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J. C. Trichet: “Understanding expectations formation as a process underscores
the strategic interdependence that exists between expectations formation and
economics.” (Zolotas lecture, 2005)

Ben S. Bernanke: “In sum, many of the most interesting issues in contempo-
rary monetary theory require an analytical framework that involves learning by
private agents and possibly the central bank as well.” (NBER, July 2007).
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Morning Session

Lecture 1: Review of techniques: E- stability & least squares learning
– Muth model. Multivariate Models. Application to New Keynesian model

Lecture 2: Optimal monetary policy and learning
– Optimal policy with learning. Policy with perpetual learning

Afternoon session

Lecture 3: (i) Recurrent hyperinflations and learning
– (ii) Dynamic Predictor Selection and Endogenous Volatility

Lecture 4: Liquidity traps, learning and stagnation.



Lecture 1: Review of techniques: E- stability & least squares
learning

Introduction

• Since Lucas (1972, 1976) and Sargent (1973) the standard assumption in
the theory of economic policy is rational expectations (RE). This assumes,
for both private agents and policymakers,

— knowledge of the correct form of the model

— knowledge of all parameters, and

— knowledge that other agents are rational & know that others know . . . .



• RE assumes too much and is therefore implausible. We need an appropriate
model of bounded rationality What form should this take?

• My general answer is given by the Cognitive Consistency Principle: eco-
nomic agents should be about as smart as (good) economists.
Economists forecast economic variables using. econometric techniques, so
a good starting point: model agents as “econometricians.”

• Neither private agents nor economists at central banks do know the true
model. Instead economists formulate and estimate models. These models
are re-estimated and possibly reformulated as new data becomes available.
Economists engage in processes of learning about the economy.

• These processes of learning create new tasks for macroeconomic policy



Starting Points:

• The private sector is forward-looking (e.g. investment, savings decisions).

• Forecasts (including private forecasts) of future inflation and output have
a key role in monetary policy:

1. Empirical evidence e.g. by (Clarida, Gali and Gertler 1998).

2. Bank of England and ECB discuss private forecasts in addition to in-
ternal macro projections.

• Private agents and/or policy-makers are learning.



Fundamental Problems:

• There may be multiple equilibria, depending on interest rate policy.

• Policy may lead to expectational instability if expectations are not always
rational.

These problems necessitate careful design of interest rate rule: Bullard and
Mitra (2002), Evans and Honkapohja (2003a, 2006).
=> Survey papers: Evans and Honkapohja (2003b, 2009), Bullard (2006).

• Central message: Policy should facilitate learning by private agents.



A Muth/Lucas-type Model

Before looking at issues of policy, we review the learning approach and the
E-stability technique, beginning with a simple univariate reduced form:

pt = μ+ αE∗t−1pt + δ0wt−1 + ηt. (RF)

E∗t−1pt denotes expectations of pt formed at t− 1, wt−1 is a vector of exoge-
nous shocks observed at t− 1, ηt is an exogenous unobserved iid shock, and
wt follows an exogenous stationary VAR process.

Muth example. Demand and supply equations:

dt = mI −mppt + v1t
st = rI + rpE

∗
t−1pt + r0wwt−1 + v2t,

Assuming market clearing, st = dt, yields (RF) where μ = (mI − rI)/mp,
δ = −m−1p rw and α = −rp/mp and ηt = (v1t − v2t)/mp.
Note that α < 0 if mp, rp > 0.



Lucas-type Monetary model. A simple Lucas-type model:

qt = q̄ + π(pt −E∗t−1pt) + ζt,

where π > 0, and aggregate demand function is given by

mt + vt = pt + qt,

vt = μ+ γ0wt−1 + ξt,

mt = m̄+ ut + ρ0wt−1.
Here wt−1 are exogenous observables. The reduced form is again

pt = μ+ αE∗t−1pt + δ0wt−1 + ηt, where

α = π(1 + π)−1 and δ = (1 + π)−1(ρ+ γ)

In this example 0 < α < 1.



RATIONAL EXPECTATIONS

First consider the model under RE:

pt = μ+ αEt−1pt + δ0wt−1 + ηt.

The model has a unique RE solution since

Et−1pt = μ+ αEt−1pt + δ0wt−1 −→
Et−1pt = (1− α)−1δ + (1− α)−1δ0wt−1

Hence the unique REE is

pt = ā+ b̄0wt−1 + ηt, where

ā = (1− α)−1δ and b̄ = (1− α)−1δ.



LEAST-SQUARES LEARNING

Under learning, agents have the beliefs or perceived law of motion (PLM)

pt = a+ bwt−1 + ηt,

but a, b are unknown. At the end of time t−1 they estimate a, b by LS (Least
Squares) using data through t−1, i.e. Then they use the estimated coefficients
to make forecasts E∗t−1pt. Here the standard least squares (LS) formula areÃ
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=
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.



The timing is:

— End of t− 1: wt−1 and pt−1 observed. Agents update estimates of a, b to
at−1, bt−1 using {ps, ws−1}t−1s=1. Agents make forecasts

E∗t−1pt = at−1 + b0t−1wt−1.

— Period t: (i) The shock ηt is realized, pt is determined as

pt = (μ+ αat−1) + (δ + αbt−1)0wt−1 + ηt

and wt is realized. (ii) agents update estimates to at, bt using {ps, ws−1}ts=1
and make forecasts

E∗t pt+1 = at + b0twt.

The system under learning is a fully specified dynamic system under learning.

Question: Will (at, bt)→ (ā, b̄) as t→∞?



LS updating and the system can be set up recursively. Letting

φt =

Ã
at
bt

!
and zt =

Ã
1
wt

!
the system is:

E∗t−1pt = at−1 + b0t−1wt−1
pt = μ+ αE∗t−1pt + δ0wt−1 + ηt,

φt = φt−1 + t−1R−1t zt−1(pt − φ0t−1zt−1)
Rt = Rt−1 + t−1(zt−1z0t−1 −Rt−1),

This recursive formulation is useful for (a) theoretical analysis, and (b) numer-
ical simulations.



Theorem: Consider model (RF) with E∗t−1pt = at−1 + b0t−1wt−1 and with

at−1, bt−1 updated over time using least-squares. If α < 1 then

Ã
at
bt

!
→Ã

ā
b̄

!
with probability 1. If α > 1 convergence occurs with probability 0.

Thus the REE is stable under LS learning both for Muth model (α < 0) and
Lucas model (0 < α < 1)..

Example of an unstable REE: Muth model with mp < 0 (Giffen good) and
|mp| < rp.



E-STABILITY

Proving the theorem is not easy. However, there is an easy way of deriving the
stability condition α < 1 that is quite general. Start with the PLM

pt = a+ b0wt−1 + ηt,

and consider what would happen if (a, b) were fixed at some value possibly
different from the RE values (ā, b̄). The corresponding expectations are

E∗t−1pt = a+ b0wt−1,
which would lead to the Actual Law of Motion (ALM)

pt = μ+ α(a+ b0wt−1) + δ0wt−1 + ηt.

The implied ALM gives the mapping T : PLM → ALM:

T

Ã
a
b

!
=

Ã
μ+ αa
δ + αb

!
.



The REE ā, b̄ is a fixed point of T . Expectational-stability (“E-stability) is
defined by the differential equation

d

dτ

Ã
a
b

!
= T

Ã
a
b

!
−
Ã
a
b

!
.

Here τ denotes artificial or notional time. ā, b̄ is said to be E-stable if it is
stable under this differential equation.

In the current case the T -map is linear. Component by component we have

da

dτ
= μ+ (α− 1)a

dbi
dτ

= δ + (α− 1)bi for i = 1, ..., p.



da

dτ
= μ+ (α− 1)a

dbi
dτ

= δ + (α− 1)bi for i = 1, ..., p.

It follows that the REE is E-stable if and only if α < 1. This is the stability
condition, given in the theorem, for stability under LS learning.

Intuition: under LS learning the parameters at, bt are slowly adjusted, on aver-
age, in the direction of the corresponding ALM parameters.

Numerical simulation of learning in Muth model. μ = 5, δ = 1 and α = −0.5.
wt

iid∼ N(0, 1) and ηt
iid∼ N(0, 1/4). Initial values a0 = 1, b0 = 2 and

R0 = eye(2). Convergence to the REE ā = 10/3 and b̄ = 2/3 is rapid.
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Figure 2.1.

A general definition of E-stability is a straightforward extension of the ex-
ample in this chapter. Starting with an economic model, we consider its REE
solutions. Assume that any particular solution can be described as a stochastic
process with particular parameter values φ̄. Here φ might be, for example, the
parameters of an ARMA process or of a VAR or the mean values at the differ-
ent points in a k-cycle. Under adaptive learning the agents are assumed not to
know φ̄, but try to estimate it using data from the economy. This leads to statisti-
cal estimates φt at time t , and the issue will be whether φt → φ̄ as t→∞. We
will in each case set up the problem as an SRA in order to examine the stability
of the solution φ̄. We will continue to find that stability of φ̄ under learning can
be determined by the E-stability equation, i.e., by the stability of

dφ

dτ
= T (φ)− φ, (2.20)

in a neighborhood of φ̄, where T (φ) is the mapping from the perceived law
of motion φ to the implied actual law of motion T (φ). [Note that REEs corre-



The E-Stability Principle

— The E-stability technique works quite generally.

— To study convergence of LS learning to an REE, specify a PLM with para-
meters φ. The PLM can be thought of as an econometric forecasting model.
The REE is the PLM with φ = φ̄.

— PLMs can take the form of ARMA or VARs or admit cycles or a dependence
on sunspots.

— Compute the ALM for this PLM. This gives a map

φ→ T (φ),

with fixed point φ̄.



— E-stability is determined by local asymptotic stability of φ̄ under

dφ

dτ
= T (φ)− φ.

The E-stability condition is that all eigenvalues of DT (φ̄) have real parts less
than 1.

— The E-stability principle: E-stability governs local stability of an REE under
LS and closely related learning rules.

— E-stability can be used as a selection criterion in models with multiple REE.

— These techniques can be applied to multivariate linearized models, and thus
to RBC, OLG, New Keynesian and DSGE models.



The New Keynesian Model

• Log-linearized New Keynesian model (CGG 1999, Woodford 2003 etc.).

1. “IS” equation (IS curve)

xt = −ϕ(it −E∗t πt+1) +E∗t xt+1 + gt

2. the “New Phillips” equation (PC curve)

πt = λxt + βE∗t πt+1 + ut,

where xt =output gap, πt =inflation, it = nominal interest rate. E∗t xt+1,
E∗t πt+1 are expectations. Parameters ϕ, λ > 0 and 0 < β < 1.



• Observable shocks followÃ
gt
ut

!
= F

Ã
gt−1
ut−1

!
+

Ã
g̃t
ũt

!
, F =

Ã
μ 0
0 ρ

!
,

where 0 < |μ| , |ρ| < 1, and g̃t ∼ iid(0, σ2g), ũt ∼ iid(0, σ2u).

• Interest rate setting by a standard Taylor rule, e.g.
it = χππt + χxxt where χπ, χx > 0 or
it = χππt−1 + χxxt−1 or
it = χπE

∗
t πt+1 + χxE

∗
t xt+1

• Under learning we treat the IS and PC Euler equations as behavioral equa-
tions. Explicit infinite-horizon formations also have been studied: Preston
(IJCM, 2005 and JME, 2006), Evans, Honkapohja & Mitra (JME, 2009).
For more on Euler equation learning see Evans and McGough (2009).



Determinacy and Stability under Learning

DETERMINACY

Combining IS, PC and the it rule leads to a bivariate reduced form in xt and
πt.Letting y0t = (xt, πt)0 and v0t = (gt, ut)0 the model can be writtenÃ

xt
πt

!
=M

Ã
E∗t xt+1
E∗t πt+1

!
+N

Ã
xt−1
πt−1

!
+ P

Ã
gt
ut

!
,

yt =ME∗t yt+1 +Nyt−1 + Pvt.

If the model is “determinate” there exists a unique stationary REE of the form

yt = b̄yt−1 + c̄vt.

Determinacy condition: compare # of stable eigenvalues of matrix of stacked
first-order system to # of predetermined variables. If “indeterminate” there are
multiple solutions, which include stationary sunspot solutions.



LEARNING

Under learning, agents have beliefs or a perceived law of motion (PLM)

yt = a+ byt−1 + cvt,

where we now allow for an intercept, and estimate (at, bt, ct) in period t based
on past data.

- Forecasts are computed from the estimated PLM.
- New data is generated according to the model with the given forecasts.
- Estimates are updated to (at+1, bt+1, ct+1) using least squares.

Question: when is it the case that

(at, bt, ct)→ (0, b̄, c̄)?

We determine this using E-stability



E-STABILITY

Reduced form

yt =ME∗t yt+1 +Nyt−1 + Pvt.

Under the PLM (Perceived Law of Motion)

yt = a+ byt−1 + cvt.

E∗t yt+1 = (I + b)a+ b2yt−1 + (bc+ cF )vt.

This −→ ALM (Actual Law of Motion)

yt =M(I + b)a+ (Mb2 +N)yt−1 + (Mbc+NcF + P )vt.



This gives a mapping from PLM to ALM:

T (a, b, c) = (M(I + b)a,Mb2 +N,Mbc+NcF + P ).

The optimal REE is a fixed point of T (a, b, c). If

d/dτ(a, b, c) = T (a, b, c)− (a, b, c)
is locally asymptotically stable at the REE it is said to be E-stable. See EH,
Chapter 10, for details. The E-stability conditions can be stated in terms of
the derivative matrices

DTa = M(I + b̄)

DTb = b̄0 ⊗M + I ⊗Mb̄

DTc = F 0 ⊗M + I ⊗Mb̄,

where ⊗ denotes the Kronecker product and b̄ denotes the REE value of b.

E-stability governs stability under LS learning.



Results for Taylor-rules in NK model (Bullard & Mitra, JME 2002)

it = χππt + χxxt yields determinacy and stability under LS learning if

λ(χπ − 1) + (1− β)χx > 0. Note that χπ > 1 is sufficient.



With it = χππt−1 + χxxt−1, determinacy & E-stability for χπ > 1 and
χx > 0 small. Also an explosive region (χπ > 1 and χx large) and a
determinate E-unstable region (χπ < 1 and χx moderate).



For it = χπE
∗
t πt+1+χxE

∗
t xt+1, determinacy & E-stability for χπ > 1 and

χx > 0 small. Indeterminate & E-stable for χπ > 1 and χx large. Recent
work has shown stable sunspot solutions in that region.


