 and is equal to 0677 and the cumulative multipliers in

period 10 is 0543 in period 20 is 0752 and in period 40 is 0890. In the

nonlinear case the peak of the distributed lag output multipliers again occurs

in period 9 and is equal to 0684 and the cumulative multipliers in period 10

is 0548 in period 20 is 0762 and in period 40 is 0917.

We see that the output multipliers based on the nonlinear system are

essentially the same as those based on the linear approximations used in
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Section 4. We have also checked for the simulations in Sections 6 and 7

that under learning the qualitative dynamics are unaffected and that there

are only minor quantitative differences between the nonlinear system and

linearized system. Because of the heavy computational burden of the non-

linear setup we primarily rely on using the linearized system in which a large

number of replications is feasible.

6 Fiscal Stimulus in Recessions

In this and the next section we take up two applications of our analysis.

For simplicity, we restrict attention to the baseline formulation that was

developed in Section 4.

Temporary increases in government spending are often motivated as poli-

cies to expand output and employment during recessions. A growing liter-

ature is reconsidering their effects owing to the large fiscal stimuli adopted

in various countries in the aftermath of the Great Recession. For example,

Christiano, Eichenbaum, and Rebelo (2011), Corsetti, Kuester, Meier, and

Muller (2010) and Woodford (2011) demonstrate the effectiveness of fiscal

policy in models with monetary policy when the zero lower bound on nom-

inal interest rate is reached. (For a contrary view see Mertens and Ravn

(2014)). Although the main argument for such policies relies on a demand

channel, it is clearly of interest to examine the impact of a fiscal stimulus in

the RBC model. We are particularly interested to know if such a policy has

positive effects under learning when implemented during a severe recession.

With this in mind, we consider a situation motivated by events during the

Great Recession in the US. The NBER Business Cycle Dating Committee

estimates December 2007 as the start of the recession and June 2009 as

the trough, after which the economy again began to expand. Thus the US

economy was in recession during the whole of 2008 and the first half of 2009.

It is widely agreed that the recession was the most severe in the US since the

Great Depression of the 1930s.

We model the above situation by assuming that the economy is initially

in a steady state (corresponding to say the last quarter of 2007). We capture

the main features of the Great Recession by a sequence of negative two-

standard-deviation shocks to the innovation (̃) that hit the economy for

four periods in the technology equation (12), i.e. ̃ = −2 in periods
 = 1 2 3 4. This captures the severity of the recession in 2008. This
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is followed by the economy being hit by negative one-standard-deviation

shocks to the innovation ̃ in the next two periods (i.e. ̃ = − in periods
 = 5 6), i.e., the first half of 2009. Thereafter, from period  ≥ 7 onwards
the evolution of the economy is governed by equation (12) with ̃ drawn

from a zero mean normal distribution with variance 2 with  = 0007 as

before.

In looking at changes in fiscal policy in this setting it is natural to take

a broad interpretation of the  shocks. In the traditional RBC model the

equilibrium is efficient and the behavior of consumption and investment are

optimal responses to productivity shocks. However, as emphasized in Chari,

Kehoe, and McGrattan (2007), suitable input financing frictions are obser-

vationally equivalent to negative productivity shocks. One can thus view the

sequence of negative innovations ̃ as a convenient short-cut for modeling

distortions during the financial crisis that led to reduced productivity.

Features of the policy change motivated by the American Recovery and

Reinvestment Act (ARRA) of February 200919 are captured in the model by

an increase in  announced in period  = 5. We assume that at  = 5 it is

announced credibly that there will be an increase in  two quarters hence

from ̄ = 02 to ̄0 = 021 (a 5% hike in  approximately 1% of GDP)

for a period of two and half years i.e. from periods  = 7  16 It is also

announced that  will return to its original level of ̄ in period  = 17.

The dynamics under learning are shown in Figure 3 for    and 
(the mean paths over 20 000 replications are reported).20 The solid black

line illustrates the learning paths with the policy change. We also depict

the learning paths without any policy change with the lighter shaded line.

Of course, there are no differences in the dynamics of the two economies for

the first year until the policy change is announced at  = 5 The severity of

the recession during the first year means that  has fallen by −561% as of

 = 4 Once the policy change is announced at  = 5 the dynamics of the

two economies start to differ, though the effect on  and  for the first few

periods is small.

The impact of the policy builds up steadily after the policy change comes

into effect at  = 7.  rises over time and is approximately 068 % points

higher at  = 17. The differences in dynamics start getting smaller from

19For a summary of the features of the ARRA, see Romer and Bernstein (2009) and

Cogan, Cwik, Taylor, and Wieland (2010).
20The policy we consider now is an announced anticipated change in  that takes place

in the near future. See the Appendix for details.
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 = 25 onwards but  continues to be significantly higher with the policy

change for five years and stays above the no-policy path throughout the 10

year period plotted in Figure 3. Employment  also gets a substantial boost

during the time of higher  and in fact is above the steady state from period

11 onwards. The boost in  and the lower levels of  during the time of

higher  help explain the significant expansionary effects of the fiscal policy

under learning.21

We also plot the corresponding output multipliers for this policy exper-

iment in Figure 4. The left hand panel shows the distributed lag multiplier

and the right hand panel the (discounted) cumulative output multipliers. In

the figure, the solid black line illustrates the multipliers under learning while

the dashed line are the multipliers under the assumption of RE. The output

multipliers are higher under RE compared to learning until  = 9 However,

the onset of the higher  from  = 7 gives a significant boost to the output

multiplier under learning which goes above RE levels soon after the policy

change and stays higher than RE for the entire period plotted in Figure 4.

At  = 40 the cumulative output multiplier under learning is 063 while that

under RE only 04.22 Interestingly, the size of the multiplier depends on the

severity of the shocks hitting the economy in the first six quarters; if the size

of these shocks is reduced by half, the cumulative output multiplier under

learning increases to 08 (while the RE multiplier is unchanged).

We stress that our model lacks many elements thought to be necessary

for generating large multipliers in a recession. Our focus in this section has

been to check whether the mechanisms we have identified in RBC models

with learning continue to deliver significant positive output multipliers when

the economy has been subject to a sequence of large adverse “productivity”

shocks. Although the multipliers under learning are somewhat smaller than

in Section 4, a fiscal stimulus does raise output and employment during

the recession. We again see that the assumption of RE underestimates the

21As discussed in Section 4, investment is to some extent crowded out during the first

part of the implementation, followed by a recovery during the later part of the implemen-

tation and a surge as the policy ends.
22When Figures 3 and 4 are recalculated for 1000 replications using the nonlinear system

under learning there are only minor differences in the results. For example, for both the

linear and nonlinear systems the peak distributed lag multiplier occurs at  = 17 and

takes the mean value 0680 in the linear case and 0696 in the nonlinear case. Similarly,

the mean cumulative multipliers at  = 20 and  = 40 are 0592 and 0630 in the linear

case and the corresponding numbers for the nonlinear system are 0601 and 0642.
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effects of fiscal policy when agents are learning adaptively over time. Fiscal

policy can be effective in the standard RBC model not only when adopted

during normal times but also when undertaken during recessionary times,

even though our model does not include price or wage rigidities or liquidity

constrained households.23

7 Fiscal Consolidation

Since the 1990s there has been significant interest in the so-called “non-

Keynesian” effects of fiscal policy spurred on by the seminal contribution of

Giavazzi and Pagano (1990) who studied the two largest fiscal consolidations

of the 1980s, Denmark in 1983-86 and Ireland in 1987-89. A striking feature

of these contractionary fiscal policies was that the private sector boomed

rather than fell into the deep recession that many economists and policy

makers had predicted. A voluminous literature arose pointing to examples

of fiscal consolidations (i.e. permanent reductions in government spending)

displaying similar “non-Keynesian” effects.24

While the empirical literature is vast, there have been some attempts to

explain these effects at a theoretical level, including discussion of whether spe-

cial theories were needed to explain the effects of large fiscal consolidations.

Most of the focus of this literature has been on an explanation of the effects

of fiscal policy on private consumption.25 More recently, Alesina, Ardagna,

Perotti, and Schiantarelli (2002) have argued that descriptive evidence sug-

gests that increases in private investment (rather than private consumption)

explain a greater share of the response of private-sector GDP growth in large

fiscal consolidations.26 They find very little evidence that private investment

23It should be noted, however, that there is empirical evidence, e.g. Blanchard and Leigh

(2013), that output multipliers for fiscal policy have been substantially higher during the

recession beginning in 2007 and its aftermath. This is consistent with a strong aggregate

demand channel at the zero lower bound.
24For recent discussion and references, see Hemming, Kell, and Mahfouz (2002), Alesina,

Perotti, Tavares, Obstfeld, and Eichengreen (1998), Briotti (2005), and Alesina and

Ardagna (2010).
25These attempts include Blanchard (1990), Bertola and Drazen (1993), and Perotti

(1999).
26See also Alesina, Perotti, Tavares, Obstfeld, and Eichengreen (1998). Perotti (1999),

footnote 31, concedes that these episodes were characterized by big increases in investment

(and net exports).
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reacts differently during these large fiscal adjustments than in the “normal”

circumstances. As they remark on p. 586, “This result questions the need

for ‘special theories’ for large versus small changes in fiscal policy.”

Episodes of large fiscal consolidations are good examples of situations that

economic agents are unlikely to have experienced earlier in their lifetimes. As

argued in the Introduction, in such situations it is plausible to replace RE

by the assumption that agents gradually learn about effects of these policy

changes. Fiscal consolidation has a negative effect on aggregate output and

employment under both RE and adaptive learning. However, we will see

that the standard RBC model with adaptive learning is able to explain key

features in the behavior of private consumption and investment in line with

the fiscal episodes cited above. The consolidation has a negative effect on

aggregate output and employment.

Fiscal consolidations are typically modeled as a surprise permanent re-

duction in government purchases, starting from steady state at  = 0. We

consider the following scenario. At the beginning of period  = 1 a policy

announcement is made that the level of government purchases will fall per-

manently from ̄ = 022 to ̄0 = 020 (i.e. an almost 10% drop in ). The

policy announcement is assumed to be credible and known to the agents with

certainty. We believe this is a realistic assumption; drastic cuts in purchases

are typically implemented when things turn very bad and the public accepts

that permanent adjustments are required.27

The long run effects on the steady state of a decrease in government con-

sumption are well-known: higher consumption and lower levels of investment,

output, labor, and capital. See e.g. Baxter and King (1993).

The dynamics under RE are also standard; see for instance Baxter and

King (1993), pp. 321-2, Heijdra (2009), chapter 15, or Mitra, Evans, and

Honkapohja (2013). The qualitative dynamics are confirmed by the behavior

of variables under RE in Figure 5. For our purposes, the most relevant issue

is the behavior of  and . Under RE there is a big rise in  on impact

overshooting the new (higher) steady state followed by a gradual fall towards

this steady state.  on the other hand, falls dramatically below the new

(lower) steady state on impact followed by a gradual rise over time. While

the behavior of  is consistent with the fiscal episodes mentioned above, the

27As noted by Corsetti, Meier, and Muller (2012) fiscal consolidations may also arise as

reversals of earlier increases in government spending. It would be interesting to examine

such policies under learning in future work.
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behavior of  is at odds with the empirical literature documented above.

Under learning  rises on impact, followed by a gradual hump-shaped

increase in its level eventually going above the RE level before monotonically

falling towards the steady state. The most striking difference from RE is,

however, in the behavior of investment. Instead of the big drop in investment

under RE, the opposite case of a large boom in investment and hence a rising

path of capital occur under learning in the initial periods after the policy

change. Strikingly, this qualitative behavior of  under learning is consistent

with the empirical evidence cited above.

Why is the behavior of  different under learning compared to RE? At

 = 1, consumption rises because of the decrease in the present value of taxes

 . As in the case of a temporary change in , discussed in Section 4, the

impact effects are less under learning than under RE because the paths of

future  and  are not fully anticipated. Under learning 

+ 


+ gradually

respond to the data, leading initially to a gradual rise in 
+ (and fall in

+) before eventually falling towards the steady state.

As a consequence of the smaller sizes of the impacts on output and con-

sumption at  = 1, the decrease in  necessarily leads to a higher level of

 under learning than under RE, and in fact a sharp increase in investment

follows. In the periods immediately following the policy change, expecta-

tions of wages and interest rates begin to adjust. Two factors are at work.

The higher capital stock in the periods soon after the policy change leads to

higher forecasts of future wages and lower forecasts of future interest rates

and thus higher 
 and lower 


 . This leads to a further increase in ,

and decreases in  and , which results in decreases in  from its high level

at  = 1. After several periods this process moves  to a downward path, ac-

companied by a rise in , and a decrease in , driving  downwards and

 upwards to their steady state values. The other factor at work is that over

time coefficient estimates under RLS learning gradually adjust in response to

the shock and the evolution of the data. Eventually the coefficients converge

to the values that correspond to the REE values at the new steady state, so

that in the long run there is convergence to the new REE.

Under adaptive learning, the behavior of  and  are both in line with

the episodes of fiscal retrenchment cited above. Investment increases sharply

under learning: in period 1 it is more than 4% points higher than the initial

steady value and continues to stay higher than RE levels for 3 years.  grows

less rapidly under learning compared to RE levels for six quarters but is then

significantly above RE levels for a sustained period. These results for  and
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 are obtained in the conventional RBC model under learning, without the

need to introduce real frictions or distortionary taxes.

Table 2 summarizes the impact of learning on the behavior of investment,

consumption and output. For each variable the Table gives, over different

horizons, the difference between the cumulative impact under learning and

under RE (the table is based on the same data as in Figure 5). This dif-

ference is particularly striking for investment. For example, over five years

the cumulative difference between the level of investment under learning and

under RE amounts to 661% of steady state output or 3191% of steady state

investment.28 Over five and ten year horizons the cumulative effect on con-

sumption is also greater under learning than under RE. It follows that the

cumulative difference between the level of output under learning and under

RE, which is equal to the sums of the differences for investment and con-

sumption, is also large over all three horizons. Over ten years this difference

amounts to over 757% of steady state output.

It should be emphasized, however, that fiscal consolidation leads to a fall

in aggregate output and employment under both RE and learning.29 This is

an unavoidable consequence of the lower steady state level that necessarily

accompanies a permanent reduction in  in the basic RBC model that we

are using. However,  falls less rapidly under learning and is around 07 of a

percentage point higher than RE levels after year one. This feature explains

the higher levels of output under learning compared to RE levels for the

entire 10 year period depicted in Figure 5 and summarized in Table 2.

To summarize, the literature on fiscal consolidation emphasizes the pos-

sibility of positive effects on both private consumption and, especially, pri-

vate investment resulting from permanent decreases in government spend-

ing. Adaptive learning can provide a natural mechanism, operating through

expectations, for a surge in investment immediately following a fiscal consol-

idation, as well as a sustained period of higher consumption.

Of course, the detailed results will also depend on the specific econometric

forecasting model used by agents. The dummy variable specification used in

Section 5 is an alternative that could be used in the current context. Using

this specification we find that our fiscal consolidation results are essentially

28When Table 2 is recalculated using the nonlinear system under learning there are only

minor differences in the results. For example, based on 3000 replications the corresponding

numbers are 671% and 3239%.
29Empirical evidence on aggregate effects is reviewed, e.g., in Briotti (2005) and IMF

(2010), chapter 3.
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unchanged if  is large, so that agents distrust estimates based on past

temporary government spending shocks when forming priors on the dummy

variable coefficients. However, for smaller , especially if  is low, the surge

in investment does not take place. This suggests that the behavior of private

sector spending in response to fiscal consolidation may vary across countries,

depending on specific circumstances.

8 Conclusions

In this paper we have studied the impact of changes in government purchases

in a standard RBC model with adaptive learning. Methodologically, our

approach has been to assume that households understand the direct effects

of announced changes in government purchases on their after-tax income,

but have imperfect knowledge of the implications of the policy for the future

paths of wages and interest rates. Expectations of these latter variables follow

the adaptive learning approach in which agents estimate and update their

forecasts using statistical learning rules.

Using this approach we study the implications for three inter-related ques-

tions that have been a major focus of recent research. Our main finding is

that the multiplier effects of government purchases in RBC models under

learning can be much larger than under the standard rational expectations

assumption, and in particular they are compatible with the range found in

empirical studies. In our baseline formulation of adaptive learning, there

is less crowding out of consumption and there is substantial crowding in of

investment. For a wide range of parameters this result extends to alterna-

tive econometric specifications of the agents’ perceived law of motion and to

the extent of structural knowledge they have about future taxes. We also

find that fiscal policy, taking the form of temporary increases in government

purchases, can increase output and employment during severe recessions. Fi-

nally, we have seen that the behavior of both consumption and investment

under fiscal consolidations can better match some stylized empirical facts

when adaptive learning is incorporated into the RBC model.

In future work, we aim to study these issues in extended models that allow

for more realistic forms of government financing, incorporating distortionary

taxes and government debt, and in models that include aggregate demand

channels.
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Appendix

A Linearizations

The linearized wage rate, rental rate, real interest rate, output and capital

accumulation equations are

 − ̄ = ̄[(


̄
− 1) + (



̄
− 1)− (



̄
− 1)]

 − ̄ = ̄[(


̄
− 1)− (1− )(



̄
− 1) + (1− )(



̄
− 1)]

 − ̄ =  − ̄

 − ̄ = ̄[(


̄
− 1) + (



̄
− 1) + (1− )(



̄
− 1)]

+1 − ̄ = ( − ̄)− ( − ̄)− ( − ̄) + (1− )( − ̄)

The equations giving the steady state are ̄ = 1−+̄ = −1 ̄ = ̄̄̄1−−
̄ − ̄ ̄ = ̄(1− ̄) ̄ = (1− )̄( ̄

̄
) and ̄ = ̄( ̄

̄
)−1.

B Fiscal policy under learning dynamics

Under learning we define variables as deviations from estimated steady states

i.e. ̃ = − ̄  ̃ = − ̄ and ̃ = −̄
 . Using the PLMs (17)-(20),

we can obtain estimates of the steady state (omitting the time subscripts on

̄ , etc.)

̄ =


1− 
 ̄ =  + 



1− 
 ̄ =  + 



1− 


Here we can write

̃+1 = ̃ + ̂ (21)

̃ = ̃ + ̂ (22)

̃ = ̃ + ̂ (23)

Here under learning the coefficients  etc. denote the estimated values at a

moment in time. Then under learning, forecasts of capital and productivity
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are made using µ
̃+1
̂+1

¶
= ̃

µ
̃
̂

¶
+

µ
0

̃+1

¶


̃ =

µ
 
0 

¶


Defining ̃ ≡
µ

̃
̂

¶
 we have for  ≥ 1

̃+ = ̃̃ (24)

Using the future forecasts of capital stocks from (24), we can in turn obtain

the future forecasts of wages and rental rates from (22) and (23) as

̃
+ =

¡
 

¢
̃̃ and ̃+ =

¡
 

¢
̃̃

These are then used to form 
 and   It can be show e.g. that


 =



1− 
(̄

 − ̄) +
¡
 

¢
̃( − ̃)−1̃

and

 =
2

(1− )2
(̄−̄)+2

¡
 

¢
(−̃)−1̃[(1−)−1−̃(−̃)−1]̃

For details see Mitra, Evans, and Honkapohja (2013).

For Section 4 , the other needed item is   which is given in the text.

For Section 6, we need to calculate this for an announced future temporary

government spending change.

We consider a temporary anticipated policy change which is known to be

temporary by the agents. We assume 2  1 + 1 as in our policy change.

We have

 − ̄ =

⎧⎨⎩ 0,  = 0  1 − 1
∆̄ ≡ (̄0 − ̄),  = 1  2 − 1

0,  ≥ 2

Under learning, we have when 1 ≤  ≤ 1 − 1

  =

∞X
=1

(+ − ̄) = ∆̄

2−−1X
=1−

 =
1−(1− 2−1)

1− 
∆̄
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For 1 ≤  ≤ 2 − 1

  =

∞X
=1

(+ − ̄) =
(1− 2−−1)

1− 
∆̄

and   = 0 for  ≥ 2 Thus

  =

⎧⎪⎨⎪⎩

1−(1−2−1 )

1− ∆̄,  = 1  1 − 1
(1−2−−1)

1− ∆̄,  = 1  2 − 1
0,  ≥ 2

C Details for dummy variables specification

in Section 5

We now compute 
 and 


 when agents include a dummy variable in their

regression equations as in Section 5. First we can write the PLMs in Section

5 in deviation form as shown in Appendix B; with deviations under learning

taken from the estimated steady state values of capital, wage rate, and rental

rate.30 Using this notation we have the PLMs with dummy variables included

as follows

̃+1 = ̃ + ̂ + ̂ + ̄ + 

̃ = ̃ + ̂ + ̂ + ̄ + 

̃ = ̃ + ̂ + ̂ + ̄ + 

The variable ̄ is a discrete variable taking the value ̄ = ∆̄ ≡ (̄0− ̄)

for all  ≤  − 1 and is zero when  ≥  .Forecasts use ̃
0
 ≡

³
̃ ̂ ̂

´
and

we have for periods 1 ≤  ≤  − 1

̃+1 = ̃ + + +1

 =

⎛⎝ ∆̄

0

0

⎞⎠  +1 =

⎛⎝ 0

̃+1
+1

⎞⎠ 

30In effect, agents assume the economy has a single steady state.
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and for periods  ≥  we have

̃+1 = ̃ + +1

First, consider periods 1 ≤  ≤  − 1 We have
̃+ = ̃ + ( −)( −)−1 for  ≤  − − 1
̃+ = +−+1̃−1for  ≥  − 

For  ≥  − 1 we have ̃+ = ̃ We use these to compute 

 and 

when the dummy variable is included in agents’ regression equations.


 can be obtained from


 =

∞X
=1

(̄
 − ̄) +

∞X
=1

̃
+

=


1− 
(̄

 − ̄) +

∞X
=1


£¡

  
¢
̃+ + +

¤


since ̃
+ =

¡£
  

¤¢
̃+ + +. The infinite sum above for

 ≤  − 2 can be computed as
∞X
=1


£¡

  
¢
̃+ + +

¤
=

∞X
=1

+ +

∞X
=1


¡
  

¢
̃+

=
X−−1

=1
∆̄ +

¡
  

¢ ∞X
=1

̃+

= ∆̄
1− −−1

1− 
+ ( − )−1̃ +"

1−−
1−  − ( − )−1( − ()−)+

−−1( − )−1 − ()− ( − )−1

#
( −)−1

so that finally for  ≤  − 2


 =



1− 
(̄

 − ̄) + ∆̄
1− −−1

1− 
+ ( − )−1̃ +"

1−−
1−  − ( − )−1( − ()−)+

−−1( − )−1 − ()− ( − )−1

#
( −)−1
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For  ≥  − 1 we have31


 =



1− 
(̄

 − ̄) + 
¡
  

¢
( − )−1̃

since the dummy variable is no longer present in this sum.

For  when  ≥  − 1 we have

 =

∞X
=1

+1
X

=1

(+ − ̄) =
2

(1− )2
(̄ − ̄) +

2
¡
  

¢
( − ̃)−1̃[(1− )−1 − ̃( − ̃)−1]̃

When  ≤  − 2 we have

 =
2

(1− )2
(̄ − ̄) + 

 ≡
∞X
=1

+1
X

=1

̃+; ̃

+ =

¡
  

¢
̃+ + +

Hence,

 =

∞X
=1

+1
X

=1

£¡
  

¢
̃+ + +

¤
=

∞X
=1

+1
X

=1

£¡
  

¢
̃+

¤
+

∞X
=1

+1
X

=1

+

≡ 
+ 

 (25)

Note that
X

=1

+ =

½
∆̄,  ≤  − 1

( − 1)∆̄  ≥ 

So


=

−2X
=1

+1∆̄ +

∞X
=−1

+1( − 1)∆̄

= ∆̄
2
£
1− ( − 1)−2 + ( − 2)−1

¤
(1− )2

+ ∆̄( − 1) 

1− 


31The formulas for 
 and  for  ≥  − 1 are analogous to that in the Appendix

to Mitra, Evans, and Honkapohja (2013) because of the absence of the dummy variable

after this period.
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Now we compute 
when  ≤  − 2 For this we first note that when

 ≤  − − 1
X

=1

̃+ =

X
=1

̃ + ( −)−1−
X

=1

( −)−1

= [( −)−1 − ( −)−1+1]̃ + ( −)−1−
[( −)−1 − ( −)−1+1]( −)−1

and when  ≥  −  we have

X
=1

̃+ = [( −)−1 − ( −)−1−][̃ − ( −)−1] +

( − − 1)( −)−1+
£
( −)−1 − ( −)−1++2−¤ ̃−1

where ̃−1 = −1−̃ + ( −−−1)( −)−1

Using this information we compute 
when  ≤  − 2 For this we

need to find

∞X
=1

+1
X

=1

̃+ =

−−1X
=1

+1
X

=1

̃+ +

∞X
=−

+1
X

=1

̃+

≡ 1 + 2

We simplify 1 now.

1 =

−−1X
=1

+1
£
( −)−1̃ − ( −)−1( −)−1

¤
+( −)−1

Ã
−−1X
=1

()
+1

!£
( −)−1− ̃

¤
+

Ã
−−1X
=1

+1

!£
( −)−1

¤

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Evaluating the relevant sums above yields 1 finally

1 =
2
£
1− −−1

¤
(1− )

£
( −)−1̃ − ( −)−1( −)−1

¤
+2( −)−12( − )−1[ − ()−−1] £( −)−1− ̃

¤
+

Ã
2
£
1− ( − )−−1 + ( − − 1)−¤

(1− )2

!
( −)−1

Next we compute 2

2 =
−+1

(1− )

£
( −)−1 − ( −)−1−¤ [̃ − ( −)−1]

+( − − 1)( −)−1+
∞X

=−
+1

X
=−

+−(−1)̃−1

The final term can be shown to be

∞X
=−

+1
X

=−
+−(−1)̃−1

=
−+1

(1− )
( −)−1̃−1

−( −)−1 ()−+1 ( − )−1+1− ̃−1

which provides a simplified expression for 2 This finally completes the

process of finding 
when  ≤  − 2.

When  ≥  − 1 the dummy variable is absent from agents’ regression

equations so that 
= 0 and we have  = 

in (25). The

latter can be obtained using analogous techniques used in Mitra, Evans, and

Honkapohja (2013) to yield the following

 =

∞X
=1

+1
X

=1

£¡£
  

¤¢
̃+

¤
=

2
¡£
  

¤¢
( −)−1[(1− )−1 −(1− )−1]̃

This gives the formulas for 
 and 


 when the dummy variable is included

in agents’ regression equations which are required in Section 5.
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D Temporary policy change under RE

The basic techniques are described in Mitra, Evans, and Honkapohja (2013).

The key is to obtain the evolution of capital since the other variables can then

be obtained using the above linearizations. Under RE the capital sequence

can be shown to be given by

̂+1 = 2̂ − 2
−1
0 (() + ()) (26)

See Appendix B of Mitra, Evans, and Honkapohja (2013) for the derivation

and the values of () 2 and 0. The formula for () depends on the

details of the government spending policy. For the surprise temporary change

considered in Section 4, we have

() =

⎧⎪⎪⎨⎪⎪⎩
µ
(0 − 1) (1−

−(−−1)
1 )

1−−11
+0

−(−−1)
1

¶
∆̄,  = 1   − 2

0∆̄,  =  − 1
0,  ≥ 

For the announced temporary policy change considered in Section 6, we

have

 − ̄ =

⎧⎨⎩ 0,   1

∆̄, 1 ≤   2

0,  ≥ 2

and

+ − ̄ =

⎧⎨⎩ 0, +   1

∆̄, 1 ≤ +   2

0, +  ≥ 2

Assume 2  1 + 1. Then

0(+ − ̄) +1(++1 − ̄) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 +   1 − 2
−∆̄, +  = 1 − 1

(0 − 1)∆̄, 1 ≤ +   2 − 1
0∆̄, +  = 2 − 1

0 +  ≥ 2

We now compute ().
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First, for 1 ≤   1

() = −∆̄
−(1−1)
1 + (0 − 1)∆̄

2−−2X
=1−


−
1 +0∆̄

−(2−−1)
1

=

Ã
−−(1−1)1 + (0 − 1)

−(1−)
1 (1− 

−(2−1−1)
1 )

1− −11

+0
−(2−−1)
1

´
∆̄

For 1 ≤  ≤ 2 − 1

() = (0 − 1)∆̄

2−−2X
=0


−
1 +0∆̄

−(2−−1)
1

=

Ã
(0 − 1)(1− 

−(2−−1)
1 )

1− −11
+0

−(2−−1)
1

!
∆̄

and () = 0 for all  ≥ 2.
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TABLE 1

Cumulative Multiplier 

 01 05 09 10

03 09 37 65 72

07 16 41 66 73

09 32 51 70 74

095 41 55 69 73

099 60 65 71 72

Table 1: Cumulative output multipliers under learning for policy stimulus

using dummy variable specification.  is the AR(1) coefficient for ̂ and 

is the shrinkage parameter for the prior coefficients of ̄. The cumulative

multipliers reported are at the end of period 40 on the basis of averages over

3 000 simulations. The corresponding cumulative multipliers under RE in

all cases are around 018.

TABLE 2

Cumulative 3 years 5 years 10 years

Effects in % RLS−RE RLS−RE RLS−RE
(
P

) ̄ 691 661 528

(
P

) ̄ −109 019 229

(
P

) ̄ 582 680 757

(
P

) ̄ 3335 3191 2548

(
P

) ̄ −184 032 387

Table 2: Cumulative effects on key variables of a fiscal consolidation

on the basis of averages over 100 000 simulations. Cumulative difference

between effects under learning (RLS) and under rational expectations (RE)

in percent relative to the new steady state.
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Figure 1: Dynamic paths for a two-year (8 periods) increase in government

purchases. The solid lines are the learning paths while the dashed lines are

the RE paths. All variables are measured in percentage deviations from

steady state values. Mean paths over 100,000 simulations.
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Figure 2: Multipliers as a distributed lag response (left hand side) and cumu-

lative multipliers (right hand side), for output, consumption, and investment,

for the increase in government purchases considered in Figure 1. The solid

lines are the learning paths while the dashed lines are the RE paths.
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Figure 3: Dynamic paths showing the impact on major variables of a fiscal

stimulus announced in the midst of the Great Recession. Mean paths over

20,000 simulations. The solid black line illustrates the learning paths with

the policy change and the lighter shaded line the learning paths without

the policy change. All variables are measured in percentage deviations from

steady state values.
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Figure 4: Output multiplier (distributed lag in left hand panel and cumu-

lative in right hand panel) for the policy experiment illustrated in Figure

3. The solid lines are the learning paths while the dashed lines are the RE

paths.
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Figure 5: Dynamic paths for the fiscal consolidation. The solid lines are

the learning paths while the dashed lines are the RE paths. All variables

are measured in percentage deviations from steady state values. Mean paths

over 100 000 simulations.
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