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Background

• A standard characterization of monetary policy is that the CB (Central
Bank) follows a Taylor-type rule in which the interest rate Rt responds
more than one-for-one to inflation πt near the inflation target π∗.

• The ZLB (zero lower bound) for Rt − 1 implies a second unintended
steady-state πL of any (continuous) “global” Taylor rule. See Figure.

• Under perfect foresight (& rational expectations) the low steady state is
“indeterminate,” i.e. has multiple perfect foresight paths that converge to
it (a low R “liquidity trap”). See Benhabib, Schmitt-Grohe and Uribe
(2001, 2002).
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Multiple steady states with global Taylor rule.
Here R = nominal interest rate factor (e.g. 1.06), π = inflation factor (e.g. 1.02), and β−1

= steady state real interest rate factor (e.g. β = 0.96).



Outline

• We consider a fairly standard NK (New Keynesian) model with a global
Taylor rule and a standard fiscal policy setting.

• We consider the solutions both under RE (rational expectations) and when
private agents form expectations of future consumption and inflation using
adaptive learning.

• We find: under learning the π∗ solution is locally stable, but if ex-
pectations are too pessimistic they follow unstable paths — deflationary
spirals.



• To prevent deflationary spirals we consider procedures that suspend normal
policies and replace them with aggressive policies when π falls to some
threshold π̃ < π∗.

• Fiscal as well as aggressive monetary policy may be needed.

• The aggressive policies must be based on an inflation threshold. Using
an output threshold is not sufficient.



The Model

We use a standard discrete-time, stochastic NK (“New Keynesian”) model.

A continuum of households produce a differentiated consumption good under
conditions of
(i) monopolistic competition and
(ii) price-adjustment costs.
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Monetary and Fiscal Policy

Government purchases gt are given by

gt = ḡ + ut

where ut is exogenous AR(1), stationary. Lump-sum taxes Υt are given by

Υt = κ0 + κbt−1 + ηt,

ηt white noise, and β
−1 − 1 < κ < 1. Real 1-period debt bt evolves as:

bt +mt +Υt = gt +mt−1π−1t +Rt−1π−1t bt−1.

Monetary Policy:

Rt − 1 = θtf (πt) , where θt is AR(1) with Eθt = 1

and f(π) as shown earlier → two steady states 0 < πL < π∗.



Key Equations

The equilibrium of the model is given by the monetary and fiscal policy, market
clearing, and the private-sector optimization equations:
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and a money demand equation.

The first equation is a NK Phillips curve. The second is the Euler equation
for ct (the NK IS curve).



Rational Expectations

Consider the stochastic system for “small shocks,” i.e. if the random exoge-
nous shocks have small support, and RE.

For the (ct, πt) block there is a stochastic steady-state solutionÃ
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near each of the two steady states.

Proposition 1. In the linearized model there are two steady states π∗ > πL.
For γ > 0 sufficiently small, the steady state π = π∗ is locally determinate
(i.e. locally unique) and the steady state π = πL is locally indeterminate.

We now consider the situation under adaptive learning.



Learning and Expectational Stability

We now replace RE by private agent learning.

We return to the nonlinear system of equations so that we can study the
global properties of the system under learning.

We assume that agents estimate the linear projection

ct+1 = ac + dut + eθt + εc,t+1

πt+1 = aπ + fut + gθt + επ,t+1,

and use it to make forecasts.



Timing: At end of period t−1, agents use LS to update estimated coefficients
ac,t−1, dt−1, et−1, aπ,t−1, ft−1, gt−1. Then, at the start of t agents form
forecasts

cet+1 = ac,t−1 + dt−1ut + et−1θt
πet+1 = aπ,t−1 + ft−1ut + gt−1θt.

This determines actual ct, πt. Then at the end of t the coefficients are updated
using the new data point.

Do estimates and forecasts converge (approximately) to RE corresponding
to the π∗ or πL equilibrium? This can be analyzed using E-stability.



We make a simplification that does not affect any of our key results. It
turns out that stability is governed by the stability of the intercepts, not the
coefficients for exogenous shocks.

Thus for simplicity we now assume that ut and θt are iid and drop them
from the regression.

In effect, private agents simply estimate the unknown means of πt and ct.
Coefficient updating is then given by

πet+1 = πet + φt(πt−1 − πet)

cet+1 = cet + φt(ct−1 − cet),

where φt is the “gain sequence” (e.g. φt = t−1, i.e. decreasing gain, or
φt = φ for 0 < φ < 1, i.e. constant gain).

The system under learning consists of the original system but with RE re-
placed by adaptive learning.



The πt, ct block under learning is given by
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together with the interest-rate rule for Rt. cet+1, π
e
t+1 are given by adaptive

learning, as above. Note: we are assuming Euler-equation learning.

These “temporary equilibrium” PC and IS equations determine πt, ct given
expectations. The temporary equilibrium system is completed by the money
equation and the bond evolution equation.

Under learning does the system evolve towards π∗ or towards πL?



Stability under learning

Formally we can write the temporary equilibrium system as

πt = Fπ(π
e
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e
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with

πet+1 = πet + φt(πt−1 − πet)

cet+1 = cet + φt(ct−1 − cet).

This is a stochastic recursive algorithm, whose convergence properties can be
analyzed, as usual, using E-stability.



Local stability under learning is determined by E-stability. A stochastic
steady state is E-stable if the differential equationÃ
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T (πe, ce) maps the Perceived Law of Motion to the Actual Law of Motion.



Proposition 2. For γ > 0 sufficiently small, the (stochastic) steady state at
π = π∗ is locally stable under learning and the steady state at π = πL is
locally unstable under learning, taking the form of a saddle point.

See Figure. Local stability of π∗ is reassuring, but the instability under
learning of πL comes with a danger: the possibility of deflationary spirals
leading to stagnation (a deflation trap).

If expectations πe, ce are initially low enough then actual π, c, and output y
are low and this is self-reinforcing under learning.



•A

πe and ce dynamics under normal policy



Adding Aggressive Monetary Policy

Can the deflation trap be avoided if modify monetary policy to be more
aggressive when we approach the expectational danger zone? We consider the
following change to monetary policy:

Rt =

(
1 + θtf (πt) if πt > π̃

R̂ if πt < π̃,

where R̂ > 1 is close to the ZLB of 1, and

R̂ ≤ Rt ≤ 1 + θtf (πt) if πt = π̃.

Thus if πt threatens to fall below some threshold π̃, we suspend the global
Taylor rule and reduce Rt as needed to try to maintain πt = π̃, if necessary
reducing Rt all the way to R̂. See Figure.
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Aggressive monetary policy for π ≤ π̃.



It turns out that aggressive monetary policy is not enough to avoid defla-
tionary spirals.

Proposition 3. There is a steady state at π̂ = βR̂ and there is no steady
state value for πt below π̂. For all γ > 0 sufficiently small the steady state at
π̂ = βR̂ is a saddle point under learning.

While the region of stability may increase, the possibility of a deflationary trap
remains.



Two steady states with standard fiscal policy and πL < π̃ < π∗.



Combined Monetary and Fiscal Policy

Our recommended policy is to add an inflation floor or threshold π̃, with
πL < π̃ < π∗, and to use both aggressive monetary and fiscal policy, if needed,
to ensure this floor is achieved. If πL < 1 then π̃ = 1 can be used.

Our policy is feasible because fiscal policy can guarantee an inflation floor:

Lemma Given expectations cet+1 and πet+1 and setting Rt = R̂, any value of
πt > 1/2 can be achieved by setting gt sufficiently high.

This follows by implicitly differentiating the Phillips curve equation.



Our recommended policy: Follow normal monetary and fiscal policy provided
πt ≥ π̃. Reduce Rt as needed and increase gt if necessary to ensure πt ≥ π̃.

Policy needs to focus on inflation, not expansionary spending per se.

Proposition 4. If πL < π̃ < π∗ then π∗ is the unique steady state and it is
stable under learning.

Thus for πL < π̃ < π∗ our recommended policy eliminates the deflation
trap. See Figure.



• A

Inflation threshold π̃, πL < π̃ < π∗, for aggressive monetary policy and, if
needed, aggressive fiscal policy.



Stochastic Simulations

We set π∗ = 1.02 (with πL = 0.975), π̃ = 1 and φ = 1/30. We start with
a pessimistic expectations shock at t = 0 (πe falls to 1.01 and ce falls by
about 8%), large enough to lead to deflationary spirals.

We examine the paths if initially normal policies are used, and then our recom-
mended policy is introduced at t1 = 150 vs. t1 = 80. These are compared
to the results if the policy is initially in place. See Figs.

Introducing our policy earlier, at t1 = 80 avoids the worst part of the
stagnation. Having the policy in place when the shock occurs is best.

Setting π∗ higher, e.g. π∗ = 1.05 can avoid the need for fiscal policy for the
larger shock. However there is an efficiency loss of a higher inflation target.







Extension: infinite horizon learning

— Our preceding analysis was under the assumption that agents’ decision rules
had a short planning horizon, based on subjective Euler equations.

— Commitment to low interest rates cannot be studied in that setting.

— In Evans & Honkapohja (2009) we consider a modification of the set-up.
We replace Euler-equation learning with infinite-horizon decision rules, as in
Marcet and Sargent 1989, Preston 2005, 2006 or Evans, Honkapohja & Mitra
(2009, 2010).



— In this setting agents solve forward their Euler equations & use their life-time
budget constraint. Now under learning they must, at each time, forecast the
whole future time path. The temporary equilibrium equations are
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— Our central results extend to this setting. We continue to find that fiscal
policy may be needed. Monetary policy alone, even if policy commits to zero
net interest rates for ever, may be insufficient to avoid the deflation trap.



Conclusions

• We take seriously the multiple equilibrium problem emphasized by the
RE literature on the ZLB.

• However, the adaptive learning approach provides another perspec-
tive and is in some ways more alarming: large pessimistic shocks can
lead to unstable deflationary spirals.

• To avoid this normal policy must be replaced by aggressive monetary
and fiscal policy triggered if inflation falls below a threshold π̃ > πL.

• Output thresholds are inadequate. The key is to stabilize inflation.



Conclusions to Lectures

• Expectations play a large role in modern macroeconomics. People are
smart, but boundedly rational. Cognitive consistency principle: economic
agents should be about as smart as (good) economists, e.g. model agents
as econometricians.

• Stability of RE under private agent learning is not automatic. Monetary
policy must be designed to ensure both determinacy and stability under
learning.

• Policymakers may need to use policy to guide expectations. Under learning
there is the possibility of persistent deviations from RE, hyperinflation, and
deflationary spirals with stagnation. Appropriate monetary and fiscal policy
design can minimize these risks.


